| /* Ada language support routines for GDB, the GNU debugger. |
| |
| Copyright (C) 1992-2022 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "defs.h" |
| #include <ctype.h> |
| #include "gdbsupport/gdb_regex.h" |
| #include "frame.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "gdbcmd.h" |
| #include "expression.h" |
| #include "parser-defs.h" |
| #include "language.h" |
| #include "varobj.h" |
| #include "inferior.h" |
| #include "symfile.h" |
| #include "objfiles.h" |
| #include "breakpoint.h" |
| #include "gdbcore.h" |
| #include "hashtab.h" |
| #include "gdbsupport/gdb_obstack.h" |
| #include "ada-lang.h" |
| #include "completer.h" |
| #include "ui-out.h" |
| #include "block.h" |
| #include "infcall.h" |
| #include "annotate.h" |
| #include "valprint.h" |
| #include "source.h" |
| #include "observable.h" |
| #include "stack.h" |
| #include "typeprint.h" |
| #include "namespace.h" |
| #include "cli/cli-style.h" |
| #include "cli/cli-decode.h" |
| |
| #include "value.h" |
| #include "mi/mi-common.h" |
| #include "arch-utils.h" |
| #include "cli/cli-utils.h" |
| #include "gdbsupport/function-view.h" |
| #include "gdbsupport/byte-vector.h" |
| #include <algorithm> |
| #include "ada-exp.h" |
| #include "charset.h" |
| |
| /* Define whether or not the C operator '/' truncates towards zero for |
| differently signed operands (truncation direction is undefined in C). |
| Copied from valarith.c. */ |
| |
| #ifndef TRUNCATION_TOWARDS_ZERO |
| #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) |
| #endif |
| |
| static struct type *desc_base_type (struct type *); |
| |
| static struct type *desc_bounds_type (struct type *); |
| |
| static struct value *desc_bounds (struct value *); |
| |
| static int fat_pntr_bounds_bitpos (struct type *); |
| |
| static int fat_pntr_bounds_bitsize (struct type *); |
| |
| static struct type *desc_data_target_type (struct type *); |
| |
| static struct value *desc_data (struct value *); |
| |
| static int fat_pntr_data_bitpos (struct type *); |
| |
| static int fat_pntr_data_bitsize (struct type *); |
| |
| static struct value *desc_one_bound (struct value *, int, int); |
| |
| static int desc_bound_bitpos (struct type *, int, int); |
| |
| static int desc_bound_bitsize (struct type *, int, int); |
| |
| static struct type *desc_index_type (struct type *, int); |
| |
| static int desc_arity (struct type *); |
| |
| static int ada_args_match (struct symbol *, struct value **, int); |
| |
| static struct value *make_array_descriptor (struct type *, struct value *); |
| |
| static void ada_add_block_symbols (std::vector<struct block_symbol> &, |
| const struct block *, |
| const lookup_name_info &lookup_name, |
| domain_enum, struct objfile *); |
| |
| static void ada_add_all_symbols (std::vector<struct block_symbol> &, |
| const struct block *, |
| const lookup_name_info &lookup_name, |
| domain_enum, int, int *); |
| |
| static int is_nonfunction (const std::vector<struct block_symbol> &); |
| |
| static void add_defn_to_vec (std::vector<struct block_symbol> &, |
| struct symbol *, |
| const struct block *); |
| |
| static int possible_user_operator_p (enum exp_opcode, struct value **); |
| |
| static const char *ada_decoded_op_name (enum exp_opcode); |
| |
| static int numeric_type_p (struct type *); |
| |
| static int integer_type_p (struct type *); |
| |
| static int scalar_type_p (struct type *); |
| |
| static int discrete_type_p (struct type *); |
| |
| static struct type *ada_lookup_struct_elt_type (struct type *, const char *, |
| int, int); |
| |
| static struct type *ada_find_parallel_type_with_name (struct type *, |
| const char *); |
| |
| static int is_dynamic_field (struct type *, int); |
| |
| static struct type *to_fixed_variant_branch_type (struct type *, |
| const gdb_byte *, |
| CORE_ADDR, struct value *); |
| |
| static struct type *to_fixed_array_type (struct type *, struct value *, int); |
| |
| static struct type *to_fixed_range_type (struct type *, struct value *); |
| |
| static struct type *to_static_fixed_type (struct type *); |
| static struct type *static_unwrap_type (struct type *type); |
| |
| static struct value *unwrap_value (struct value *); |
| |
| static struct type *constrained_packed_array_type (struct type *, long *); |
| |
| static struct type *decode_constrained_packed_array_type (struct type *); |
| |
| static long decode_packed_array_bitsize (struct type *); |
| |
| static struct value *decode_constrained_packed_array (struct value *); |
| |
| static int ada_is_unconstrained_packed_array_type (struct type *); |
| |
| static struct value *value_subscript_packed (struct value *, int, |
| struct value **); |
| |
| static struct value *coerce_unspec_val_to_type (struct value *, |
| struct type *); |
| |
| static int lesseq_defined_than (struct symbol *, struct symbol *); |
| |
| static int equiv_types (struct type *, struct type *); |
| |
| static int is_name_suffix (const char *); |
| |
| static int advance_wild_match (const char **, const char *, char); |
| |
| static bool wild_match (const char *name, const char *patn); |
| |
| static struct value *ada_coerce_ref (struct value *); |
| |
| static LONGEST pos_atr (struct value *); |
| |
| static struct value *val_atr (struct type *, LONGEST); |
| |
| static struct symbol *standard_lookup (const char *, const struct block *, |
| domain_enum); |
| |
| static struct value *ada_search_struct_field (const char *, struct value *, int, |
| struct type *); |
| |
| static int find_struct_field (const char *, struct type *, int, |
| struct type **, int *, int *, int *, int *); |
| |
| static int ada_resolve_function (std::vector<struct block_symbol> &, |
| struct value **, int, const char *, |
| struct type *, bool); |
| |
| static int ada_is_direct_array_type (struct type *); |
| |
| static struct value *ada_index_struct_field (int, struct value *, int, |
| struct type *); |
| |
| static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &); |
| |
| |
| static struct type *ada_find_any_type (const char *name); |
| |
| static symbol_name_matcher_ftype *ada_get_symbol_name_matcher |
| (const lookup_name_info &lookup_name); |
| |
| |
| |
| /* The character set used for source files. */ |
| static const char *ada_source_charset; |
| |
| /* The string "UTF-8". This is here so we can check for the UTF-8 |
| charset using == rather than strcmp. */ |
| static const char ada_utf8[] = "UTF-8"; |
| |
| /* Each entry in the UTF-32 case-folding table is of this form. */ |
| struct utf8_entry |
| { |
| /* The start and end, inclusive, of this range of codepoints. */ |
| uint32_t start, end; |
| /* The delta to apply to get the upper-case form. 0 if this is |
| already upper-case. */ |
| int upper_delta; |
| /* The delta to apply to get the lower-case form. 0 if this is |
| already lower-case. */ |
| int lower_delta; |
| |
| bool operator< (uint32_t val) const |
| { |
| return end < val; |
| } |
| }; |
| |
| static const utf8_entry ada_case_fold[] = |
| { |
| #include "ada-casefold.h" |
| }; |
| |
| |
| |
| /* The result of a symbol lookup to be stored in our symbol cache. */ |
| |
| struct cache_entry |
| { |
| /* The name used to perform the lookup. */ |
| const char *name; |
| /* The namespace used during the lookup. */ |
| domain_enum domain; |
| /* The symbol returned by the lookup, or NULL if no matching symbol |
| was found. */ |
| struct symbol *sym; |
| /* The block where the symbol was found, or NULL if no matching |
| symbol was found. */ |
| const struct block *block; |
| /* A pointer to the next entry with the same hash. */ |
| struct cache_entry *next; |
| }; |
| |
| /* The Ada symbol cache, used to store the result of Ada-mode symbol |
| lookups in the course of executing the user's commands. |
| |
| The cache is implemented using a simple, fixed-sized hash. |
| The size is fixed on the grounds that there are not likely to be |
| all that many symbols looked up during any given session, regardless |
| of the size of the symbol table. If we decide to go to a resizable |
| table, let's just use the stuff from libiberty instead. */ |
| |
| #define HASH_SIZE 1009 |
| |
| struct ada_symbol_cache |
| { |
| /* An obstack used to store the entries in our cache. */ |
| struct auto_obstack cache_space; |
| |
| /* The root of the hash table used to implement our symbol cache. */ |
| struct cache_entry *root[HASH_SIZE] {}; |
| }; |
| |
| static const char ada_completer_word_break_characters[] = |
| #ifdef VMS |
| " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; |
| #else |
| " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
| #endif |
| |
| /* The name of the symbol to use to get the name of the main subprogram. */ |
| static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
| = "__gnat_ada_main_program_name"; |
| |
| /* Limit on the number of warnings to raise per expression evaluation. */ |
| static int warning_limit = 2; |
| |
| /* Number of warning messages issued; reset to 0 by cleanups after |
| expression evaluation. */ |
| static int warnings_issued = 0; |
| |
| static const char * const known_runtime_file_name_patterns[] = { |
| ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL |
| }; |
| |
| static const char * const known_auxiliary_function_name_patterns[] = { |
| ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL |
| }; |
| |
| /* Maintenance-related settings for this module. */ |
| |
| static struct cmd_list_element *maint_set_ada_cmdlist; |
| static struct cmd_list_element *maint_show_ada_cmdlist; |
| |
| /* The "maintenance ada set/show ignore-descriptive-type" value. */ |
| |
| static bool ada_ignore_descriptive_types_p = false; |
| |
| /* Inferior-specific data. */ |
| |
| /* Per-inferior data for this module. */ |
| |
| struct ada_inferior_data |
| { |
| /* The ada__tags__type_specific_data type, which is used when decoding |
| tagged types. With older versions of GNAT, this type was directly |
| accessible through a component ("tsd") in the object tag. But this |
| is no longer the case, so we cache it for each inferior. */ |
| struct type *tsd_type = nullptr; |
| |
| /* The exception_support_info data. This data is used to determine |
| how to implement support for Ada exception catchpoints in a given |
| inferior. */ |
| const struct exception_support_info *exception_info = nullptr; |
| }; |
| |
| /* Our key to this module's inferior data. */ |
| static const struct inferior_key<ada_inferior_data> ada_inferior_data; |
| |
| /* Return our inferior data for the given inferior (INF). |
| |
| This function always returns a valid pointer to an allocated |
| ada_inferior_data structure. If INF's inferior data has not |
| been previously set, this functions creates a new one with all |
| fields set to zero, sets INF's inferior to it, and then returns |
| a pointer to that newly allocated ada_inferior_data. */ |
| |
| static struct ada_inferior_data * |
| get_ada_inferior_data (struct inferior *inf) |
| { |
| struct ada_inferior_data *data; |
| |
| data = ada_inferior_data.get (inf); |
| if (data == NULL) |
| data = ada_inferior_data.emplace (inf); |
| |
| return data; |
| } |
| |
| /* Perform all necessary cleanups regarding our module's inferior data |
| that is required after the inferior INF just exited. */ |
| |
| static void |
| ada_inferior_exit (struct inferior *inf) |
| { |
| ada_inferior_data.clear (inf); |
| } |
| |
| |
| /* program-space-specific data. */ |
| |
| /* This module's per-program-space data. */ |
| struct ada_pspace_data |
| { |
| /* The Ada symbol cache. */ |
| std::unique_ptr<ada_symbol_cache> sym_cache; |
| }; |
| |
| /* Key to our per-program-space data. */ |
| static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle; |
| |
| /* Return this module's data for the given program space (PSPACE). |
| If not is found, add a zero'ed one now. |
| |
| This function always returns a valid object. */ |
| |
| static struct ada_pspace_data * |
| get_ada_pspace_data (struct program_space *pspace) |
| { |
| struct ada_pspace_data *data; |
| |
| data = ada_pspace_data_handle.get (pspace); |
| if (data == NULL) |
| data = ada_pspace_data_handle.emplace (pspace); |
| |
| return data; |
| } |
| |
| /* Utilities */ |
| |
| /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
| all typedef layers have been peeled. Otherwise, return TYPE. |
| |
| Normally, we really expect a typedef type to only have 1 typedef layer. |
| In other words, we really expect the target type of a typedef type to be |
| a non-typedef type. This is particularly true for Ada units, because |
| the language does not have a typedef vs not-typedef distinction. |
| In that respect, the Ada compiler has been trying to eliminate as many |
| typedef definitions in the debugging information, since they generally |
| do not bring any extra information (we still use typedef under certain |
| circumstances related mostly to the GNAT encoding). |
| |
| Unfortunately, we have seen situations where the debugging information |
| generated by the compiler leads to such multiple typedef layers. For |
| instance, consider the following example with stabs: |
| |
| .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] |
| .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 |
| |
| This is an error in the debugging information which causes type |
| pck__float_array___XUP to be defined twice, and the second time, |
| it is defined as a typedef of a typedef. |
| |
| This is on the fringe of legality as far as debugging information is |
| concerned, and certainly unexpected. But it is easy to handle these |
| situations correctly, so we can afford to be lenient in this case. */ |
| |
| static struct type * |
| ada_typedef_target_type (struct type *type) |
| { |
| while (type->code () == TYPE_CODE_TYPEDEF) |
| type = TYPE_TARGET_TYPE (type); |
| return type; |
| } |
| |
| /* Given DECODED_NAME a string holding a symbol name in its |
| decoded form (ie using the Ada dotted notation), returns |
| its unqualified name. */ |
| |
| static const char * |
| ada_unqualified_name (const char *decoded_name) |
| { |
| const char *result; |
| |
| /* If the decoded name starts with '<', it means that the encoded |
| name does not follow standard naming conventions, and thus that |
| it is not your typical Ada symbol name. Trying to unqualify it |
| is therefore pointless and possibly erroneous. */ |
| if (decoded_name[0] == '<') |
| return decoded_name; |
| |
| result = strrchr (decoded_name, '.'); |
| if (result != NULL) |
| result++; /* Skip the dot... */ |
| else |
| result = decoded_name; |
| |
| return result; |
| } |
| |
| /* Return a string starting with '<', followed by STR, and '>'. */ |
| |
| static std::string |
| add_angle_brackets (const char *str) |
| { |
| return string_printf ("<%s>", str); |
| } |
| |
| /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing |
| suffix of FIELD_NAME beginning "___". */ |
| |
| static int |
| field_name_match (const char *field_name, const char *target) |
| { |
| int len = strlen (target); |
| |
| return |
| (strncmp (field_name, target, len) == 0 |
| && (field_name[len] == '\0' |
| || (startswith (field_name + len, "___") |
| && strcmp (field_name + strlen (field_name) - 6, |
| "___XVN") != 0))); |
| } |
| |
| |
| /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
| a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, |
| and return its index. This function also handles fields whose name |
| have ___ suffixes because the compiler sometimes alters their name |
| by adding such a suffix to represent fields with certain constraints. |
| If the field could not be found, return a negative number if |
| MAYBE_MISSING is set. Otherwise raise an error. */ |
| |
| int |
| ada_get_field_index (const struct type *type, const char *field_name, |
| int maybe_missing) |
| { |
| int fieldno; |
| struct type *struct_type = check_typedef ((struct type *) type); |
| |
| for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++) |
| if (field_name_match (struct_type->field (fieldno).name (), field_name)) |
| return fieldno; |
| |
| if (!maybe_missing) |
| error (_("Unable to find field %s in struct %s. Aborting"), |
| field_name, struct_type->name ()); |
| |
| return -1; |
| } |
| |
| /* The length of the prefix of NAME prior to any "___" suffix. */ |
| |
| int |
| ada_name_prefix_len (const char *name) |
| { |
| if (name == NULL) |
| return 0; |
| else |
| { |
| const char *p = strstr (name, "___"); |
| |
| if (p == NULL) |
| return strlen (name); |
| else |
| return p - name; |
| } |
| } |
| |
| /* Return non-zero if SUFFIX is a suffix of STR. |
| Return zero if STR is null. */ |
| |
| static int |
| is_suffix (const char *str, const char *suffix) |
| { |
| int len1, len2; |
| |
| if (str == NULL) |
| return 0; |
| len1 = strlen (str); |
| len2 = strlen (suffix); |
| return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
| } |
| |
| /* The contents of value VAL, treated as a value of type TYPE. The |
| result is an lval in memory if VAL is. */ |
| |
| static struct value * |
| coerce_unspec_val_to_type (struct value *val, struct type *type) |
| { |
| type = ada_check_typedef (type); |
| if (value_type (val) == type) |
| return val; |
| else |
| { |
| struct value *result; |
| |
| if (value_optimized_out (val)) |
| result = allocate_optimized_out_value (type); |
| else if (value_lazy (val) |
| /* Be careful not to make a lazy not_lval value. */ |
| || (VALUE_LVAL (val) != not_lval |
| && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))) |
| result = allocate_value_lazy (type); |
| else |
| { |
| result = allocate_value (type); |
| value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type)); |
| } |
| set_value_component_location (result, val); |
| set_value_bitsize (result, value_bitsize (val)); |
| set_value_bitpos (result, value_bitpos (val)); |
| if (VALUE_LVAL (result) == lval_memory) |
| set_value_address (result, value_address (val)); |
| return result; |
| } |
| } |
| |
| static const gdb_byte * |
| cond_offset_host (const gdb_byte *valaddr, long offset) |
| { |
| if (valaddr == NULL) |
| return NULL; |
| else |
| return valaddr + offset; |
| } |
| |
| static CORE_ADDR |
| cond_offset_target (CORE_ADDR address, long offset) |
| { |
| if (address == 0) |
| return 0; |
| else |
| return address + offset; |
| } |
| |
| /* Issue a warning (as for the definition of warning in utils.c, but |
| with exactly one argument rather than ...), unless the limit on the |
| number of warnings has passed during the evaluation of the current |
| expression. */ |
| |
| /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
| provided by "complaint". */ |
| static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
| |
| static void |
| lim_warning (const char *format, ...) |
| { |
| va_list args; |
| |
| va_start (args, format); |
| warnings_issued += 1; |
| if (warnings_issued <= warning_limit) |
| vwarning (format, args); |
| |
| va_end (args); |
| } |
| |
| /* Maximum value of a SIZE-byte signed integer type. */ |
| static LONGEST |
| max_of_size (int size) |
| { |
| LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
| |
| return top_bit | (top_bit - 1); |
| } |
| |
| /* Minimum value of a SIZE-byte signed integer type. */ |
| static LONGEST |
| min_of_size (int size) |
| { |
| return -max_of_size (size) - 1; |
| } |
| |
| /* Maximum value of a SIZE-byte unsigned integer type. */ |
| static ULONGEST |
| umax_of_size (int size) |
| { |
| ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
| |
| return top_bit | (top_bit - 1); |
| } |
| |
| /* Maximum value of integral type T, as a signed quantity. */ |
| static LONGEST |
| max_of_type (struct type *t) |
| { |
| if (t->is_unsigned ()) |
| return (LONGEST) umax_of_size (TYPE_LENGTH (t)); |
| else |
| return max_of_size (TYPE_LENGTH (t)); |
| } |
| |
| /* Minimum value of integral type T, as a signed quantity. */ |
| static LONGEST |
| min_of_type (struct type *t) |
| { |
| if (t->is_unsigned ()) |
| return 0; |
| else |
| return min_of_size (TYPE_LENGTH (t)); |
| } |
| |
| /* The largest value in the domain of TYPE, a discrete type, as an integer. */ |
| LONGEST |
| ada_discrete_type_high_bound (struct type *type) |
| { |
| type = resolve_dynamic_type (type, {}, 0); |
| switch (type->code ()) |
| { |
| case TYPE_CODE_RANGE: |
| { |
| const dynamic_prop &high = type->bounds ()->high; |
| |
| if (high.kind () == PROP_CONST) |
| return high.const_val (); |
| else |
| { |
| gdb_assert (high.kind () == PROP_UNDEFINED); |
| |
| /* This happens when trying to evaluate a type's dynamic bound |
| without a live target. There is nothing relevant for us to |
| return here, so return 0. */ |
| return 0; |
| } |
| } |
| case TYPE_CODE_ENUM: |
| return type->field (type->num_fields () - 1).loc_enumval (); |
