| /* Intel 80386/80486-specific support for 32-bit ELF |
| Copyright (C) 1993-2021 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "elfxx-x86.h" |
| #include "elf-vxworks.h" |
| #include "dwarf2.h" |
| #include "opcode/i386.h" |
| |
| /* 386 uses REL relocations instead of RELA. */ |
| #define USE_REL 1 |
| |
| #include "elf/i386.h" |
| |
| static reloc_howto_type elf_howto_table[]= |
| { |
| HOWTO(R_386_NONE, 0, 3, 0, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_NONE", |
| true, 0x00000000, 0x00000000, false), |
| HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_32", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_PC32", |
| true, 0xffffffff, 0xffffffff, true), |
| HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_GOT32", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_PLT32", |
| true, 0xffffffff, 0xffffffff, true), |
| HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_COPY", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_GLOB_DAT", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_JUMP_SLOT", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_RELATIVE", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_GOTOFF", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_GOTPC", |
| true, 0xffffffff, 0xffffffff, true), |
| |
| /* We have a gap in the reloc numbers here. |
| R_386_standard counts the number up to this point, and |
| R_386_ext_offset is the value to subtract from a reloc type of |
| R_386_16 thru R_386_PC8 to form an index into this table. */ |
| #define R_386_standard (R_386_GOTPC + 1) |
| #define R_386_ext_offset (R_386_TLS_TPOFF - R_386_standard) |
| |
| /* These relocs are a GNU extension. */ |
| HOWTO(R_386_TLS_TPOFF, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_TPOFF", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_IE, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_IE", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_GOTIE, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_GOTIE", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_LE, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_LE", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_GD, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_GD", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_LDM, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_LDM", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_16", |
| true, 0xffff, 0xffff, false), |
| HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_PC16", |
| true, 0xffff, 0xffff, true), |
| HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_8", |
| true, 0xff, 0xff, false), |
| HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_386_PC8", |
| true, 0xff, 0xff, true), |
| |
| #define R_386_ext (R_386_PC8 + 1 - R_386_ext_offset) |
| #define R_386_tls_offset (R_386_TLS_LDO_32 - R_386_ext) |
| /* These are common with Solaris TLS implementation. */ |
| HOWTO(R_386_TLS_LDO_32, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_LDO_32", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_IE_32, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_IE_32", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_LE_32, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_LE_32", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_TPOFF32", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_SIZE32, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_SIZE32", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_GOTDESC, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_GOTDESC", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_TLS_DESC_CALL, 0, 3, 0, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_DESC_CALL", |
| false, 0, 0, false), |
| HOWTO(R_386_TLS_DESC, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_DESC", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_IRELATIVE, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_IRELATIVE", |
| true, 0xffffffff, 0xffffffff, false), |
| HOWTO(R_386_GOT32X, 0, 2, 32, false, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_GOT32X", |
| true, 0xffffffff, 0xffffffff, false), |
| |
| /* Another gap. */ |
| #define R_386_ext2 (R_386_GOT32X + 1 - R_386_tls_offset) |
| #define R_386_vt_offset (R_386_GNU_VTINHERIT - R_386_ext2) |
| |
| /* GNU extension to record C++ vtable hierarchy. */ |
| HOWTO (R_386_GNU_VTINHERIT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_386_GNU_VTINHERIT", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* GNU extension to record C++ vtable member usage. */ |
| HOWTO (R_386_GNU_VTENTRY, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| _bfd_elf_rel_vtable_reloc_fn, /* special_function */ |
| "R_386_GNU_VTENTRY", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false) /* pcrel_offset */ |
| |
| #define R_386_vt (R_386_GNU_VTENTRY + 1 - R_386_vt_offset) |
| |
| }; |
| |
| #define X86_PCREL_TYPE_P(TYPE) ((TYPE) == R_386_PC32) |
| |
| #define X86_SIZE_TYPE_P(TYPE) ((TYPE) == R_386_SIZE32) |
| |
| #ifdef DEBUG_GEN_RELOC |
| #define TRACE(str) \ |
| fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str) |
| #else |
| #define TRACE(str) |
| #endif |
| |
| static reloc_howto_type * |
| elf_i386_reloc_type_lookup (bfd *abfd, |
| bfd_reloc_code_real_type code) |
| { |
| switch (code) |
| { |
| case BFD_RELOC_NONE: |
| TRACE ("BFD_RELOC_NONE"); |
| return &elf_howto_table[R_386_NONE]; |
| |
| case BFD_RELOC_32: |
| TRACE ("BFD_RELOC_32"); |
| return &elf_howto_table[R_386_32]; |
| |
| case BFD_RELOC_CTOR: |
| TRACE ("BFD_RELOC_CTOR"); |
| return &elf_howto_table[R_386_32]; |
| |
| case BFD_RELOC_32_PCREL: |
| TRACE ("BFD_RELOC_PC32"); |
| return &elf_howto_table[R_386_PC32]; |
| |
| case BFD_RELOC_386_GOT32: |
| TRACE ("BFD_RELOC_386_GOT32"); |
| return &elf_howto_table[R_386_GOT32]; |
| |
| case BFD_RELOC_386_PLT32: |
| TRACE ("BFD_RELOC_386_PLT32"); |
| return &elf_howto_table[R_386_PLT32]; |
| |
| case BFD_RELOC_386_COPY: |
| TRACE ("BFD_RELOC_386_COPY"); |
| return &elf_howto_table[R_386_COPY]; |
| |
| case BFD_RELOC_386_GLOB_DAT: |
| TRACE ("BFD_RELOC_386_GLOB_DAT"); |
| return &elf_howto_table[R_386_GLOB_DAT]; |
| |
| case BFD_RELOC_386_JUMP_SLOT: |
| TRACE ("BFD_RELOC_386_JUMP_SLOT"); |
| return &elf_howto_table[R_386_JUMP_SLOT]; |
| |
| case BFD_RELOC_386_RELATIVE: |
| TRACE ("BFD_RELOC_386_RELATIVE"); |
| return &elf_howto_table[R_386_RELATIVE]; |
| |
| case BFD_RELOC_386_GOTOFF: |
| TRACE ("BFD_RELOC_386_GOTOFF"); |
| return &elf_howto_table[R_386_GOTOFF]; |
| |
| case BFD_RELOC_386_GOTPC: |
| TRACE ("BFD_RELOC_386_GOTPC"); |
| return &elf_howto_table[R_386_GOTPC]; |
| |
| /* These relocs are a GNU extension. */ |
| case BFD_RELOC_386_TLS_TPOFF: |
| TRACE ("BFD_RELOC_386_TLS_TPOFF"); |
| return &elf_howto_table[R_386_TLS_TPOFF - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_IE: |
| TRACE ("BFD_RELOC_386_TLS_IE"); |
| return &elf_howto_table[R_386_TLS_IE - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_GOTIE: |
| TRACE ("BFD_RELOC_386_TLS_GOTIE"); |
| return &elf_howto_table[R_386_TLS_GOTIE - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_LE: |
| TRACE ("BFD_RELOC_386_TLS_LE"); |
| return &elf_howto_table[R_386_TLS_LE - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_GD: |
| TRACE ("BFD_RELOC_386_TLS_GD"); |
| return &elf_howto_table[R_386_TLS_GD - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_LDM: |
| TRACE ("BFD_RELOC_386_TLS_LDM"); |
| return &elf_howto_table[R_386_TLS_LDM - R_386_ext_offset]; |
| |
| case BFD_RELOC_16: |
| TRACE ("BFD_RELOC_16"); |
| return &elf_howto_table[R_386_16 - R_386_ext_offset]; |
| |
| case BFD_RELOC_16_PCREL: |
| TRACE ("BFD_RELOC_16_PCREL"); |
| return &elf_howto_table[R_386_PC16 - R_386_ext_offset]; |
| |
| case BFD_RELOC_8: |
| TRACE ("BFD_RELOC_8"); |
| return &elf_howto_table[R_386_8 - R_386_ext_offset]; |
| |
| case BFD_RELOC_8_PCREL: |
| TRACE ("BFD_RELOC_8_PCREL"); |
| return &elf_howto_table[R_386_PC8 - R_386_ext_offset]; |
| |
| /* Common with Sun TLS implementation. */ |
| case BFD_RELOC_386_TLS_LDO_32: |
| TRACE ("BFD_RELOC_386_TLS_LDO_32"); |
| return &elf_howto_table[R_386_TLS_LDO_32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_IE_32: |
| TRACE ("BFD_RELOC_386_TLS_IE_32"); |
| return &elf_howto_table[R_386_TLS_IE_32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_LE_32: |
| TRACE ("BFD_RELOC_386_TLS_LE_32"); |
| return &elf_howto_table[R_386_TLS_LE_32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DTPMOD32: |
| TRACE ("BFD_RELOC_386_TLS_DTPMOD32"); |
| return &elf_howto_table[R_386_TLS_DTPMOD32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DTPOFF32: |
| TRACE ("BFD_RELOC_386_TLS_DTPOFF32"); |
| return &elf_howto_table[R_386_TLS_DTPOFF32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_TPOFF32: |
| TRACE ("BFD_RELOC_386_TLS_TPOFF32"); |
| return &elf_howto_table[R_386_TLS_TPOFF32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_SIZE32: |
| TRACE ("BFD_RELOC_SIZE32"); |
| return &elf_howto_table[R_386_SIZE32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_GOTDESC: |
| TRACE ("BFD_RELOC_386_TLS_GOTDESC"); |
| return &elf_howto_table[R_386_TLS_GOTDESC - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DESC_CALL: |
| TRACE ("BFD_RELOC_386_TLS_DESC_CALL"); |
| return &elf_howto_table[R_386_TLS_DESC_CALL - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DESC: |
| TRACE ("BFD_RELOC_386_TLS_DESC"); |
| return &elf_howto_table[R_386_TLS_DESC - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_IRELATIVE: |
| TRACE ("BFD_RELOC_386_IRELATIVE"); |
| return &elf_howto_table[R_386_IRELATIVE - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_GOT32X: |
| TRACE ("BFD_RELOC_386_GOT32X"); |
| return &elf_howto_table[R_386_GOT32X - R_386_tls_offset]; |
| |
| case BFD_RELOC_VTABLE_INHERIT: |
| TRACE ("BFD_RELOC_VTABLE_INHERIT"); |
| return &elf_howto_table[R_386_GNU_VTINHERIT - R_386_vt_offset]; |
| |
| case BFD_RELOC_VTABLE_ENTRY: |
| TRACE ("BFD_RELOC_VTABLE_ENTRY"); |
| return &elf_howto_table[R_386_GNU_VTENTRY - R_386_vt_offset]; |
| |
| default: |
| TRACE ("Unknown"); |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type: %#x"), |
| abfd, (int) code); |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| } |
