| /* MIPS Simulator definition. |
| Copyright (C) 1997-2021 Free Software Foundation, Inc. |
| Contributed by Cygnus Support. |
| |
| This file is part of the MIPS sim. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef SIM_MAIN_H |
| #define SIM_MAIN_H |
| |
| /* MIPS uses an unusual format for floating point quiet NaNs. */ |
| #define SIM_QUIET_NAN_NEGATED |
| |
| #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \ |
| mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR)) |
| |
| #include "sim-basics.h" |
| #include "sim-base.h" |
| #include "bfd.h" |
| |
| /* Deprecated macros and types for manipulating 64bit values. Use |
| ../common/sim-bits.h and ../common/sim-endian.h macros instead. */ |
| |
| typedef signed64 word64; |
| typedef unsigned64 uword64; |
| |
| #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF) |
| #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32) |
| #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF) |
| #define SET64HI(t) (((uword64)(t))<<32) |
| #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l)))) |
| #define UWORD64(h,l) (SET64HI(h)|SET64LO(l)) |
| |
| /* Check if a value will fit within a halfword: */ |
| #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1)) |
| |
| |
| typedef enum { |
| cp0_dmfc0, |
| cp0_dmtc0, |
| cp0_mfc0, |
| cp0_mtc0, |
| cp0_tlbr, |
| cp0_tlbwi, |
| cp0_tlbwr, |
| cp0_tlbp, |
| cp0_cache, |
| cp0_eret, |
| cp0_deret, |
| cp0_rfe |
| } CP0_operation; |
| |
| /* Floating-point operations: */ |
| |
| #include "sim-fpu.h" |
| #include "cp1.h" |
| |
| /* FPU registers must be one of the following types. All other values |
| are reserved (and undefined). */ |
| typedef enum { |
| fmt_single = 0, |
| fmt_double = 1, |
| fmt_word = 4, |
| fmt_long = 5, |
| fmt_ps = 6, |
| /* The following are well outside the normal acceptable format |
| range, and are used in the register status vector. */ |
| fmt_unknown = 0x10000000, |
| fmt_uninterpreted = 0x20000000, |
| fmt_uninterpreted_32 = 0x40000000, |
| fmt_uninterpreted_64 = 0x80000000U, |
| } FP_formats; |
| |
| /* For paired word (pw) operations, the opcode representation is fmt_word, |
| but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long. */ |
| #define fmt_pw fmt_long |
| |
| /* This should be the COC1 value at the start of the preceding |
| instruction: */ |
| #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0) |
| |
| #ifdef TARGET_ENABLE_FR |
| /* FIXME: this should be enabled for all targets, but needs testing first. */ |
| #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \ |
| ? ((SR & status_FR) ? 64 : 32) \ |
| : (WITH_TARGET_FLOATING_POINT_BITSIZE)) |
| #else |
| #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE) |
| #endif |
| |
| |
| |
| |
| |
| /* HI/LO register accesses */ |
| |
| /* For some MIPS targets, the HI/LO registers have certain timing |
| restrictions in that, for instance, a read of a HI register must be |
| separated by at least three instructions from a preceeding read. |
| |
| The struct below is used to record the last access by each of A MT, |
| MF or other OP instruction to a HI/LO register. See mips.igen for |
| more details. */ |
| |
| typedef struct _hilo_access { |
| signed64 timestamp; |
| address_word cia; |
| } hilo_access; |
| |
| typedef struct _hilo_history { |
| hilo_access mt; |
| hilo_access mf; |
| hilo_access op; |
| } hilo_history; |
| |
| |
| |
| |
| /* Integer ALU operations: */ |
| |
| #include "sim-alu.h" |
| |
| #define ALU32_END(ANS) \ |
| if (ALU32_HAD_OVERFLOW) \ |
| SignalExceptionIntegerOverflow (); \ |
| (ANS) = (signed32) ALU32_OVERFLOW_RESULT |
| |
| |
| #define ALU64_END(ANS) \ |
| if (ALU64_HAD_OVERFLOW) \ |
| SignalExceptionIntegerOverflow (); \ |
| (ANS) = ALU64_OVERFLOW_RESULT; |
| |
| |
| |
| |
| |
| /* The following is probably not used for MIPS IV onwards: */ |
| /* Slots for delayed register updates. For the moment we just have a |
| fixed number of slots (rather than a more generic, dynamic |
| system). This keeps the simulator fast. However, we only allow |
| for the register update to be delayed for a single instruction |
| cycle. */ |
| #define PSLOTS (8) /* Maximum number of instruction cycles */ |
| |
| typedef struct _pending_write_queue { |
| int in; |
| int out; |
| int total; |
| int slot_delay[PSLOTS]; |
| int slot_size[PSLOTS]; |
| int slot_bit[PSLOTS]; |
| void *slot_dest[PSLOTS]; |
| unsigned64 slot_value[PSLOTS]; |
| } pending_write_queue; |
| |
| #ifndef PENDING_TRACE |
| #define PENDING_TRACE 0 |
| #endif |
| #define PENDING_IN ((CPU)->pending.in) |
| #define PENDING_OUT ((CPU)->pending.out) |
| #define PENDING_TOTAL ((CPU)->pending.total) |
| #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size) |