| case TYPE_CODE_BOOL: |
| return 1; |
| case TYPE_CODE_CHAR: |
| case TYPE_CODE_INT: |
| return max_of_type (type); |
| default: |
| error (_("Unexpected type in ada_discrete_type_high_bound.")); |
| } |
| } |
| |
| /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
| LONGEST |
| ada_discrete_type_low_bound (struct type *type) |
| { |
| type = resolve_dynamic_type (type, {}, 0); |
| switch (type->code ()) |
| { |
| case TYPE_CODE_RANGE: |
| { |
| const dynamic_prop &low = type->bounds ()->low; |
| |
| if (low.kind () == PROP_CONST) |
| return low.const_val (); |
| else |
| { |
| gdb_assert (low.kind () == PROP_UNDEFINED); |
| |
| /* This happens when trying to evaluate a type's dynamic bound |
| without a live target. There is nothing relevant for us to |
| return here, so return 0. */ |
| return 0; |
| } |
| } |
| case TYPE_CODE_ENUM: |
| return type->field (0).loc_enumval (); |
| case TYPE_CODE_BOOL: |
| return 0; |
| case TYPE_CODE_CHAR: |
| case TYPE_CODE_INT: |
| return min_of_type (type); |
| default: |
| error (_("Unexpected type in ada_discrete_type_low_bound.")); |
| } |
| } |
| |
| /* The identity on non-range types. For range types, the underlying |
| non-range scalar type. */ |
| |
| static struct type * |
| get_base_type (struct type *type) |
| { |
| while (type != NULL && type->code () == TYPE_CODE_RANGE) |
| { |
| if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
| return type; |
| type = TYPE_TARGET_TYPE (type); |
| } |
| return type; |
| } |
| |
| /* Return a decoded version of the given VALUE. This means returning |
| a value whose type is obtained by applying all the GNAT-specific |
| encodings, making the resulting type a static but standard description |
| of the initial type. */ |
| |
| struct value * |
| ada_get_decoded_value (struct value *value) |
| { |
| struct type *type = ada_check_typedef (value_type (value)); |
| |
| if (ada_is_array_descriptor_type (type) |
| || (ada_is_constrained_packed_array_type (type) |
| && type->code () != TYPE_CODE_PTR)) |
| { |
| if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */ |
| value = ada_coerce_to_simple_array_ptr (value); |
| else |
| value = ada_coerce_to_simple_array (value); |
| } |
| else |
| value = ada_to_fixed_value (value); |
| |
| return value; |
| } |
| |
| /* Same as ada_get_decoded_value, but with the given TYPE. |
| Because there is no associated actual value for this type, |
| the resulting type might be a best-effort approximation in |
| the case of dynamic types. */ |
| |
| struct type * |
| ada_get_decoded_type (struct type *type) |
| { |
| type = to_static_fixed_type (type); |
| if (ada_is_constrained_packed_array_type (type)) |
| type = ada_coerce_to_simple_array_type (type); |
| return type; |
| } |
| |
| |
| |
| /* Language Selection */ |
| |
| /* If the main program is in Ada, return language_ada, otherwise return LANG |
| (the main program is in Ada iif the adainit symbol is found). */ |
| |
| static enum language |
| ada_update_initial_language (enum language lang) |
| { |
| if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL) |
| return language_ada; |
| |
| return lang; |
| } |
| |
| /* If the main procedure is written in Ada, then return its name. |
| The result is good until the next call. Return NULL if the main |
| procedure doesn't appear to be in Ada. */ |
| |
| char * |
| ada_main_name (void) |
| { |
| struct bound_minimal_symbol msym; |
| static gdb::unique_xmalloc_ptr<char> main_program_name; |
| |
| /* For Ada, the name of the main procedure is stored in a specific |
| string constant, generated by the binder. Look for that symbol, |
| extract its address, and then read that string. If we didn't find |
| that string, then most probably the main procedure is not written |
| in Ada. */ |
| msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); |
| |
| if (msym.minsym != NULL) |
| { |
| CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
| if (main_program_name_addr == 0) |
| error (_("Invalid address for Ada main program name.")); |
| |
| main_program_name = target_read_string (main_program_name_addr, 1024); |
| return main_program_name.get (); |
| } |
| |
| /* The main procedure doesn't seem to be in Ada. */ |
| return NULL; |
| } |
| |
| /* Symbols */ |
| |
| /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
| of NULLs. */ |
| |
| const struct ada_opname_map ada_opname_table[] = { |
| {"Oadd", "\"+\"", BINOP_ADD}, |
| {"Osubtract", "\"-\"", BINOP_SUB}, |
| {"Omultiply", "\"*\"", BINOP_MUL}, |
| {"Odivide", "\"/\"", BINOP_DIV}, |
| {"Omod", "\"mod\"", BINOP_MOD}, |
| {"Orem", "\"rem\"", BINOP_REM}, |
| {"Oexpon", "\"**\"", BINOP_EXP}, |
| {"Olt", "\"<\"", BINOP_LESS}, |
| {"Ole", "\"<=\"", BINOP_LEQ}, |
| {"Ogt", "\">\"", BINOP_GTR}, |
| {"Oge", "\">=\"", BINOP_GEQ}, |
| {"Oeq", "\"=\"", BINOP_EQUAL}, |
| {"One", "\"/=\"", BINOP_NOTEQUAL}, |
| {"Oand", "\"and\"", BINOP_BITWISE_AND}, |
| {"Oor", "\"or\"", BINOP_BITWISE_IOR}, |
| {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, |
| {"Oconcat", "\"&\"", BINOP_CONCAT}, |
| {"Oabs", "\"abs\"", UNOP_ABS}, |
| {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, |
| {"Oadd", "\"+\"", UNOP_PLUS}, |
| {"Osubtract", "\"-\"", UNOP_NEG}, |
| {NULL, NULL} |
| }; |
| |
| /* If STR is a decoded version of a compiler-provided suffix (like the |
| "[cold]" in "symbol[cold]"), return true. Otherwise, return |
| false. */ |
| |
| static bool |
| is_compiler_suffix (const char *str) |
| { |
| gdb_assert (*str == '['); |
| ++str; |
| while (*str != '\0' && isalpha (*str)) |
| ++str; |
| /* We accept a missing "]" in order to support completion. */ |
| return *str == '\0' || (str[0] == ']' && str[1] == '\0'); |
| } |
| |
| /* Append a non-ASCII character to RESULT. */ |
| static void |
| append_hex_encoded (std::string &result, uint32_t one_char) |
| { |
| if (one_char <= 0xff) |
| { |
| result.append ("U"); |
| result.append (phex (one_char, 1)); |
| } |
| else if (one_char <= 0xffff) |
| { |
| result.append ("W"); |
| result.append (phex (one_char, 2)); |
| } |
| else |
| { |
| result.append ("WW"); |
| result.append (phex (one_char, 4)); |
| } |
| } |
| |
| /* Return a string that is a copy of the data in STORAGE, with |
| non-ASCII characters replaced by the appropriate hex encoding. A |
| template is used because, for UTF-8, we actually want to work with |
| UTF-32 codepoints. */ |
| template<typename T> |
| std::string |
| copy_and_hex_encode (struct obstack *storage) |
| { |
| const T *chars = (T *) obstack_base (storage); |
| int num_chars = obstack_object_size (storage) / sizeof (T); |
| std::string result; |
| for (int i = 0; i < num_chars; ++i) |
| { |
| if (chars[i] <= 0x7f) |
| { |
| /* The host character set has to be a superset of ASCII, as |
| are all the other character sets we can use. */ |
| result.push_back (chars[i]); |
| } |
| else |
| append_hex_encoded (result, chars[i]); |
| } |
| return result; |
| } |
| |
| /* The "encoded" form of DECODED, according to GNAT conventions. If |
| THROW_ERRORS, throw an error if invalid operator name is found. |
| Otherwise, return the empty string in that case. */ |
| |
| static std::string |
| ada_encode_1 (const char *decoded, bool throw_errors) |
| { |
| if (decoded == NULL) |
| return {}; |
| |
| std::string encoding_buffer; |
| bool saw_non_ascii = false; |
| for (const char *p = decoded; *p != '\0'; p += 1) |
| { |
| if ((*p & 0x80) != 0) |
| saw_non_ascii = true; |
| |
| if (*p == '.') |
| encoding_buffer.append ("__"); |
| else if (*p == '[' && is_compiler_suffix (p)) |
| { |
| encoding_buffer = encoding_buffer + "." + (p + 1); |
| if (encoding_buffer.back () == ']') |
| encoding_buffer.pop_back (); |
| break; |
| } |
| else if (*p == '"') |
| { |
| const struct ada_opname_map *mapping; |
| |
| for (mapping = ada_opname_table; |
| mapping->encoded != NULL |
| && !startswith (p, mapping->decoded); mapping += 1) |
| ; |
| if (mapping->encoded == NULL) |
| { |
| if (throw_errors) |
| error (_("invalid Ada operator name: %s"), p); |
| else |
| return {}; |
| } |
| encoding_buffer.append (mapping->encoded); |
| break; |
| } |
| else |
| encoding_buffer.push_back (*p); |
| } |
| |
| /* If a non-ASCII character is seen, we must convert it to the |
| appropriate hex form. As this is more expensive, we keep track |
| of whether it is even necessary. */ |
| if (saw_non_ascii) |
| { |
| auto_obstack storage; |
| bool is_utf8 = ada_source_charset == ada_utf8; |
| try |
| { |
| convert_between_encodings |
| (host_charset (), |
| is_utf8 ? HOST_UTF32 : ada_source_charset, |
| (const gdb_byte *) encoding_buffer.c_str (), |
| encoding_buffer.length (), 1, |
| &storage, translit_none); |
| } |
| catch (const gdb_exception &) |
| { |
| static bool warned = false; |
| |
| /* Converting to UTF-32 shouldn't fail, so if it doesn't, we |
| might like to know why. */ |
| if (!warned) |
| { |
| warned = true; |
| warning (_("charset conversion failure for '%s'.\n" |
| "You may have the wrong value for 'set ada source-charset'."), |
| encoding_buffer.c_str ()); |
| } |
| |
| /* We don't try to recover from errors. */ |
| return encoding_buffer; |
| } |
| |
| if (is_utf8) |
| return copy_and_hex_encode<uint32_t> (&storage); |
| return copy_and_hex_encode<gdb_byte> (&storage); |
| } |
| |
| return encoding_buffer; |
| } |
| |
| /* Find the entry for C in the case-folding table. Return nullptr if |
| the entry does not cover C. */ |
| static const utf8_entry * |
| find_case_fold_entry (uint32_t c) |
| { |
| auto iter = std::lower_bound (std::begin (ada_case_fold), |
| std::end (ada_case_fold), |
| c); |
| if (iter == std::end (ada_case_fold) |
| || c < iter->start |
| || c > iter->end) |
| return nullptr; |
| return &*iter; |
| } |
| |
| /* Return NAME folded to lower case, or, if surrounded by single |
| quotes, unfolded, but with the quotes stripped away. If |
| THROW_ON_ERROR is true, encoding failures will throw an exception |
| rather than emitting a warning. Result good to next call. */ |
| |
| static const char * |
| ada_fold_name (gdb::string_view name, bool throw_on_error = false) |
| { |
| static std::string fold_storage; |
| |
| if (!name.empty () && name[0] == '\'') |
| fold_storage = gdb::to_string (name.substr (1, name.size () - 2)); |
| else |
| { |
| /* Why convert to UTF-32 and implement our own case-folding, |
| rather than convert to wchar_t and use the platform's |
| functions? I'm glad you asked. |
| |
| The main problem is that GNAT implements an unusual rule for |
| case folding. For ASCII letters, letters in single-byte |
| encodings (such as ISO-8859-*), and Unicode letters that fit |
| in a single byte (i.e., code point is <= 0xff), the letter is |
| folded to lower case. Other Unicode letters are folded to |
| upper case. |
| |
| This rule means that the code must be able to examine the |
| value of the character. And, some hosts do not use Unicode |
| for wchar_t, so examining the value of such characters is |
| forbidden. */ |
| auto_obstack storage; |
| try |
| { |
| convert_between_encodings |
| (host_charset (), HOST_UTF32, |
| (const gdb_byte *) name.data (), |
| name.length (), 1, |
| &storage, translit_none); |
| } |
| catch (const gdb_exception &) |
| { |
| if (throw_on_error) |
| throw; |
| |
| static bool warned = false; |
| |
| /* Converting to UTF-32 shouldn't fail, so if it doesn't, we |
| might like to know why. */ |
| if (!warned) |
| { |
| warned = true; |
| warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n" |
| "This normally should not happen, please file a bug report."), |
| gdb::to_string (name).c_str (), host_charset ()); |
| } |
| |
| /* We don't try to recover from errors; just return the |
| original string. */ |
| fold_storage = gdb::to_string (name); |
| return fold_storage.c_str (); |
| } |
| |
| bool is_utf8 = ada_source_charset == ada_utf8; |
| uint32_t *chars = (uint32_t *) obstack_base (&storage); |
| int num_chars = obstack_object_size (&storage) / sizeof (uint32_t); |
| for (int i = 0; i < num_chars; ++i) |
| { |
| const struct utf8_entry *entry = find_case_fold_entry (chars[i]); |
| if (entry != nullptr) |
| { |
| uint32_t low = chars[i] + entry->lower_delta; |
| if (!is_utf8 || low <= 0xff) |
| chars[i] = low; |
| else |
| chars[i] = chars[i] + entry->upper_delta; |
| } |
| } |
| |
| /* Now convert back to ordinary characters. */ |
| auto_obstack reconverted; |
| try |
| { |
| convert_between_encodings (HOST_UTF32, |
| host_charset (), |
| (const gdb_byte *) chars, |
| num_chars * sizeof (uint32_t), |
| sizeof (uint32_t), |
| &reconverted, |
| translit_none); |
| obstack_1grow (&reconverted, '\0'); |
| fold_storage = std::string ((const char *) obstack_base (&reconverted)); |
| } |
| catch (const gdb_exception &) |
| { |
| if (throw_on_error) |
| throw; |
| |
| static bool warned = false; |
| |
| /* Converting back from UTF-32 shouldn't normally fail, but |
| there are some host encodings without upper/lower |
| equivalence. */ |
| if (!warned) |
| { |
| warned = true; |
| warning (_("could not convert the lower-cased variant of '%s'\n" |
| "from UTF-32 to the host encoding (%s)."), |
| gdb::to_string (name).c_str (), host_charset ()); |
| } |
| |
| /* We don't try to recover from errors; just return the |
| original string. */ |
| fold_storage = gdb::to_string (name); |
| } |
| } |
| |
| return fold_storage.c_str (); |
| } |
| |
| /* The "encoded" form of DECODED, according to GNAT conventions. */ |
| |
| std::string |
| ada_encode (const char *decoded) |
| { |
| if (decoded[0] != '<') |
| decoded = ada_fold_name (decoded); |
| return ada_encode_1 (decoded, true); |
| } |
| |
| /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
| |
| static int |
| is_lower_alphanum (const char c) |
| { |
| return (isdigit (c) || (isalpha (c) && islower (c))); |
| } |
| |
| /* ENCODED is the linkage name of a symbol and LEN contains its length. |
| This function saves in LEN the length of that same symbol name but |
| without either of these suffixes: |
| . .{DIGIT}+ |
| . ${DIGIT}+ |
| . ___{DIGIT}+ |
| . __{DIGIT}+. |
| |
| These are suffixes introduced by the compiler for entities such as |
| nested subprogram for instance, in order to avoid name clashes. |
| They do not serve any purpose for the debugger. */ |
| |
| static void |
| ada_remove_trailing_digits (const char *encoded, int *len) |
| { |
| if (*len > 1 && isdigit (encoded[*len - 1])) |
| { |
| int i = *len - 2; |
| |
| while (i > 0 && isdigit (encoded[i])) |
| i--; |
| if (i >= 0 && encoded[i] == '.') |
| *len = i; |
| else if (i >= 0 && encoded[i] == '$') |
| *len = i; |
| else if (i >= 2 && startswith (encoded + i - 2, "___")) |
| *len = i - 2; |
| else if (i >= 1 && startswith (encoded + i - 1, "__")) |
| *len = i - 1; |
| } |
| } |
| |
| /* Remove the suffix introduced by the compiler for protected object |
| subprograms. */ |
| |
| static void |
| ada_remove_po_subprogram_suffix (const char *encoded, int *len) |
| { |
| /* Remove trailing N. */ |
| |
| /* Protected entry subprograms are broken into two |
| separate subprograms: The first one is unprotected, and has |
| a 'N' suffix; the second is the protected version, and has |
| the 'P' suffix. The second calls the first one after handling |
| the protection. Since the P subprograms are internally generated, |
| we leave these names undecoded, giving the user a clue that this |
| entity is internal. */ |
| |
| if (*len > 1 |
| && encoded[*len - 1] == 'N' |
| && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) |
| *len = *len - 1; |
| } |
| |
| /* If ENCODED ends with a compiler-provided suffix (like ".cold"), |
| then update *LEN to remove the suffix and return the offset of the |
| character just past the ".". Otherwise, return -1. */ |
| |
| static int |
| remove_compiler_suffix (const char *encoded, int *len) |
| { |
| int offset = *len - 1; |
| while (offset > 0 && isalpha (encoded[offset])) |
| --offset; |
| if (offset > 0 && encoded[offset] == '.') |
| { |
| *len = offset; |
| return offset + 1; |
| } |
| return -1; |
| } |
| |
| /* Convert an ASCII hex string to a number. Reads exactly N |
| characters from STR. Returns true on success, false if one of the |
| digits was not a hex digit. */ |
| static bool |
| convert_hex (const char *str, int n, uint32_t *out) |
| { |
| uint32_t result = 0; |
| |
| for (int i = 0; i < n; ++i) |
| { |
| if (!isxdigit (str[i])) |
| return false; |
| result <<= 4; |
| result |= fromhex (str[i]); |
| } |
| |
| *out = result; |
| return true; |
| } |
| |
| /* Convert a wide character from its ASCII hex representation in STR |
| (consisting of exactly N characters) to the host encoding, |
| appending the resulting bytes to OUT. If N==2 and the Ada source |
| charset is not UTF-8, then hex refers to an encoding in the |
| ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success. |
| Return false and do not modify OUT on conversion failure. */ |
| static bool |
| convert_from_hex_encoded (std::string &out, const char *str, int n) |
| { |
| uint32_t value; |
| |
| if (!convert_hex (str, n, &value)) |
| return false; |
| try |
| { |
| auto_obstack bytes; |
| /* In the 'U' case, the hex digits encode the character in the |
| Ada source charset. However, if the source charset is UTF-8, |
| this really means it is a single-byte UTF-32 character. */ |
| if (n == 2 && ada_source_charset != ada_utf8) |
| { |
| gdb_byte one_char = (gdb_byte) value; |
| |
| convert_between_encodings (ada_source_charset, host_charset (), |
| &one_char, |
| sizeof (one_char), sizeof (one_char), |
| &bytes, translit_none); |
| } |
| else |
| convert_between_encodings (HOST_UTF32, host_charset (), |
| (const gdb_byte *) &value, |
| sizeof (value), sizeof (value), |
| &bytes, translit_none); |
| obstack_1grow (&bytes, '\0'); |
| out.append ((const char *) obstack_base (&bytes)); |
| } |
| catch (const gdb_exception &) |
| { |
| /* On failure, the caller will just let the encoded form |
| through, which seems basically reasonable. */ |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* See ada-lang.h. */ |
| |
| std::string |
| ada_decode (const char *encoded, bool wrap) |
| { |
| int i; |
| int len0; |
| const char *p; |
| int at_start_name; |
| std::string decoded; |
| int suffix = -1; |
| |
| /* With function descriptors on PPC64, the value of a symbol named |
| ".FN", if it exists, is the entry point of the function "FN". */ |
| if (encoded[0] == '.') |
| encoded += 1; |
| |
| /* The name of the Ada main procedure starts with "_ada_". |
| This prefix is not part of the decoded name, so skip this part |
| if we see this prefix. */ |
| if (startswith (encoded, "_ada_")) |
| encoded += 5; |
| /* The "___ghost_" prefix is used for ghost entities. Normally |
| these aren't preserved but when they are, it's useful to see |
| them. */ |
| if (startswith (encoded, "___ghost_")) |
| encoded += 9; |
| |
| /* If the name starts with '_', then it is not a properly encoded |
| name, so do not attempt to decode it. Similarly, if the name |
| starts with '<', the name should not be decoded. */ |
| if (encoded[0] == '_' || encoded[0] == '<') |
| goto Suppress; |
| |
| len0 = strlen (encoded); |
| |
| suffix = remove_compiler_suffix (encoded, &len0); |
| |
| ada_remove_trailing_digits (encoded, &len0); |
| ada_remove_po_subprogram_suffix (encoded, &len0); |
| |
| /* Remove the ___X.* suffix if present. Do not forget to verify that |
| the suffix is located before the current "end" of ENCODED. We want |
| to avoid re-matching parts of ENCODED that have previously been |
| marked as discarded (by decrementing LEN0). */ |
| p = strstr (encoded, "___"); |
| if (p != NULL && p - encoded < len0 - 3) |
| { |
| if (p[3] == 'X') |
| len0 = p - encoded; |
| else |
| goto Suppress; |
| } |
| |
| /* Remove any trailing TKB suffix. It tells us that this symbol |
| is for the body of a task, but that information does not actually |
| appear in the decoded name. */ |
| |
| if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
| len0 -= 3; |
| |
| /* Remove any trailing TB suffix. The TB suffix is slightly different |
| from the TKB suffix because it is used for non-anonymous task |
| bodies. */ |
| |
| if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
| len0 -= 2; |
| |
| /* Remove trailing "B" suffixes. */ |
| /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ |
| |
| if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
| len0 -= 1; |
| |
| /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
| |
| if (len0 > 1 && isdigit (encoded[len0 - 1])) |
| { |
| i = len0 - 2; |
| while ((i >= 0 && isdigit (encoded[i])) |
| || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) |
| i -= 1; |
| if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') |
| len0 = i - 1; |
| else if (encoded[i] == '$') |
| len0 = i; |
| } |