| |
| static reloc_howto_type * |
| elf_i386_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) |
| if (elf_howto_table[i].name != NULL |
| && strcasecmp (elf_howto_table[i].name, r_name) == 0) |
| return &elf_howto_table[i]; |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| elf_i386_rtype_to_howto (unsigned r_type) |
| { |
| unsigned int indx; |
| |
| if ((indx = r_type) >= R_386_standard |
| && ((indx = r_type - R_386_ext_offset) - R_386_standard |
| >= R_386_ext - R_386_standard) |
| && ((indx = r_type - R_386_tls_offset) - R_386_ext |
| >= R_386_ext2 - R_386_ext) |
| && ((indx = r_type - R_386_vt_offset) - R_386_ext2 |
| >= R_386_vt - R_386_ext2)) |
| return NULL; |
| /* PR 17512: file: 0f67f69d. */ |
| if (elf_howto_table [indx].type != r_type) |
| return NULL; |
| return &elf_howto_table[indx]; |
| } |
| |
| static bool |
| elf_i386_info_to_howto_rel (bfd *abfd, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| unsigned int r_type = ELF32_R_TYPE (dst->r_info); |
| |
| if ((cache_ptr->howto = elf_i386_rtype_to_howto (r_type)) == NULL) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| abfd, r_type); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Return whether a symbol name implies a local label. The UnixWare |
| 2.1 cc generates temporary symbols that start with .X, so we |
| recognize them here. FIXME: do other SVR4 compilers also use .X?. |
| If so, we should move the .X recognition into |
| _bfd_elf_is_local_label_name. */ |
| |
| static bool |
| elf_i386_is_local_label_name (bfd *abfd, const char *name) |
| { |
| if (name[0] == '.' && name[1] == 'X') |
| return true; |
| |
| return _bfd_elf_is_local_label_name (abfd, name); |
| } |
| |
| /* Support for core dump NOTE sections. */ |
| |
| static bool |
| elf_i386_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| int offset; |
| size_t size; |
| |
| if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0) |
| { |
| int pr_version = bfd_get_32 (abfd, note->descdata); |
| |
| if (pr_version != 1) |
| return false; |
| |
| /* pr_cursig */ |
| elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 20); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
| |
| /* pr_reg */ |
| offset = 28; |
| size = bfd_get_32 (abfd, note->descdata + 8); |
| } |
| else |
| { |
| switch (note->descsz) |
| { |
| default: |
| return false; |
| |
| case 144: /* Linux/i386 */ |
| /* pr_cursig */ |
| elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
| |
| /* pr_reg */ |
| offset = 72; |
| size = 68; |
| |
| break; |
| } |
| } |
| |
| /* Make a ".reg/999" section. */ |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
| size, note->descpos + offset); |
| } |
| |
| static bool |
| elf_i386_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0) |
| { |
| int pr_version = bfd_get_32 (abfd, note->descdata); |
| |
| if (pr_version != 1) |
| return false; |
| |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 8, 17); |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 25, 81); |
| } |
| else |
| { |
| switch (note->descsz) |
| { |
| default: |
| return false; |
| |
| case 124: /* Linux/i386 elf_prpsinfo. */ |
| elf_tdata (abfd)->core->pid |
| = bfd_get_32 (abfd, note->descdata + 12); |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); |
| } |
| } |
| |
| /* Note that for some reason, a spurious space is tacked |
| onto the end of the args in some (at least one anyway) |
| implementations, so strip it off if it exists. */ |
| { |
| char *command = elf_tdata (abfd)->core->command; |
| int n = strlen (command); |
| |
| if (0 < n && command[n - 1] == ' ') |
| command[n - 1] = '\0'; |
| } |
| |
| return true; |
| } |
| |
| /* Functions for the i386 ELF linker. |
| |
| In order to gain some understanding of code in this file without |
| knowing all the intricate details of the linker, note the |
| following: |
| |
| Functions named elf_i386_* are called by external routines, other |
| functions are only called locally. elf_i386_* functions appear |
| in this file more or less in the order in which they are called |
| from external routines. eg. elf_i386_check_relocs is called |
| early in the link process, elf_i386_finish_dynamic_sections is |
| one of the last functions. */ |
| |
| /* The size in bytes of an entry in the lazy procedure linkage table. */ |
| |
| #define LAZY_PLT_ENTRY_SIZE 16 |
| |
| /* The size in bytes of an entry in the non-lazy procedure linkage |
| table. */ |
| |
| #define NON_LAZY_PLT_ENTRY_SIZE 8 |
| |
| /* The first entry in an absolute lazy procedure linkage table looks |
| like this. See the SVR4 ABI i386 supplement to see how this works. |
| Will be padded to LAZY_PLT_ENTRY_SIZE with lazy_plt->plt0_pad_byte. */ |
| |
| static const bfd_byte elf_i386_lazy_plt0_entry[12] = |
| { |
| 0xff, 0x35, /* pushl contents of address */ |
| 0, 0, 0, 0, /* replaced with address of .got + 4. */ |
| 0xff, 0x25, /* jmp indirect */ |
| 0, 0, 0, 0 /* replaced with address of .got + 8. */ |
| }; |
| |
| /* Subsequent entries in an absolute lazy procedure linkage table look |
| like this. */ |
| |
| static const bfd_byte elf_i386_lazy_plt_entry[LAZY_PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x25, /* jmp indirect */ |
| 0, 0, 0, 0, /* replaced with address of this symbol in .got. */ |
| 0x68, /* pushl immediate */ |
| 0, 0, 0, 0, /* replaced with offset into relocation table. */ |
| 0xe9, /* jmp relative */ |
| 0, 0, 0, 0 /* replaced with offset to start of .plt. */ |
| }; |
| |
| /* The first entry in a PIC lazy procedure linkage table look like |
| this. Will be padded to LAZY_PLT_ENTRY_SIZE with |
| lazy_plt->plt0_pad_byte. */ |
| |
| static const bfd_byte elf_i386_pic_lazy_plt0_entry[12] = |
| { |
| 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */ |
| 0xff, 0xa3, 8, 0, 0, 0 /* jmp *8(%ebx) */ |
| }; |
| |
| /* Subsequent entries in a PIC lazy procedure linkage table look like |
| this. */ |
| |
| static const bfd_byte elf_i386_pic_lazy_plt_entry[LAZY_PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0xa3, /* jmp *offset(%ebx) */ |
| 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ |
| 0x68, /* pushl immediate */ |
| 0, 0, 0, 0, /* replaced with offset into relocation table. */ |
| 0xe9, /* jmp relative */ |
| 0, 0, 0, 0 /* replaced with offset to start of .plt. */ |
| }; |
| |
| /* Entries in the non-lazy procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_i386_non_lazy_plt_entry[NON_LAZY_PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x25, /* jmp indirect */ |
| 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ |
| 0x66, 0x90 /* xchg %ax,%ax */ |
| }; |
| |
| /* Entries in the PIC non-lazy procedure linkage table look like |
| this. */ |
| |
| static const bfd_byte elf_i386_pic_non_lazy_plt_entry[NON_LAZY_PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0xa3, /* jmp *offset(%ebx) */ |
| 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ |
| 0x66, 0x90 /* xchg %ax,%ax */ |
| }; |
| |
| /* The first entry in an absolute IBT-enabled lazy procedure linkage |
| table looks like this. */ |
| |
| static const bfd_byte elf_i386_lazy_ibt_plt0_entry[LAZY_PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x35, 0, 0, 0, 0, /* pushl GOT[1] */ |
| 0xff, 0x25, 0, 0, 0, 0, /* jmp *GOT[2] */ |
| 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */ |
| }; |
| |
| /* Subsequent entries for an absolute IBT-enabled lazy procedure linkage |
| table look like this. Subsequent entries for a PIC IBT-enabled lazy |
| procedure linkage table are the same. */ |
| |
| static const bfd_byte elf_i386_lazy_ibt_plt_entry[LAZY_PLT_ENTRY_SIZE] = |
| { |
| 0xf3, 0x0f, 0x1e, 0xfb, /* endbr32 */ |
| 0x68, 0, 0, 0, 0, /* pushl immediate */ |
| 0xe9, 0, 0, 0, 0, /* jmp relative */ |
| 0x66, 0x90 /* xchg %ax,%ax */ |
| }; |
| |
| /* The first entry in a PIC IBT-enabled lazy procedure linkage table |
| look like. */ |
| |
| static const bfd_byte elf_i386_pic_lazy_ibt_plt0_entry[LAZY_PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */ |
| 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */ |
| 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */ |
| }; |
| |
| /* Entries for branches with IBT-enabled in the absolute non-lazey |
| procedure linkage table look like this. They have the same size |
| as the lazy PLT entry. */ |
| |
| static const bfd_byte elf_i386_non_lazy_ibt_plt_entry[LAZY_PLT_ENTRY_SIZE] = |
| { |
| 0xf3, 0x0f, 0x1e, 0xfb, /* endbr32 */ |
| 0xff, 0x25, 0, 0, 0, 0, /* jmp *name@GOT */ |
| 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 /* nopw 0x0(%rax,%rax,1) */ |
| }; |
| |
| /* Entries for branches with IBT-enabled in the PIC non-lazey procedure |
| linkage table look like this. They have the same size as the lazy |
| PLT entry. */ |
| |
| static const bfd_byte elf_i386_pic_non_lazy_ibt_plt_entry[LAZY_PLT_ENTRY_SIZE] = |
| { |
| 0xf3, 0x0f, 0x1e, 0xfb, /* endbr32 */ |
| 0xff, 0xa3, 0, 0, 0, 0, /* jmp *name@GOT(%ebx) */ |
| 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 /* nopw 0x0(%rax,%rax,1) */ |
| }; |
| |
| /* .eh_frame covering the lazy .plt section. */ |
| |
| static const bfd_byte elf_i386_eh_frame_lazy_plt[] = |
| { |
| PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */ |
| 0, 0, 0, 0, /* CIE ID */ |
| 1, /* CIE version */ |
| 'z', 'R', 0, /* Augmentation string */ |
| 1, /* Code alignment factor */ |
| 0x7c, /* Data alignment factor */ |
| 8, /* Return address column */ |
| 1, /* Augmentation size */ |
| DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */ |
| DW_CFA_def_cfa, 4, 4, /* DW_CFA_def_cfa: r4 (esp) ofs 4 */ |
| DW_CFA_offset + 8, 1, /* DW_CFA_offset: r8 (eip) at cfa-4 */ |
| DW_CFA_nop, DW_CFA_nop, |
| |
| PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */ |
| PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */ |
| 0, 0, 0, 0, /* R_386_PC32 .plt goes here */ |
| 0, 0, 0, 0, /* .plt size goes here */ |
| 0, /* Augmentation size */ |
| DW_CFA_def_cfa_offset, 8, /* DW_CFA_def_cfa_offset: 8 */ |
| DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */ |
| DW_CFA_def_cfa_offset, 12, /* DW_CFA_def_cfa_offset: 12 */ |
| DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */ |
| DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */ |
| 11, /* Block length */ |