| #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit) |
| #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay) |
| #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest) |
| #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value) |
| |
| /* Invalidate the pending write queue, all pending writes are |
| discarded. */ |
| |
| #define PENDING_INVALIDATE() \ |
| memset (&(CPU)->pending, 0, sizeof ((CPU)->pending)) |
| |
| /* Schedule a write to DEST for N cycles time. For 64 bit |
| destinations, schedule two writes. For floating point registers, |
| the caller should schedule a write to both the dest register and |
| the FPR_STATE register. When BIT is non-negative, only BIT of DEST |
| is updated. */ |
| |
| #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \ |
| do { \ |
| if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \ |
| sim_engine_abort (SD, CPU, cia, \ |
| "PENDING_SCHED - buffer overflow\n"); \ |
| if (PENDING_TRACE) \ |
| sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \ |
| (unsigned long) cia, (unsigned long) &(DEST), \ |
| (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\ |
| PENDING_IN, PENDING_OUT, PENDING_TOTAL); \ |
| PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \ |
| PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \ |
| PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \ |
| PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \ |
| PENDING_SLOT_BIT[PENDING_IN] = (BIT); \ |
| PENDING_IN = (PENDING_IN + 1) % PSLOTS; \ |
| PENDING_TOTAL += 1; \ |
| } while (0) |
| |
| #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1) |
| #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT) |
| |
| #define PENDING_TICK() pending_tick (SD, CPU, cia) |
| |
| #define PENDING_FLUSH() abort () /* think about this one */ |
| #define PENDING_FP() abort () /* think about this one */ |
| |
| /* For backward compatibility */ |
| #define PENDING_FILL(R,VAL) \ |
| do { \ |
| if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \ |
| { \ |
| PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \ |
| PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \ |
| } \ |
| else \ |
| PENDING_SCHED(GPR[(R)], VAL, 1, -1); \ |
| } while (0) |
| |
| |
| enum float_operation |
| { |
| FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD, |
| FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS, |
| FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23 |
| }; |
| |
| |
| /* The internal representation of an MDMX accumulator. |
| Note that 24 and 48 bit accumulator elements are represented in |
| 32 or 64 bits. Since the accumulators are 2's complement with |
| overflow suppressed, high-order bits can be ignored in most contexts. */ |
| |
| typedef signed32 signed24; |
| typedef signed64 signed48; |
| |
| typedef union { |
| signed24 ob[8]; |
| signed48 qh[4]; |
| } MDMX_accumulator; |
| |
| |
| /* Conventional system arguments. */ |
| #define SIM_STATE sim_cpu *cpu, address_word cia |
| #define SIM_ARGS CPU, cia |
| |
| struct _sim_cpu { |
| |
| |
| /* The following are internal simulator state variables: */ |
| address_word dspc; /* delay-slot PC */ |
| #define DSPC ((CPU)->dspc) |
| |
| #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET)) |
| #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_) |
| |
| |
| /* State of the simulator */ |
| unsigned int state; |
| unsigned int dsstate; |
| #define STATE ((CPU)->state) |
| #define DSSTATE ((CPU)->dsstate) |
| |
| /* Flags in the "state" variable: */ |
| #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */ |
| #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */ |
| #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */ |
| #define simPCOC0 (1 << 17) /* COC[1] from current */ |
| #define simPCOC1 (1 << 18) /* COC[1] from previous */ |
| #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */ |
| #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */ |
| #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */ |
| #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */ |
| |
| #ifndef ENGINE_ISSUE_PREFIX_HOOK |
| #define ENGINE_ISSUE_PREFIX_HOOK() \ |
| { \ |
| /* Perform any pending writes */ \ |
| PENDING_TICK(); \ |
| /* Set previous flag, depending on current: */ \ |
| if (STATE & simPCOC0) \ |
| STATE |= simPCOC1; \ |
| else \ |
| STATE &= ~simPCOC1; \ |
| /* and update the current value: */ \ |
| if (GETFCC(0)) \ |
| STATE |= simPCOC0; \ |
| else \ |
| STATE &= ~simPCOC0; \ |
| } |
| #endif /* ENGINE_ISSUE_PREFIX_HOOK */ |
| |
| |
| /* This is nasty, since we have to rely on matching the register |
| numbers used by GDB. Unfortunately, depending on the MIPS target |
| GDB uses different register numbers. We cannot just include the |