| |
| /* The first few characters that are not alphabetic are not part |
| of any encoding we use, so we can copy them over verbatim. */ |
| |
| for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1) |
| decoded.push_back (encoded[i]); |
| |
| at_start_name = 1; |
| while (i < len0) |
| { |
| /* Is this a symbol function? */ |
| if (at_start_name && encoded[i] == 'O') |
| { |
| int k; |
| |
| for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
| { |
| int op_len = strlen (ada_opname_table[k].encoded); |
| if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
| op_len - 1) == 0) |
| && !isalnum (encoded[i + op_len])) |
| { |
| decoded.append (ada_opname_table[k].decoded); |
| at_start_name = 0; |
| i += op_len; |
| break; |
| } |
| } |
| if (ada_opname_table[k].encoded != NULL) |
| continue; |
| } |
| at_start_name = 0; |
| |
| /* Replace "TK__" with "__", which will eventually be translated |
| into "." (just below). */ |
| |
| if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
| i += 2; |
| |
| /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
| be translated into "." (just below). These are internal names |
| generated for anonymous blocks inside which our symbol is nested. */ |
| |
| if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' |
| && encoded [i+2] == 'B' && encoded [i+3] == '_' |
| && isdigit (encoded [i+4])) |
| { |
| int k = i + 5; |
| |
| while (k < len0 && isdigit (encoded[k])) |
| k++; /* Skip any extra digit. */ |
| |
| /* Double-check that the "__B_{DIGITS}+" sequence we found |
| is indeed followed by "__". */ |
| if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') |
| i = k; |
| } |
| |
| /* Remove _E{DIGITS}+[sb] */ |
| |
| /* Just as for protected object subprograms, there are 2 categories |
| of subprograms created by the compiler for each entry. The first |
| one implements the actual entry code, and has a suffix following |
| the convention above; the second one implements the barrier and |
| uses the same convention as above, except that the 'E' is replaced |
| by a 'B'. |
| |
| Just as above, we do not decode the name of barrier functions |
| to give the user a clue that the code he is debugging has been |
| internally generated. */ |
| |
| if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' |
| && isdigit (encoded[i+2])) |
| { |
| int k = i + 3; |
| |
| while (k < len0 && isdigit (encoded[k])) |
| k++; |
| |
| if (k < len0 |
| && (encoded[k] == 'b' || encoded[k] == 's')) |
| { |
| k++; |
| /* Just as an extra precaution, make sure that if this |
| suffix is followed by anything else, it is a '_'. |
| Otherwise, we matched this sequence by accident. */ |
| if (k == len0 |
| || (k < len0 && encoded[k] == '_')) |
| i = k; |
| } |
| } |
| |
| /* Remove trailing "N" in [a-z0-9]+N__. The N is added by |
| the GNAT front-end in protected object subprograms. */ |
| |
| if (i < len0 + 3 |
| && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') |
| { |
| /* Backtrack a bit up until we reach either the begining of |
| the encoded name, or "__". Make sure that we only find |
| digits or lowercase characters. */ |
| const char *ptr = encoded + i - 1; |
| |
| while (ptr >= encoded && is_lower_alphanum (ptr[0])) |
| ptr--; |
| if (ptr < encoded |
| || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) |
| i++; |
| } |
| |
| if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1])) |
| { |
| if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2)) |
| { |
| i += 3; |
| continue; |
| } |
| } |
| else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1])) |
| { |
| if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4)) |
| { |
| i += 5; |
| continue; |
| } |
| } |
| else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W' |
| && isxdigit (encoded[i + 2])) |
| { |
| if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8)) |
| { |
| i += 10; |
| continue; |
| } |
| } |
| |
| if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
| { |
| /* This is a X[bn]* sequence not separated from the previous |
| part of the name with a non-alpha-numeric character (in other |
| words, immediately following an alpha-numeric character), then |
| verify that it is placed at the end of the encoded name. If |
| not, then the encoding is not valid and we should abort the |
| decoding. Otherwise, just skip it, it is used in body-nested |
| package names. */ |
| do |
| i += 1; |
| while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); |
| if (i < len0) |
| goto Suppress; |
| } |
| else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
| { |
| /* Replace '__' by '.'. */ |
| decoded.push_back ('.'); |
| at_start_name = 1; |
| i += 2; |
| } |
| else |
| { |
| /* It's a character part of the decoded name, so just copy it |
| over. */ |
| decoded.push_back (encoded[i]); |
| i += 1; |
| } |
| } |
| |
| /* Decoded names should never contain any uppercase character. |
| Double-check this, and abort the decoding if we find one. */ |
| |
| for (i = 0; i < decoded.length(); ++i) |
| if (isupper (decoded[i]) || decoded[i] == ' ') |
| goto Suppress; |
| |
| /* If the compiler added a suffix, append it now. */ |
| if (suffix >= 0) |
| decoded = decoded + "[" + &encoded[suffix] + "]"; |
| |
| return decoded; |
| |
| Suppress: |
| if (!wrap) |
| return {}; |
| |
| if (encoded[0] == '<') |
| decoded = encoded; |
| else |
| decoded = '<' + std::string(encoded) + '>'; |
| return decoded; |
| } |
| |
| /* Table for keeping permanent unique copies of decoded names. Once |
| allocated, names in this table are never released. While this is a |
| storage leak, it should not be significant unless there are massive |
| changes in the set of decoded names in successive versions of a |
| symbol table loaded during a single session. */ |
| static struct htab *decoded_names_store; |
| |
| /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it |
| in the language-specific part of GSYMBOL, if it has not been |
| previously computed. Tries to save the decoded name in the same |
| obstack as GSYMBOL, if possible, and otherwise on the heap (so that, |
| in any case, the decoded symbol has a lifetime at least that of |
| GSYMBOL). |
| The GSYMBOL parameter is "mutable" in the C++ sense: logically |
| const, but nevertheless modified to a semantically equivalent form |
| when a decoded name is cached in it. */ |
| |
| const char * |
| ada_decode_symbol (const struct general_symbol_info *arg) |
| { |
| struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
| const char **resultp = |
| &gsymbol->language_specific.demangled_name; |
| |
| if (!gsymbol->ada_mangled) |
| { |
| std::string decoded = ada_decode (gsymbol->linkage_name ()); |
| struct obstack *obstack = gsymbol->language_specific.obstack; |
| |
| gsymbol->ada_mangled = 1; |
| |
| if (obstack != NULL) |
| *resultp = obstack_strdup (obstack, decoded.c_str ()); |
| else |
| { |
| /* Sometimes, we can't find a corresponding objfile, in |
| which case, we put the result on the heap. Since we only |
| decode when needed, we hope this usually does not cause a |
| significant memory leak (FIXME). */ |
| |
| char **slot = (char **) htab_find_slot (decoded_names_store, |
| decoded.c_str (), INSERT); |
| |
| if (*slot == NULL) |
| *slot = xstrdup (decoded.c_str ()); |
| *resultp = *slot; |
| } |
| } |
| |
| return *resultp; |
| } |
| |
| |
| |
| /* Arrays */ |
| |
| /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
| generated by the GNAT compiler to describe the index type used |
| for each dimension of an array, check whether it follows the latest |
| known encoding. If not, fix it up to conform to the latest encoding. |
| Otherwise, do nothing. This function also does nothing if |
| INDEX_DESC_TYPE is NULL. |
| |
| The GNAT encoding used to describe the array index type evolved a bit. |
| Initially, the information would be provided through the name of each |
| field of the structure type only, while the type of these fields was |
| described as unspecified and irrelevant. The debugger was then expected |
| to perform a global type lookup using the name of that field in order |
| to get access to the full index type description. Because these global |
| lookups can be very expensive, the encoding was later enhanced to make |
| the global lookup unnecessary by defining the field type as being |
| the full index type description. |
| |
| The purpose of this routine is to allow us to support older versions |
| of the compiler by detecting the use of the older encoding, and by |
| fixing up the INDEX_DESC_TYPE to follow the new one (at this point, |
| we essentially replace each field's meaningless type by the associated |
| index subtype). */ |
| |
| void |
| ada_fixup_array_indexes_type (struct type *index_desc_type) |
| { |
| int i; |
| |
| if (index_desc_type == NULL) |
| return; |
| gdb_assert (index_desc_type->num_fields () > 0); |
| |
| /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient |
| to check one field only, no need to check them all). If not, return |
| now. |
| |
| If our INDEX_DESC_TYPE was generated using the older encoding, |
| the field type should be a meaningless integer type whose name |
| is not equal to the field name. */ |
| if (index_desc_type->field (0).type ()->name () != NULL |
| && strcmp (index_desc_type->field (0).type ()->name (), |
| index_desc_type->field (0).name ()) == 0) |
| return; |
| |
| /* Fixup each field of INDEX_DESC_TYPE. */ |
| for (i = 0; i < index_desc_type->num_fields (); i++) |
| { |
| const char *name = index_desc_type->field (i).name (); |
| struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
| |
| if (raw_type) |
| index_desc_type->field (i).set_type (raw_type); |
| } |
| } |
| |
| /* The desc_* routines return primitive portions of array descriptors |
| (fat pointers). */ |
| |
| /* The descriptor or array type, if any, indicated by TYPE; removes |
| level of indirection, if needed. */ |
| |
| static struct type * |
| desc_base_type (struct type *type) |
| { |
| if (type == NULL) |
| return NULL; |
| type = ada_check_typedef (type); |
| if (type->code () == TYPE_CODE_TYPEDEF) |
| type = ada_typedef_target_type (type); |
| |
| if (type != NULL |
| && (type->code () == TYPE_CODE_PTR |
| || type->code () == TYPE_CODE_REF)) |
| return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
| else |
| return type; |
| } |
| |
| /* True iff TYPE indicates a "thin" array pointer type. */ |
| |
| static int |
| is_thin_pntr (struct type *type) |
| { |
| return |
| is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
| || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); |
| } |
| |
| /* The descriptor type for thin pointer type TYPE. */ |
| |
| static struct type * |
| thin_descriptor_type (struct type *type) |
| { |
| struct type *base_type = desc_base_type (type); |
| |
| if (base_type == NULL) |
| return NULL; |
| if (is_suffix (ada_type_name (base_type), "___XVE")) |
| return base_type; |
| else |
| { |
| struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
| |
| if (alt_type == NULL) |
| return base_type; |
| else |
| return alt_type; |
| } |
| } |
| |
| /* A pointer to the array data for thin-pointer value VAL. */ |
| |
| static struct value * |
| thin_data_pntr (struct value *val) |
| { |
| struct type *type = ada_check_typedef (value_type (val)); |
| struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
| |
| data_type = lookup_pointer_type (data_type); |
| |
| if (type->code () == TYPE_CODE_PTR) |
| return value_cast (data_type, value_copy (val)); |
| else |
| return value_from_longest (data_type, value_address (val)); |
| } |
| |
| /* True iff TYPE indicates a "thick" array pointer type. */ |
| |
| static int |
| is_thick_pntr (struct type *type) |
| { |
| type = desc_base_type (type); |
| return (type != NULL && type->code () == TYPE_CODE_STRUCT |
| && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
| } |
| |
| /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
| pointer to one, the type of its bounds data; otherwise, NULL. */ |
| |
| static struct type * |
| desc_bounds_type (struct type *type) |
| { |
| struct type *r; |
| |
| type = desc_base_type (type); |
| |
| if (type == NULL) |
| return NULL; |
| else if (is_thin_pntr (type)) |
| { |
| type = thin_descriptor_type (type); |
| if (type == NULL) |
| return NULL; |
| r = lookup_struct_elt_type (type, "BOUNDS", 1); |
| if (r != NULL) |
| return ada_check_typedef (r); |
| } |
| else if (type->code () == TYPE_CODE_STRUCT) |
| { |
| r = lookup_struct_elt_type (type, "P_BOUNDS", 1); |
| if (r != NULL) |
| return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
| } |
| return NULL; |
| } |
| |
| /* If ARR is an array descriptor (fat or thin pointer), or pointer to |
| one, a pointer to its bounds data. Otherwise NULL. */ |
| |
| static struct value * |
| desc_bounds (struct value *arr) |
| { |
| struct type *type = ada_check_typedef (value_type (arr)); |
| |
| if (is_thin_pntr (type)) |
| { |
| struct type *bounds_type = |
| desc_bounds_type (thin_descriptor_type (type)); |
| LONGEST addr; |
| |
| if (bounds_type == NULL) |
| error (_("Bad GNAT array descriptor")); |
| |
| /* NOTE: The following calculation is not really kosher, but |
| since desc_type is an XVE-encoded type (and shouldn't be), |
| the correct calculation is a real pain. FIXME (and fix GCC). */ |
| if (type->code () == TYPE_CODE_PTR) |
| addr = value_as_long (arr); |
| else |
| addr = value_address (arr); |
| |
| return |
| value_from_longest (lookup_pointer_type (bounds_type), |
| addr - TYPE_LENGTH (bounds_type)); |
| } |
| |
| else if (is_thick_pntr (type)) |
| { |
| struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL, |
| _("Bad GNAT array descriptor")); |
| struct type *p_bounds_type = value_type (p_bounds); |
| |
| if (p_bounds_type |
| && p_bounds_type->code () == TYPE_CODE_PTR) |
| { |
| struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); |
| |
| if (target_type->is_stub ()) |
| p_bounds = value_cast (lookup_pointer_type |
| (ada_check_typedef (target_type)), |
| p_bounds); |
| } |
| else |
| error (_("Bad GNAT array descriptor")); |
| |
| return p_bounds; |
| } |
| else |
| return NULL; |
| } |
| |
| /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
| position of the field containing the address of the bounds data. */ |
| |
| static int |
| fat_pntr_bounds_bitpos (struct type *type) |
| { |
| return desc_base_type (type)->field (1).loc_bitpos (); |
| } |
| |
| /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
| size of the field containing the address of the bounds data. */ |
| |
| static int |
| fat_pntr_bounds_bitsize (struct type *type) |
| { |
| type = desc_base_type (type); |
| |
| if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
| return TYPE_FIELD_BITSIZE (type, 1); |
| else |
| return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ())); |
| } |
| |
| /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
| pointer to one, the type of its array data (a array-with-no-bounds type); |
| otherwise, NULL. Use ada_type_of_array to get an array type with bounds |
| data. */ |
| |
| static struct type * |
| desc_data_target_type (struct type *type) |
| { |
| type = desc_base_type (type); |
| |
| /* NOTE: The following is bogus; see comment in desc_bounds. */ |
| if (is_thin_pntr (type)) |
| return desc_base_type (thin_descriptor_type (type)->field (1).type ()); |
| else if (is_thick_pntr (type)) |
| { |
| struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); |
| |
| if (data_type |
| && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR) |
| return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
| } |
| |
| return NULL; |
| } |
| |
| /* If ARR is an array descriptor (fat or thin pointer), a pointer to |
| its array data. */ |
| |
| static struct value * |
| desc_data (struct value *arr) |
| { |
| struct type *type = value_type (arr); |
| |
| if (is_thin_pntr (type)) |
| return thin_data_pntr (arr); |
| else if (is_thick_pntr (type)) |
| return value_struct_elt (&arr, {}, "P_ARRAY", NULL, |
| _("Bad GNAT array descriptor")); |
| else |
| return NULL; |
| } |
| |
| |
| /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
| position of the field containing the address of the data. */ |
| |
| static int |
| fat_pntr_data_bitpos (struct type *type) |
| { |
| return desc_base_type (type)->field (0).loc_bitpos (); |
| } |
| |
| /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
| size of the field containing the address of the data. */ |
| |
| static int |
| fat_pntr_data_bitsize (struct type *type) |
| { |
| type = desc_base_type (type); |
| |
| if (TYPE_FIELD_BITSIZE (type, 0) > 0) |
| return TYPE_FIELD_BITSIZE (type, 0); |
| else |
| return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ()); |
| } |
| |
| /* If BOUNDS is an array-bounds structure (or pointer to one), return |
| the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
| bound, if WHICH is 1. The first bound is I=1. */ |
| |
| static struct value * |
| desc_one_bound (struct value *bounds, int i, int which) |
| { |
| char bound_name[20]; |
| xsnprintf (bound_name, sizeof (bound_name), "%cB%d", |
| which ? 'U' : 'L', i - 1); |
| return value_struct_elt (&bounds, {}, bound_name, NULL, |
| _("Bad GNAT array descriptor bounds")); |
| } |
| |
| /* If BOUNDS is an array-bounds structure type, return the bit position |
| of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
| bound, if WHICH is 1. The first bound is I=1. */ |
| |
| static int |
| desc_bound_bitpos (struct type *type, int i, int which) |
| { |
| return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos (); |
| } |
| |
| /* If BOUNDS is an array-bounds structure type, return the bit field size |
| of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
| bound, if WHICH is 1. The first bound is I=1. */ |
| |
| static int |
| desc_bound_bitsize (struct type *type, int i, int which) |
| { |
| type = desc_base_type (type); |
| |
| if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
| return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); |
| else |
| return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ()); |
| } |
| |
| /* If TYPE is the type of an array-bounds structure, the type of its |
| Ith bound (numbering from 1). Otherwise, NULL. */ |
| |
| static struct type * |
| desc_index_type (struct type *type, int i) |
| { |
| type = desc_base_type (type); |
| |
| if (type->code () == TYPE_CODE_STRUCT) |
| { |
| char bound_name[20]; |
| xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1); |
| return lookup_struct_elt_type (type, bound_name, 1); |
| } |
| else |
| return NULL; |
| } |
| |
| /* The number of index positions in the array-bounds type TYPE. |
| Return 0 if TYPE is NULL. */ |
| |
| static int |
| desc_arity (struct type *type) |
| { |
| type = desc_base_type (type); |
| |
| if (type != NULL) |
| return type->num_fields () / 2; |
| return 0; |
| } |
| |
| /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
| an array descriptor type (representing an unconstrained array |
| type). */ |
| |
| static int |
| ada_is_direct_array_type (struct type *type) |
| { |
| if (type == NULL) |
| return 0; |
| type = ada_check_typedef (type); |
| return (type->code () == TYPE_CODE_ARRAY |
| || ada_is_array_descriptor_type (type)); |
| } |
| |
| /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
| * to one. */ |
| |
| static int |
| ada_is_array_type (struct type *type) |
| { |
| while (type != NULL |
| && (type->code () == TYPE_CODE_PTR |
| || type->code () == TYPE_CODE_REF)) |
| type = TYPE_TARGET_TYPE (type); |
| return ada_is_direct_array_type (type); |
| } |
| |
| /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
| |
| int |
| ada_is_simple_array_type (struct type *type) |
| { |
| if (type == NULL) |
| return 0; |
| type = ada_check_typedef (type); |
| return (type->code () == TYPE_CODE_ARRAY |
| || (type->code () == TYPE_CODE_PTR |
| && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code () |
| == TYPE_CODE_ARRAY))); |
| } |
| |
| /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
| |
| int |
| ada_is_array_descriptor_type (struct type *type) |
| { |
| struct type *data_type = desc_data_target_type (type); |
| |
| if (type == NULL) |
| return 0; |
| type = ada_check_typedef (type); |
| return (data_type != NULL |
| && data_type->code () == TYPE_CODE_ARRAY |
| && desc_arity (desc_bounds_type (type)) > 0); |
| } |
| |
| /* Non-zero iff type is a partially mal-formed GNAT array |
| descriptor. FIXME: This is to compensate for some problems with |
| debugging output from GNAT. Re-examine periodically to see if it |
| is still needed. */ |
| |
| int |
| ada_is_bogus_array_descriptor (struct type *type) |
| { |
| return |
| type != NULL |
| && type->code () == TYPE_CODE_STRUCT |
| && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL |
| || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
| && !ada_is_array_descriptor_type (type); |
| } |
| |
| |
| /* If ARR has a record type in the form of a standard GNAT array descriptor, |
| (fat pointer) returns the type of the array data described---specifically, |
| a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
| in from the descriptor; otherwise, they are left unspecified. If |
| the ARR denotes a null array descriptor and BOUNDS is non-zero, |
| returns NULL. The result is simply the type of ARR if ARR is not |
| a descriptor. */ |
| |
| static struct type * |
| ada_type_of_array (struct value *arr, int bounds) |
| { |
| if (ada_is_constrained_packed_array_type (value_type (arr))) |
| return decode_constrained_packed_array_type (value_type (arr)); |
| |
| if (!ada_is_array_descriptor_type (value_type (arr))) |
| return value_type (arr); |
| |
| if (!bounds) |
| { |
| struct type *array_type = |
| ada_check_typedef (desc_data_target_type (value_type (arr))); |
| |
| if (ada_is_unconstrained_packed_array_type (value_type (arr))) |
| TYPE_FIELD_BITSIZE (array_type, 0) = |
| decode_packed_array_bitsize (value_type (arr)); |
| |
| return array_type; |
| } |
| else |
| { |
| struct type *elt_type; |
| int arity; |
| struct value *descriptor; |
| |
| elt_type = ada_array_element_type (value_type (arr), -1); |
| arity = ada_array_arity (value_type (arr)); |
| |
| if (elt_type == NULL || arity == 0) |
| return ada_check_typedef (value_type (arr)); |
| |
| descriptor = desc_bounds (arr); |
| if (value_as_long (descriptor) == 0) |
| return NULL; |
| while (arity > 0) |
| { |
| struct type *range_type = alloc_type_copy (value_type (arr)); |
| struct type *array_type = alloc_type_copy (value_type (arr)); |
| struct value *low = desc_one_bound (descriptor, arity, 0); |
| struct value *high = desc_one_bound (descriptor, arity, 1); |
| |
| arity -= 1; |
| create_static_range_type (range_type, value_type (low), |
| longest_to_int (value_as_long (low)), |
| longest_to_int (value_as_long (high))); |
| elt_type = create_array_type (array_type, elt_type, range_type); |
| |
| if (ada_is_unconstrained_packed_array_type (value_type (arr))) |
| { |
| /* We need to store the element packed bitsize, as well as |
| recompute the array size, because it was previously |
| computed based on the unpacked element size. */ |
| LONGEST lo = value_as_long (low); |
| LONGEST hi = value_as_long (high); |
| |
| TYPE_FIELD_BITSIZE (elt_type, 0) = |
| decode_packed_array_bitsize (value_type (arr)); |
| /* If the array has no element, then the size is already |
| zero, and does not need to be recomputed. */ |
| if (lo < hi) |
| { |
| int array_bitsize = |
| (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); |
| |
| TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; |
| } |
| } |
| } |
| |
| return lookup_pointer_type (elt_type); |
| } |
| } |
| |
| /* If ARR does not represent an array, returns ARR unchanged. |
| Otherwise, returns either a standard GDB array with bounds set |
| appropriately or, if ARR is a non-null fat pointer, a pointer to a standard |
| GDB array. Returns NULL if ARR is a null fat pointer. */ |
| |
| struct value * |
| ada_coerce_to_simple_array_ptr (struct value *arr) |
| { |
| if (ada_is_array_descriptor_type (value_type (arr))) |
| { |
| struct type *arrType = ada_type_of_array (arr, 1); |
| |
| if (arrType == NULL) |
| return NULL; |
| return value_cast (arrType, value_copy (desc_data (arr))); |
| } |
| else if (ada_is_constrained_packed_array_type (value_type (arr))) |
| return decode_constrained_packed_array (arr); |
| else |
| return arr; |
| } |
| |
| /* If ARR does not represent an array, returns ARR unchanged. |
| Otherwise, returns a standard GDB array describing ARR (which may |
| be ARR itself if it already is in the proper form). */ |
| |
| struct value * |
| ada_coerce_to_simple_array (struct value *arr) |
| { |
| if (ada_is_array_descriptor_type (value_type (arr))) |
| { |
| struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
| |
| if (arrVal == NULL) |
| error (_("Bounds unavailable for null array pointer.")); |
| return value_ind (arrVal); |
| } |
| else if (ada_is_constrained_packed_array_type (value_type (arr))) |
| return decode_constrained_packed_array (arr); |
| else |
| return arr; |
| } |
| |
| /* If TYPE represents a GNAT array type, return it translated to an |
| ordinary GDB array type (possibly with BITSIZE fields indicating |
| packing). For other types, is the identity. */ |
| |
| struct type * |
| ada_coerce_to_simple_array_type (struct type *type) |
| { |
| if (ada_is_constrained_packed_array_type (type)) |
| return decode_constrained_packed_array_type (type); |
| |
| if (ada_is_array_descriptor_type (type)) |
| return ada_check_typedef (desc_data_target_type (type)); |
| |
| return type; |
| } |
| |
| /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
| |
| static int |
| ada_is_gnat_encoded_packed_array_type (struct type *type) |
| { |
| if (type == NULL) |
| return 0; |
| type = desc_base_type (type); |
| type = ada_check_typedef (type); |
| return |
| ada_type_name (type) != NULL |
| && strstr (ada_type_name (type), "___XP") != NULL; |
| } |
| |
| /* Non-zero iff TYPE represents a standard GNAT constrained |
| packed-array type. */ |
| |
| int |
| ada_is_constrained_packed_array_type (struct type *type) |
| { |
| return ada_is_gnat_encoded_packed_array_type (type) |
| && !ada_is_array_descriptor_type (type); |
| } |
| |
| /* Non-zero iff TYPE represents an array descriptor for a |
| unconstrained packed-array type. */ |
| |
| static int |
| ada_is_unconstrained_packed_array_type (struct type *type) |
| { |
| if (!ada_is_array_descriptor_type (type)) |
| return 0; |
| |
| if (ada_is_gnat_encoded_packed_array_type (type)) |
| return 1; |
| |
| /* If we saw GNAT encodings, then the above code is sufficient. |
| However, with minimal encodings, we will just have a thick |
| pointer instead. */ |
| if (is_thick_pntr (type)) |
| { |
| type = desc_base_type (type); |
| /* The structure's first field is a pointer to an array, so this |
| fetches the array type. */ |
| type = TYPE_TARGET_TYPE (type->field (0).type ()); |
| if (type->code () == TYPE_CODE_TYPEDEF) |
| type = ada_typedef_target_type (type); |
| /* Now we can see if the array elements are packed. */ |
| return TYPE_FIELD_BITSIZE (type, 0) > 0; |
| } |
| |
| return 0; |
| } |
| |
| /* Return true if TYPE is a (Gnat-encoded) constrained packed array |
| type, or if it is an ordinary (non-Gnat-encoded) packed array. */ |
| |
| static bool |
| ada_is_any_packed_array_type (struct type *type) |
| { |
| return (ada_is_constrained_packed_array_type (type) |
| || (type->code () == TYPE_CODE_ARRAY |
| && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0)); |
| } |
| |
| /* Given that TYPE encodes a packed array type (constrained or unconstrained), |
| return the size of its elements in bits. */ |
| |
| static long |
| decode_packed_array_bitsize (struct type *type) |
| { |
| const char *raw_name; |
| const char *tail; |
| long bits; |
| |
| /* Access to arrays implemented as fat pointers are encoded as a typedef |
| of the fat pointer type. We need the name of the fat pointer type |
| to do the decoding, so strip the typedef layer. */ |
| if (type->code () == TYPE_CODE_TYPEDEF) |
| type = ada_typedef_target_type (type); |
| |
| raw_name = ada_type_name (ada_check_typedef (type)); |
| if (!raw_name) |
| raw_name = ada_type_name (desc_base_type (type)); |
| |
| if (!raw_name) |
| return 0; |
| |
| tail = strstr (raw_name, "___XP"); |
| if (tail == nullptr) |
| { |
| gdb_assert (is_thick_pntr (type)); |
| /* The structure's first field is a pointer to an array, so this |
| fetches the array type. */ |
| type = TYPE_TARGET_TYPE (type->field (0).type ()); |
| /* Now we can see if the array elements are packed. */ |
| return TYPE_FIELD_BITSIZE (type, 0); |
| } |
| |
| if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) |
| { |
| lim_warning |
| (_("could not understand bit size information on packed array")); |
| return 0; |
| } |
| |
| return bits; |
| } |
| |
| /* Given that TYPE is a standard GDB array type with all bounds filled |
| in, and that the element size of its ultimate scalar constituents |
| (that is, either its elements, or, if it is an array of arrays, its |
| elements' elements, etc.) is *ELT_BITS, return an identical type, |
| but with the bit sizes of its elements (and those of any |
| constituent arrays) recorded in the BITSIZE components of its |
| TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
| in bits. |
| |
| Note that, for arrays whose index type has an XA encoding where |
| a bound references a record discriminant, getting that discriminant, |
| and therefore the actual value of that bound, is not possible |
| because none of the given parameters gives us access to the record. |
| This function assumes that it is OK in the context where it is being |
| used to return an array whose bounds are still dynamic and where |
| the length is arbitrary. */ |
| |
| static struct type * |
| constrained_packed_array_type (struct type *type, long *elt_bits) |
| { |
| struct type *new_elt_type; |
| struct type *new_type; |
| struct type *index_type_desc; |
| struct type *index_type; |
| LONGEST low_bound, high_bound; |
| |
| type = ada_check_typedef (type); |
| if (type->code () != TYPE_CODE_ARRAY) |
| return type; |
| |
| index_type_desc = ada_find_parallel_type (type, "___XA"); |
| if (index_type_desc) |
| index_type = to_fixed_range_type (index_type_desc->field (0).type (), |
| NULL); |
| else |
| index_type = type->index_type (); |
| |
| new_type = alloc_type_copy (type); |
| new_elt_type = |
| constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), |
| elt_bits); |
| create_array_type (new_type, new_elt_type, index_type); |
| TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
| new_type->set_name (ada_type_name (type)); |
| |
| if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE |
| && is_dynamic_type (check_typedef (index_type))) |
| || !get_discrete_bounds (index_type, &low_bound, &high_bound)) |
| low_bound = high_bound = 0; |
| if (high_bound < low_bound) |
| *elt_bits = TYPE_LENGTH (new_type) = 0; |
| else |
| { |
| *elt_bits *= (high_bound - low_bound + 1); |
| TYPE_LENGTH (new_type) = |
| (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
| } |
| |
| new_type->set_is_fixed_instance (true); |
| return new_type; |
| } |
| |
| /* The array type encoded by TYPE, where |
| ada_is_constrained_packed_array_type (TYPE). */ |
| |
| static struct type * |
| decode_constrained_packed_array_type (struct type *type) |
| { |
| const char *raw_name = ada_type_name (ada_check_typedef (type)); |
| char *name; |
| const char *tail; |
| struct type *shadow_type; |
| long bits; |
| |
| if (!raw_name) |
| raw_name = ada_type_name (desc_base_type (type)); |
| |
| if (!raw_name) |
| return NULL; |
| |
| name = (char *) alloca (strlen (raw_name) + 1); |
| tail = strstr (raw_name, "___XP"); |
| type = desc_base_type (type); |
| |
| memcpy (name, raw_name, tail - raw_name); |
| name[tail - raw_name] = '\000'; |
| |
| shadow_type = ada_find_parallel_type_with_name (type, name); |
| |
| if (shadow_type == NULL) |
| { |
| lim_warning (_("could not find bounds information on packed array")); |
| return NULL; |
| } |
| shadow_type = check_typedef (shadow_type); |
| |
| if (shadow_type->code () != TYPE_CODE_ARRAY) |
| { |
| lim_warning (_("could not understand bounds " |
| "information on packed array")); |
| return NULL; |
| } |
| |
| bits = decode_packed_array_bitsize (type); |
| return constrained_packed_array_type (shadow_type, &bits); |
| } |
| |
| /* Helper function for decode_constrained_packed_array. Set the field |
| bitsize on a series of packed arrays. Returns the number of |
| elements in TYPE. */ |
| |
| static LONGEST |
| recursively_update_array_bitsize (struct type *type) |
| { |
| gdb_assert (type->code () == TYPE_CODE_ARRAY); |
| |
| LONGEST low, high; |
| if (!get_discrete_bounds (type->index_type (), &low, &high) |
| || low > high) |
| return 0; |
| LONGEST our_len = high - low + 1; |
| |
| struct type *elt_type = TYPE_TARGET_TYPE (type); |
| if (elt_type->code () == TYPE_CODE_ARRAY) |
| { |
| LONGEST elt_len = recursively_update_array_bitsize (elt_type); |
| LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0); |
| TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize; |
| |
| TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1) |
| / HOST_CHAR_BIT); |
| } |
| |
| return our_len; |
| } |
| |
| /* Given that ARR is a struct value *indicating a GNAT constrained packed |
| array, returns a simple array that denotes that array. Its type is a |
| standard GDB array type except that the BITSIZEs of the array |
| target types are set to the number of bits in each element, and the |
| type length is set appropriately. */ |
| |
| static struct value * |
| decode_constrained_packed_array (struct value *arr) |
| { |
| struct type *type; |
| |
| /* If our value is a pointer, then dereference it. Likewise if |
| the value is a reference. Make sure that this operation does not |
| cause the target type to be fixed, as this would indirectly cause |
| this array to be decoded. The rest of the routine assumes that |
| the array hasn't been decoded yet, so we use the basic "coerce_ref" |
| and "value_ind" routines to perform the dereferencing, as opposed |
| to using "ada_coerce_ref" or "ada_value_ind". */ |
| arr = coerce_ref (arr); |
| if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR) |
| arr = value_ind (arr); |
| |
| type = decode_constrained_packed_array_type (value_type (arr)); |
| if (type == NULL) |
| { |
| error (_("can't unpack array")); |
| return NULL; |
| } |
| |
| /* Decoding the packed array type could not correctly set the field |
| bitsizes for any dimension except the innermost, because the |
| bounds may be variable and were not passed to that function. So, |
| we further resolve the array bounds here and then update the |
| sizes. */ |
| const gdb_byte *valaddr = value_contents_for_printing (arr).data (); |
| CORE_ADDR address = value_address (arr); |
| gdb::array_view<const gdb_byte> view |
| = gdb::make_array_view (valaddr, TYPE_LENGTH (type)); |
| type = resolve_dynamic_type (type, view, address); |
| recursively_update_array_bitsize (type); |
| |
| if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG |
| && ada_is_modular_type (value_type (arr))) |
| { |
| /* This is a (right-justified) modular type representing a packed |
| array with no wrapper. In order to interpret the value through |
| the (left-justified) packed array type we just built, we must |
| first left-justify it. */ |
| int bit_size, bit_pos; |
| ULONGEST mod; |
| |
| mod = ada_modulus (value_type (arr)) - 1; |
| bit_size = 0; |
| while (mod > 0) |
| { |
| bit_size += 1; |
| mod >>= 1; |
| } |
| bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
| arr = ada_value_primitive_packed_val (arr, NULL, |
| bit_pos / HOST_CHAR_BIT, |
| bit_pos % HOST_CHAR_BIT, |
| bit_size, |
| type); |
| } |
| |
| return coerce_unspec_val_to_type (arr, type); |
| } |
| |
| |
| /* The value of the element of packed array ARR at the ARITY indices |
| given in IND. ARR must be a simple array. */ |
| |
| static struct value * |
| value_subscript_packed (struct value *arr, int arity, struct value **ind) |
| { |
| int i; |
| int bits, elt_off, bit_off; |
| long elt_total_bit_offset; |
| struct type *elt_type; |
| struct value *v; |
| |
| bits = 0; |
| elt_total_bit_offset = 0; |
| elt_type = ada_check_typedef (value_type (arr)); |
| for (i = 0; i < arity; i += 1) |
| { |
| if (elt_type->code () != TYPE_CODE_ARRAY |
| || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
| error |
| (_("attempt to do packed indexing of " |
| "something other than a packed array")); |
| else |
| { |
| struct type *range_type = elt_type->index_type (); |
| LONGEST lowerbound, upperbound; |
| LONGEST idx; |
| |
| if (!get_discrete_bounds (range_type, &lowerbound, &upperbound)) |
| { |
| lim_warning (_("don't know bounds of array")); |
| lowerbound = upperbound = 0; |
| } |
| |
| idx = pos_atr (ind[i]); |
| if (idx < lowerbound || idx > upperbound) |
| lim_warning (_("packed array index %ld out of bounds"), |
| (long) idx); |
| bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
| elt_total_bit_offset += (idx - lowerbound) * bits; |
| elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
| } |
| } |
| elt_off = elt_total_bit_offset / HOST_CHAR_BIT; |
| bit_off = elt_total_bit_offset % HOST_CHAR_BIT; |
| |
| v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, |
| bits, elt_type); |
| return v; |
| } |
| |
| /* Non-zero iff TYPE includes negative integer values. */ |
| |
| static int |
| has_negatives (struct type *type) |
| { |
| switch (type->code ()) |
| { |
| default: |
| return 0; |
| case TYPE_CODE_INT: |
| return !type->is_unsigned (); |
| case TYPE_CODE_RANGE: |
| return type->bounds ()->low.const_val () - type->bounds ()->bias < 0; |
| } |
| } |
| |
| /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET, |
| unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of |
| the unpacked buffer. |
| |
| The size of the unpacked buffer (UNPACKED_LEN) is expected to be large |
| enough to contain at least BIT_OFFSET bits. If not, an error is raised. |
| |
| IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode, |
| zero otherwise. |
| |
| IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type. |
| |
| IS_SCALAR is nonzero if the data corresponds to a signed type. */ |
| |
| static void |
| ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size, |
| gdb_byte *unpacked, int unpacked_len, |
| int is_big_endian, int is_signed_type, |
| int is_scalar) |
| { |
| int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
| int src_idx; /* Index into the source area */ |
| int src_bytes_left; /* Number of source bytes left to process. */ |
| int srcBitsLeft; /* Number of source bits left to move */ |
| int unusedLS; /* Number of bits in next significant |
| byte of source that are unused */ |
| |
| int unpacked_idx; /* Index into the unpacked buffer */ |
| int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */ |
| |
| unsigned long accum; /* Staging area for bits being transferred */ |
| int accumSize; /* Number of meaningful bits in accum */ |
| unsigned char sign; |
| |
| /* Transmit bytes from least to most significant; delta is the direction |
| the indices move. */ |
| int delta = is_big_endian ? -1 : 1; |
| |
| /* Make sure that unpacked is large enough to receive the BIT_SIZE |
| bits from SRC. .*/ |
| if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len) |
| error (_("Cannot unpack %d bits into buffer of %d bytes"), |
| bit_size, unpacked_len); |
| |
| srcBitsLeft = bit_size; |
| src_bytes_left = src_len; |
| unpacked_bytes_left = unpacked_len; |
| sign = 0; |
| |
| if (is_big_endian) |
| { |
| src_idx = src_len - 1; |
| if (is_signed_type |
| && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) |
| sign = ~0; |
| |
| unusedLS = |
| (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
| % HOST_CHAR_BIT; |
| |
| if (is_scalar) |
| { |
| accumSize = 0; |
| unpacked_idx = unpacked_len - 1; |
| } |
| else |
| { |
| /* Non-scalar values must be aligned at a byte boundary... */ |
| accumSize = |
| (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; |
| /* ... And are placed at the beginning (most-significant) bytes |
| of the target. */ |
| unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
| unpacked_bytes_left = unpacked_idx + 1; |
| } |
| } |
| else |
| { |
| int sign_bit_offset = (bit_size + bit_offset - 1) % 8; |
| |
| src_idx = unpacked_idx = 0; |
| unusedLS = bit_offset; |
| accumSize = 0; |
| |
| if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset))) |
| sign = ~0; |
| } |
| |
| accum = 0; |
| while (src_bytes_left > 0) |
| { |
| /* Mask for removing bits of the next source byte that are not |
| part of the value. */ |
| unsigned int unusedMSMask = |
| (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
| 1; |
| /* Sign-extend bits for this byte. */ |
| unsigned int signMask = sign & ~unusedMSMask; |
| |
| accum |= |
| (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
| accumSize += HOST_CHAR_BIT - unusedLS; |
| if (accumSize >= HOST_CHAR_BIT) |
| { |
| unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
| accumSize -= HOST_CHAR_BIT; |
| accum >>= HOST_CHAR_BIT; |
| unpacked_bytes_left -= 1; |
| unpacked_idx += delta; |
| } |
| srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
| unusedLS = 0; |
| src_bytes_left -= 1; |
| src_idx += delta; |
| } |
| while (unpacked_bytes_left > 0) |