| DW_OP_breg4, 4, /* DW_OP_breg4 (esp): 4 */ |
| DW_OP_breg8, 0, /* DW_OP_breg8 (eip): 0 */ |
| DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge, |
| DW_OP_lit2, DW_OP_shl, DW_OP_plus, |
| DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop |
| }; |
| |
| /* .eh_frame covering the lazy .plt section with IBT-enabled. */ |
| |
| static const bfd_byte elf_i386_eh_frame_lazy_ibt_plt[] = |
| { |
| PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */ |
| 0, 0, 0, 0, /* CIE ID */ |
| 1, /* CIE version */ |
| 'z', 'R', 0, /* Augmentation string */ |
| 1, /* Code alignment factor */ |
| 0x7c, /* Data alignment factor */ |
| 8, /* Return address column */ |
| 1, /* Augmentation size */ |
| DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */ |
| DW_CFA_def_cfa, 4, 4, /* DW_CFA_def_cfa: r4 (esp) ofs 4 */ |
| DW_CFA_offset + 8, 1, /* DW_CFA_offset: r8 (eip) at cfa-4 */ |
| DW_CFA_nop, DW_CFA_nop, |
| |
| PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */ |
| PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */ |
| 0, 0, 0, 0, /* R_386_PC32 .plt goes here */ |
| 0, 0, 0, 0, /* .plt size goes here */ |
| 0, /* Augmentation size */ |
| DW_CFA_def_cfa_offset, 8, /* DW_CFA_def_cfa_offset: 8 */ |
| DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */ |
| DW_CFA_def_cfa_offset, 12, /* DW_CFA_def_cfa_offset: 12 */ |
| DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */ |
| DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */ |
| 11, /* Block length */ |
| DW_OP_breg4, 4, /* DW_OP_breg4 (esp): 4 */ |
| DW_OP_breg8, 0, /* DW_OP_breg8 (eip): 0 */ |
| DW_OP_lit15, DW_OP_and, DW_OP_lit9, DW_OP_ge, |
| DW_OP_lit2, DW_OP_shl, DW_OP_plus, |
| DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop |
| }; |
| |
| /* .eh_frame covering the non-lazy .plt section. */ |
| |
| static const bfd_byte elf_i386_eh_frame_non_lazy_plt[] = |
| { |
| #define PLT_GOT_FDE_LENGTH 16 |
| PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */ |
| 0, 0, 0, 0, /* CIE ID */ |
| 1, /* CIE version */ |
| 'z', 'R', 0, /* Augmentation string */ |
| 1, /* Code alignment factor */ |
| 0x7c, /* Data alignment factor */ |
| 8, /* Return address column */ |
| 1, /* Augmentation size */ |
| DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */ |
| DW_CFA_def_cfa, 4, 4, /* DW_CFA_def_cfa: r4 (esp) ofs 4 */ |
| DW_CFA_offset + 8, 1, /* DW_CFA_offset: r8 (eip) at cfa-4 */ |
| DW_CFA_nop, DW_CFA_nop, |
| |
| PLT_GOT_FDE_LENGTH, 0, 0, 0, /* FDE length */ |
| PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */ |
| 0, 0, 0, 0, /* the start of non-lazy .plt goes here */ |
| 0, 0, 0, 0, /* non-lazy .plt size goes here */ |
| 0, /* Augmentation size */ |
| DW_CFA_nop, DW_CFA_nop, DW_CFA_nop |
| }; |
| |
| /* These are the standard parameters. */ |
| static const struct elf_x86_lazy_plt_layout elf_i386_lazy_plt = |
| { |
| elf_i386_lazy_plt0_entry, /* plt0_entry */ |
| sizeof (elf_i386_lazy_plt0_entry), /* plt0_entry_size */ |
| elf_i386_lazy_plt_entry, /* plt_entry */ |
| LAZY_PLT_ENTRY_SIZE, /* plt_entry_size */ |
| NULL, /* plt_tlsdesc_entry */ |
| 0, /* plt_tlsdesc_entry_size*/ |
| 0, /* plt_tlsdesc_got1_offset */ |
| 0, /* plt_tlsdesc_got2_offset */ |
| 0, /* plt_tlsdesc_got1_insn_end */ |
| 0, /* plt_tlsdesc_got2_insn_end */ |
| 2, /* plt0_got1_offset */ |
| 8, /* plt0_got2_offset */ |
| 0, /* plt0_got2_insn_end */ |
| 2, /* plt_got_offset */ |
| 7, /* plt_reloc_offset */ |
| 12, /* plt_plt_offset */ |
| 0, /* plt_got_insn_size */ |
| 0, /* plt_plt_insn_end */ |
| 6, /* plt_lazy_offset */ |
| elf_i386_pic_lazy_plt0_entry, /* pic_plt0_entry */ |
| elf_i386_pic_lazy_plt_entry, /* pic_plt_entry */ |
| elf_i386_eh_frame_lazy_plt, /* eh_frame_plt */ |
| sizeof (elf_i386_eh_frame_lazy_plt) /* eh_frame_plt_size */ |
| }; |
| |
| static const struct elf_x86_non_lazy_plt_layout elf_i386_non_lazy_plt = |
| { |
| elf_i386_non_lazy_plt_entry, /* plt_entry */ |
| elf_i386_pic_non_lazy_plt_entry, /* pic_plt_entry */ |
| NON_LAZY_PLT_ENTRY_SIZE, /* plt_entry_size */ |
| 2, /* plt_got_offset */ |
| 0, /* plt_got_insn_size */ |
| elf_i386_eh_frame_non_lazy_plt, /* eh_frame_plt */ |
| sizeof (elf_i386_eh_frame_non_lazy_plt) /* eh_frame_plt_size */ |
| }; |
| |
| static const struct elf_x86_lazy_plt_layout elf_i386_lazy_ibt_plt = |
| { |
| elf_i386_lazy_ibt_plt0_entry, /* plt0_entry */ |
| sizeof (elf_i386_lazy_ibt_plt0_entry), /* plt0_entry_size */ |
| elf_i386_lazy_ibt_plt_entry, /* plt_entry */ |
| LAZY_PLT_ENTRY_SIZE, /* plt_entry_size */ |
| NULL, /* plt_tlsdesc_entry */ |
| 0, /* plt_tlsdesc_entry_size*/ |
| 0, /* plt_tlsdesc_got1_offset */ |
| 0, /* plt_tlsdesc_got2_offset */ |
| 0, /* plt_tlsdesc_got1_insn_end */ |
| 0, /* plt_tlsdesc_got2_insn_end */ |
| 2, /* plt0_got1_offset */ |
| 8, /* plt0_got2_offset */ |
| 0, /* plt0_got2_insn_end */ |
| 4+2, /* plt_got_offset */ |
| 4+1, /* plt_reloc_offset */ |
| 4+6, /* plt_plt_offset */ |
| 0, /* plt_got_insn_size */ |
| 0, /* plt_plt_insn_end */ |
| 0, /* plt_lazy_offset */ |
| elf_i386_pic_lazy_ibt_plt0_entry, /* pic_plt0_entry */ |
| elf_i386_lazy_ibt_plt_entry, /* pic_plt_entry */ |
| elf_i386_eh_frame_lazy_ibt_plt, /* eh_frame_plt */ |
| sizeof (elf_i386_eh_frame_lazy_ibt_plt) /* eh_frame_plt_size */ |
| }; |
| |
| static const struct elf_x86_non_lazy_plt_layout elf_i386_non_lazy_ibt_plt = |
| { |
| elf_i386_non_lazy_ibt_plt_entry, /* plt_entry */ |
| elf_i386_pic_non_lazy_ibt_plt_entry,/* pic_plt_entry */ |
| LAZY_PLT_ENTRY_SIZE, /* plt_entry_size */ |
| 4+2, /* plt_got_offset */ |
| 0, /* plt_got_insn_size */ |
| elf_i386_eh_frame_non_lazy_plt, /* eh_frame_plt */ |
| sizeof (elf_i386_eh_frame_non_lazy_plt) /* eh_frame_plt_size */ |
| }; |
| |
| |
| /* On VxWorks, the .rel.plt.unloaded section has absolute relocations |
| for the PLTResolve stub and then for each PLT entry. */ |
| #define PLTRESOLVE_RELOCS_SHLIB 0 |
| #define PLTRESOLVE_RELOCS 2 |
| #define PLT_NON_JUMP_SLOT_RELOCS 2 |
| |
| /* Return TRUE if the TLS access code sequence support transition |
| from R_TYPE. */ |
| |
| static bool |
| elf_i386_check_tls_transition (asection *sec, |
| bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int r_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend) |
| { |
| unsigned int val, type, reg; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| bfd_vma offset; |
| bfd_byte *call; |
| bool indirect_call; |
| |
| offset = rel->r_offset; |
| switch (r_type) |
| { |
| case R_386_TLS_GD: |
| case R_386_TLS_LDM: |
| if (offset < 2 || (rel + 1) >= relend) |
| return false; |
| |
| indirect_call = false; |
| call = contents + offset + 4; |
| val = *(call - 5); |
| type = *(call - 6); |
| if (r_type == R_386_TLS_GD) |
| { |
| /* Check transition from GD access model. Only |
| leal foo@tlsgd(,%ebx,1), %eax |
| call ___tls_get_addr@PLT |
| or |
| leal foo@tlsgd(%ebx) %eax |
| call ___tls_get_addr@PLT |
| nop |
| or |
| leal foo@tlsgd(%reg), %eax |
| call *___tls_get_addr@GOT(%reg) |
| which may be converted to |
| addr32 call ___tls_get_addr |
| can transit to different access model. */ |
| if ((offset + 10) > sec->size |
| || (type != 0x8d && type != 0x04)) |
| return false; |
| |
| if (type == 0x04) |
| { |
| /* leal foo@tlsgd(,%ebx,1), %eax |
| call ___tls_get_addr@PLT */ |
| if (offset < 3) |
| return false; |
| |
| if (*(call - 7) != 0x8d |
| || val != 0x1d |
| || call[0] != 0xe8) |
| return false; |
| } |
| else |
| { |
| /* This must be |
| leal foo@tlsgd(%ebx), %eax |
| call ___tls_get_addr@PLT |
| nop |
| or |
| leal foo@tlsgd(%reg), %eax |
| call *___tls_get_addr@GOT(%reg) |
| which may be converted to |
| addr32 call ___tls_get_addr |
| |
| %eax can't be used as the GOT base register since it |
| is used to pass parameter to ___tls_get_addr. */ |
| reg = val & 7; |
| if ((val & 0xf8) != 0x80 || reg == 4 || reg == 0) |
| return false; |
| |
| indirect_call = call[0] == 0xff; |
| if (!(reg == 3 && call[0] == 0xe8 && call[5] == 0x90) |
| && !(call[0] == 0x67 && call[1] == 0xe8) |
| && !(indirect_call |
| && (call[1] & 0xf8) == 0x90 |
| && (call[1] & 0x7) == reg)) |
| return false; |
| } |
| } |
| else |
| { |
| /* Check transition from LD access model. Only |
| leal foo@tlsldm(%ebx), %eax |
| call ___tls_get_addr@PLT |
| or |
| leal foo@tlsldm(%reg), %eax |
| call *___tls_get_addr@GOT(%reg) |
| which may be converted to |
| addr32 call ___tls_get_addr |
| can transit to different access model. */ |
| if (type != 0x8d || (offset + 9) > sec->size) |
| return false; |
| |
| /* %eax can't be used as the GOT base register since it is |
| used to pass parameter to ___tls_get_addr. */ |
| reg = val & 7; |
| if ((val & 0xf8) != 0x80 || reg == 4 || reg == 0) |
| return false; |
| |
| indirect_call = call[0] == 0xff; |
| if (!(reg == 3 && call[0] == 0xe8) |
| && !(call[0] == 0x67 && call[1] == 0xe8) |
| && !(indirect_call |
| && (call[1] & 0xf8) == 0x90 |
| && (call[1] & 0x7) == reg)) |
| return false; |
| } |
| |
| r_symndx = ELF32_R_SYM (rel[1].r_info); |
| if (r_symndx < symtab_hdr->sh_info) |
| return false; |
| |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| if (h == NULL |
| || !((struct elf_x86_link_hash_entry *) h)->tls_get_addr) |
| return false; |
| else if (indirect_call) |
| return (ELF32_R_TYPE (rel[1].r_info) == R_386_GOT32X); |
| else |
| return (ELF32_R_TYPE (rel[1].r_info) == R_386_PC32 |
| || ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32); |
| |
| case R_386_TLS_IE: |
| /* Check transition from IE access model: |
| movl foo@indntpoff(%rip), %eax |
| movl foo@indntpoff(%rip), %reg |
| addl foo@indntpoff(%rip), %reg |
| */ |
| |
| if (offset < 1 || (offset + 4) > sec->size) |
| return false; |
| |
| /* Check "movl foo@tpoff(%rip), %eax" first. */ |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| if (val == 0xa1) |
| return true; |
| |
| if (offset < 2) |
| return false; |
| |
| /* Check movl|addl foo@tpoff(%rip), %reg. */ |
| type = bfd_get_8 (abfd, contents + offset - 2); |
| return ((type == 0x8b || type == 0x03) |
| && (val & 0xc7) == 0x05); |
| |
| case R_386_TLS_GOTIE: |
| case R_386_TLS_IE_32: |
| /* Check transition from {IE_32,GOTIE} access model: |
| subl foo@{tpoff,gontoff}(%reg1), %reg2 |
| movl foo@{tpoff,gontoff}(%reg1), %reg2 |