| relevant "gdb/tm.h" link, since GDB may not be configured before |
| the sim world, and also the GDB header file requires too much other |
| state. */ |
| |
| #ifndef TM_MIPS_H |
| #define LAST_EMBED_REGNUM (96) |
| #define NUM_REGS (LAST_EMBED_REGNUM + 1) |
| |
| #define FP0_REGNUM 38 /* Floating point register 0 (single float) */ |
| #define FCRCS_REGNUM 70 /* FP control/status */ |
| #define FCRIR_REGNUM 71 /* FP implementation/revision */ |
| #endif |
| |
| |
| /* To keep this default simulator simple, and fast, we use a direct |
| vector of registers. The internal simulator engine then uses |
| manifests to access the correct slot. */ |
| |
| unsigned_word registers[LAST_EMBED_REGNUM + 1]; |
| |
| int register_widths[NUM_REGS]; |
| #define REGISTERS ((CPU)->registers) |
| |
| #define GPR (®ISTERS[0]) |
| #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL)) |
| |
| #define LO (REGISTERS[33]) |
| #define HI (REGISTERS[34]) |
| #define PCIDX 37 |
| #define PC (REGISTERS[PCIDX]) |
| #define CAUSE (REGISTERS[36]) |
| #define SRIDX (32) |
| #define SR (REGISTERS[SRIDX]) /* CPU status register */ |
| #define FCR0IDX (71) |
| #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */ |
| #define FCR31IDX (70) |
| #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */ |
| #define FCSR (FCR31) |
| #define Debug (REGISTERS[86]) |
| #define DEPC (REGISTERS[87]) |
| #define EPC (REGISTERS[88]) |
| #define ACX (REGISTERS[89]) |
| |
| #define AC0LOIDX (33) /* Must be the same register as LO */ |
| #define AC0HIIDX (34) /* Must be the same register as HI */ |
| #define AC1LOIDX (90) |
| #define AC1HIIDX (91) |
| #define AC2LOIDX (92) |
| #define AC2HIIDX (93) |
| #define AC3LOIDX (94) |
| #define AC3HIIDX (95) |
| |
| #define DSPLO(N) (REGISTERS[DSPLO_REGNUM[N]]) |
| #define DSPHI(N) (REGISTERS[DSPHI_REGNUM[N]]) |
| |
| #define DSPCRIDX (96) /* DSP control register */ |
| #define DSPCR (REGISTERS[DSPCRIDX]) |
| |
| #define DSPCR_POS_SHIFT (0) |
| #define DSPCR_POS_MASK (0x3f) |
| #define DSPCR_POS_SMASK (DSPCR_POS_MASK << DSPCR_POS_SHIFT) |
| |
| #define DSPCR_SCOUNT_SHIFT (7) |
| #define DSPCR_SCOUNT_MASK (0x3f) |
| #define DSPCR_SCOUNT_SMASK (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT) |
| |
| #define DSPCR_CARRY_SHIFT (13) |
| #define DSPCR_CARRY_MASK (1) |
| #define DSPCR_CARRY_SMASK (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT) |
| #define DSPCR_CARRY (1 << DSPCR_CARRY_SHIFT) |
| |
| #define DSPCR_EFI_SHIFT (14) |
| #define DSPCR_EFI_MASK (1) |
| #define DSPCR_EFI_SMASK (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT) |
| #define DSPCR_EFI (1 << DSPCR_EFI_MASK) |
| |
| #define DSPCR_OUFLAG_SHIFT (16) |
| #define DSPCR_OUFLAG_MASK (0xff) |
| #define DSPCR_OUFLAG_SMASK (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT) |
| #define DSPCR_OUFLAG4 (1 << (DSPCR_OUFLAG_SHIFT + 4)) |
| #define DSPCR_OUFLAG5 (1 << (DSPCR_OUFLAG_SHIFT + 5)) |
| #define DSPCR_OUFLAG6 (1 << (DSPCR_OUFLAG_SHIFT + 6)) |
| #define DSPCR_OUFLAG7 (1 << (DSPCR_OUFLAG_SHIFT + 7)) |
| |
| #define DSPCR_CCOND_SHIFT (24) |
| #define DSPCR_CCOND_MASK (0xf) |
| #define DSPCR_CCOND_SMASK (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT) |
| |
| /* All internal state modified by signal_exception() that may need to be |
| rolled back for passing moment-of-exception image back to gdb. */ |
| unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1]; |
| unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1]; |
| int exc_suspended; |
| |
| #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA) |
| #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC) |
| #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC) |
| |
| unsigned_word c0_config_reg; |
| #define C0_CONFIG ((CPU)->c0_config_reg) |
| |
| /* The following are pseudonyms for standard registers */ |
| #define ZERO (REGISTERS[0]) |
| #define V0 (REGISTERS[2]) |
| #define A0 (REGISTERS[4]) |
| #define A1 (REGISTERS[5]) |
| #define A2 (REGISTERS[6]) |
| #define A3 (REGISTERS[7]) |
| #define T8IDX 24 |
| #define T8 (REGISTERS[T8IDX]) |
| #define SPIDX 29 |
| #define SP (REGISTERS[SPIDX]) |
| #define RAIDX 31 |
| #define RA (REGISTERS[RAIDX]) |
| |
| /* While space is allocated in the main registers arrray for some of |
| the COP0 registers, that space isn't sufficient. Unknown COP0 |
| registers overflow into the array below */ |
| |
| #define NR_COP0_GPR 32 |
| unsigned_word cop0_gpr[NR_COP0_GPR]; |
| #define COP0_GPR ((CPU)->cop0_gpr) |
| #define COP0_BADVADDR (COP0_GPR[8]) |
| |
| /* While space is allocated for the floating point registers in the |
| main registers array, they are stored separatly. This is because |
| their size may not necessarily match the size of either the |
