| /* Copyright (C) 1998, Cygnus Solutions |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, see <http://www.gnu.org/licenses/>. |
| |
| */ |
| |
| |
| #ifndef SIM_MAIN_C |
| #define SIM_MAIN_C |
| |
| /* This must come before any other includes. */ |
| #include "defs.h" |
| |
| #include "sim-main.h" |
| #include "sim-assert.h" |
| |
| #include <stdlib.h> |
| |
| /*---------------------------------------------------------------------------*/ |
| /*-- simulator engine -------------------------------------------------------*/ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /* Description from page A-22 of the "MIPS IV Instruction Set" manual |
| (revision 3.1) */ |
| /* Load a value from memory. Use the cache and main memory as |
| specified in the Cache Coherence Algorithm (CCA) and the sort of |
| access (IorD) to find the contents of AccessLength memory bytes |
| starting at physical location pAddr. The data is returned in the |
| fixed width naturally-aligned memory element (MemElem). The |
| low-order two (or three) bits of the address and the AccessLength |
| indicate which of the bytes within MemElem needs to be given to the |
| processor. If the memory access type of the reference is uncached |
| then only the referenced bytes are read from memory and valid |
| within the memory element. If the access type is cached, and the |
| data is not present in cache, an implementation specific size and |
| alignment block of memory is read and loaded into the cache to |
| satisfy a load reference. At a minimum, the block is the entire |
| memory element. */ |
| INLINE_SIM_MAIN (void) |
| load_memory (SIM_DESC SD, |
| sim_cpu *CPU, |
| address_word cia, |
| uword64* memvalp, |
| uword64* memval1p, |
| int CCA, |
| unsigned int AccessLength, |
| address_word pAddr, |
| address_word vAddr, |
| int IorD) |
| { |
| uword64 value = 0; |
| uword64 value1 = 0; |
| |
| #ifdef DEBUG |
| sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION")); |
| #endif /* DEBUG */ |
| |
| #if defined(WARN_MEM) |
| if (CCA != uncached) |
| sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA); |
| #endif /* WARN_MEM */ |
| |
| if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK) |
| { |
| /* In reality this should be a Bus Error */ |
| sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n", |
| AccessLength, |
| (LOADDRMASK + 1) << 3, |
| pr_addr (pAddr)); |
| } |
| |
| dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction")); |
| |
| /* Read the specified number of bytes from memory. Adjust for |
| host/target byte ordering/ Align the least significant byte |
| read. */ |
| |
| switch (AccessLength) |
| { |
| case AccessLength_QUADWORD: |
| { |
| unsigned_16 val = sim_core_read_aligned_16 (CPU, cia, read_map, pAddr); |
| value1 = VH8_16 (val); |
| value = VL8_16 (val); |
| break; |
| } |
| case AccessLength_DOUBLEWORD: |
| value = sim_core_read_aligned_8 (CPU, cia, read_map, pAddr); |
| break; |
| case AccessLength_SEPTIBYTE: |
| value = sim_core_read_misaligned_7 (CPU, cia, read_map, pAddr); |
| break; |
| case AccessLength_SEXTIBYTE: |
| value = sim_core_read_misaligned_6 (CPU, cia, read_map, pAddr); |
| break; |
| case AccessLength_QUINTIBYTE: |
| value = sim_core_read_misaligned_5 (CPU, cia, read_map, pAddr); |
| break; |
| case AccessLength_WORD: |
| value = sim_core_read_aligned_4 (CPU, cia, read_map, pAddr); |
| break; |
| case AccessLength_TRIPLEBYTE: |
| value = sim_core_read_misaligned_3 (CPU, cia, read_map, pAddr); |
| break; |
| case AccessLength_HALFWORD: |
| value = sim_core_read_aligned_2 (CPU, cia, read_map, pAddr); |