| addl foo@{tpoff,gontoff}(%reg1), %reg2 |
| */ |
| |
| if (offset < 2 || (offset + 4) > sec->size) |
| return false; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| if ((val & 0xc0) != 0x80 || (val & 7) == 4) |
| return false; |
| |
| type = bfd_get_8 (abfd, contents + offset - 2); |
| return type == 0x8b || type == 0x2b || type == 0x03; |
| |
| case R_386_TLS_GOTDESC: |
| /* Check transition from GDesc access model: |
| leal x@tlsdesc(%ebx), %eax |
| |
| Make sure it's a leal adding ebx to a 32-bit offset |
| into any register, although it's probably almost always |
| going to be eax. */ |
| |
| if (offset < 2 || (offset + 4) > sec->size) |
| return false; |
| |
| if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d) |
| return false; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| return (val & 0xc7) == 0x83; |
| |
| case R_386_TLS_DESC_CALL: |
| /* Check transition from GDesc access model: |
| call *x@tlsdesc(%eax) |
| */ |
| if (offset + 2 <= sec->size) |
| { |
| /* Make sure that it's a call *x@tlsdesc(%eax). */ |
| call = contents + offset; |
| return call[0] == 0xff && call[1] == 0x10; |
| } |
| |
| return false; |
| |
| default: |
| abort (); |
| } |
| } |
| |
| /* Return TRUE if the TLS access transition is OK or no transition |
| will be performed. Update R_TYPE if there is a transition. */ |
| |
| static bool |
| elf_i386_tls_transition (struct bfd_link_info *info, bfd *abfd, |
| asection *sec, bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int *r_type, int tls_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend, |
| struct elf_link_hash_entry *h, |
| unsigned long r_symndx, |
| bool from_relocate_section) |
| { |
| unsigned int from_type = *r_type; |
| unsigned int to_type = from_type; |
| bool check = true; |
| |
| /* Skip TLS transition for functions. */ |
| if (h != NULL |
| && (h->type == STT_FUNC |
| || h->type == STT_GNU_IFUNC)) |
| return true; |
| |
| switch (from_type) |
| { |
| case R_386_TLS_GD: |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| case R_386_TLS_IE_32: |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| if (bfd_link_executable (info)) |
| { |
| if (h == NULL) |
| to_type = R_386_TLS_LE_32; |
| else if (from_type != R_386_TLS_IE |
| && from_type != R_386_TLS_GOTIE) |
| to_type = R_386_TLS_IE_32; |
| } |
| |
| /* When we are called from elf_i386_relocate_section, there may |
| be additional transitions based on TLS_TYPE. */ |
| if (from_relocate_section) |
| { |
| unsigned int new_to_type = to_type; |
| |
| if (TLS_TRANSITION_IE_TO_LE_P (info, h, tls_type)) |
| new_to_type = R_386_TLS_LE_32; |
| |
| if (to_type == R_386_TLS_GD |
| || to_type == R_386_TLS_GOTDESC |
| || to_type == R_386_TLS_DESC_CALL) |
| { |
| if (tls_type == GOT_TLS_IE_POS) |
| new_to_type = R_386_TLS_GOTIE; |
| else if (tls_type & GOT_TLS_IE) |
| new_to_type = R_386_TLS_IE_32; |
| } |
| |
| /* We checked the transition before when we were called from |
| elf_i386_check_relocs. We only want to check the new |
| transition which hasn't been checked before. */ |
| check = new_to_type != to_type && from_type == to_type; |
| to_type = new_to_type; |
| } |
| |
| break; |
| |
| case R_386_TLS_LDM: |
| if (bfd_link_executable (info)) |
| to_type = R_386_TLS_LE_32; |
| break; |
| |
| default: |
| return true; |
| } |
| |
| /* Return TRUE if there is no transition. */ |
| if (from_type == to_type) |
| return true; |
| |
| /* Check if the transition can be performed. */ |
| if (check |
| && ! elf_i386_check_tls_transition (sec, contents, |
| symtab_hdr, sym_hashes, |
| from_type, rel, relend)) |
| { |
| reloc_howto_type *from, *to; |
| const char *name; |
| |
| from = elf_i386_rtype_to_howto (from_type); |
| to = elf_i386_rtype_to_howto (to_type); |
| |
| if (h) |
| name = h->root.root.string; |
| else |
| { |
| struct elf_x86_link_hash_table *htab; |
| |
| htab = elf_x86_hash_table (info, I386_ELF_DATA); |
| if (htab == NULL) |
| name = "*unknown*"; |
| else |
| { |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, |
| abfd, r_symndx); |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| } |
| } |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: TLS transition from %s to %s against `%s'" |
| " at %#" PRIx64 " in section `%pA' failed"), |
| abfd, from->name, to->name, name, |
| (uint64_t) rel->r_offset, sec); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| *r_type = to_type; |
| return true; |
| } |
| |
| /* With the local symbol, foo, we convert |
| mov foo@GOT[(%reg1)], %reg2 |
| to |
| lea foo[@GOTOFF(%reg1)], %reg2 |
| and convert |
| call/jmp *foo@GOT[(%reg)] |
| to |
| nop call foo/jmp foo nop |
| When PIC is false, convert |
| test %reg1, foo@GOT[(%reg2)] |
| to |
| test $foo, %reg1 |
| and convert |
| binop foo@GOT[(%reg1)], %reg2 |
| to |
| binop $foo, %reg2 |
| where binop is one of adc, add, and, cmp, or, sbb, sub, xor |
| instructions. */ |
| |
| static |
| bool |
| elf_i386_convert_load_reloc (bfd *abfd, Elf_Internal_Shdr *symtab_hdr, |
| bfd_byte *contents, |
| unsigned int *r_type_p, |
| Elf_Internal_Rela *irel, |
| struct elf_link_hash_entry *h, |
| bool *converted, |
| struct bfd_link_info *link_info) |
| { |
| struct elf_x86_link_hash_table *htab; |
| unsigned int opcode; |
| unsigned int modrm; |
| bool baseless; |
| Elf_Internal_Sym *isym; |
| unsigned int addend; |
| unsigned int nop; |
| bfd_vma nop_offset; |
| bool is_pic; |
| bool to_reloc_32; |
| bool abs_symbol; |
| unsigned int r_type; |
| unsigned int r_symndx; |
| bfd_vma roff = irel->r_offset; |
| bool local_ref; |
| struct elf_x86_link_hash_entry *eh; |
| |
| if (roff < 2) |
| return true; |
| |
| /* Addend for R_386_GOT32X relocations must be 0. */ |
| addend = bfd_get_32 (abfd, contents + roff); |
| if (addend != 0) |
| return true; |
| |
| htab = elf_x86_hash_table (link_info, I386_ELF_DATA); |
| is_pic = bfd_link_pic (link_info); |
| |
| r_type = *r_type_p; |
| r_symndx = ELF32_R_SYM (irel->r_info); |
| |
| modrm = bfd_get_8 (abfd, contents + roff - 1); |
| baseless = (modrm & 0xc7) == 0x5; |
| |
| if (h) |
| { |
| /* NB: Also set linker_def via SYMBOL_REFERENCES_LOCAL_P. */ |
| local_ref = SYMBOL_REFERENCES_LOCAL_P (link_info, h); |
| isym = NULL; |
| abs_symbol = ABS_SYMBOL_P (h); |
| } |
| else |
| { |
| local_ref = true; |
| isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, abfd, |
| r_symndx); |
| abs_symbol = isym->st_shndx == SHN_ABS; |
| } |
| |
| if (baseless && is_pic) |
| { |
| /* For PIC, disallow R_386_GOT32X without a base register |
| since we don't know what the GOT base is. */ |
| const char *name; |
| |
| if (h == NULL) |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| else |
| name = h->root.root.string; |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: direct GOT relocation R_386_GOT32X against `%s' without base" |
| " register can not be used when making a shared object"), |
| abfd, name); |
| return false; |
| } |
| |
| opcode = bfd_get_8 (abfd, contents + roff - 2); |
| |
| /* Convert to R_386_32 if PIC is false or there is no base |
| register. */ |
| to_reloc_32 = !is_pic || baseless; |
| |
| eh = elf_x86_hash_entry (h); |
| |
| /* Try to convert R_386_GOT32X. Get the symbol referred to by the |
| reloc. */ |
| if (h == NULL) |
| { |
| if (opcode == 0x0ff) |
| /* Convert "call/jmp *foo@GOT[(%reg)]". */ |
| goto convert_branch; |
| else |
| /* Convert "mov foo@GOT[(%reg1)], %reg2", |
| "test %reg1, foo@GOT(%reg2)" and |
| "binop foo@GOT[(%reg1)], %reg2". */ |
| goto convert_load; |
| } |
| |
| /* Undefined weak symbol is only bound locally in executable |
| and its reference is resolved as 0. */ |
| if (h->root.type == bfd_link_hash_undefweak |
| && !eh->linker_def |
| && local_ref) |
| { |
| if (opcode == 0xff) |
| { |
| /* No direct branch to 0 for PIC. */ |
| if (is_pic) |
| return true; |
| else |
| goto convert_branch; |
| } |
| else |
| { |
| /* We can convert load of address 0 to R_386_32. */ |
| to_reloc_32 = true; |
| goto convert_load; |
| } |
| } |
| |
| if (opcode == 0xff) |
| { |
| /* We have "call/jmp *foo@GOT[(%reg)]". */ |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && local_ref) |
| { |
| /* The function is locally defined. */ |
| convert_branch: |
| /* Convert R_386_GOT32X to R_386_PC32. */ |
| if (modrm == 0x15 || (modrm & 0xf8) == 0x90) |
| { |
| /* Convert to "nop call foo". ADDR_PREFIX_OPCODE |
| is a nop prefix. */ |
| modrm = 0xe8; |
| /* To support TLS optimization, always use addr32 prefix |
| for "call *___tls_get_addr@GOT(%reg)". */ |
| if (eh && eh->tls_get_addr) |
| { |
| nop = 0x67; |
| nop_offset = irel->r_offset - 2; |
| } |
| else |
| { |
| nop = htab->params->call_nop_byte; |
| if (htab->params->call_nop_as_suffix) |
| { |
| nop_offset = roff + 3; |
| irel->r_offset -= 1; |
| } |
| else |
| nop_offset = roff - 2; |
| } |
| } |
| else |
| { |
| /* Convert to "jmp foo nop". */ |
| modrm = 0xe9; |
| nop = NOP_OPCODE; |
| nop_offset = roff + 3; |
| irel->r_offset -= 1; |
| } |
| |
| bfd_put_8 (abfd, nop, contents + nop_offset); |
| bfd_put_8 (abfd, modrm, contents + irel->r_offset - 1); |
| /* When converting to PC-relative relocation, we |
| need to adjust addend by -4. */ |
| bfd_put_32 (abfd, -4, contents + irel->r_offset); |
| irel->r_info = ELF32_R_INFO (r_symndx, R_386_PC32); |
| *r_type_p = R_386_PC32; |
| *converted = true; |
| } |
| } |
| else |
| { |
| /* We have "mov foo@GOT[(%re1g)], %reg2", |
| "test %reg1, foo@GOT(%reg2)" and |
| "binop foo@GOT[(%reg1)], %reg2". |
| |
| Avoid optimizing _DYNAMIC since ld.so may use its |
| link-time address. */ |
| if (h == htab->elf.hdynamic) |
| return true; |
| |
| /* def_regular is set by an assignment in a linker script in |
| bfd_elf_record_link_assignment. start_stop is set on |
| __start_SECNAME/__stop_SECNAME which mark section SECNAME. */ |
| if (h->start_stop |
| || eh->linker_def |
| || ((h->def_regular |
| || h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && local_ref)) |
| { |
| convert_load: |
| if (opcode == 0x8b) |
| { |
| if (abs_symbol && local_ref) |
| to_reloc_32 = true; |
| |
| if (to_reloc_32) |
| { |
| /* Convert "mov foo@GOT[(%reg1)], %reg2" to |
| "mov $foo, %reg2" with R_386_32. */ |
| r_type = R_386_32; |
| modrm = 0xc0 | (modrm & 0x38) >> 3; |