| general-purpose or system specific registers. */ |
| #define NR_FGR (32) |
| #define FGR_BASE FP0_REGNUM |
| fp_word fgr[NR_FGR]; |
| #define FGR ((CPU)->fgr) |
| |
| /* Keep the current format state for each register: */ |
| FP_formats fpr_state[32]; |
| #define FPR_STATE ((CPU)->fpr_state) |
| |
| pending_write_queue pending; |
| |
| /* The MDMX accumulator (used only for MDMX ASE). */ |
| MDMX_accumulator acc; |
| #define ACC ((CPU)->acc) |
| |
| /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic |
| read-write instructions. It is set when a linked load occurs. It |
| is tested and cleared by the conditional store. It is cleared |
| (during other CPU operations) when a store to the location would |
| no longer be atomic. In particular, it is cleared by exception |
| return instructions. */ |
| int llbit; |
| #define LLBIT ((CPU)->llbit) |
| |
| |
| /* The HIHISTORY and LOHISTORY timestamps are used to ensure that |
| corruptions caused by using the HI or LO register too close to a |
| following operation is spotted. See mips.igen for more details. */ |
| |
| hilo_history hi_history; |
| #define HIHISTORY (&(CPU)->hi_history) |
| hilo_history lo_history; |
| #define LOHISTORY (&(CPU)->lo_history) |
| |
| |
| sim_cpu_base base; |
| }; |
| |
| extern void mips_sim_close (SIM_DESC sd, int quitting); |
| #define SIM_CLOSE_HOOK(...) mips_sim_close (__VA_ARGS__) |
| |
| /* FIXME: At present much of the simulator is still static */ |
| struct mips_sim_state { |
| /* microMIPS ISA mode. */ |
| int isa_mode; |
| }; |
| #define MIPS_SIM_STATE(sd) ((struct mips_sim_state *) STATE_ARCH_DATA (sd)) |
| |
| |
| /* Status information: */ |
| |
| /* TODO : these should be the bitmasks for these bits within the |
| status register. At the moment the following are VR4300 |
| bit-positions: */ |
| #define status_KSU_mask (0x18) /* mask for KSU bits */ |
| #define status_KSU_shift (3) /* shift for field */ |
| #define ksu_kernel (0x0) |
| #define ksu_supervisor (0x1) |
| #define ksu_user (0x2) |
| #define ksu_unknown (0x3) |
| |
| #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift) |
| |
| #define status_IE (1 << 0) /* Interrupt enable */ |
| #define status_EIE (1 << 16) /* Enable Interrupt Enable */ |
| #define status_EXL (1 << 1) /* Exception level */ |
| #define status_RE (1 << 25) /* Reverse Endian in user mode */ |
| #define status_FR (1 << 26) /* enables MIPS III additional FP registers */ |
| #define status_SR (1 << 20) /* soft reset or NMI */ |
| #define status_BEV (1 << 22) /* Location of general exception vectors */ |
| #define status_TS (1 << 21) /* TLB shutdown has occurred */ |
| #define status_ERL (1 << 2) /* Error level */ |
| #define status_IM7 (1 << 15) /* Timer Interrupt Mask */ |
| #define status_RP (1 << 27) /* Reduced Power mode */ |
| |
| /* Specializations for TX39 family */ |
| #define status_IEc (1 << 0) /* Interrupt enable (current) */ |
| #define status_KUc (1 << 1) /* Kernel/User mode */ |
| #define status_IEp (1 << 2) /* Interrupt enable (previous) */ |
| #define status_KUp (1 << 3) /* Kernel/User mode */ |
| #define status_IEo (1 << 4) /* Interrupt enable (old) */ |
| #define status_KUo (1 << 5) /* Kernel/User mode */ |
| #define status_IM_mask (0xff) /* Interrupt mask */ |
| #define status_IM_shift (8) |
| #define status_NMI (1 << 20) /* NMI */ |
| #define status_NMI (1 << 20) /* NMI */ |
| |
| /* Status bits used by MIPS32/MIPS64. */ |
| #define status_UX (1 << 5) /* 64-bit user addrs */ |
| #define status_SX (1 << 6) /* 64-bit supervisor addrs */ |
| #define status_KX (1 << 7) /* 64-bit kernel addrs */ |
| #define status_TS (1 << 21) /* TLB shutdown has occurred */ |
| #define status_PX (1 << 23) /* Enable 64 bit operations */ |
| #define status_MX (1 << 24) /* Enable MDMX resources */ |
| #define status_CU0 (1 << 28) /* Coprocessor 0 usable */ |
| #define status_CU1 (1 << 29) /* Coprocessor 1 usable */ |
| #define status_CU2 (1 << 30) /* Coprocessor 2 usable */ |
| #define status_CU3 (1 << 31) /* Coprocessor 3 usable */ |
| /* Bits reserved for implementations: */ |
| #define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */ |
| |
| #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */ |
| #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */ |
| #define cause_CE_mask 0x30000000 /* Coprocessor exception */ |
| #define cause_CE_shift 28 |
| #define cause_EXC2_mask 0x00070000 |
| #define cause_EXC2_shift 16 |
| #define cause_IP7 (1 << 15) /* Interrupt pending */ |
| #define cause_SIOP (1 << 12) /* SIO pending */ |
| #define cause_IP3 (1 << 11) /* Int 0 pending */ |
| #define cause_IP2 (1 << 10) /* Int 1 pending */ |
| |
| #define cause_EXC_mask (0x1c) /* Exception code */ |
| #define cause_EXC_shift (2) |
| |