| { |
| accum |= sign << accumSize; |
| unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
| accumSize -= HOST_CHAR_BIT; |
| if (accumSize < 0) |
| accumSize = 0; |
| accum >>= HOST_CHAR_BIT; |
| unpacked_bytes_left -= 1; |
| unpacked_idx += delta; |
| } |
| } |
| |
| /* Create a new value of type TYPE from the contents of OBJ starting |
| at byte OFFSET, and bit offset BIT_OFFSET within that byte, |
| proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then |
| assigning through the result will set the field fetched from. |
| VALADDR is ignored unless OBJ is NULL, in which case, |
| VALADDR+OFFSET must address the start of storage containing the |
| packed value. The value returned in this case is never an lval. |
| Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ |
| |
| struct value * |
| ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
| long offset, int bit_offset, int bit_size, |
| struct type *type) |
| { |
| struct value *v; |
| const gdb_byte *src; /* First byte containing data to unpack */ |
| gdb_byte *unpacked; |
| const int is_scalar = is_scalar_type (type); |
| const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG; |
| gdb::byte_vector staging; |
| |
| type = ada_check_typedef (type); |
| |
| if (obj == NULL) |
| src = valaddr + offset; |
| else |
| src = value_contents (obj).data () + offset; |
| |
| if (is_dynamic_type (type)) |
| { |
| /* The length of TYPE might by dynamic, so we need to resolve |
| TYPE in order to know its actual size, which we then use |
| to create the contents buffer of the value we return. |
| The difficulty is that the data containing our object is |
| packed, and therefore maybe not at a byte boundary. So, what |
| we do, is unpack the data into a byte-aligned buffer, and then |
| use that buffer as our object's value for resolving the type. */ |
| int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
| staging.resize (staging_len); |
| |
| ada_unpack_from_contents (src, bit_offset, bit_size, |
| staging.data (), staging.size (), |
| is_big_endian, has_negatives (type), |
| is_scalar); |
| type = resolve_dynamic_type (type, staging, 0); |
| if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT) |
| { |
| /* This happens when the length of the object is dynamic, |
| and is actually smaller than the space reserved for it. |
| For instance, in an array of variant records, the bit_size |
| we're given is the array stride, which is constant and |
| normally equal to the maximum size of its element. |
| But, in reality, each element only actually spans a portion |
| of that stride. */ |
| bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; |
| } |
| } |
| |
| if (obj == NULL) |
| { |
| v = allocate_value (type); |
| src = valaddr + offset; |
| } |
| else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
| { |
| int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
| gdb_byte *buf; |
| |
| v = value_at (type, value_address (obj) + offset); |
| buf = (gdb_byte *) alloca (src_len); |
| read_memory (value_address (v), buf, src_len); |
| src = buf; |
| } |
| else |
| { |
| v = allocate_value (type); |
| src = value_contents (obj).data () + offset; |
| } |
| |
| if (obj != NULL) |
| { |
| long new_offset = offset; |
| |
| set_value_component_location (v, obj); |
| set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
| set_value_bitsize (v, bit_size); |
| if (value_bitpos (v) >= HOST_CHAR_BIT) |
| { |
| ++new_offset; |
| set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
| } |
| set_value_offset (v, new_offset); |
| |
| /* Also set the parent value. This is needed when trying to |
| assign a new value (in inferior memory). */ |
| set_value_parent (v, obj); |
| } |
| else |
| set_value_bitsize (v, bit_size); |
| unpacked = value_contents_writeable (v).data (); |
| |
| if (bit_size == 0) |
| { |
| memset (unpacked, 0, TYPE_LENGTH (type)); |
| return v; |
| } |
| |
| if (staging.size () == TYPE_LENGTH (type)) |
| { |
| /* Small short-cut: If we've unpacked the data into a buffer |
| of the same size as TYPE's length, then we can reuse that, |
| instead of doing the unpacking again. */ |
| memcpy (unpacked, staging.data (), staging.size ()); |
| } |
| else |
| ada_unpack_from_contents (src, bit_offset, bit_size, |
| unpacked, TYPE_LENGTH (type), |
| is_big_endian, has_negatives (type), is_scalar); |
| |
| return v; |
| } |
| |
| /* Store the contents of FROMVAL into the location of TOVAL. |
| Return a new value with the location of TOVAL and contents of |
| FROMVAL. Handles assignment into packed fields that have |
| floating-point or non-scalar types. */ |
| |
| static struct value * |
| ada_value_assign (struct value *toval, struct value *fromval) |
| { |
| struct type *type = value_type (toval); |
| int bits = value_bitsize (toval); |
| |
| toval = ada_coerce_ref (toval); |
| fromval = ada_coerce_ref (fromval); |
| |
| if (ada_is_direct_array_type (value_type (toval))) |
| toval = ada_coerce_to_simple_array (toval); |
| if (ada_is_direct_array_type (value_type (fromval))) |
| fromval = ada_coerce_to_simple_array (fromval); |
| |
| if (!deprecated_value_modifiable (toval)) |
| error (_("Left operand of assignment is not a modifiable lvalue.")); |
| |
| if (VALUE_LVAL (toval) == lval_memory |
| && bits > 0 |
| && (type->code () == TYPE_CODE_FLT |
| || type->code () == TYPE_CODE_STRUCT)) |
| { |
| int len = (value_bitpos (toval) |
| + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
| int from_size; |
| gdb_byte *buffer = (gdb_byte *) alloca (len); |
| struct value *val; |
| CORE_ADDR to_addr = value_address (toval); |
| |
| if (type->code () == TYPE_CODE_FLT) |
| fromval = value_cast (type, fromval); |
| |
| read_memory (to_addr, buffer, len); |
| from_size = value_bitsize (fromval); |
| if (from_size == 0) |
| from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; |
| |
| const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG; |
| ULONGEST from_offset = 0; |
| if (is_big_endian && is_scalar_type (value_type (fromval))) |
| from_offset = from_size - bits; |
| copy_bitwise (buffer, value_bitpos (toval), |
| value_contents (fromval).data (), from_offset, |
| bits, is_big_endian); |
| write_memory_with_notification (to_addr, buffer, len); |
| |
| val = value_copy (toval); |
| memcpy (value_contents_raw (val).data (), |
| value_contents (fromval).data (), |
| TYPE_LENGTH (type)); |
| deprecated_set_value_type (val, type); |
| |
| return val; |
| } |
| |
| return value_assign (toval, fromval); |
| } |
| |
| |
| /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
| CONTAINER, assign the contents of VAL to COMPONENTS's place in |
| CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not |
| COMPONENT, and not the inferior's memory. The current contents |
| of COMPONENT are ignored. |
| |
| Although not part of the initial design, this function also works |
| when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER |
| had a null address, and COMPONENT had an address which is equal to |
| its offset inside CONTAINER. */ |
| |
| static void |
| value_assign_to_component (struct value *container, struct value *component, |
| struct value *val) |
| { |
| LONGEST offset_in_container = |
| (LONGEST) (value_address (component) - value_address (container)); |
| int bit_offset_in_container = |
| value_bitpos (component) - value_bitpos (container); |
| int bits; |
| |
| val = value_cast (value_type (component), val); |
| |
| if (value_bitsize (component) == 0) |
| bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); |
| else |
| bits = value_bitsize (component); |
| |
| if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG) |
| { |
| int src_offset; |
| |
| if (is_scalar_type (check_typedef (value_type (component)))) |
| src_offset |
| = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits; |
| else |
| src_offset = 0; |
| copy_bitwise ((value_contents_writeable (container).data () |
| + offset_in_container), |
| value_bitpos (container) + bit_offset_in_container, |
| value_contents (val).data (), src_offset, bits, 1); |
| } |
| else |
| copy_bitwise ((value_contents_writeable (container).data () |
| + offset_in_container), |
| value_bitpos (container) + bit_offset_in_container, |
| value_contents (val).data (), 0, bits, 0); |
| } |
| |
| /* Determine if TYPE is an access to an unconstrained array. */ |
| |
| bool |
| ada_is_access_to_unconstrained_array (struct type *type) |
| { |
| return (type->code () == TYPE_CODE_TYPEDEF |
| && is_thick_pntr (ada_typedef_target_type (type))); |
| } |
| |
| /* The value of the element of array ARR at the ARITY indices given in IND. |
| ARR may be either a simple array, GNAT array descriptor, or pointer |
| thereto. */ |
| |
| struct value * |
| ada_value_subscript (struct value *arr, int arity, struct value **ind) |
| { |
| int k; |
| struct value *elt; |
| struct type *elt_type; |
| |
| elt = ada_coerce_to_simple_array (arr); |
| |
| elt_type = ada_check_typedef (value_type (elt)); |
| if (elt_type->code () == TYPE_CODE_ARRAY |
| && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
| return value_subscript_packed (elt, arity, ind); |
| |
| for (k = 0; k < arity; k += 1) |
| { |
| struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type); |
| |
| if (elt_type->code () != TYPE_CODE_ARRAY) |
| error (_("too many subscripts (%d expected)"), k); |
| |
| elt = value_subscript (elt, pos_atr (ind[k])); |
| |
| if (ada_is_access_to_unconstrained_array (saved_elt_type) |
| && value_type (elt)->code () != TYPE_CODE_TYPEDEF) |
| { |
| /* The element is a typedef to an unconstrained array, |
| except that the value_subscript call stripped the |
| typedef layer. The typedef layer is GNAT's way to |
| specify that the element is, at the source level, an |
| access to the unconstrained array, rather than the |
| unconstrained array. So, we need to restore that |
| typedef layer, which we can do by forcing the element's |
| type back to its original type. Otherwise, the returned |
| value is going to be printed as the array, rather |
| than as an access. Another symptom of the same issue |
| would be that an expression trying to dereference the |
| element would also be improperly rejected. */ |
| deprecated_set_value_type (elt, saved_elt_type); |
| } |
| |
| elt_type = ada_check_typedef (value_type (elt)); |
| } |
| |
| return elt; |
| } |
| |
| /* Assuming ARR is a pointer to a GDB array, the value of the element |
| of *ARR at the ARITY indices given in IND. |
| Does not read the entire array into memory. |
| |
| Note: Unlike what one would expect, this function is used instead of |
| ada_value_subscript for basically all non-packed array types. The reason |
| for this is that a side effect of doing our own pointer arithmetics instead |
| of relying on value_subscript is that there is no implicit typedef peeling. |
| This is important for arrays of array accesses, where it allows us to |
| preserve the fact that the array's element is an array access, where the |
| access part os encoded in a typedef layer. */ |
| |
| static struct value * |
| ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
| { |
| int k; |
| struct value *array_ind = ada_value_ind (arr); |
| struct type *type |
| = check_typedef (value_enclosing_type (array_ind)); |
| |
| if (type->code () == TYPE_CODE_ARRAY |
| && TYPE_FIELD_BITSIZE (type, 0) > 0) |
| return value_subscript_packed (array_ind, arity, ind); |
| |
| for (k = 0; k < arity; k += 1) |
| { |
| LONGEST lwb, upb; |
| |
| if (type->code () != TYPE_CODE_ARRAY) |
| error (_("too many subscripts (%d expected)"), k); |
| arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
| value_copy (arr)); |
| get_discrete_bounds (type->index_type (), &lwb, &upb); |
| arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
| type = TYPE_TARGET_TYPE (type); |
| } |
| |
| return value_ind (arr); |
| } |
| |
| /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
| actual type of ARRAY_PTR is ignored), returns the Ada slice of |
| HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of |
| this array is LOW, as per Ada rules. */ |
| static struct value * |
| ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
| int low, int high) |
| { |
| struct type *type0 = ada_check_typedef (type); |
| struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ()); |
| struct type *index_type |
| = create_static_range_type (NULL, base_index_type, low, high); |
| struct type *slice_type = create_array_type_with_stride |
| (NULL, TYPE_TARGET_TYPE (type0), index_type, |
| type0->dyn_prop (DYN_PROP_BYTE_STRIDE), |
| TYPE_FIELD_BITSIZE (type0, 0)); |
| int base_low = ada_discrete_type_low_bound (type0->index_type ()); |
| gdb::optional<LONGEST> base_low_pos, low_pos; |
| CORE_ADDR base; |
| |
| low_pos = discrete_position (base_index_type, low); |
| base_low_pos = discrete_position (base_index_type, base_low); |
| |
| if (!low_pos.has_value () || !base_low_pos.has_value ()) |
| { |
| warning (_("unable to get positions in slice, use bounds instead")); |
| low_pos = low; |
| base_low_pos = base_low; |
| } |
| |
| ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8; |
| if (stride == 0) |
| stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0)); |
| |
| base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride; |
| return value_at_lazy (slice_type, base); |
| } |
| |
| |
| static struct value * |
| ada_value_slice (struct value *array, int low, int high) |
| { |
| struct type *type = ada_check_typedef (value_type (array)); |
| struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ()); |
| struct type *index_type |
| = create_static_range_type (NULL, type->index_type (), low, high); |
| struct type *slice_type = create_array_type_with_stride |
| (NULL, TYPE_TARGET_TYPE (type), index_type, |
| type->dyn_prop (DYN_PROP_BYTE_STRIDE), |
| TYPE_FIELD_BITSIZE (type, 0)); |
| gdb::optional<LONGEST> low_pos, high_pos; |
| |
| |
| low_pos = discrete_position (base_index_type, low); |
| high_pos = discrete_position (base_index_type, high); |
| |
| if (!low_pos.has_value () || !high_pos.has_value ()) |
| { |
| warning (_("unable to get positions in slice, use bounds instead")); |
| low_pos = low; |
| high_pos = high; |
| } |
| |
| return value_cast (slice_type, |
| value_slice (array, low, *high_pos - *low_pos + 1)); |
| } |
| |
| /* If type is a record type in the form of a standard GNAT array |
| descriptor, returns the number of dimensions for type. If arr is a |
| simple array, returns the number of "array of"s that prefix its |
| type designation. Otherwise, returns 0. */ |
| |
| int |
| ada_array_arity (struct type *type) |
| { |
| int arity; |
| |
| if (type == NULL) |
| return 0; |
| |
| type = desc_base_type (type); |
| |
| arity = 0; |
| if (type->code () == TYPE_CODE_STRUCT) |
| return desc_arity (desc_bounds_type (type)); |
| else |
| while (type->code () == TYPE_CODE_ARRAY) |
| { |
| arity += 1; |
| type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
| } |
| |
| return arity; |
| } |
| |
| /* If TYPE is a record type in the form of a standard GNAT array |
| descriptor or a simple array type, returns the element type for |
| TYPE after indexing by NINDICES indices, or by all indices if |
| NINDICES is -1. Otherwise, returns NULL. */ |
| |
| struct type * |
| ada_array_element_type (struct type *type, int nindices) |
| { |
| type = desc_base_type (type); |
| |
| if (type->code () == TYPE_CODE_STRUCT) |
| { |
| int k; |
| struct type *p_array_type; |
| |
| p_array_type = desc_data_target_type (type); |
| |
| k = ada_array_arity (type); |
| if (k == 0) |
| return NULL; |
| |
| /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
| if (nindices >= 0 && k > nindices) |
| k = nindices; |
| while (k > 0 && p_array_type != NULL) |
| { |
| p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
| k -= 1; |
| } |
| return p_array_type; |
| } |
| else if (type->code () == TYPE_CODE_ARRAY) |
| { |
| while (nindices != 0 && type->code () == TYPE_CODE_ARRAY) |
| { |
| type = TYPE_TARGET_TYPE (type); |
| nindices -= 1; |
| } |
| return type; |
| } |
| |
| return NULL; |
| } |
| |
| /* See ada-lang.h. */ |
| |
| struct type * |
| ada_index_type (struct type *type, int n, const char *name) |
| { |
| struct type *result_type; |
| |
| type = desc_base_type (type); |
| |
| if (n < 0 || n > ada_array_arity (type)) |
| error (_("invalid dimension number to '%s"), name); |
| |
| if (ada_is_simple_array_type (type)) |
| { |
| int i; |
| |
| for (i = 1; i < n; i += 1) |
| { |
| type = ada_check_typedef (type); |
| type = TYPE_TARGET_TYPE (type); |
| } |
| result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ()); |
| /* FIXME: The stabs type r(0,0);bound;bound in an array type |
| has a target type of TYPE_CODE_UNDEF. We compensate here, but |
| perhaps stabsread.c would make more sense. */ |
| if (result_type && result_type->code () == TYPE_CODE_UNDEF) |
| result_type = NULL; |
| } |
| else |
| { |
| result_type = desc_index_type (desc_bounds_type (type), n); |
| if (result_type == NULL) |
| error (_("attempt to take bound of something that is not an array")); |
| } |
| |
| return result_type; |
| } |
| |
| /* Given that arr is an array type, returns the lower bound of the |
| Nth index (numbering from 1) if WHICH is 0, and the upper bound if |
| WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
| array-descriptor type. It works for other arrays with bounds supplied |
| by run-time quantities other than discriminants. */ |
| |
| static LONGEST |
| ada_array_bound_from_type (struct type *arr_type, int n, int which) |
| { |
| struct type *type, *index_type_desc, *index_type; |
| int i; |
| |
| gdb_assert (which == 0 || which == 1); |
| |
| if (ada_is_constrained_packed_array_type (arr_type)) |
| arr_type = decode_constrained_packed_array_type (arr_type); |
| |
| if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
| return (LONGEST) - which; |
| |
| if (arr_type->code () == TYPE_CODE_PTR) |
| type = TYPE_TARGET_TYPE (arr_type); |
| else |
| type = arr_type; |
| |
| if (type->is_fixed_instance ()) |
| { |
| /* The array has already been fixed, so we do not need to |
| check the parallel ___XA type again. That encoding has |
| already been applied, so ignore it now. */ |
| index_type_desc = NULL; |
| } |
| else |
| { |
| index_type_desc = ada_find_parallel_type (type, "___XA"); |
| ada_fixup_array_indexes_type (index_type_desc); |
| } |
| |
| if (index_type_desc != NULL) |
| index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (), |
| NULL); |
| else |
| { |
| struct type *elt_type = check_typedef (type); |
| |
| for (i = 1; i < n; i++) |
| elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); |
| |
| index_type = elt_type->index_type (); |
| } |
| |
| return |
| (LONGEST) (which == 0 |
| ? ada_discrete_type_low_bound (index_type) |
| : ada_discrete_type_high_bound (index_type)); |
| } |
| |
| /* Given that arr is an array value, returns the lower bound of the |
| nth index (numbering from 1) if WHICH is 0, and the upper bound if |
| WHICH is 1. This routine will also work for arrays with bounds |
| supplied by run-time quantities other than discriminants. */ |
| |
| static LONGEST |
| ada_array_bound (struct value *arr, int n, int which) |
| { |
| struct type *arr_type; |
| |
| if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR) |
| arr = value_ind (arr); |
| arr_type = value_enclosing_type (arr); |
| |
| if (ada_is_constrained_packed_array_type (arr_type)) |
| return ada_array_bound (decode_constrained_packed_array (arr), n, which); |
| else if (ada_is_simple_array_type (arr_type)) |
| return ada_array_bound_from_type (arr_type, n, which); |
| else |
| return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
| } |
| |
| /* Given that arr is an array value, returns the length of the |
| nth index. This routine will also work for arrays with bounds |
| supplied by run-time quantities other than discriminants. |
| Does not work for arrays indexed by enumeration types with representation |
| clauses at the moment. */ |
| |
| static LONGEST |
| ada_array_length (struct value *arr, int n) |
| { |
| struct type *arr_type, *index_type; |
| int low, high; |
| |
| if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR) |
| arr = value_ind (arr); |
| arr_type = value_enclosing_type (arr); |
| |
| if (ada_is_constrained_packed_array_type (arr_type)) |
| return ada_array_length (decode_constrained_packed_array (arr), n); |
| |
| if (ada_is_simple_array_type (arr_type)) |
| { |
| low = ada_array_bound_from_type (arr_type, n, 0); |
| high = ada_array_bound_from_type (arr_type, n, 1); |
| } |
| else |
| { |
| low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); |
| high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); |
| } |
| |
| arr_type = check_typedef (arr_type); |