| break; |
| case AccessLength_BYTE: |
| value = sim_core_read_aligned_1 (CPU, cia, read_map, pAddr); |
| break; |
| default: |
| abort (); |
| } |
| |
| #ifdef DEBUG |
| printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n", |
| (int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value)); |
| #endif /* DEBUG */ |
| |
| /* See also store_memory. Position data in correct byte lanes. */ |
| if (AccessLength <= LOADDRMASK) |
| { |
| if (BigEndianMem) |
| /* for big endian target, byte (pAddr&LOADDRMASK == 0) is |
| shifted to the most significant byte position. */ |
| value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8); |
| else |
| /* For little endian target, byte (pAddr&LOADDRMASK == 0) |
| is already in the correct postition. */ |
| value <<= ((pAddr & LOADDRMASK) * 8); |
| } |
| |
| #ifdef DEBUG |
| printf("DBG: LoadMemory() : shifted value = 0x%s%s\n", |
| pr_uword64(value1),pr_uword64(value)); |
| #endif /* DEBUG */ |
| |
| *memvalp = value; |
| if (memval1p) *memval1p = value1; |
| } |
| |
| |
| /* Description from page A-23 of the "MIPS IV Instruction Set" manual |
| (revision 3.1) */ |
| /* Store a value to memory. The specified data is stored into the |
| physical location pAddr using the memory hierarchy (data caches and |
| main memory) as specified by the Cache Coherence Algorithm |
| (CCA). The MemElem contains the data for an aligned, fixed-width |
| memory element (word for 32-bit processors, doubleword for 64-bit |
| processors), though only the bytes that will actually be stored to |
| memory need to be valid. The low-order two (or three) bits of pAddr |
| and the AccessLength field indicates which of the bytes within the |
| MemElem data should actually be stored; only these bytes in memory |
| will be changed. */ |
| |
| INLINE_SIM_MAIN (void) |
| store_memory (SIM_DESC SD, |
| sim_cpu *CPU, |
| address_word cia, |
| int CCA, |
| unsigned int AccessLength, |
| uword64 MemElem, |
| uword64 MemElem1, /* High order 64 bits */ |
| address_word pAddr, |
| address_word vAddr) |
| { |
| #ifdef DEBUG |
| sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr)); |
| #endif /* DEBUG */ |
| |
| #if defined(WARN_MEM) |
| if (CCA != uncached) |
| sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA); |
| #endif /* WARN_MEM */ |
| |
| if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK) |
| sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n", |
| AccessLength, |
| (LOADDRMASK + 1) << 3, |
| pr_addr(pAddr)); |
| |
| dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store"); |
| |
| #ifdef DEBUG |
| printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem)); |
| #endif /* DEBUG */ |
| |
| /* See also load_memory. Position data in correct byte lanes. */ |
| if (AccessLength <= LOADDRMASK) |
| { |
| if (BigEndianMem) |
| /* for big endian target, byte (pAddr&LOADDRMASK == 0) is |
| shifted to the most significant byte position. */ |
| MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8); |
| else |
| /* For little endian target, byte (pAddr&LOADDRMASK == 0) |
| is already in the correct postition. */ |
| MemElem >>= ((pAddr & LOADDRMASK) * 8); |
| } |
| |
| #ifdef DEBUG |
| printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem)); |
| #endif /* DEBUG */ |
| |
| switch (AccessLength) |
| { |
| case AccessLength_QUADWORD: |
| { |
| unsigned_16 val = U16_8 (MemElem1, MemElem); |
| sim_core_write_aligned_16 (CPU, cia, write_map, pAddr, val); |
| break; |
| } |
| case AccessLength_DOUBLEWORD: |
| sim_core_write_aligned_8 (CPU, cia, write_map, pAddr, MemElem); |