| #define cause_SW0 (1 << 8) /* Software interrupt 0 */ |
| #define cause_SW1 (1 << 9) /* Software interrupt 1 */ |
| #define cause_IP_mask (0x3f) /* Interrupt pending field */ |
| #define cause_IP_shift (10) |
| |
| #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask) |
| #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask) |
| |
| |
| /* NOTE: We keep the following status flags as bit values (1 for true, |
| 0 for false). This allows them to be used in binary boolean |
| operations without worrying about what exactly the non-zero true |
| value is. */ |
| |
| /* UserMode */ |
| #ifdef SUBTARGET_R3900 |
| #define UserMode ((SR & status_KUc) ? 1 : 0) |
| #else |
| #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0) |
| #endif /* SUBTARGET_R3900 */ |
| |
| /* BigEndianMem */ |
| /* Hardware configuration. Affects endianness of LoadMemory and |
| StoreMemory and the endianness of Kernel and Supervisor mode |
| execution. The value is 0 for little-endian; 1 for big-endian. */ |
| #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
| /*(state & simBE) ? 1 : 0)*/ |
| |
| /* ReverseEndian */ |
| /* This mode is selected if in User mode with the RE bit being set in |
| SR (Status Register). It reverses the endianness of load and store |
| instructions. */ |
| #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0) |
| |
| /* BigEndianCPU */ |
| /* The endianness for load and store instructions (0=little;1=big). In |
| User mode this endianness may be switched by setting the state_RE |
| bit in the SR register. Thus, BigEndianCPU may be computed as |
| (BigEndianMem EOR ReverseEndian). */ |
| #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */ |
| |
| |
| |
| /* Exceptions: */ |
| |
| /* NOTE: These numbers depend on the processor architecture being |
| simulated: */ |
| enum ExceptionCause { |
| Interrupt = 0, |
| TLBModification = 1, |
| TLBLoad = 2, |
| TLBStore = 3, |
| AddressLoad = 4, |
| AddressStore = 5, |
| InstructionFetch = 6, |
| DataReference = 7, |
| SystemCall = 8, |
| BreakPoint = 9, |
| ReservedInstruction = 10, |
| CoProcessorUnusable = 11, |
| IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */ |
| Trap = 13, |
| FPE = 15, |
| DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */ |
| MDMX = 22, |
| Watch = 23, |
| MCheck = 24, |
| CacheErr = 30, |
| NMIReset = 31, /* Reserved in MIPS32/MIPS64. */ |
| |
| |
| /* The following exception code is actually private to the simulator |
| world. It is *NOT* a processor feature, and is used to signal |
| run-time errors in the simulator. */ |
| SimulatorFault = 0xFFFFFFFF |
| }; |
| |
| #define TLB_REFILL (0) |
| #define TLB_INVALID (1) |
| |
| |
| /* The following break instructions are reserved for use by the |
| simulator. The first is used to halt the simulation. The second |
| is used by gdb for break-points. NOTE: Care must be taken, since |
| this value may be used in later revisions of the MIPS ISA. */ |
| #define HALT_INSTRUCTION_MASK (0x03FFFFC0) |
| |
| #define HALT_INSTRUCTION (0x03ff000d) |
| #define HALT_INSTRUCTION2 (0x0000ffcd) |
| |
| |
| #define BREAKPOINT_INSTRUCTION (0x0005000d) |
| #define BREAKPOINT_INSTRUCTION2 (0x0000014d) |
| |
| |
| |
| void interrupt_event (SIM_DESC sd, void *data); |
| |
| void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...); |
| #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction)) |
| #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level) |
| #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch) |
| #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore) |
| #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad) |
| #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference) |
| #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf) |
| #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE) |
| #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow) |
| #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable) |
| #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset) |
| #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL) |
| #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL) |
| #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID) |
| #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID) |
| #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification) |
| #define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX) |
| #define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch) |
| #define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck) |
| #define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr) |
| |
| /* Co-processor accesses */ |
| |
| /* XXX FIXME: For now, assume that FPU (cp1) is always usable. */ |
| #define COP_Usable(coproc_num) (coproc_num == 1) |