| index_type = ada_index_type (arr_type, n, "length"); |
| if (index_type != NULL) |
| { |
| struct type *base_type; |
| if (index_type->code () == TYPE_CODE_RANGE) |
| base_type = TYPE_TARGET_TYPE (index_type); |
| else |
| base_type = index_type; |
| |
| low = pos_atr (value_from_longest (base_type, low)); |
| high = pos_atr (value_from_longest (base_type, high)); |
| } |
| return high - low + 1; |
| } |
| |
| /* An array whose type is that of ARR_TYPE (an array type), with |
| bounds LOW to HIGH, but whose contents are unimportant. If HIGH is |
| less than LOW, then LOW-1 is used. */ |
| |
| static struct value * |
| empty_array (struct type *arr_type, int low, int high) |
| { |
| struct type *arr_type0 = ada_check_typedef (arr_type); |
| struct type *index_type |
| = create_static_range_type |
| (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low, |
| high < low ? low - 1 : high); |
| struct type *elt_type = ada_array_element_type (arr_type0, 1); |
| |
| return allocate_value (create_array_type (NULL, elt_type, index_type)); |
| } |
| |
| |
| /* Name resolution */ |
| |
| /* The "decoded" name for the user-definable Ada operator corresponding |
| to OP. */ |
| |
| static const char * |
| ada_decoded_op_name (enum exp_opcode op) |
| { |
| int i; |
| |
| for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
| { |
| if (ada_opname_table[i].op == op) |
| return ada_opname_table[i].decoded; |
| } |
| error (_("Could not find operator name for opcode")); |
| } |
| |
| /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
| in a listing of choices during disambiguation (see sort_choices, below). |
| The idea is that overloadings of a subprogram name from the |
| same package should sort in their source order. We settle for ordering |
| such symbols by their trailing number (__N or $N). */ |
| |
| static int |
| encoded_ordered_before (const char *N0, const char *N1) |
| { |
| if (N1 == NULL) |
| return 0; |
| else if (N0 == NULL) |
| return 1; |
| else |
| { |
| int k0, k1; |
| |
| for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
| ; |
| for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
| ; |
| if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
| && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
| { |
| int n0, n1; |
| |
| n0 = k0; |
| while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') |
| n0 -= 1; |
| n1 = k1; |
| while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') |
| n1 -= 1; |
| if (n0 == n1 && strncmp (N0, N1, n0) == 0) |
| return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); |
| } |
| return (strcmp (N0, N1) < 0); |
| } |
| } |
| |
| /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
| encoded names. */ |
| |
| static void |
| sort_choices (struct block_symbol syms[], int nsyms) |
| { |
| int i; |
| |
| for (i = 1; i < nsyms; i += 1) |
| { |
| struct block_symbol sym = syms[i]; |
| int j; |
| |
| for (j = i - 1; j >= 0; j -= 1) |
| { |
| if (encoded_ordered_before (syms[j].symbol->linkage_name (), |
| sym.symbol->linkage_name ())) |
| break; |
| syms[j + 1] = syms[j]; |
| } |
| syms[j + 1] = sym; |
| } |
| } |
| |
| /* Whether GDB should display formals and return types for functions in the |
| overloads selection menu. */ |
| static bool print_signatures = true; |
| |
| /* Print the signature for SYM on STREAM according to the FLAGS options. For |
| all but functions, the signature is just the name of the symbol. For |
| functions, this is the name of the function, the list of types for formals |
| and the return type (if any). */ |
| |
| static void |
| ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym, |
| const struct type_print_options *flags) |
| { |
| struct type *type = sym->type (); |
| |
| gdb_printf (stream, "%s", sym->print_name ()); |
| if (!print_signatures |
| || type == NULL |
| || type->code () != TYPE_CODE_FUNC) |
| return; |
| |
| if (type->num_fields () > 0) |
| { |
| int i; |
| |
| gdb_printf (stream, " ("); |
| for (i = 0; i < type->num_fields (); ++i) |
| { |
| if (i > 0) |
| gdb_printf (stream, "; "); |
| ada_print_type (type->field (i).type (), NULL, stream, -1, 0, |
| flags); |
| } |
| gdb_printf (stream, ")"); |
| } |
| if (TYPE_TARGET_TYPE (type) != NULL |
| && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID) |
| { |
| gdb_printf (stream, " return "); |
| ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags); |
| } |
| } |
| |
| /* Read and validate a set of numeric choices from the user in the |
| range 0 .. N_CHOICES-1. Place the results in increasing |
| order in CHOICES[0 .. N-1], and return N. |
| |
| The user types choices as a sequence of numbers on one line |
| separated by blanks, encoding them as follows: |
| |
| + A choice of 0 means to cancel the selection, throwing an error. |
| + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
| + The user chooses k by typing k+IS_ALL_CHOICE+1. |
| |
| The user is not allowed to choose more than MAX_RESULTS values. |
| |
| ANNOTATION_SUFFIX, if present, is used to annotate the input |
| prompts (for use with the -f switch). */ |
| |
| static int |
| get_selections (int *choices, int n_choices, int max_results, |
| int is_all_choice, const char *annotation_suffix) |
| { |
| const char *args; |
| const char *prompt; |
| int n_chosen; |
| int first_choice = is_all_choice ? 2 : 1; |
| |
| prompt = getenv ("PS2"); |
| if (prompt == NULL) |
| prompt = "> "; |
| |
| args = command_line_input (prompt, annotation_suffix); |
| |
| if (args == NULL) |
| error_no_arg (_("one or more choice numbers")); |
| |
| n_chosen = 0; |
| |
| /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
| order, as given in args. Choices are validated. */ |
| while (1) |
| { |
| char *args2; |
| int choice, j; |
| |
| args = skip_spaces (args); |
| if (*args == '\0' && n_chosen == 0) |
| error_no_arg (_("one or more choice numbers")); |
| else if (*args == '\0') |
| break; |
| |
| choice = strtol (args, &args2, 10); |
| if (args == args2 || choice < 0 |
| || choice > n_choices + first_choice - 1) |
| error (_("Argument must be choice number")); |
| args = args2; |
| |
| if (choice == 0) |
| error (_("cancelled")); |
| |
| if (choice < first_choice) |
| { |
| n_chosen = n_choices; |
| for (j = 0; j < n_choices; j += 1) |
| choices[j] = j; |
| break; |
| } |
| choice -= first_choice; |
| |
| for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
| { |
| } |
| |
| if (j < 0 || choice != choices[j]) |
| { |
| int k; |
| |
| for (k = n_chosen - 1; k > j; k -= 1) |
| choices[k + 1] = choices[k]; |
| choices[j + 1] = choice; |
| n_chosen += 1; |
| } |
| } |
| |
| if (n_chosen > max_results) |
| error (_("Select no more than %d of the above"), max_results); |
| |
| return n_chosen; |
| } |
| |
| /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
| by asking the user (if necessary), returning the number selected, |
| and setting the first elements of SYMS items. Error if no symbols |
| selected. */ |
| |
| /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought |
| to be re-integrated one of these days. */ |
| |
| static int |
| user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
| { |
| int i; |
| int *chosen = XALLOCAVEC (int , nsyms); |
| int n_chosen; |
| int first_choice = (max_results == 1) ? 1 : 2; |
| const char *select_mode = multiple_symbols_select_mode (); |
| |
| if (max_results < 1) |
| error (_("Request to select 0 symbols!")); |
| if (nsyms <= 1) |
| return nsyms; |
| |
| if (select_mode == multiple_symbols_cancel) |
| error (_("\ |
| canceled because the command is ambiguous\n\ |
| See set/show multiple-symbol.")); |
| |
| /* If select_mode is "all", then return all possible symbols. |
| Only do that if more than one symbol can be selected, of course. |
| Otherwise, display the menu as usual. */ |
| if (select_mode == multiple_symbols_all && max_results > 1) |
| return nsyms; |
| |
| gdb_printf (_("[0] cancel\n")); |
| if (max_results > 1) |
| gdb_printf (_("[1] all\n")); |
| |
| sort_choices (syms, nsyms); |
| |
| for (i = 0; i < nsyms; i += 1) |
| { |
| if (syms[i].symbol == NULL) |
| continue; |
| |
| if (syms[i].symbol->aclass () == LOC_BLOCK) |
| { |
| struct symtab_and_line sal = |
| find_function_start_sal (syms[i].symbol, 1); |
| |
| gdb_printf ("[%d] ", i + first_choice); |
| ada_print_symbol_signature (gdb_stdout, syms[i].symbol, |
| &type_print_raw_options); |
| if (sal.symtab == NULL) |
| gdb_printf (_(" at %p[<no source file available>%p]:%d\n"), |
| metadata_style.style ().ptr (), nullptr, sal.line); |
| else |
| gdb_printf |
| (_(" at %ps:%d\n"), |
| styled_string (file_name_style.style (), |
| symtab_to_filename_for_display (sal.symtab)), |
| sal.line); |
| continue; |
| } |
| else |
| { |
| int is_enumeral = |
| (syms[i].symbol->aclass () == LOC_CONST |
| && syms[i].symbol->type () != NULL |
| && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM); |
| struct symtab *symtab = NULL; |
| |
| if (syms[i].symbol->is_objfile_owned ()) |
| symtab = symbol_symtab (syms[i].symbol); |
| |
| if (syms[i].symbol->line () != 0 && symtab != NULL) |
| { |
| gdb_printf ("[%d] ", i + first_choice); |
| ada_print_symbol_signature (gdb_stdout, syms[i].symbol, |
| &type_print_raw_options); |
| gdb_printf (_(" at %s:%d\n"), |
| symtab_to_filename_for_display (symtab), |
| syms[i].symbol->line ()); |
| } |
| else if (is_enumeral |
| && syms[i].symbol->type ()->name () != NULL) |
| { |
| gdb_printf (("[%d] "), i + first_choice); |
| ada_print_type (syms[i].symbol->type (), NULL, |
| gdb_stdout, -1, 0, &type_print_raw_options); |
| gdb_printf (_("'(%s) (enumeral)\n"), |
| syms[i].symbol->print_name ()); |
| } |
| else |
| { |
| gdb_printf ("[%d] ", i + first_choice); |
| ada_print_symbol_signature (gdb_stdout, syms[i].symbol, |
| &type_print_raw_options); |
| |
| if (symtab != NULL) |
| gdb_printf (is_enumeral |
| ? _(" in %s (enumeral)\n") |
| : _(" at %s:?\n"), |
| symtab_to_filename_for_display (symtab)); |
| else |
| gdb_printf (is_enumeral |
| ? _(" (enumeral)\n") |
| : _(" at ?\n")); |
| } |
| } |
| } |
| |
| n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
| "overload-choice"); |
| |
| for (i = 0; i < n_chosen; i += 1) |
| syms[i] = syms[chosen[i]]; |
| |
| return n_chosen; |
| } |
| |
| /* See ada-lang.h. */ |
| |
| block_symbol |
| ada_find_operator_symbol (enum exp_opcode op, bool parse_completion, |
| int nargs, value *argvec[]) |
| { |
| if (possible_user_operator_p (op, argvec)) |
| { |
| std::vector<struct block_symbol> candidates |
| = ada_lookup_symbol_list (ada_decoded_op_name (op), |
| NULL, VAR_DOMAIN); |
| |
| int i = ada_resolve_function (candidates, argvec, |
| nargs, ada_decoded_op_name (op), NULL, |
| parse_completion); |
| if (i >= 0) |
| return candidates[i]; |
| } |
| return {}; |
| } |
| |
| /* See ada-lang.h. */ |
| |
| block_symbol |
| ada_resolve_funcall (struct symbol *sym, const struct block *block, |
| struct type *context_type, |
| bool parse_completion, |
| int nargs, value *argvec[], |
| innermost_block_tracker *tracker) |
| { |
| std::vector<struct block_symbol> candidates |
| = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN); |
| |
| int i; |
| if (candidates.size () == 1) |
| i = 0; |
| else |
| { |
| i = ada_resolve_function |
| (candidates, |
| argvec, nargs, |
| sym->linkage_name (), |
| context_type, parse_completion); |
| if (i < 0) |
| error (_("Could not find a match for %s"), sym->print_name ()); |
| } |
| |
| tracker->update (candidates[i]); |
| return candidates[i]; |
| } |
| |
| /* Resolve a mention of a name where the context type is an |
| enumeration type. */ |
| |
| static int |
| ada_resolve_enum (std::vector<struct block_symbol> &syms, |
| const char *name, struct type *context_type, |
| bool parse_completion) |
| { |
| gdb_assert (context_type->code () == TYPE_CODE_ENUM); |
| context_type = ada_check_typedef (context_type); |
| |
| for (int i = 0; i < syms.size (); ++i) |
| { |
| /* We already know the name matches, so we're just looking for |
| an element of the correct enum type. */ |
| if (ada_check_typedef (syms[i].symbol->type ()) == context_type) |
| return i; |
| } |
| |
| error (_("No name '%s' in enumeration type '%s'"), name, |
| ada_type_name (context_type)); |
| } |
| |
| /* See ada-lang.h. */ |
| |
| block_symbol |
| ada_resolve_variable (struct symbol *sym, const struct block *block, |
| struct type *context_type, |
| bool parse_completion, |
| int deprocedure_p, |
| innermost_block_tracker *tracker) |
| { |
| std::vector<struct block_symbol> candidates |
| = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN); |
| |
| if (std::any_of (candidates.begin (), |
| candidates.end (), |
| [] (block_symbol &bsym) |
| { |
| switch (bsym.symbol->aclass ()) |
| { |
| case LOC_REGISTER: |
| case LOC_ARG: |
| case LOC_REF_ARG: |
| case LOC_REGPARM_ADDR: |
| case LOC_LOCAL: |
| case LOC_COMPUTED: |
| return true; |
| default: |
| return false; |
| } |
| })) |
| { |
| /* Types tend to get re-introduced locally, so if there |
| are any local symbols that are not types, first filter |
| out all types. */ |
| candidates.erase |
| (std::remove_if |
| (candidates.begin (), |
| candidates.end (), |
| [] (block_symbol &bsym) |
| { |
| return bsym.symbol->aclass () == LOC_TYPEDEF; |
| }), |
| candidates.end ()); |
| } |
| |
| /* Filter out artificial symbols. */ |
| candidates.erase |
| (std::remove_if |
| (candidates.begin (), |
| candidates.end (), |
| [] (block_symbol &bsym) |
| { |
| return bsym.symbol->artificial; |
| }), |
| candidates.end ()); |
| |
| int i; |
| if (candidates.empty ()) |
| error (_("No definition found for %s"), sym->print_name ()); |
| else if (candidates.size () == 1) |
| i = 0; |
| else if (context_type != nullptr |
| && context_type->code () == TYPE_CODE_ENUM) |
| i = ada_resolve_enum (candidates, sym->linkage_name (), context_type, |
| parse_completion); |
| else if (deprocedure_p && !is_nonfunction (candidates)) |
| { |
| i = ada_resolve_function |
| (candidates, NULL, 0, |
| sym->linkage_name (), |
| context_type, parse_completion); |
| if (i < 0) |
| error (_("Could not find a match for %s"), sym->print_name ()); |
| } |
| else |
| { |
| gdb_printf (_("Multiple matches for %s\n"), sym->print_name ()); |
| user_select_syms (candidates.data (), candidates.size (), 1); |
| i = 0; |
| } |
| |
| tracker->update (candidates[i]); |
| return candidates[i]; |
| } |
| |
| /* Return non-zero if formal type FTYPE matches actual type ATYPE. */ |
| /* The term "match" here is rather loose. The match is heuristic and |
| liberal. */ |
| |
| static int |
| ada_type_match (struct type *ftype, struct type *atype) |
| { |
| ftype = ada_check_typedef (ftype); |
| atype = ada_check_typedef (atype); |
| |
| if (ftype->code () == TYPE_CODE_REF) |
| ftype = TYPE_TARGET_TYPE (ftype); |
| if (atype->code () == TYPE_CODE_REF) |
| atype = TYPE_TARGET_TYPE (atype); |
| |
| switch (ftype->code ()) |
| { |
| default: |
| return ftype->code () == atype->code (); |
| case TYPE_CODE_PTR: |
| if (atype->code () != TYPE_CODE_PTR) |
| return 0; |
| atype = TYPE_TARGET_TYPE (atype); |
| /* This can only happen if the actual argument is 'null'. */ |
| if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0) |
| return 1; |
| return ada_type_match (TYPE_TARGET_TYPE (ftype), atype); |
| case TYPE_CODE_INT: |
| case TYPE_CODE_ENUM: |
| case TYPE_CODE_RANGE: |
| switch (atype->code ()) |
| { |
| case TYPE_CODE_INT: |
| case TYPE_CODE_ENUM: |
| case TYPE_CODE_RANGE: |
| return 1; |
| default: |
| return 0; |
| } |
| |
| case TYPE_CODE_ARRAY: |
| return (atype->code () == TYPE_CODE_ARRAY |
| || ada_is_array_descriptor_type (atype)); |
| |
| case TYPE_CODE_STRUCT: |
| if (ada_is_array_descriptor_type (ftype)) |
| return (atype->code () == TYPE_CODE_ARRAY |
| || ada_is_array_descriptor_type (atype)); |
| else |
| return (atype->code () == TYPE_CODE_STRUCT |
| && !ada_is_array_descriptor_type (atype)); |
| |
| case TYPE_CODE_UNION: |
| case TYPE_CODE_FLT: |
| return (atype->code () == ftype->code ()); |
| } |
| } |
| |
| /* Return non-zero if the formals of FUNC "sufficiently match" the |
| vector of actual argument types ACTUALS of size N_ACTUALS. FUNC |
| may also be an enumeral, in which case it is treated as a 0- |
| argument function. */ |
| |
| static int |
| ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
| { |
| int i; |
| struct type *func_type = func->type (); |
| |
| if (func->aclass () == LOC_CONST |
| && func_type->code () == TYPE_CODE_ENUM) |
| return (n_actuals == 0); |
| else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC) |
| return 0; |
| |
| if (func_type->num_fields () != n_actuals) |
| return 0; |
| |
| for (i = 0; i < n_actuals; i += 1) |
| { |
| if (actuals[i] == NULL) |
| return 0; |
| else |
| { |
| struct type *ftype = ada_check_typedef (func_type->field (i).type ()); |
| struct type *atype = ada_check_typedef (value_type (actuals[i])); |
| |
| if (!ada_type_match (ftype, atype)) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* False iff function type FUNC_TYPE definitely does not produce a value |
| compatible with type CONTEXT_TYPE. Conservatively returns 1 if |
| FUNC_TYPE is not a valid function type with a non-null return type |
| or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ |
| |
| static int |
| return_match (struct type *func_type, struct type *context_type) |
| { |
| struct type *return_type; |
| |
| if (func_type == NULL) |
| return 1; |
| |
| if (func_type->code () == TYPE_CODE_FUNC) |
| return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
| else |
| return_type = get_base_type (func_type); |
| if (return_type == NULL) |
| return 1; |
| |
| context_type = get_base_type (context_type); |
| |
| if (return_type->code () == TYPE_CODE_ENUM) |
| return context_type == NULL || return_type == context_type; |
| else if (context_type == NULL) |
| return return_type->code () != TYPE_CODE_VOID; |
| else |
| return return_type->code () == context_type->code (); |
| } |
| |
| |
| /* Returns the index in SYMS that contains the symbol for the |
| function (if any) that matches the types of the NARGS arguments in |
| ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
| that returns that type, then eliminate matches that don't. If |
| CONTEXT_TYPE is void and there is at least one match that does not |
| return void, eliminate all matches that do. |
| |
| Asks the user if there is more than one match remaining. Returns -1 |
| if there is no such symbol or none is selected. NAME is used |
| solely for messages. May re-arrange and modify SYMS in |
| the process; the index returned is for the modified vector. */ |
| |
| static int |
| ada_resolve_function (std::vector<struct block_symbol> &syms, |
| struct value **args, int nargs, |
| const char *name, struct type *context_type, |
| bool parse_completion) |
| { |
| int fallback; |
| int k; |
| int m; /* Number of hits */ |
| |
| m = 0; |
| /* In the first pass of the loop, we only accept functions matching |
| context_type. If none are found, we add a second pass of the loop |
| where every function is accepted. */ |
| for (fallback = 0; m == 0 && fallback < 2; fallback++) |
| { |
| for (k = 0; k < syms.size (); k += 1) |
| { |
| struct type *type = ada_check_typedef (syms[k].symbol->type ()); |
| |
| if (ada_args_match (syms[k].symbol, args, nargs) |
| && (fallback || return_match (type, context_type))) |
| { |
| syms[m] = syms[k]; |
| m += 1; |
| } |
| } |
| } |
| |
| /* If we got multiple matches, ask the user which one to use. Don't do this |
| interactive thing during completion, though, as the purpose of the |
| completion is providing a list of all possible matches. Prompting the |
| user to filter it down would be completely unexpected in this case. */ |
| if (m == 0) |
| return -1; |
| else if (m > 1 && !parse_completion) |
| { |
| gdb_printf (_("Multiple matches for %s\n"), name); |
| user_select_syms (syms.data (), m, 1); |
| return 0; |
| } |
| return 0; |
| } |
| |
| /* Type-class predicates */ |
| |
| /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
| or FLOAT). */ |
| |
| static int |
| numeric_type_p (struct type *type) |
| { |
| if (type == NULL) |
| return 0; |
| else |
| { |
| switch (type->code ()) |
| { |
| case TYPE_CODE_INT: |
| case TYPE_CODE_FLT: |
| case TYPE_CODE_FIXED_POINT: |
| return 1; |
| case TYPE_CODE_RANGE: |
| return (type == TYPE_TARGET_TYPE (type) |
| || numeric_type_p (TYPE_TARGET_TYPE (type))); |
| default: |
| return 0; |
| } |
| } |
| } |
| |
| /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
| |
| static int |
| integer_type_p (struct type *type) |
| { |
| if (type == NULL) |
| return 0; |
| else |
| { |
| switch (type->code ()) |
| { |
| case TYPE_CODE_INT: |
| return 1; |
| case TYPE_CODE_RANGE: |
| return (type == TYPE_TARGET_TYPE (type) |