| bfd_put_8 (abfd, modrm, contents + roff - 1); |
| opcode = 0xc7; |
| } |
| else |
| { |
| /* Convert "mov foo@GOT(%reg1), %reg2" to |
| "lea foo@GOTOFF(%reg1), %reg2". */ |
| r_type = R_386_GOTOFF; |
| opcode = 0x8d; |
| } |
| } |
| else |
| { |
| /* Only R_386_32 is supported. */ |
| if (!to_reloc_32) |
| return true; |
| |
| if (opcode == 0x85) |
| { |
| /* Convert "test %reg1, foo@GOT(%reg2)" to |
| "test $foo, %reg1". */ |
| modrm = 0xc0 | (modrm & 0x38) >> 3; |
| opcode = 0xf7; |
| } |
| else |
| { |
| /* Convert "binop foo@GOT(%reg1), %reg2" to |
| "binop $foo, %reg2". */ |
| modrm = (0xc0 |
| | (modrm & 0x38) >> 3 |
| | (opcode & 0x3c)); |
| opcode = 0x81; |
| } |
| bfd_put_8 (abfd, modrm, contents + roff - 1); |
| r_type = R_386_32; |
| } |
| |
| bfd_put_8 (abfd, opcode, contents + roff - 2); |
| irel->r_info = ELF32_R_INFO (r_symndx, r_type); |
| *r_type_p = r_type; |
| *converted = true; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Rename some of the generic section flags to better document how they |
| are used here. */ |
| #define check_relocs_failed sec_flg0 |
| |
| /* Look through the relocs for a section during the first phase, and |
| calculate needed space in the global offset table, procedure linkage |
| table, and dynamic reloc sections. */ |
| |
| static bool |
| elf_i386_check_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf_x86_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sreloc; |
| bfd_byte *contents; |
| bool converted; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| htab = elf_x86_hash_table (info, I386_ELF_DATA); |
| if (htab == NULL) |
| { |
| sec->check_relocs_failed = 1; |
| return false; |
| } |
| |
| BFD_ASSERT (is_x86_elf (abfd, htab)); |
| |
| /* Get the section contents. */ |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| { |
| sec->check_relocs_failed = 1; |
| return false; |
| } |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| converted = false; |
| |
| sreloc = NULL; |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| unsigned int r_type; |
| unsigned int r_symndx; |
| struct elf_link_hash_entry *h; |
| struct elf_x86_link_hash_entry *eh; |
| Elf_Internal_Sym *isym; |
| const char *name; |
| bool size_reloc; |
| bool no_dynreloc; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: bad symbol index: %d"), |
| abfd, r_symndx); |
| goto error_return; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| goto error_return; |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = _bfd_elf_x86_get_local_sym_hash (htab, abfd, rel, true); |
| if (h == NULL) |
| goto error_return; |
| |
| /* Fake a STT_GNU_IFUNC symbol. */ |
| h->root.root.string = bfd_elf_sym_name (abfd, symtab_hdr, |
| isym, NULL); |
| h->type = STT_GNU_IFUNC; |
| h->def_regular = 1; |
| h->ref_regular = 1; |
| h->forced_local = 1; |
| h->root.type = bfd_link_hash_defined; |
| } |
| else |
| h = NULL; |
| } |
| else |
| { |
| isym = NULL; |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| eh = (struct elf_x86_link_hash_entry *) h; |
| if (h != NULL) |
| { |
| if (r_type == R_386_GOTOFF) |
| eh->gotoff_ref = 1; |
| |
| /* It is referenced by a non-shared object. */ |
| h->ref_regular = 1; |
| } |
| |
| if (r_type == R_386_GOT32X |
| && (h == NULL || h->type != STT_GNU_IFUNC)) |
| { |
| Elf_Internal_Rela *irel = (Elf_Internal_Rela *) rel; |
| if (!elf_i386_convert_load_reloc (abfd, symtab_hdr, contents, |
| &r_type, irel, h, |
| &converted, info)) |
| goto error_return; |
| } |
| |
| if (!_bfd_elf_x86_valid_reloc_p (sec, info, htab, rel, h, isym, |
| symtab_hdr, &no_dynreloc)) |
| return false; |
| |
| if (! elf_i386_tls_transition (info, abfd, sec, contents, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, |
| rel, rel_end, h, r_symndx, false)) |
| goto error_return; |
| |
| /* Check if _GLOBAL_OFFSET_TABLE_ is referenced. */ |
| if (h == htab->elf.hgot) |
| htab->got_referenced = true; |
| |
| switch (r_type) |
| { |
| case R_386_TLS_LDM: |
| htab->tls_ld_or_ldm_got.refcount = 1; |
| goto create_got; |
| |
| case R_386_PLT32: |
| /* This symbol requires a procedure linkage table entry. We |
| actually build the entry in adjust_dynamic_symbol, |
| because this might be a case of linking PIC code which is |
| never referenced by a dynamic object, in which case we |
| don't need to generate a procedure linkage table entry |
| after all. */ |
| |
| /* If this is a local symbol, we resolve it directly without |
| creating a procedure linkage table entry. */ |
| if (h == NULL) |
| continue; |
| |
| eh->zero_undefweak &= 0x2; |
| h->needs_plt = 1; |
| h->plt.refcount = 1; |
| break; |
| |
| case R_386_SIZE32: |
| size_reloc = true; |
| goto do_size; |
| |
| case R_386_TLS_IE_32: |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| if (!bfd_link_executable (info)) |
| info->flags |= DF_STATIC_TLS; |
| /* Fall through */ |
| |
| case R_386_GOT32: |
| case R_386_GOT32X: |
| case R_386_TLS_GD: |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| /* This symbol requires a global offset table entry. */ |
| { |
| int tls_type, old_tls_type; |
| |
| switch (r_type) |
| { |
| default: |
| case R_386_GOT32: |
| case R_386_GOT32X: |
| tls_type = GOT_NORMAL; |
| break; |
| case R_386_TLS_GD: tls_type = GOT_TLS_GD; break; |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| tls_type = GOT_TLS_GDESC; break; |
| case R_386_TLS_IE_32: |
| if (ELF32_R_TYPE (rel->r_info) == r_type) |
| tls_type = GOT_TLS_IE_NEG; |
| else |
| /* If this is a GD->IE transition, we may use either of |
| R_386_TLS_TPOFF and R_386_TLS_TPOFF32. */ |
| tls_type = GOT_TLS_IE; |
| break; |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| tls_type = GOT_TLS_IE_POS; break; |
| } |
| |
| if (h != NULL) |
| { |
| h->got.refcount = 1; |
| old_tls_type = elf_x86_hash_entry (h)->tls_type; |
| } |
| else |
| { |
| bfd_signed_vma *local_got_refcounts; |
| |
| /* This is a global offset table entry for a local symbol. */ |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| if (local_got_refcounts == NULL) |
| { |
| bfd_size_type size; |
| |
| size = symtab_hdr->sh_info; |
| size *= (sizeof (bfd_signed_vma) |
| + sizeof (bfd_vma) + sizeof(char)); |
| local_got_refcounts = (bfd_signed_vma *) |
| bfd_zalloc (abfd, size); |
| if (local_got_refcounts == NULL) |
| goto error_return; |
| elf_local_got_refcounts (abfd) = local_got_refcounts; |
| elf_x86_local_tlsdesc_gotent (abfd) |
| = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info); |
| elf_x86_local_got_tls_type (abfd) |
| = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info); |
| } |
| local_got_refcounts[r_symndx] = 1; |
| old_tls_type = elf_x86_local_got_tls_type (abfd) [r_symndx]; |
| } |
| |
| if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) |
| tls_type |= old_tls_type; |
| /* If a TLS symbol is accessed using IE at least once, |
| there is no point to use dynamic model for it. */ |
| else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN |
| && (! GOT_TLS_GD_ANY_P (old_tls_type) |
| || (tls_type & GOT_TLS_IE) == 0)) |
| { |
| if ((old_tls_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type = old_tls_type; |
| else if (GOT_TLS_GD_ANY_P (old_tls_type) |
| && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type |= old_tls_type; |
| else |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| NULL); |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: `%s' accessed both as normal and " |
| "thread local symbol"), |
| abfd, name); |
| bfd_set_error (bfd_error_bad_value); |
| goto error_return; |
| } |
| } |
| |
| if (old_tls_type != tls_type) |
| { |
| if (h != NULL) |
| elf_x86_hash_entry (h)->tls_type = tls_type; |
| else |
| elf_x86_local_got_tls_type (abfd) [r_symndx] = tls_type; |
| } |
| } |
| /* Fall through */ |
| |
| case R_386_GOTOFF: |
| case R_386_GOTPC: |
| create_got: |
| if (r_type != R_386_TLS_IE) |
| { |
| if (eh != NULL) |
| { |
| eh->zero_undefweak &= 0x2; |
| |
| /* Need GOT to resolve undefined weak symbol to 0. */ |
| if (r_type == R_386_GOTOFF |
| && h->root.type == bfd_link_hash_undefweak |
| && bfd_link_executable (info)) |
| htab->got_referenced = true; |
| } |
| break; |
| } |
| /* Fall through */ |
| |
| case R_386_TLS_LE_32: |
| case R_386_TLS_LE: |
| if (eh != NULL) |
| eh->zero_undefweak &= 0x2; |
| if (bfd_link_executable (info)) |
| break; |
| info->flags |= DF_STATIC_TLS; |
| goto do_relocation; |
| |
| case R_386_32: |
| case R_386_PC32: |
| if (eh != NULL && (sec->flags & SEC_CODE) != 0) |
| eh->zero_undefweak |= 0x2; |
| do_relocation: |
| /* We are called after all symbols have been resolved. Only |
| relocation against STT_GNU_IFUNC symbol must go through |
| PLT. */ |
| if (h != NULL |
| && (bfd_link_executable (info) |
| || h->type == STT_GNU_IFUNC)) |
| { |
| bool func_pointer_ref = false; |
| |
| if (r_type == R_386_PC32) |
| { |
| /* Since something like ".long foo - ." may be used |
| as pointer, make sure that PLT is used if foo is |
| a function defined in a shared library. */ |
| if ((sec->flags & SEC_CODE) == 0) |
| h->pointer_equality_needed = 1; |
| else if (h->type == STT_GNU_IFUNC |
| && bfd_link_pic (info)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unsupported non-PIC call to IFUNC `%s'"), |
| abfd, h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| goto error_return; |
| } |
| } |
| else |
| { |
| h->pointer_equality_needed = 1; |
| /* R_386_32 can be resolved at run-time. */ |
| if (r_type == R_386_32 |
| && (sec->flags & SEC_READONLY) == 0) |
| func_pointer_ref = true; |
| } |
| |
| if (!func_pointer_ref) |
| { |
| /* If this reloc is in a read-only section, we might |
| need a copy reloc. We can't check reliably at this |
| stage whether the section is read-only, as input |
| sections have not yet been mapped to output sections. |
| Tentatively set the flag for now, and correct in |
| adjust_dynamic_symbol. */ |
| h->non_got_ref = 1; |
| |
| if (!elf_has_indirect_extern_access (sec->owner)) |
| eh->non_got_ref_without_indirect_extern_access = 1; |
| |
| /* We may need a .plt entry if the symbol is a function |
| defined in a shared lib or is a function referenced |
| from the code or read-only section. */ |
| if (!h->def_regular |
| || (sec->flags & (SEC_CODE | SEC_READONLY)) != 0) |