| |
| void cop_lw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword); |
| void cop_ld (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword); |
| unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg); |
| uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg); |
| |
| #define COP_LW(coproc_num,coproc_reg,memword) \ |
| cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword) |
| #define COP_LD(coproc_num,coproc_reg,memword) \ |
| cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword) |
| #define COP_SW(coproc_num,coproc_reg) \ |
| cop_sw (SD, CPU, cia, coproc_num, coproc_reg) |
| #define COP_SD(coproc_num,coproc_reg) \ |
| cop_sd (SD, CPU, cia, coproc_num, coproc_reg) |
| |
| |
| void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia, |
| unsigned int instruction, int coprocnum, CP0_operation op, |
| int rt, int rd, int sel); |
| #define DecodeCoproc(instruction,coprocnum,op,rt,rd,sel) \ |
| decode_coproc (SD, CPU, cia, (instruction), (coprocnum), (op), \ |
| (rt), (rd), (sel)) |
| |
| int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg); |
| |
| |
| /* FPR access. */ |
| unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats); |
| #define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT)) |
| void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value); |
| #define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE)) |
| unsigned64 ps_lower (SIM_STATE, unsigned64 op); |
| #define PSLower(op) ps_lower (SIM_ARGS, op) |
| unsigned64 ps_upper (SIM_STATE, unsigned64 op); |
| #define PSUpper(op) ps_upper (SIM_ARGS, op) |
| unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from); |
| #define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single) |
| |
| |
| /* FCR access. */ |
| unsigned_word value_fcr (SIM_STATE, int fcr); |
| #define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR)) |
| void store_fcr (SIM_STATE, int fcr, unsigned_word value); |
| #define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE)) |
| void test_fcsr (SIM_STATE); |
| #define TestFCSR() test_fcsr (SIM_ARGS) |
| |
| |
| /* FPU operations. */ |
| void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc); |
| #define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc) |
| unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt); |
| #define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt) |
| unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt); |
| #define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt) |
| unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); |
| #define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt) |
| unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); |
| #define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt) |
| unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); |
| #define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt) |
| unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); |
| #define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt) |
| unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt); |
| #define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt) |
| unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt); |
| #define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt) |
| unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt); |
| #define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt) |
| unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2, |
| unsigned64 op3, FP_formats fmt); |
| #define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt) |
| unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2, |
| unsigned64 op3, FP_formats fmt); |
| #define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt) |
| unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2, |
| unsigned64 op3, FP_formats fmt); |
| #define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt) |
| unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2, |
| unsigned64 op3, FP_formats fmt); |
| #define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt) |
| unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to); |
| #define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to) |
| unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from, |
| FP_formats to); |
| #define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to) |
| |
| |
| /* MIPS-3D ASE operations. */ |
| #define CompareAbs(op1,op2,fmt,cond,cc) \ |
| fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc) |
| unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); |
| #define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt) |
| unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); |