| || integer_type_p (TYPE_TARGET_TYPE (type))); |
| default: |
| return 0; |
| } |
| } |
| } |
| |
| /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
| |
| static int |
| scalar_type_p (struct type *type) |
| { |
| if (type == NULL) |
| return 0; |
| else |
| { |
| switch (type->code ()) |
| { |
| case TYPE_CODE_INT: |
| case TYPE_CODE_RANGE: |
| case TYPE_CODE_ENUM: |
| case TYPE_CODE_FLT: |
| case TYPE_CODE_FIXED_POINT: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| } |
| |
| /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
| |
| static int |
| discrete_type_p (struct type *type) |
| { |
| if (type == NULL) |
| return 0; |
| else |
| { |
| switch (type->code ()) |
| { |
| case TYPE_CODE_INT: |
| case TYPE_CODE_RANGE: |
| case TYPE_CODE_ENUM: |
| case TYPE_CODE_BOOL: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| } |
| |
| /* Returns non-zero if OP with operands in the vector ARGS could be |
| a user-defined function. Errs on the side of pre-defined operators |
| (i.e., result 0). */ |
| |
| static int |
| possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
| { |
| struct type *type0 = |
| (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
| struct type *type1 = |
| (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
| |
| if (type0 == NULL) |
| return 0; |
| |
| switch (op) |
| { |
| default: |
| return 0; |
| |
| case BINOP_ADD: |
| case BINOP_SUB: |
| case BINOP_MUL: |
| case BINOP_DIV: |
| return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
| |
| case BINOP_REM: |
| case BINOP_MOD: |
| case BINOP_BITWISE_AND: |
| case BINOP_BITWISE_IOR: |
| case BINOP_BITWISE_XOR: |
| return (!(integer_type_p (type0) && integer_type_p (type1))); |
| |
| case BINOP_EQUAL: |
| case BINOP_NOTEQUAL: |
| case BINOP_LESS: |
| case BINOP_GTR: |
| case BINOP_LEQ: |
| case BINOP_GEQ: |
| return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
| |
| case BINOP_CONCAT: |
| return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
| |
| case BINOP_EXP: |
| return (!(numeric_type_p (type0) && integer_type_p (type1))); |
| |
| case UNOP_NEG: |
| case UNOP_PLUS: |
| case UNOP_LOGICAL_NOT: |
| case UNOP_ABS: |
| return (!numeric_type_p (type0)); |
| |
| } |
| } |
| |
| /* Renaming */ |
| |
| /* NOTES: |
| |
| 1. In the following, we assume that a renaming type's name may |
| have an ___XD suffix. It would be nice if this went away at some |
| point. |
| 2. We handle both the (old) purely type-based representation of |
| renamings and the (new) variable-based encoding. At some point, |
| it is devoutly to be hoped that the former goes away |
| (FIXME: hilfinger-2007-07-09). |
| 3. Subprogram renamings are not implemented, although the XRS |
| suffix is recognized (FIXME: hilfinger-2007-07-09). */ |
| |
| /* If SYM encodes a renaming, |
| |
| <renaming> renames <renamed entity>, |
| |
| sets *LEN to the length of the renamed entity's name, |
| *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to |
| the string describing the subcomponent selected from the renamed |
| entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
| (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
| are undefined). Otherwise, returns a value indicating the category |
| of entity renamed: an object (ADA_OBJECT_RENAMING), exception |
| (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or |
| subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the |
| strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be |
| deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR |
| may be NULL, in which case they are not assigned. |
| |
| [Currently, however, GCC does not generate subprogram renamings.] */ |
| |
| enum ada_renaming_category |
| ada_parse_renaming (struct symbol *sym, |
| const char **renamed_entity, int *len, |
| const char **renaming_expr) |
| { |
| enum ada_renaming_category kind; |
| const char *info; |
| const char *suffix; |
| |
| if (sym == NULL) |
| return ADA_NOT_RENAMING; |
| switch (sym->aclass ()) |
| { |
| default: |
| return ADA_NOT_RENAMING; |
| case LOC_LOCAL: |
| case LOC_STATIC: |
| case LOC_COMPUTED: |
| case LOC_OPTIMIZED_OUT: |
| info = strstr (sym->linkage_name (), "___XR"); |
| if (info == NULL) |
| return ADA_NOT_RENAMING; |
| switch (info[5]) |
| { |
| case '_': |
| kind = ADA_OBJECT_RENAMING; |
| info += 6; |
| break; |
| case 'E': |
| kind = ADA_EXCEPTION_RENAMING; |
| info += 7; |
| break; |
| case 'P': |
| kind = ADA_PACKAGE_RENAMING; |
| info += 7; |
| break; |
| case 'S': |
| kind = ADA_SUBPROGRAM_RENAMING; |
| info += 7; |
| break; |
| default: |
| return ADA_NOT_RENAMING; |
| } |
| } |
| |
| if (renamed_entity != NULL) |
| *renamed_entity = info; |
| suffix = strstr (info, "___XE"); |
| if (suffix == NULL || suffix == info) |
| return ADA_NOT_RENAMING; |
| if (len != NULL) |
| *len = strlen (info) - strlen (suffix); |
| suffix += 5; |
| if (renaming_expr != NULL) |
| *renaming_expr = suffix; |
| return kind; |
| } |
| |
| /* Compute the value of the given RENAMING_SYM, which is expected to |
| be a symbol encoding a renaming expression. BLOCK is the block |
| used to evaluate the renaming. */ |
| |
| static struct value * |
| ada_read_renaming_var_value (struct symbol *renaming_sym, |
| const struct block *block) |
| { |
| const char *sym_name; |
| |
| sym_name = renaming_sym->linkage_name (); |
| expression_up expr = parse_exp_1 (&sym_name, 0, block, 0); |
| return evaluate_expression (expr.get ()); |
| } |
| |
| |
| /* Evaluation: Function Calls */ |
| |
| /* Return an lvalue containing the value VAL. This is the identity on |
| lvalues, and otherwise has the side-effect of allocating memory |
| in the inferior where a copy of the value contents is copied. */ |
| |
| static struct value * |
| ensure_lval (struct value *val) |
| { |
| if (VALUE_LVAL (val) == not_lval |
| || VALUE_LVAL (val) == lval_internalvar) |
| { |
| int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
| const CORE_ADDR addr = |
| value_as_long (value_allocate_space_in_inferior (len)); |
| |
| VALUE_LVAL (val) = lval_memory; |
| set_value_address (val, addr); |
| write_memory (addr, value_contents (val).data (), len); |
| } |
| |
| return val; |
| } |
| |
| /* Given ARG, a value of type (pointer or reference to a)* |
| structure/union, extract the component named NAME from the ultimate |
| target structure/union and return it as a value with its |
| appropriate type. |
| |
| The routine searches for NAME among all members of the structure itself |
| and (recursively) among all members of any wrapper members |
| (e.g., '_parent'). |
| |
| If NO_ERR, then simply return NULL in case of error, rather than |
| calling error. */ |
| |
| static struct value * |
| ada_value_struct_elt (struct value *arg, const char *name, int no_err) |
| { |
| struct type *t, *t1; |
| struct value *v; |
| int check_tag; |
| |
| v = NULL; |
| t1 = t = ada_check_typedef (value_type (arg)); |
| if (t->code () == TYPE_CODE_REF) |
| { |
| t1 = TYPE_TARGET_TYPE (t); |
| if (t1 == NULL) |
| goto BadValue; |
| t1 = ada_check_typedef (t1); |
| if (t1->code () == TYPE_CODE_PTR) |
| { |
| arg = coerce_ref (arg); |
| t = t1; |
| } |
| } |
| |
| while (t->code () == TYPE_CODE_PTR) |
| { |
| t1 = TYPE_TARGET_TYPE (t); |
| if (t1 == NULL) |
| goto BadValue; |
| t1 = ada_check_typedef (t1); |
| if (t1->code () == TYPE_CODE_PTR) |
| { |
| arg = value_ind (arg); |
| t = t1; |
| } |
| else |
| break; |
| } |
| |
| if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION) |
| goto BadValue; |
| |
| if (t1 == t) |
| v = ada_search_struct_field (name, arg, 0, t); |
| else |
| { |
| int bit_offset, bit_size, byte_offset; |
| struct type *field_type; |
| CORE_ADDR address; |
| |
| if (t->code () == TYPE_CODE_PTR) |
| address = value_address (ada_value_ind (arg)); |
| else |
| address = value_address (ada_coerce_ref (arg)); |
| |
| /* Check to see if this is a tagged type. We also need to handle |
| the case where the type is a reference to a tagged type, but |
| we have to be careful to exclude pointers to tagged types. |
| The latter should be shown as usual (as a pointer), whereas |
| a reference should mostly be transparent to the user. */ |
| |
| if (ada_is_tagged_type (t1, 0) |
| || (t1->code () == TYPE_CODE_REF |
| && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0))) |
| { |
| /* We first try to find the searched field in the current type. |
| If not found then let's look in the fixed type. */ |
| |
| if (!find_struct_field (name, t1, 0, |
| nullptr, nullptr, nullptr, |
| nullptr, nullptr)) |
| check_tag = 1; |
| else |
| check_tag = 0; |
| } |
| else |
| check_tag = 0; |
| |
| /* Convert to fixed type in all cases, so that we have proper |
| offsets to each field in unconstrained record types. */ |
| t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, |
| address, NULL, check_tag); |
| |
| /* Resolve the dynamic type as well. */ |
| arg = value_from_contents_and_address (t1, nullptr, address); |
| t1 = value_type (arg); |
| |
| if (find_struct_field (name, t1, 0, |
| &field_type, &byte_offset, &bit_offset, |
| &bit_size, NULL)) |
| { |
| if (bit_size != 0) |
| { |
| if (t->code () == TYPE_CODE_REF) |
| arg = ada_coerce_ref (arg); |
| else |
| arg = ada_value_ind (arg); |
| v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
| bit_offset, bit_size, |
| field_type); |
| } |
| else |
| v = value_at_lazy (field_type, address + byte_offset); |
| } |
| } |
| |
| if (v != NULL || no_err) |
| return v; |
| else |
| error (_("There is no member named %s."), name); |
| |
| BadValue: |
| if (no_err) |
| return NULL; |
| else |
| error (_("Attempt to extract a component of " |
| "a value that is not a record.")); |
| } |
| |
| /* Return the value ACTUAL, converted to be an appropriate value for a |
| formal of type FORMAL_TYPE. Use *SP as a stack pointer for |
| allocating any necessary descriptors (fat pointers), or copies of |
| values not residing in memory, updating it as needed. */ |
| |
| struct value * |
| ada_convert_actual (struct value *actual, struct type *formal_type0) |
| { |
| struct type *actual_type = ada_check_typedef (value_type (actual)); |
| struct type *formal_type = ada_check_typedef (formal_type0); |
| struct type *formal_target = |
| formal_type->code () == TYPE_CODE_PTR |
| ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
| struct type *actual_target = |
| actual_type->code () == TYPE_CODE_PTR |
| ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
| |
| if (ada_is_array_descriptor_type (formal_target) |
| && actual_target->code () == TYPE_CODE_ARRAY) |
| return make_array_descriptor (formal_type, actual); |
| else if (formal_type->code () == TYPE_CODE_PTR |
| || formal_type->code () == TYPE_CODE_REF) |
| { |
| struct value *result; |
| |
| if (formal_target->code () == TYPE_CODE_ARRAY |
| && ada_is_array_descriptor_type (actual_target)) |
| result = desc_data (actual); |
| else if (formal_type->code () != TYPE_CODE_PTR) |
| { |
| if (VALUE_LVAL (actual) != lval_memory) |
| { |
| struct value *val; |
| |
| actual_type = ada_check_typedef (value_type (actual)); |
| val = allocate_value (actual_type); |
| copy (value_contents (actual), value_contents_raw (val)); |
| actual = ensure_lval (val); |
| } |
| result = value_addr (actual); |
| } |
| else |
| return actual; |
| return value_cast_pointers (formal_type, result, 0); |
| } |
| else if (actual_type->code () == TYPE_CODE_PTR) |
| return ada_value_ind (actual); |
| else if (ada_is_aligner_type (formal_type)) |
| { |
| /* We need to turn this parameter into an aligner type |
| as well. */ |
| struct value *aligner = allocate_value (formal_type); |
| struct value *component = ada_value_struct_elt (aligner, "F", 0); |
| |
| value_assign_to_component (aligner, component, actual); |
| return aligner; |
| } |
| |
| return actual; |
| } |
| |
| /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
| type TYPE. This is usually an inefficient no-op except on some targets |
| (such as AVR) where the representation of a pointer and an address |
| differs. */ |
| |
| static CORE_ADDR |
| value_pointer (struct value *value, struct type *type) |
| { |
| unsigned len = TYPE_LENGTH (type); |
| gdb_byte *buf = (gdb_byte *) alloca (len); |
| CORE_ADDR addr; |
| |
| addr = value_address (value); |
| gdbarch_address_to_pointer (type->arch (), type, buf, addr); |
| addr = extract_unsigned_integer (buf, len, type_byte_order (type)); |
| return addr; |
| } |
| |
| |
| /* Push a descriptor of type TYPE for array value ARR on the stack at |
| *SP, updating *SP to reflect the new descriptor. Return either |
| an lvalue representing the new descriptor, or (if TYPE is a pointer- |
| to-descriptor type rather than a descriptor type), a struct value * |
| representing a pointer to this descriptor. */ |
| |
| static struct value * |
| make_array_descriptor (struct type *type, struct value *arr) |
| { |
| struct type *bounds_type = desc_bounds_type (type); |
| struct type *desc_type = desc_base_type (type); |
| struct value *descriptor = allocate_value (desc_type); |
| struct value *bounds = allocate_value (bounds_type); |
| int i; |
| |
| for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
| i > 0; i -= 1) |
| { |
| modify_field (value_type (bounds), |
| value_contents_writeable (bounds).data (), |
| ada_array_bound (arr, i, 0), |
| desc_bound_bitpos (bounds_type, i, 0), |
| desc_bound_bitsize (bounds_type, i, 0)); |
| modify_field (value_type (bounds), |
| value_contents_writeable (bounds).data (), |
| ada_array_bound (arr, i, 1), |
| desc_bound_bitpos (bounds_type, i, 1), |
| desc_bound_bitsize (bounds_type, i, 1)); |
| } |
| |
| bounds = ensure_lval (bounds); |
| |
| modify_field (value_type (descriptor), |
| value_contents_writeable (descriptor).data (), |
| value_pointer (ensure_lval (arr), |
| desc_type->field (0).type ()), |
| fat_pntr_data_bitpos (desc_type), |
| fat_pntr_data_bitsize (desc_type)); |
| |
| modify_field (value_type (descriptor), |
| value_contents_writeable (descriptor).data (), |
| value_pointer (bounds, |
| desc_type->field (1).type ()), |
| fat_pntr_bounds_bitpos (desc_type), |
| fat_pntr_bounds_bitsize (desc_type)); |
| |
| descriptor = ensure_lval (descriptor); |
| |
| if (type->code () == TYPE_CODE_PTR) |
| return value_addr (descriptor); |
| else |
| return descriptor; |
| } |
| |
| /* Symbol Cache Module */ |
| |
| /* Performance measurements made as of 2010-01-15 indicate that |
| this cache does bring some noticeable improvements. Depending |
| on the type of entity being printed, the cache can make it as much |
| as an order of magnitude faster than without it. |
| |
| The descriptive type DWARF extension has significantly reduced |
| the need for this cache, at least when DWARF is being used. However, |
| even in this case, some expensive name-based symbol searches are still |
| sometimes necessary - to find an XVZ variable, mostly. */ |
| |
| /* Return the symbol cache associated to the given program space PSPACE. |
| If not allocated for this PSPACE yet, allocate and initialize one. */ |
| |
| static struct ada_symbol_cache * |
| ada_get_symbol_cache (struct program_space *pspace) |
| { |
| struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); |
| |
| if (pspace_data->sym_cache == nullptr) |
| pspace_data->sym_cache.reset (new ada_symbol_cache); |
| |
| return pspace_data->sym_cache.get (); |
| } |
| |
| /* Clear all entries from the symbol cache. */ |
| |
| static void |
| ada_clear_symbol_cache () |
| { |
| struct ada_pspace_data *pspace_data |
| = get_ada_pspace_data (current_program_space); |
| |
| if (pspace_data->sym_cache != nullptr) |
| pspace_data->sym_cache.reset (); |
| } |
| |
| /* Search our cache for an entry matching NAME and DOMAIN. |
| Return it if found, or NULL otherwise. */ |
| |
| static struct cache_entry ** |
| find_entry (const char *name, domain_enum domain) |
| { |
| struct ada_symbol_cache *sym_cache |
| = ada_get_symbol_cache (current_program_space); |
| int h = msymbol_hash (name) % HASH_SIZE; |
| struct cache_entry **e; |
| |
| for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
| { |
| if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
| return e; |
| } |
| return NULL; |
| } |
| |
| /* Search the symbol cache for an entry matching NAME and DOMAIN. |
| Return 1 if found, 0 otherwise. |
| |
| If an entry was found and SYM is not NULL, set *SYM to the entry's |
| SYM. Same principle for BLOCK if not NULL. */ |
| |
| static int |
| lookup_cached_symbol (const char *name, domain_enum domain, |
| struct symbol **sym, const struct block **block) |
| { |
| struct cache_entry **e = find_entry (name, domain); |
| |
| if (e == NULL) |
| return 0; |
| if (sym != NULL) |
| *sym = (*e)->sym; |
| if (block != NULL) |
| *block = (*e)->block; |
| return 1; |
| } |
| |
| /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
| in domain DOMAIN, save this result in our symbol cache. */ |
| |
| static void |
| cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
| const struct block *block) |
| { |
| struct ada_symbol_cache *sym_cache |
| = ada_get_symbol_cache (current_program_space); |
| int h; |
| struct cache_entry *e; |
| |
| /* Symbols for builtin types don't have a block. |
| For now don't cache such symbols. */ |
| if (sym != NULL && !sym->is_objfile_owned ()) |
| return; |
| |
| /* If the symbol is a local symbol, then do not cache it, as a search |
| for that symbol depends on the context. To determine whether |
| the symbol is local or not, we check the block where we found it |
| against the global and static blocks of its associated symtab. */ |
| if (sym |
| && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (), |
| GLOBAL_BLOCK) != block |
| && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (), |
| STATIC_BLOCK) != block) |
| return; |
| |
| h = msymbol_hash (name) % HASH_SIZE; |
| e = XOBNEW (&sym_cache->cache_space, cache_entry); |
| e->next = sym_cache->root[h]; |
| sym_cache->root[h] = e; |
| e->name = obstack_strdup (&sym_cache->cache_space, name); |
| e->sym = sym; |
| e->domain = domain; |
| e->block = block; |
| } |
| |
| /* Symbol Lookup */ |
| |
| /* Return the symbol name match type that should be used used when |
| searching for all symbols matching LOOKUP_NAME. |
| |
| LOOKUP_NAME is expected to be a symbol name after transformation |
| for Ada lookups. */ |
| |
| static symbol_name_match_type |
| name_match_type_from_name (const char *lookup_name) |
| { |
| return (strstr (lookup_name, "__") == NULL |
| ? symbol_name_match_type::WILD |
| : symbol_name_match_type::FULL); |
| } |
| |
| /* Return the result of a standard (literal, C-like) lookup of NAME in |
| given DOMAIN, visible from lexical block BLOCK. */ |
| |
| static struct symbol * |
| standard_lookup (const char *name, const struct block *block, |
| domain_enum domain) |
| { |
| /* Initialize it just to avoid a GCC false warning. */ |
| struct block_symbol sym = {}; |
| |
| if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
| return sym.symbol; |
| ada_lookup_encoded_symbol (name, block, domain, &sym); |
| cache_symbol (name, domain, sym.symbol, sym.block); |
| return sym.symbol; |
| } |
| |
| |
| /* Non-zero iff there is at least one non-function/non-enumeral symbol |
| in the symbol fields of SYMS. We treat enumerals as functions, |
| since they contend in overloading in the same way. */ |
| static int |
| is_nonfunction (const std::vector<struct block_symbol> &syms) |
| { |
| for (const block_symbol &sym : syms) |
| if (sym.symbol->type ()->code () != TYPE_CODE_FUNC |
| && (sym.symbol->type ()->code () != TYPE_CODE_ENUM |
| || sym.symbol->aclass () != LOC_CONST)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent |
| struct types. Otherwise, they may not. */ |
| |
| static int |
| equiv_types (struct type *type0, struct type *type1) |
| { |
| if (type0 == type1) |
| return 1; |
| if (type0 == NULL || type1 == NULL |
| || type0->code () != type1->code ()) |
| return 0; |
| if ((type0->code () == TYPE_CODE_STRUCT |
| || type0->code () == TYPE_CODE_ENUM) |
| && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL |
| && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* True iff SYM0 represents the same entity as SYM1, or one that is |
| no more defined than that of SYM1. */ |
| |
| static int |
| lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
| { |
| if (sym0 == sym1) |
| return 1; |
| if (sym0->domain () != sym1->domain () |
| || sym0->aclass () != sym1->aclass ()) |
| return 0; |
| |
| switch (sym0->aclass ()) |
| { |
| case LOC_UNDEF: |
| return 1; |
| case LOC_TYPEDEF: |
| { |
| struct type *type0 = sym0->type (); |
| struct type *type1 = sym1->type (); |
| const char *name0 = sym0->linkage_name (); |
| const char *name1 = sym1->linkage_name (); |