| h->plt.refcount = 1; |
| } |
| } |
| |
| size_reloc = false; |
| do_size: |
| if (!no_dynreloc |
| && NEED_DYNAMIC_RELOCATION_P (info, false, h, sec, r_type, |
| R_386_32)) |
| { |
| struct elf_dyn_relocs *p; |
| struct elf_dyn_relocs **head; |
| |
| /* We must copy these reloc types into the output file. |
| Create a reloc section in dynobj and make room for |
| this reloc. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->elf.dynobj, 2, abfd, /*rela?*/ false); |
| |
| if (sreloc == NULL) |
| goto error_return; |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (h != NULL) |
| { |
| head = &h->dyn_relocs; |
| } |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| void **vpp; |
| asection *s; |
| |
| isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| goto error_return; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| vpp = &elf_section_data (s)->local_dynrel; |
| head = (struct elf_dyn_relocs **)vpp; |
| } |
| |
| p = *head; |
| if (p == NULL || p->sec != sec) |
| { |
| size_t amt = sizeof *p; |
| p = (struct elf_dyn_relocs *) bfd_alloc (htab->elf.dynobj, |
| amt); |
| if (p == NULL) |
| goto error_return; |
| p->next = *head; |
| *head = p; |
| p->sec = sec; |
| p->count = 0; |
| p->pc_count = 0; |
| } |
| |
| p->count += 1; |
| /* Count size relocation as PC-relative relocation. */ |
| if (r_type == R_386_PC32 || size_reloc) |
| p->pc_count += 1; |
| } |
| break; |
| |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_386_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| goto error_return; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_386_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
| goto error_return; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (elf_section_data (sec)->this_hdr.contents != contents) |
| { |
| if (!converted && !_bfd_link_keep_memory (info)) |
| free (contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd if any |
| load is converted or --no-keep-memory isn't used. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| info->cache_size += sec->size; |
| } |
| } |
| |
| /* Cache relocations if any load is converted. */ |
| if (elf_section_data (sec)->relocs != relocs && converted) |
| elf_section_data (sec)->relocs = (Elf_Internal_Rela *) relocs; |
| |
| return true; |
| |
| error_return: |
| if (elf_section_data (sec)->this_hdr.contents != contents) |
| free (contents); |
| sec->check_relocs_failed = 1; |
| return false; |
| } |
| |
| /* Set the correct type for an x86 ELF section. We do this by the |
| section name, which is a hack, but ought to work. */ |
| |
| static bool |
| elf_i386_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, |
| Elf_Internal_Shdr *hdr, |
| asection *sec) |
| { |
| const char *name; |
| |
| name = bfd_section_name (sec); |
| |
| /* This is an ugly, but unfortunately necessary hack that is |
| needed when producing EFI binaries on x86. It tells |
| elf.c:elf_fake_sections() not to consider ".reloc" as a section |
| containing ELF relocation info. We need this hack in order to |
| be able to generate ELF binaries that can be translated into |
| EFI applications (which are essentially COFF objects). Those |
| files contain a COFF ".reloc" section inside an ELFNN object, |
| which would normally cause BFD to segfault because it would |
| attempt to interpret this section as containing relocation |
| entries for section "oc". With this hack enabled, ".reloc" |
| will be treated as a normal data section, which will avoid the |
| segfault. However, you won't be able to create an ELFNN binary |
| with a section named "oc" that needs relocations, but that's |
| the kind of ugly side-effects you get when detecting section |
| types based on their names... In practice, this limitation is |
| unlikely to bite. */ |
| if (strcmp (name, ".reloc") == 0) |
| hdr->sh_type = SHT_PROGBITS; |
| |
| return true; |
| } |
| |
| /* Return the relocation value for @tpoff relocation |
| if STT_TLS virtual address is ADDRESS. */ |
| |
| static bfd_vma |
| elf_i386_tpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd); |
| bfd_vma static_tls_size; |
| |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (htab->tls_sec == NULL) |
| return 0; |
| |
| /* Consider special static TLS alignment requirements. */ |
| static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment); |
| return static_tls_size + htab->tls_sec->vma - address; |
| } |
| |
| /* Relocate an i386 ELF section. */ |
| |
| static int |
| elf_i386_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| struct elf_x86_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| bfd_vma *local_got_offsets; |
| bfd_vma *local_tlsdesc_gotents; |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *wrel; |
| Elf_Internal_Rela *relend; |
| bool is_vxworks_tls; |
| unsigned plt_entry_size; |
| |
| /* Skip if check_relocs failed. */ |
| if (input_section->check_relocs_failed) |
| return false; |
| |
| htab = elf_x86_hash_table (info, I386_ELF_DATA); |
| if (htab == NULL) |
| return false; |
| |
| if (!is_x86_elf (input_bfd, htab)) |
| { |
| bfd_set_error (bfd_error_wrong_format); |
| return false; |
| } |
| |
| symtab_hdr = &elf_symtab_hdr (input_bfd); |
| sym_hashes = elf_sym_hashes (input_bfd); |
| local_got_offsets = elf_local_got_offsets (input_bfd); |
| local_tlsdesc_gotents = elf_x86_local_tlsdesc_gotent (input_bfd); |
| /* We have to handle relocations in vxworks .tls_vars sections |
| specially, because the dynamic loader is 'weird'. */ |
| is_vxworks_tls = (htab->elf.target_os == is_vxworks |
| && bfd_link_pic (info) |
| && !strcmp (input_section->output_section->name, |
| ".tls_vars")); |
| |
| _bfd_x86_elf_set_tls_module_base (info); |
| |
| plt_entry_size = htab->plt.plt_entry_size; |
| |
| rel = wrel = relocs; |
| relend = relocs + input_section->reloc_count; |
| for (; rel < relend; wrel++, rel++) |
| { |
| unsigned int r_type, r_type_tls; |
| reloc_howto_type *howto; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| struct elf_x86_link_hash_entry *eh; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| bfd_vma off, offplt, plt_offset; |
| bfd_vma relocation; |
| bool unresolved_reloc; |
| bfd_reloc_status_type r; |
| unsigned int indx; |
| int tls_type; |
| bfd_vma st_size; |
| asection *resolved_plt; |
| bool resolved_to_zero; |
| bool relative_reloc; |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| if (r_type == R_386_GNU_VTINHERIT |
| || r_type == R_386_GNU_VTENTRY) |
| { |
| if (wrel != rel) |
| *wrel = *rel; |
| continue; |
| } |
| |
| howto = elf_i386_rtype_to_howto (r_type); |
| if (howto == NULL) |
| return _bfd_unrecognized_reloc (input_bfd, input_section, r_type); |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| unresolved_reloc = false; |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| relocation = (sec->output_section->vma |
| + sec->output_offset |
| + sym->st_value); |
| st_size = sym->st_size; |
| |
| if (ELF_ST_TYPE (sym->st_info) == STT_SECTION |
| && ((sec->flags & SEC_MERGE) != 0 |
| || (bfd_link_relocatable (info) |
| && sec->output_offset != 0))) |
| { |
| bfd_vma addend; |
| bfd_byte *where = contents + rel->r_offset; |
| |
| switch (howto->size) |
| { |
| case 0: |
| addend = bfd_get_8 (input_bfd, where); |
| if (howto->pc_relative) |
| { |
| addend = (addend ^ 0x80) - 0x80; |
| addend += 1; |
| } |
| break; |
| case 1: |
| addend = bfd_get_16 (input_bfd, where); |
| if (howto->pc_relative) |
| { |
| addend = (addend ^ 0x8000) - 0x8000; |
| addend += 2; |
| } |
| break; |
| case 2: |
| addend = bfd_get_32 (input_bfd, where); |
| if (howto->pc_relative) |
| { |
| addend = (addend ^ 0x80000000) - 0x80000000; |
| addend += 4; |
| } |
| break; |
| default: |
| abort (); |
| } |
| |
| if (bfd_link_relocatable (info)) |
| addend += sec->output_offset; |
| else |
| { |
| asection *msec = sec; |
| addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, |
| addend); |
| addend -= relocation; |
| addend += msec->output_section->vma + msec->output_offset; |
| } |
| |
| switch (howto->size) |
| { |
| case 0: |
| /* FIXME: overflow checks. */ |
| if (howto->pc_relative) |
| addend -= 1; |
| bfd_put_8 (input_bfd, addend, where); |
| break; |
| case 1: |
| if (howto->pc_relative) |
| addend -= 2; |
| bfd_put_16 (input_bfd, addend, where); |
| break; |
| case 2: |
| if (howto->pc_relative) |
| addend -= 4; |
| bfd_put_32 (input_bfd, addend, where); |
| break; |
| } |
| } |
| else if (!bfd_link_relocatable (info) |
| && ELF32_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) |
| { |
| /* Relocate against local STT_GNU_IFUNC symbol. */ |
| h = _bfd_elf_x86_get_local_sym_hash (htab, input_bfd, rel, |
| false); |
| if (h == NULL) |
| abort (); |
| |
| /* Set STT_GNU_IFUNC symbol value. */ |
| h->root.u.def.value = sym->st_value; |
| h->root.u.def.section = sec; |
| } |
| } |
| else |
| { |
| bool warned ATTRIBUTE_UNUSED; |
| bool ignored ATTRIBUTE_UNUSED; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| h, sec, relocation, |
| unresolved_reloc, warned, ignored); |
| st_size = h->size; |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| { |
| _bfd_clear_contents (howto, input_bfd, input_section, |
| contents, rel->r_offset); |
| wrel->r_offset = rel->r_offset; |
| wrel->r_info = 0; |
| wrel->r_addend = 0; |
| |
| /* For ld -r, remove relocations in debug sections against |
| sections defined in discarded sections. Not done for |
| eh_frame editing code expects to be present. */ |
| if (bfd_link_relocatable (info) |
| && (input_section->flags & SEC_DEBUGGING)) |
| wrel--; |
| |
| continue; |
| } |
| |
| if (bfd_link_relocatable (info)) |
| { |
| if (wrel != rel) |
| *wrel = *rel; |
| continue; |
| } |
| |
| eh = (struct elf_x86_link_hash_entry *) h; |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle |
| it here if it is defined in a non-shared object. */ |
| if (h != NULL |
| && h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| { |
| asection *gotplt, *base_got; |
| bfd_vma plt_index; |
| const char *name; |
| |
| if ((input_section->flags & SEC_ALLOC) == 0) |
| { |
| /* If this is a SHT_NOTE section without SHF_ALLOC, treat |
| STT_GNU_IFUNC symbol as STT_FUNC. */ |
| if (elf_section_type (input_section) == SHT_NOTE) |