| #define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt) |
| unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt); |
| #define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt) |
| unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); |
| #define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt) |
| unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt); |
| #define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt) |
| unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); |
| #define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt) |
| |
| |
| /* MDMX access. */ |
| |
| typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */ |
| #define ob_fmtsel(sel) (((sel)<<1)|0x0) |
| #define qh_fmtsel(sel) (((sel)<<2)|0x1) |
| |
| #define fmt_mdmx fmt_uninterpreted |
| |
| #define MX_VECT_AND (0) |
| #define MX_VECT_NOR (1) |
| #define MX_VECT_OR (2) |
| #define MX_VECT_XOR (3) |
| #define MX_VECT_SLL (4) |
| #define MX_VECT_SRL (5) |
| #define MX_VECT_ADD (6) |
| #define MX_VECT_SUB (7) |
| #define MX_VECT_MIN (8) |
| #define MX_VECT_MAX (9) |
| #define MX_VECT_MUL (10) |
| #define MX_VECT_MSGN (11) |
| #define MX_VECT_SRA (12) |
| #define MX_VECT_ABSD (13) /* SB-1 only. */ |
| #define MX_VECT_AVG (14) /* SB-1 only. */ |
| |
| unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel); |
| #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel) |
| #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel) |
| #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel) |
| #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel) |
| #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel) |
| #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel) |
| #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel) |
| #define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel) |
| #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel) |
| #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel) |
| #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel) |
| #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel) |
| #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel) |
| #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel) |
| #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel) |
| |
| #define MX_C_EQ 0x1 |
| #define MX_C_LT 0x4 |
| |
| void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel); |
| #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel) |
| |
| unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel); |
| #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel) |
| |
| #define MX_VECT_ADDA (0) |
| #define MX_VECT_ADDL (1) |
| #define MX_VECT_MULA (2) |
| #define MX_VECT_MULL (3) |
| #define MX_VECT_MULS (4) |
| #define MX_VECT_MULSL (5) |
| #define MX_VECT_SUBA (6) |
| #define MX_VECT_SUBL (7) |
| #define MX_VECT_ABSDA (8) /* SB-1 only. */ |
| |
| void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel); |
| #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel) |
| #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel) |
| #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel) |
| #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel) |
| #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel) |
| #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel) |
| #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel) |
| #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel) |
| #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel) |
| |
| #define MX_FMT_OB (0) |
| #define MX_FMT_QH (1) |
| |
| /* The following codes chosen to indicate the units of shift. */ |
| #define MX_RAC_L (0) |
| #define MX_RAC_M (1) |
| #define MX_RAC_H (2) |
| |
| unsigned64 mdmx_rac_op (SIM_STATE, int, int); |
| #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt) |
| |
| void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64); |
| #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt) |
| void mdmx_wach (SIM_STATE, int, unsigned64); |
| #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs) |
| |
| #define MX_RND_AS (0) |
| #define MX_RND_AU (1) |
| #define MX_RND_ES (2) |
| #define MX_RND_EU (3) |
| #define MX_RND_ZS (4) |
| #define MX_RND_ZU (5) |
| |
| unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel); |
| #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt) |
| #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt) |
| #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt) |
| #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt) |
| #define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt) |
| #define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt) |
| |
| unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64); |