| break; |
| case AccessLength_SEPTIBYTE: |
| sim_core_write_misaligned_7 (CPU, cia, write_map, pAddr, MemElem); |
| break; |
| case AccessLength_SEXTIBYTE: |
| sim_core_write_misaligned_6 (CPU, cia, write_map, pAddr, MemElem); |
| break; |
| case AccessLength_QUINTIBYTE: |
| sim_core_write_misaligned_5 (CPU, cia, write_map, pAddr, MemElem); |
| break; |
| case AccessLength_WORD: |
| sim_core_write_aligned_4 (CPU, cia, write_map, pAddr, MemElem); |
| break; |
| case AccessLength_TRIPLEBYTE: |
| sim_core_write_misaligned_3 (CPU, cia, write_map, pAddr, MemElem); |
| break; |
| case AccessLength_HALFWORD: |
| sim_core_write_aligned_2 (CPU, cia, write_map, pAddr, MemElem); |
| break; |
| case AccessLength_BYTE: |
| sim_core_write_aligned_1 (CPU, cia, write_map, pAddr, MemElem); |
| break; |
| default: |
| abort (); |
| } |
| |
| return; |
| } |
| |
| |
| INLINE_SIM_MAIN (unsigned32) |
| ifetch32 (SIM_DESC SD, |
| sim_cpu *CPU, |
| address_word cia, |
| address_word vaddr) |
| { |
| /* Copy the action of the LW instruction */ |
| address_word mask = LOADDRMASK; |
| address_word access = AccessLength_WORD; |
| address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0); |
| address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0); |
| unsigned int byte; |
| address_word paddr = vaddr; |
| unsigned64 memval; |
| |
| if ((vaddr & access) != 0) |
| SignalExceptionInstructionFetch (); |
| paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian)); |
| LoadMemory (&memval, NULL, access, paddr, vaddr, isINSTRUCTION, isREAL); |
| byte = ((vaddr & mask) ^ bigendiancpu); |
| return (memval >> (8 * byte)); |
| } |
| |
| |
| INLINE_SIM_MAIN (unsigned16) |
| ifetch16 (SIM_DESC SD, |
| sim_cpu *CPU, |
| address_word cia, |
| address_word vaddr) |
| { |
| /* Copy the action of the LH instruction */ |
| address_word mask = LOADDRMASK; |
| address_word access = AccessLength_HALFWORD; |
| address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0); |
| address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0); |
| unsigned int byte; |
| address_word paddr = vaddr; |
| unsigned64 memval; |
| |
| if ((vaddr & access) != 0) |
| SignalExceptionInstructionFetch (); |
| paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian)); |
| LoadMemory (&memval, NULL, access, paddr, vaddr, isINSTRUCTION, isREAL); |
| byte = ((vaddr & mask) ^ bigendiancpu); |
| return (memval >> (8 * byte)); |
| } |
| |
| |
| |
| /* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */ |
| /* Order loads and stores to synchronise shared memory. Perform the |
| action necessary to make the effects of groups of synchronizable |
| loads and stores indicated by stype occur in the same order for all |
| processors. */ |
| INLINE_SIM_MAIN (void) |
| sync_operation (SIM_DESC sd, |
| sim_cpu *cpu, |
| address_word cia, |
| int stype) |
| { |
| #ifdef DEBUG |
| sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype); |
| #endif /* DEBUG */ |
| return; |
| } |
| |
| INLINE_SIM_MAIN (void) |
| cache_op (SIM_DESC SD, |
| sim_cpu *CPU, |
| address_word cia, |
| int op, |
| address_word pAddr, |
| address_word vAddr, |
| unsigned int instruction) |
| { |
| #if 1 /* stop warning message being displayed (we should really just remove the code) */ |
| static int icache_warning = 1; |
| static int dcache_warning = 1; |
| #else |
| static int icache_warning = 0; |
| static int dcache_warning = 0; |
| #endif |
| |
| /* If CP0 is not useable (User or Supervisor mode) and the CP0 |
| enable bit in the Status Register is clear - a coprocessor |