| goto skip_ifunc; |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING |
| sections because such sections are not SEC_ALLOC and |
| thus ld.so will not process them. */ |
| if ((input_section->flags & SEC_DEBUGGING) != 0) |
| continue; |
| abort (); |
| } |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (htab->elf.splt != NULL) |
| { |
| if (htab->plt_second != NULL) |
| { |
| resolved_plt = htab->plt_second; |
| plt_offset = eh->plt_second.offset; |
| } |
| else |
| { |
| resolved_plt = htab->elf.splt; |
| plt_offset = h->plt.offset; |
| } |
| gotplt = htab->elf.sgotplt; |
| } |
| else |
| { |
| resolved_plt = htab->elf.iplt; |
| plt_offset = h->plt.offset; |
| gotplt = htab->elf.igotplt; |
| } |
| |
| switch (r_type) |
| { |
| default: |
| break; |
| |
| case R_386_GOT32: |
| case R_386_GOT32X: |
| base_got = htab->elf.sgot; |
| off = h->got.offset; |
| |
| if (base_got == NULL) |
| abort (); |
| |
| if (off == (bfd_vma) -1) |
| { |
| /* We can't use h->got.offset here to save state, or |
| even just remember the offset, as finish_dynamic_symbol |
| would use that as offset into .got. */ |
| |
| if (h->plt.offset == (bfd_vma) -1) |
| abort (); |
| |
| if (htab->elf.splt != NULL) |
| { |
| plt_index = (h->plt.offset / plt_entry_size |
| - htab->plt.has_plt0); |
| off = (plt_index + 3) * 4; |
| base_got = htab->elf.sgotplt; |
| } |
| else |
| { |
| plt_index = h->plt.offset / plt_entry_size; |
| off = plt_index * 4; |
| base_got = htab->elf.igotplt; |
| } |
| |
| if (h->dynindx == -1 |
| || h->forced_local |
| || info->symbolic) |
| { |
| /* This references the local defitionion. We must |
| initialize this entry in the global offset table. |
| Since the offset must always be a multiple of 8, |
| we use the least significant bit to record |
| whether we have initialized it already. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_32 (output_bfd, relocation, |
| base_got->contents + off); |
| h->got.offset |= 1; |
| } |
| } |
| |
| relocation = off; |
| } |
| else |
| relocation = (base_got->output_section->vma |
| + base_got->output_offset + off |
| - gotplt->output_section->vma |
| - gotplt->output_offset); |
| |
| if (rel->r_offset > 1 |
| && (*(contents + rel->r_offset - 1) & 0xc7) == 0x5 |
| && *(contents + rel->r_offset - 2) != 0x8d) |
| { |
| if (bfd_link_pic (info)) |
| goto disallow_got32; |
| |
| /* Add the GOT base if there is no base register. */ |
| relocation += (gotplt->output_section->vma |
| + gotplt->output_offset); |
| } |
| else if (htab->elf.splt == NULL) |
| { |
| /* Adjust for static executables. */ |
| relocation += gotplt->output_offset; |
| } |
| |
| goto do_relocation; |
| } |
| |
| if (h->plt.offset == (bfd_vma) -1) |
| { |
| /* Handle static pointers of STT_GNU_IFUNC symbols. */ |
| if (r_type == R_386_32 |
| && (input_section->flags & SEC_CODE) == 0) |
| goto do_ifunc_pointer; |
| goto bad_ifunc_reloc; |
| } |
| |
| relocation = (resolved_plt->output_section->vma |
| + resolved_plt->output_offset + plt_offset); |
| |
| switch (r_type) |
| { |
| default: |
| bad_ifunc_reloc: |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, |
| NULL); |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' isn't supported"), input_bfd, |
| howto->name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| |
| case R_386_32: |
| /* Generate dynamic relcoation only when there is a |
| non-GOT reference in a shared object. */ |
| if ((bfd_link_pic (info) && h->non_got_ref) |
| || h->plt.offset == (bfd_vma) -1) |
| { |
| Elf_Internal_Rela outrel; |
| asection *sreloc; |
| bfd_vma offset; |
| |
| do_ifunc_pointer: |
| /* Need a dynamic relocation to get the real function |
| adddress. */ |
| offset = _bfd_elf_section_offset (output_bfd, |
| info, |
| input_section, |
| rel->r_offset); |
| if (offset == (bfd_vma) -1 |
| || offset == (bfd_vma) -2) |
| abort (); |
| |
| outrel.r_offset = (input_section->output_section->vma |
| + input_section->output_offset |
| + offset); |
| |
| if (POINTER_LOCAL_IFUNC_P (info, h)) |
| { |
| info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"), |
| h->root.root.string, |
| h->root.u.def.section->owner); |
| |
| /* This symbol is resolved locally. */ |
| outrel.r_info = ELF32_R_INFO (0, R_386_IRELATIVE); |
| |
| if (htab->params->report_relative_reloc) |
| _bfd_x86_elf_link_report_relative_reloc |
| (info, input_section, h, sym, |
| "R_386_IRELATIVE", &outrel); |
| |
| bfd_put_32 (output_bfd, |
| (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset), |
| contents + offset); |
| } |
| else |
| outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); |
| |
| /* Dynamic relocations are stored in |
| 1. .rel.ifunc section in PIC object. |
| 2. .rel.got section in dynamic executable. |
| 3. .rel.iplt section in static executable. */ |
| if (bfd_link_pic (info)) |
| sreloc = htab->elf.irelifunc; |
| else if (htab->elf.splt != NULL) |
| sreloc = htab->elf.srelgot; |
| else |
| sreloc = htab->elf.irelplt; |
| elf_append_rel (output_bfd, sreloc, &outrel); |
| |
| /* If this reloc is against an external symbol, we |
| do not want to fiddle with the addend. Otherwise, |
| we need to include the symbol value so that it |
| becomes an addend for the dynamic reloc. For an |
| internal symbol, we have updated addend. */ |
| continue; |
| } |
| /* FALLTHROUGH */ |
| case R_386_PC32: |
| case R_386_PLT32: |
| goto do_relocation; |
| |
| case R_386_GOTOFF: |
| relocation -= (gotplt->output_section->vma |
| + gotplt->output_offset); |
| goto do_relocation; |
| } |
| } |
| |
| skip_ifunc: |
| resolved_to_zero = (eh != NULL |
| && UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh)); |
| |
| switch (r_type) |
| { |
| case R_386_GOT32X: |
| case R_386_GOT32: |
| /* Relocation is to the entry for this symbol in the global |
| offset table. */ |
| if (htab->elf.sgot == NULL) |
| abort (); |
| |
| relative_reloc = false; |
| if (h != NULL) |
| { |
| off = h->got.offset; |
| if (RESOLVED_LOCALLY_P (info, h, htab)) |
| { |
| /* We must initialize this entry in the global offset |
| table. Since the offset must always be a multiple |
| of 4, we use the least significant bit to record |
| whether we have initialized it already. |
| |
| When doing a dynamic link, we create a .rel.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_32 (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| h->got.offset |= 1; |
| |
| if (GENERATE_RELATIVE_RELOC_P (info, h)) |
| { |
| /* PR ld/21402: If this symbol isn't dynamic |
| in PIC, generate R_386_RELATIVE here. */ |
| eh->no_finish_dynamic_symbol = 1; |
| relative_reloc = true; |
| } |
| } |
| } |
| else |
| unresolved_reloc = false; |
| } |
| else |
| { |
| if (local_got_offsets == NULL) |
| abort (); |
| |
| off = local_got_offsets[r_symndx]; |
| |
| /* The offset must always be a multiple of 4. We use |
| the least significant bit to record whether we have |
| already generated the necessary reloc. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_32 (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| local_got_offsets[r_symndx] |= 1; |
| |
| if (bfd_link_pic (info)) |
| relative_reloc = true; |
| } |
| } |
| |
| if (relative_reloc) |
| { |
| asection *s; |
| Elf_Internal_Rela outrel; |
| |
| s = htab->elf.srelgot; |
| if (s == NULL) |
| abort (); |
| |
| outrel.r_offset = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset |
| + off); |
| outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| |
| if (htab->params->report_relative_reloc) |
| _bfd_x86_elf_link_report_relative_reloc |
| (info, input_section, h, sym, "R_386_RELATIVE", |
| &outrel); |
| |
| elf_append_rel (output_bfd, s, &outrel); |
| } |
| |
| if (off >= (bfd_vma) -2) |
| abort (); |
| |
| relocation = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off); |
| if (rel->r_offset > 1 |
| && (*(contents + rel->r_offset - 1) & 0xc7) == 0x5 |
| && *(contents + rel->r_offset - 2) != 0x8d) |
| { |
| if (bfd_link_pic (info)) |
| { |
| /* For PIC, disallow R_386_GOT32 without a base |
| register, except for "lea foo@GOT, %reg", since |
| we don't know what the GOT base is. */ |
| const char *name; |
| |
| disallow_got32: |
| if (h == NULL || h->root.root.string == NULL) |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, |
| NULL); |
| else |
| name = h->root.root.string; |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: direct GOT relocation %s against `%s'" |
| " without base register can not be used" |
| " when making a shared object"), |
| input_bfd, howto->name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| else |
| { |
| /* Subtract the .got.plt section address only with a base |
| register. */ |
| relocation -= (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset); |
| } |
| |
| break; |
| |
| case R_386_GOTOFF: |
| /* Relocation is relative to the start of the global offset |
| table. */ |
| |
| /* Check to make sure it isn't a protected function or data |
| symbol for shared library since it may not be local when |
| used as function address or with copy relocation. We also |
| need to make sure that a symbol is referenced locally. */ |
| if (!bfd_link_executable (info) && h) |
| { |
| if (!h->def_regular) |
| { |
| const char *v; |
| |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_HIDDEN: |
| v = _("hidden symbol"); |
| break; |
| case STV_INTERNAL: |
| v = _("internal symbol"); |
| break; |
| case STV_PROTECTED: |
| v = _("protected symbol"); |
| break; |
| default: |
| v = _("symbol"); |
| break; |
| } |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: relocation R_386_GOTOFF against undefined %s" |
| " `%s' can not be used when making a shared object"), |
| input_bfd, v, h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| else if (!SYMBOL_REFERENCES_LOCAL_P (info, h) |
| && (h->type == STT_FUNC |
| || h->type == STT_OBJECT) |
| && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: relocation R_386_GOTOFF against protected %s" |
| " `%s' can not be used when making a shared object"), |
| input_bfd, |
| h->type == STT_FUNC ? "function" : "data", |
| h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| |
| /* Note that sgot is not involved in this |
| calculation. We always want the start of .got.plt. If we |