| #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2) |
| |
| |
| |
| /* Memory accesses */ |
| |
| /* The following are generic to all versions of the MIPS architecture |
| to date: */ |
| |
| #define isINSTRUCTION (1 == 0) /* FALSE */ |
| #define isDATA (1 == 1) /* TRUE */ |
| #define isLOAD (1 == 0) /* FALSE */ |
| #define isSTORE (1 == 1) /* TRUE */ |
| #define isREAL (1 == 0) /* FALSE */ |
| #define isRAW (1 == 1) /* TRUE */ |
| /* The parameter HOST (isTARGET / isHOST) is ignored */ |
| #define isTARGET (1 == 0) /* FALSE */ |
| /* #define isHOST (1 == 1) TRUE */ |
| |
| /* The "AccessLength" specifications for Loads and Stores. NOTE: This |
| is the number of bytes minus 1. */ |
| #define AccessLength_BYTE (0) |
| #define AccessLength_HALFWORD (1) |
| #define AccessLength_TRIPLEBYTE (2) |
| #define AccessLength_WORD (3) |
| #define AccessLength_QUINTIBYTE (4) |
| #define AccessLength_SEXTIBYTE (5) |
| #define AccessLength_SEPTIBYTE (6) |
| #define AccessLength_DOUBLEWORD (7) |
| #define AccessLength_QUADWORD (15) |
| |
| #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \ |
| ? AccessLength_DOUBLEWORD /*7*/ \ |
| : AccessLength_WORD /*3*/) |
| |
| INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD); |
| #define LoadMemory(memvalp,memval1p,AccessLength,pAddr,vAddr,IorD,raw) \ |
| load_memory (SD, CPU, cia, memvalp, memval1p, 0, AccessLength, pAddr, vAddr, IorD) |
| |
| INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr); |
| #define StoreMemory(AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \ |
| store_memory (SD, CPU, cia, 0, AccessLength, MemElem, MemElem1, pAddr, vAddr) |
| |
| INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction); |
| #define CacheOp(op,pAddr,vAddr,instruction) \ |
| cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction) |
| |
| INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype); |
| #define SyncOperation(stype) \ |
| sync_operation (SD, CPU, cia, (stype)) |
| |
| void unpredictable_action (sim_cpu *cpu, address_word cia); |
| #define NotWordValue(val) not_word_value (SD_, (val)) |
| #define Unpredictable() unpredictable (SD_) |
| #define UnpredictableResult() /* For now, do nothing. */ |
| |
| INLINE_SIM_MAIN (unsigned32) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr); |
| #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA)) |
| INLINE_SIM_MAIN (unsigned16) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr); |
| #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1)) |
| #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR)) |
| #define IMEM32_MICROMIPS(CIA) \ |
| (ifetch16 (SD, CPU, (CIA), (CIA)) << 16 | ifetch16 (SD, CPU, (CIA + 2), \ |
| (CIA + 2))) |
| #define IMEM16_MICROMIPS(CIA) ifetch16 (SD, CPU, (CIA), ((CIA))) |
| |
| #define MICROMIPS_MINOR_OPCODE(INSN) ((INSN & 0x1C00) >> 10) |
| |
| #define MICROMIPS_DELAYSLOT_SIZE_ANY 0 |
| #define MICROMIPS_DELAYSLOT_SIZE_16 2 |
| #define MICROMIPS_DELAYSLOT_SIZE_32 4 |
| |
| extern int isa_mode; |
| |
| #define ISA_MODE_MIPS32 0 |
| #define ISA_MODE_MICROMIPS 1 |
| |
| address_word micromips_instruction_decode (SIM_DESC sd, sim_cpu * cpu, |
| address_word cia, |
| int instruction_size); |
| |
| #if WITH_TRACE_ANY_P |
| void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, const char *comment, ...) ATTRIBUTE_PRINTF (7, 8); |
| extern FILE *tracefh; |
| #else |
| #define dotrace(sd, cpu, tracefh, type, address, width, comment, ...) |
| #endif |
| |
| extern int DSPLO_REGNUM[4]; |
| extern int DSPHI_REGNUM[4]; |
| |
| INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia); |
| extern SIM_CORE_SIGNAL_FN mips_core_signal; |
| |
| char* pr_addr (SIM_ADDR addr); |
| char* pr_uword64 (uword64 addr); |
| |
| |
| #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0) |
| |
| void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc); |
| void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception); |
| void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception); |
| |
| #ifdef MIPS_MACH_MULTI |
| extern int mips_mach_multi(SIM_DESC sd); |
| #define MIPS_MACH(SD) mips_mach_multi(SD) |
| #else |
| #define MIPS_MACH(SD) MIPS_MACH_DEFAULT |
| #endif |
| |
| /* Macros for determining whether a MIPS IV or MIPS V part is subject |
| to the hi/lo restrictions described in mips.igen. */ |
| |
| #define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \ |
| (MIPS_MACH (SD) != bfd_mach_mips5500) |
| |
| #define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \ |
| (MIPS_MACH (SD) != bfd_mach_mips5500) |
| |
| #define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \ |
| (MIPS_MACH (SD) != bfd_mach_mips5500) |
| |
| #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE) |
| #include "sim-main.c" |
| #endif |
| |
| #endif |