| unusable exception is taken. */ |
| #if 0 |
| sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia)); |
| #endif |
| |
| switch (op & 0x3) { |
| case 0: /* instruction cache */ |
| switch (op >> 2) { |
| case 0: /* Index Invalidate */ |
| case 1: /* Index Load Tag */ |
| case 2: /* Index Store Tag */ |
| case 4: /* Hit Invalidate */ |
| case 5: /* Fill */ |
| case 6: /* Hit Writeback */ |
| if (!icache_warning) |
| { |
| sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2)); |
| icache_warning = 1; |
| } |
| break; |
| |
| default: |
| SignalException(ReservedInstruction,instruction); |
| break; |
| } |
| break; |
| |
| case 1: /* data cache */ |
| case 3: /* secondary data cache */ |
| switch (op >> 2) { |
| case 0: /* Index Writeback Invalidate */ |
| case 1: /* Index Load Tag */ |
| case 2: /* Index Store Tag */ |
| case 3: /* Create Dirty */ |
| case 4: /* Hit Invalidate */ |
| case 5: /* Hit Writeback Invalidate */ |
| case 6: /* Hit Writeback */ |
| if (!dcache_warning) |
| { |
| sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2)); |
| dcache_warning = 1; |
| } |
| break; |
| |
| default: |
| SignalException(ReservedInstruction,instruction); |
| break; |
| } |
| break; |
| |
| default: /* unrecognised cache ID */ |
| SignalException(ReservedInstruction,instruction); |
| break; |
| } |
| |
| return; |
| } |
| |
| |
| INLINE_SIM_MAIN (void) |
| pending_tick (SIM_DESC SD, |
| sim_cpu *CPU, |
| address_word cia) |
| { |
| if (PENDING_TRACE) |
| sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL); |
| if (PENDING_OUT != PENDING_IN) |
| { |
| int loop; |
| int index = PENDING_OUT; |
| int total = PENDING_TOTAL; |
| if (PENDING_TOTAL == 0) |
| sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n"); |
| for (loop = 0, index = PENDING_OUT; |
| (loop < total); |
| loop++, index = (index + 1) % PSLOTS) |
| { |
| if (PENDING_SLOT_DEST[index] != NULL) |
| { |
| PENDING_SLOT_DELAY[index] -= 1; |
| if (PENDING_SLOT_DELAY[index] == 0) |
| { |
| if (PENDING_TRACE) |
| sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n", |
| index, |
| (unsigned long) PENDING_SLOT_DEST[index], |
| PENDING_SLOT_BIT[index], |
| (unsigned long) PENDING_SLOT_VALUE[index], |
| PENDING_SLOT_SIZE[index]); |
| if (PENDING_SLOT_BIT[index] >= 0) |
| switch (PENDING_SLOT_SIZE[index]) |
| { |
| case 4: |
| if (PENDING_SLOT_VALUE[index]) |
| *(unsigned32*)PENDING_SLOT_DEST[index] |= |
| BIT32 (PENDING_SLOT_BIT[index]); |
| else |
| *(unsigned32*)PENDING_SLOT_DEST[index] &= |
| BIT32 (PENDING_SLOT_BIT[index]); |
| break; |
| case 8: |
| if (PENDING_SLOT_VALUE[index]) |
| *(unsigned64*)PENDING_SLOT_DEST[index] |= |
| BIT64 (PENDING_SLOT_BIT[index]); |
| else |
| *(unsigned64*)PENDING_SLOT_DEST[index] &= |
| BIT64 (PENDING_SLOT_BIT[index]); |
| break; |
| } |
| else |
| switch (PENDING_SLOT_SIZE[index]) |
| { |
| case 4: |
| *(unsigned32*)PENDING_SLOT_DEST[index] = |
| PENDING_SLOT_VALUE[index]; |
| break; |
| case 8: |
| *(unsigned64*)PENDING_SLOT_DEST[index] = |
| PENDING_SLOT_VALUE[index]; |
| break; |
| } |
| if (PENDING_OUT == index) |
| { |
| PENDING_SLOT_DEST[index] = NULL; |
| PENDING_OUT = (PENDING_OUT + 1) % PSLOTS; |
| PENDING_TOTAL--; |
| } |
| } |
| else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0) |
| sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n", |
| index, PENDING_SLOT_DELAY[index], |
| (unsigned long) PENDING_SLOT_DEST[index], |
| PENDING_SLOT_BIT[index], |
| (unsigned long) PENDING_SLOT_VALUE[index], |
| PENDING_SLOT_SIZE[index]); |
| |
| } |
| } |
| } |
| } |
| |
| |
| #endif |