| defined _GLOBAL_OFFSET_TABLE_ in a different way, as is |
| permitted by the ABI, we might have to change this |
| calculation. */ |
| relocation -= htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset; |
| break; |
| |
| case R_386_GOTPC: |
| /* Use global offset table as symbol value. */ |
| relocation = htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset; |
| unresolved_reloc = false; |
| break; |
| |
| case R_386_PLT32: |
| /* Relocation is to the entry for this symbol in the |
| procedure linkage table. */ |
| |
| /* Resolve a PLT32 reloc against a local symbol directly, |
| without using the procedure linkage table. */ |
| if (h == NULL) |
| break; |
| |
| if ((h->plt.offset == (bfd_vma) -1 |
| && eh->plt_got.offset == (bfd_vma) -1) |
| || htab->elf.splt == NULL) |
| { |
| /* We didn't make a PLT entry for this symbol. This |
| happens when statically linking PIC code, or when |
| using -Bsymbolic. */ |
| break; |
| } |
| |
| if (h->plt.offset != (bfd_vma) -1) |
| { |
| if (htab->plt_second != NULL) |
| { |
| resolved_plt = htab->plt_second; |
| plt_offset = eh->plt_second.offset; |
| } |
| else |
| { |
| resolved_plt = htab->elf.splt; |
| plt_offset = h->plt.offset; |
| } |
| } |
| else |
| { |
| resolved_plt = htab->plt_got; |
| plt_offset = eh->plt_got.offset; |
| } |
| |
| relocation = (resolved_plt->output_section->vma |
| + resolved_plt->output_offset |
| + plt_offset); |
| unresolved_reloc = false; |
| break; |
| |
| case R_386_SIZE32: |
| /* Set to symbol size. */ |
| relocation = st_size; |
| /* Fall through. */ |
| |
| case R_386_32: |
| case R_386_PC32: |
| if ((input_section->flags & SEC_ALLOC) == 0 |
| || is_vxworks_tls) |
| break; |
| |
| if (GENERATE_DYNAMIC_RELOCATION_P (info, eh, r_type, sec, |
| false, resolved_to_zero, |
| (r_type == R_386_PC32))) |
| { |
| Elf_Internal_Rela outrel; |
| bool skip, relocate; |
| asection *sreloc; |
| |
| /* When generating a shared object, these relocations |
| are copied into the output file to be resolved at run |
| time. */ |
| |
| skip = false; |
| relocate = false; |
| |
| outrel.r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset); |
| if (outrel.r_offset == (bfd_vma) -1) |
| skip = true; |
| else if (outrel.r_offset == (bfd_vma) -2) |
| skip = true, relocate = true; |
| outrel.r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| |
| if (skip) |
| memset (&outrel, 0, sizeof outrel); |
| else if (COPY_INPUT_RELOC_P (info, h, r_type)) |
| outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); |
| else |
| { |
| /* This symbol is local, or marked to become local. */ |
| relocate = true; |
| outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| |
| if (htab->params->report_relative_reloc) |
| _bfd_x86_elf_link_report_relative_reloc |
| (info, input_section, h, sym, "R_386_RELATIVE", |
| &outrel); |
| } |
| |
| sreloc = elf_section_data (input_section)->sreloc; |
| |
| if (sreloc == NULL || sreloc->contents == NULL) |
| { |
| r = bfd_reloc_notsupported; |
| goto check_relocation_error; |
| } |
| |
| elf_append_rel (output_bfd, sreloc, &outrel); |
| |
| /* If this reloc is against an external symbol, we do |
| not want to fiddle with the addend. Otherwise, we |
| need to include the symbol value so that it becomes |
| an addend for the dynamic reloc. */ |
| if (! relocate) |
| continue; |
| } |
| break; |
| |
| case R_386_TLS_IE: |
| if (!bfd_link_executable (info)) |
| { |
| Elf_Internal_Rela outrel; |
| asection *sreloc; |
| |
| outrel.r_offset = rel->r_offset |
| + input_section->output_section->vma |
| + input_section->output_offset; |
| outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| |
| if (htab->params->report_relative_reloc) |
| _bfd_x86_elf_link_report_relative_reloc |
| (info, input_section, h, sym, "R_386_RELATIVE", |
| &outrel); |
| |
| sreloc = elf_section_data (input_section)->sreloc; |
| if (sreloc == NULL) |
| abort (); |
| elf_append_rel (output_bfd, sreloc, &outrel); |
| } |
| /* Fall through */ |
| |
| case R_386_TLS_GD: |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| case R_386_TLS_IE_32: |
| case R_386_TLS_GOTIE: |
| tls_type = GOT_UNKNOWN; |
| if (h == NULL && local_got_offsets) |
| tls_type = elf_x86_local_got_tls_type (input_bfd) [r_symndx]; |
| else if (h != NULL) |
| tls_type = elf_x86_hash_entry(h)->tls_type; |
| if (tls_type == GOT_TLS_IE) |
| tls_type = GOT_TLS_IE_NEG; |
| |
| r_type_tls = r_type; |
| if (! elf_i386_tls_transition (info, input_bfd, |
| input_section, contents, |
| symtab_hdr, sym_hashes, |
| &r_type_tls, tls_type, rel, |
| relend, h, r_symndx, true)) |
| return false; |
| |
| if (r_type_tls == R_386_TLS_LE_32) |
| { |
| BFD_ASSERT (! unresolved_reloc); |
| if (r_type == R_386_TLS_GD) |
| { |
| unsigned int type; |
| bfd_vma roff; |
| |
| /* GD->LE transition. */ |
| type = *(contents + rel->r_offset - 2); |
| if (type == 0x04) |
| { |
| /* Change |
| leal foo@tlsgd(,%ebx,1), %eax |
| call ___tls_get_addr@PLT |
| into: |
| movl %gs:0, %eax |
| subl $foo@tpoff, %eax |
| (6 byte form of subl). */ |
| roff = rel->r_offset + 5; |
| } |
| else |
| { |
| /* Change |
| leal foo@tlsgd(%ebx), %eax |
| call ___tls_get_addr@PLT |
| nop |
| or |
| leal foo@tlsgd(%reg), %eax |
| call *___tls_get_addr@GOT(%reg) |
| which may be converted to |
| addr32 call ___tls_get_addr |
| into: |
| movl %gs:0, %eax; subl $foo@tpoff, %eax |
| (6 byte form of subl). */ |
| roff = rel->r_offset + 6; |
| } |
| memcpy (contents + roff - 8, |
| "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12); |
| bfd_put_32 (output_bfd, elf_i386_tpoff (info, relocation), |
| contents + roff); |
| /* Skip R_386_PC32, R_386_PLT32 and R_386_GOT32X. */ |
| rel++; |
| wrel++; |
| continue; |
| } |
| else if (r_type == R_386_TLS_GOTDESC) |
| { |
| /* GDesc -> LE transition. |
| It's originally something like: |
| leal x@tlsdesc(%ebx), %eax |
| |
| leal x@ntpoff, %eax |
| |
| Registers other than %eax may be set up here. */ |
| |
| unsigned int val; |
| bfd_vma roff; |
| |
| roff = rel->r_offset; |
| val = bfd_get_8 (input_bfd, contents + roff - 1); |
| |
| /* Now modify the instruction as appropriate. */ |
| /* aoliva FIXME: remove the above and xor the byte |
| below with 0x86. */ |
| bfd_put_8 (output_bfd, val ^ 0x86, |
| contents + roff - 1); |
| bfd_put_32 (output_bfd, -elf_i386_tpoff (info, relocation), |
| contents + roff); |
| continue; |
| } |
| else if (r_type == R_386_TLS_DESC_CALL) |
| { |
| /* GDesc -> LE transition. |
| It's originally: |
| call *(%eax) |
| Turn it into: |
| xchg %ax,%ax */ |
| |
| bfd_vma roff; |
| |
| roff = rel->r_offset; |
| bfd_put_8 (output_bfd, 0x66, contents + roff); |
| bfd_put_8 (output_bfd, 0x90, contents + roff + 1); |
| continue; |
| } |
| else if (r_type == R_386_TLS_IE) |
| { |
| unsigned int val; |
| |
| /* IE->LE transition: |
| Originally it can be one of: |
| movl foo, %eax |
| movl foo, %reg |
| addl foo, %reg |
| We change it into: |
| movl $foo, %eax |
| movl $foo, %reg |
| addl $foo, %reg. */ |
| val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); |
| if (val == 0xa1) |
| { |
| /* movl foo, %eax. */ |
| bfd_put_8 (output_bfd, 0xb8, |
| contents + rel->r_offset - 1); |
| } |
| else |
| { |
| unsigned int type; |
| |
| type = bfd_get_8 (input_bfd, |
| contents + rel->r_offset - 2); |
| switch (type) |
| { |
| case 0x8b: |
| /* movl */ |
| bfd_put_8 (output_bfd, 0xc7, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, |
| 0xc0 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| break; |
| case 0x03: |
| /* addl */ |
| bfd_put_8 (output_bfd, 0x81, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, |
| 0xc0 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| break; |
| default: |
| BFD_FAIL (); |
| break; |
| } |
| } |
| bfd_put_32 (output_bfd, -elf_i386_tpoff (info, relocation), |
| contents + rel->r_offset); |
| continue; |
| } |
| else |
| { |
| unsigned int val, type; |
| |
| /* {IE_32,GOTIE}->LE transition: |
| Originally it can be one of: |
| subl foo(%reg1), %reg2 |
| movl foo(%reg1), %reg2 |
| addl foo(%reg1), %reg2 |
| We change it into: |
| subl $foo, %reg2 |
| movl $foo, %reg2 (6 byte form) |
| addl $foo, %reg2. */ |
| type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2); |
| val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); |
| if (type == 0x8b) |
| { |
| /* movl */ |
| bfd_put_8 (output_bfd, 0xc7, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| } |
| else if (type == 0x2b) |
| { |
| /* subl */ |
| bfd_put_8 (output_bfd, 0x81, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| } |
| else if (type == 0x03) |
| { |
| /* addl */ |
| bfd_put_8 (output_bfd, 0x81, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| } |
| else |
| BFD_FAIL (); |
| if (r_type == R_386_TLS_GOTIE) |
| bfd_put_32 (output_bfd, -elf_i386_tpoff (info, relocation), |
| contents + rel->r_offset); |
| else |
| bfd_put_32 (output_bfd, elf_i386_tpoff (info, relocation), |
| contents + rel->r_offset); |
| continue; |
| } |
| } |
| |
| if (htab->elf.sgot == NULL) |
| abort (); |
| |
| if (h != NULL) |
| { |
| off = h->got.offset; |
| offplt = elf_x86_hash_entry (h)->tlsdesc_got; |
| } |
| else |
| { |
| if (local_got_offsets == NULL) |
| abort (); |
| |
| off = local_got_offsets[r_symndx]; |
| offplt = local_tlsdesc_gotents[r_symndx]; |
| } |
| |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| Elf_Internal_Rela outrel; |
| int dr_type; |
| asection *sreloc; |
| |
| if (htab->elf.srelgot == NULL) |
| abort (); |
| |
| indx = h && h->dynindx != -1 ? h->dynindx : 0; |
| |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| bfd_byte *loc; |
| outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_DESC); |
| BFD_ASSERT (htab->sgotplt_jump_table_size + offplt + 8 |
| <= htab->elf.sgotplt->size); |
| outrel.r_offset = (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + offplt |
| + htab->sgotplt_jump_table_size); |
| sreloc = htab->elf.srelplt; |
| loc = sreloc->contents; |
| loc += (htab->next_tls_desc_index++ |
| * sizeof (Elf32_External_Rel)); |
| BFD_ASSERT (loc + sizeof (Elf32_External_Rel) |
| <= sreloc->contents + sreloc->size); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| if (indx == 0) |
| { |
| BFD_ASSERT (! unresolved_reloc); |
| bfd_put_32 (output_bfd, |