| int len0 = strlen (name0); |
| |
| return |
| type0->code () == type1->code () |
| && (equiv_types (type0, type1) |
| || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 |
| && startswith (name1 + len0, "___XV"))); |
| } |
| case LOC_CONST: |
| return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) |
| && equiv_types (sym0->type (), sym1->type ()); |
| |
| case LOC_STATIC: |
| { |
| const char *name0 = sym0->linkage_name (); |
| const char *name1 = sym1->linkage_name (); |
| return (strcmp (name0, name1) == 0 |
| && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1)); |
| } |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Append (SYM,BLOCK) to the end of the array of struct block_symbol |
| records in RESULT. Do nothing if SYM is a duplicate. */ |
| |
| static void |
| add_defn_to_vec (std::vector<struct block_symbol> &result, |
| struct symbol *sym, |
| const struct block *block) |
| { |
| /* Do not try to complete stub types, as the debugger is probably |
| already scanning all symbols matching a certain name at the |
| time when this function is called. Trying to replace the stub |
| type by its associated full type will cause us to restart a scan |
| which may lead to an infinite recursion. Instead, the client |
| collecting the matching symbols will end up collecting several |
| matches, with at least one of them complete. It can then filter |
| out the stub ones if needed. */ |
| |
| for (int i = result.size () - 1; i >= 0; i -= 1) |
| { |
| if (lesseq_defined_than (sym, result[i].symbol)) |
| return; |
| else if (lesseq_defined_than (result[i].symbol, sym)) |
| { |
| result[i].symbol = sym; |
| result[i].block = block; |
| return; |
| } |
| } |
| |
| struct block_symbol info; |
| info.symbol = sym; |
| info.block = block; |
| result.push_back (info); |
| } |
| |
| /* Return a bound minimal symbol matching NAME according to Ada |
| decoding rules. Returns an invalid symbol if there is no such |
| minimal symbol. Names prefixed with "standard__" are handled |
| specially: "standard__" is first stripped off, and only static and |
| global symbols are searched. */ |
| |
| struct bound_minimal_symbol |
| ada_lookup_simple_minsym (const char *name) |
| { |
| struct bound_minimal_symbol result; |
| |
| symbol_name_match_type match_type = name_match_type_from_name (name); |
| lookup_name_info lookup_name (name, match_type); |
| |
| symbol_name_matcher_ftype *match_name |
| = ada_get_symbol_name_matcher (lookup_name); |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (minimal_symbol *msymbol : objfile->msymbols ()) |
| { |
| if (match_name (msymbol->linkage_name (), lookup_name, NULL) |
| && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
| { |
| result.minsym = msymbol; |
| result.objfile = objfile; |
| break; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| /* True if TYPE is definitely an artificial type supplied to a symbol |
| for which no debugging information was given in the symbol file. */ |
| |
| static int |
| is_nondebugging_type (struct type *type) |
| { |
| const char *name = ada_type_name (type); |
| |
| return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
| } |
| |
| /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
| that are deemed "identical" for practical purposes. |
| |
| This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM |
| types and that their number of enumerals is identical (in other |
| words, type1->num_fields () == type2->num_fields ()). */ |
| |
| static int |
| ada_identical_enum_types_p (struct type *type1, struct type *type2) |
| { |
| int i; |
| |
| /* The heuristic we use here is fairly conservative. We consider |
| that 2 enumerate types are identical if they have the same |
| number of enumerals and that all enumerals have the same |
| underlying value and name. */ |
| |
| /* All enums in the type should have an identical underlying value. */ |
| for (i = 0; i < type1->num_fields (); i++) |
| if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ()) |
| return 0; |
| |
| /* All enumerals should also have the same name (modulo any numerical |
| suffix). */ |
| for (i = 0; i < type1->num_fields (); i++) |
| { |
| const char *name_1 = type1->field (i).name (); |
| const char *name_2 = type2->field (i).name (); |
| int len_1 = strlen (name_1); |
| int len_2 = strlen (name_2); |
| |
| ada_remove_trailing_digits (type1->field (i).name (), &len_1); |
| ada_remove_trailing_digits (type2->field (i).name (), &len_2); |
| if (len_1 != len_2 |
| || strncmp (type1->field (i).name (), |
| type2->field (i).name (), |
| len_1) != 0) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Return nonzero if all the symbols in SYMS are all enumeral symbols |
| that are deemed "identical" for practical purposes. Sometimes, |
| enumerals are not strictly identical, but their types are so similar |
| that they can be considered identical. |
| |
| For instance, consider the following code: |
| |
| type Color is (Black, Red, Green, Blue, White); |
| type RGB_Color is new Color range Red .. Blue; |
| |
| Type RGB_Color is a subrange of an implicit type which is a copy |
| of type Color. If we call that implicit type RGB_ColorB ("B" is |
| for "Base Type"), then type RGB_ColorB is a copy of type Color. |
| As a result, when an expression references any of the enumeral |
| by name (Eg. "print green"), the expression is technically |
| ambiguous and the user should be asked to disambiguate. But |
| doing so would only hinder the user, since it wouldn't matter |
| what choice he makes, the outcome would always be the same. |
| So, for practical purposes, we consider them as the same. */ |
| |
| static int |
| symbols_are_identical_enums (const std::vector<struct block_symbol> &syms) |
| { |
| int i; |
| |
| /* Before performing a thorough comparison check of each type, |
| we perform a series of inexpensive checks. We expect that these |
| checks will quickly fail in the vast majority of cases, and thus |
| help prevent the unnecessary use of a more expensive comparison. |
| Said comparison also expects us to make some of these checks |
| (see ada_identical_enum_types_p). */ |
| |
| /* Quick check: All symbols should have an enum type. */ |
| for (i = 0; i < syms.size (); i++) |
| if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM) |
| return 0; |
| |
| /* Quick check: They should all have the same value. */ |
| for (i = 1; i < syms.size (); i++) |
| if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
| return 0; |
| |
| /* Quick check: They should all have the same number of enumerals. */ |
| for (i = 1; i < syms.size (); i++) |
| if (syms[i].symbol->type ()->num_fields () |
| != syms[0].symbol->type ()->num_fields ()) |
| return 0; |
| |
| /* All the sanity checks passed, so we might have a set of |
| identical enumeration types. Perform a more complete |
| comparison of the type of each symbol. */ |
| for (i = 1; i < syms.size (); i++) |
| if (!ada_identical_enum_types_p (syms[i].symbol->type (), |
| syms[0].symbol->type ())) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Remove any non-debugging symbols in SYMS that definitely |
| duplicate other symbols in the list (The only case I know of where |
| this happens is when object files containing stabs-in-ecoff are |
| linked with files containing ordinary ecoff debugging symbols (or no |
| debugging symbols)). Modifies SYMS to squeeze out deleted entries. */ |
| |
| static void |
| remove_extra_symbols (std::vector<struct block_symbol> *syms) |
| { |
| int i, j; |
| |
| /* We should never be called with less than 2 symbols, as there |
| cannot be any extra symbol in that case. But it's easy to |
| handle, since we have nothing to do in that case. */ |
| if (syms->size () < 2) |
| return; |
| |
| i = 0; |
| while (i < syms->size ()) |
| { |
| int remove_p = 0; |
| |
| /* If two symbols have the same name and one of them is a stub type, |
| the get rid of the stub. */ |
| |
| if ((*syms)[i].symbol->type ()->is_stub () |
| && (*syms)[i].symbol->linkage_name () != NULL) |
| { |
| for (j = 0; j < syms->size (); j++) |
| { |
| if (j != i |
| && !(*syms)[j].symbol->type ()->is_stub () |
| && (*syms)[j].symbol->linkage_name () != NULL |
| && strcmp ((*syms)[i].symbol->linkage_name (), |
| (*syms)[j].symbol->linkage_name ()) == 0) |
| remove_p = 1; |
| } |
| } |
| |
| /* Two symbols with the same name, same class and same address |
| should be identical. */ |
| |
| else if ((*syms)[i].symbol->linkage_name () != NULL |
| && (*syms)[i].symbol->aclass () == LOC_STATIC |
| && is_nondebugging_type ((*syms)[i].symbol->type ())) |
| { |
| for (j = 0; j < syms->size (); j += 1) |
| { |
| if (i != j |
| && (*syms)[j].symbol->linkage_name () != NULL |
| && strcmp ((*syms)[i].symbol->linkage_name (), |
| (*syms)[j].symbol->linkage_name ()) == 0 |
| && ((*syms)[i].symbol->aclass () |
| == (*syms)[j].symbol->aclass ()) |
| && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol) |
| == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol)) |
| remove_p = 1; |
| } |
| } |
| |
| if (remove_p) |
| syms->erase (syms->begin () + i); |
| else |
| i += 1; |
| } |
| |
| /* If all the remaining symbols are identical enumerals, then |
| just keep the first one and discard the rest. |
| |
| Unlike what we did previously, we do not discard any entry |
| unless they are ALL identical. This is because the symbol |
| comparison is not a strict comparison, but rather a practical |
| comparison. If all symbols are considered identical, then |
| we can just go ahead and use the first one and discard the rest. |
| But if we cannot reduce the list to a single element, we have |
| to ask the user to disambiguate anyways. And if we have to |
| present a multiple-choice menu, it's less confusing if the list |
| isn't missing some choices that were identical and yet distinct. */ |
| if (symbols_are_identical_enums (*syms)) |
| syms->resize (1); |
| } |
| |
| /* Given a type that corresponds to a renaming entity, use the type name |
| to extract the scope (package name or function name, fully qualified, |
| and following the GNAT encoding convention) where this renaming has been |
| defined. */ |
| |
| static std::string |
| xget_renaming_scope (struct type *renaming_type) |
| { |
| /* The renaming types adhere to the following convention: |
| <scope>__<rename>___<XR extension>. |
| So, to extract the scope, we search for the "___XR" extension, |
| and then backtrack until we find the first "__". */ |
| |
| const char *name = renaming_type->name (); |
| const char *suffix = strstr (name, "___XR"); |
| const char *last; |
| |
| /* Now, backtrack a bit until we find the first "__". Start looking |
| at suffix - 3, as the <rename> part is at least one character long. */ |
| |
| for (last = suffix - 3; last > name; last--) |
| if (last[0] == '_' && last[1] == '_') |
| break; |
| |
| /* Make a copy of scope and return it. */ |
| return std::string (name, last); |
| } |
| |
| /* Return nonzero if NAME corresponds to a package name. */ |
| |
| static int |
| is_package_name (const char *name) |
| { |
| /* Here, We take advantage of the fact that no symbols are generated |
| for packages, while symbols are generated for each function. |
| So the condition for NAME represent a package becomes equivalent |
| to NAME not existing in our list of symbols. There is only one |
| small complication with library-level functions (see below). */ |
| |
| /* If it is a function that has not been defined at library level, |
| then we should be able to look it up in the symbols. */ |
| if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) |
| return 0; |
| |
| /* Library-level function names start with "_ada_". See if function |
| "_ada_" followed by NAME can be found. */ |
| |
| /* Do a quick check that NAME does not contain "__", since library-level |
| functions names cannot contain "__" in them. */ |
| if (strstr (name, "__") != NULL) |
| return 0; |
| |
| std::string fun_name = string_printf ("_ada_%s", name); |
| |
| return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL); |
| } |
| |
| /* Return nonzero if SYM corresponds to a renaming entity that is |
| not visible from FUNCTION_NAME. */ |
| |
| static int |
| old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
| { |
| if (sym->aclass () != LOC_TYPEDEF) |
| return 0; |
| |
| std::string scope = xget_renaming_scope (sym->type ()); |
| |
| /* If the rename has been defined in a package, then it is visible. */ |
| if (is_package_name (scope.c_str ())) |
| return 0; |
| |
| /* Check that the rename is in the current function scope by checking |
| that its name starts with SCOPE. */ |
| |
| /* If the function name starts with "_ada_", it means that it is |
| a library-level function. Strip this prefix before doing the |
| comparison, as the encoding for the renaming does not contain |
| this prefix. */ |
| if (startswith (function_name, "_ada_")) |
| function_name += 5; |
| |
| return !startswith (function_name, scope.c_str ()); |
| } |
| |
| /* Remove entries from SYMS that corresponds to a renaming entity that |
| is not visible from the function associated with CURRENT_BLOCK or |
| that is superfluous due to the presence of more specific renaming |
| information. Places surviving symbols in the initial entries of |
| SYMS. |
| |
| Rationale: |
| First, in cases where an object renaming is implemented as a |
| reference variable, GNAT may produce both the actual reference |
| variable and the renaming encoding. In this case, we discard the |
| latter. |
| |
| Second, GNAT emits a type following a specified encoding for each renaming |
| entity. Unfortunately, STABS currently does not support the definition |
| of types that are local to a given lexical block, so all renamings types |
| are emitted at library level. As a consequence, if an application |
| contains two renaming entities using the same name, and a user tries to |
| print the value of one of these entities, the result of the ada symbol |
| lookup will also contain the wrong renaming type. |
| |
| This function partially covers for this limitation by attempting to |
| remove from the SYMS list renaming symbols that should be visible |
| from CURRENT_BLOCK. However, there does not seem be a 100% reliable |
| method with the current information available. The implementation |
| below has a couple of limitations (FIXME: brobecker-2003-05-12): |
| |
| - When the user tries to print a rename in a function while there |
| is another rename entity defined in a package: Normally, the |
| rename in the function has precedence over the rename in the |
| package, so the latter should be removed from the list. This is |
| currently not the case. |
| |
| - This function will incorrectly remove valid renames if |
| the CURRENT_BLOCK corresponds to a function which symbol name |
| has been changed by an "Export" pragma. As a consequence, |
| the user will be unable to print such rename entities. */ |
| |
| static void |
| remove_irrelevant_renamings (std::vector<struct block_symbol> *syms, |
| const struct block *current_block) |
| { |
| struct symbol *current_function; |
| const char *current_function_name; |
| int i; |
| int is_new_style_renaming; |
| |
| /* If there is both a renaming foo___XR... encoded as a variable and |
| a simple variable foo in the same block, discard the latter. |
| First, zero out such symbols, then compress. */ |
| is_new_style_renaming = 0; |
| for (i = 0; i < syms->size (); i += 1) |
| { |
| struct symbol *sym = (*syms)[i].symbol; |
| const struct block *block = (*syms)[i].block; |
| const char *name; |
| const char *suffix; |
| |
| if (sym == NULL || sym->aclass () == LOC_TYPEDEF) |
| continue; |
| name = sym->linkage_name (); |
| suffix = strstr (name, "___XR"); |
| |
| if (suffix != NULL) |
| { |
| int name_len = suffix - name; |
| int j; |
| |
| is_new_style_renaming = 1; |
| for (j = 0; j < syms->size (); j += 1) |
| if (i != j && (*syms)[j].symbol != NULL |
| && strncmp (name, (*syms)[j].symbol->linkage_name (), |
| name_len) == 0 |
| && block == (*syms)[j].block) |
| (*syms)[j].symbol = NULL; |
| } |
| } |
| if (is_new_style_renaming) |
| { |
| int j, k; |
| |
| for (j = k = 0; j < syms->size (); j += 1) |
| if ((*syms)[j].symbol != NULL) |
| { |
| (*syms)[k] = (*syms)[j]; |
| k += 1; |
| } |
| syms->resize (k); |
| return; |
| } |
| |
| /* Extract the function name associated to CURRENT_BLOCK. |
| Abort if unable to do so. */ |
| |
| if (current_block == NULL) |
| return; |
| |
| current_function = block_linkage_function (current_block); |
| if (current_function == NULL) |
| return; |
| |
| current_function_name = current_function->linkage_name (); |
| if (current_function_name == NULL) |
| return; |
| |
| /* Check each of the symbols, and remove it from the list if it is |
| a type corresponding to a renaming that is out of the scope of |
| the current block. */ |
| |
| i = 0; |
| while (i < syms->size ()) |
| { |
| if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL) |
| == ADA_OBJECT_RENAMING |
| && old_renaming_is_invisible ((*syms)[i].symbol, |
| current_function_name)) |
| syms->erase (syms->begin () + i); |
| else |
| i += 1; |
| } |
| } |
| |
| /* Add to RESULT all symbols from BLOCK (and its super-blocks) |
| whose name and domain match LOOKUP_NAME and DOMAIN respectively. |
| |
| Note: This function assumes that RESULT is empty. */ |
| |
| static void |
| ada_add_local_symbols (std::vector<struct block_symbol> &result, |
| const lookup_name_info &lookup_name, |
| const struct block *block, domain_enum domain) |
| { |
| while (block != NULL) |
| { |
| ada_add_block_symbols (result, block, lookup_name, domain, NULL); |
| |
| /* If we found a non-function match, assume that's the one. We |
| only check this when finding a function boundary, so that we |
| can accumulate all results from intervening blocks first. */ |
| if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result)) |
| return; |
| |
| block = BLOCK_SUPERBLOCK (block); |
| } |
| } |
| |
| /* An object of this type is used as the callback argument when |
| calling the map_matching_symbols method. */ |
| |
| struct match_data |
| { |
| explicit match_data (std::vector<struct block_symbol> *rp) |
| : resultp (rp) |
| { |
| } |
| DISABLE_COPY_AND_ASSIGN (match_data); |
| |
| bool operator() (struct block_symbol *bsym); |
| |
| struct objfile *objfile = nullptr; |
| std::vector<struct block_symbol> *resultp; |
| struct symbol *arg_sym = nullptr; |
| bool found_sym = false; |
| }; |
| |
| /* A callback for add_nonlocal_symbols that adds symbol, found in |
| BSYM, to a list of symbols. */ |
| |
| bool |
| match_data::operator() (struct block_symbol *bsym) |
| { |
| const struct block *block = bsym->block; |
| struct symbol *sym = bsym->symbol; |
| |
| if (sym == NULL) |
| { |
| if (!found_sym && arg_sym != NULL) |
| add_defn_to_vec (*resultp, |
| fixup_symbol_section (arg_sym, objfile), |
| block); |
| found_sym = false; |
| arg_sym = NULL; |
| } |
| else |
| { |
| if (sym->aclass () == LOC_UNRESOLVED) |
| return true; |
| else if (sym->is_argument ()) |
| arg_sym = sym; |
| else |
| { |
| found_sym = true; |
| add_defn_to_vec (*resultp, |
| fixup_symbol_section (sym, objfile), |
| block); |
| } |
| } |
| return true; |
| } |
| |
| /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are |
| targeted by renamings matching LOOKUP_NAME in BLOCK. Add these |
| symbols to RESULT. Return whether we found such symbols. */ |
| |
| static int |
| ada_add_block_renamings (std::vector<struct block_symbol> &result, |
| const struct block *block, |
| const lookup_name_info &lookup_name, |
| domain_enum domain) |
| { |
| struct using_direct *renaming; |
| int defns_mark = result.size (); |
| |
| symbol_name_matcher_ftype *name_match |
| = ada_get_symbol_name_matcher (lookup_name); |
| |
| for (renaming = block_using (block); |
| renaming != NULL; |
| renaming = renaming->next) |
| { |
| const char *r_name; |
| |
| /* Avoid infinite recursions: skip this renaming if we are actually |
| already traversing it. |
| |
| Currently, symbol lookup in Ada don't use the namespace machinery from |
| C++/Fortran support: skip namespace imports that use them. */ |
| if (renaming->searched |
| || (renaming->import_src != NULL |
| && renaming->import_src[0] != '\0') |
| || (renaming->import_dest != NULL |
| && renaming->import_dest[0] != '\0')) |
| continue; |
| renaming->searched = 1; |
| |
| /* TODO: here, we perform another name-based symbol lookup, which can |
| pull its own multiple overloads. In theory, we should be able to do |
| better in this case since, in DWARF, DW_AT_import is a DIE reference, |
| not a simple name. But in order to do this, we would need to enhance |
| the DWARF reader to associate a symbol to this renaming, instead of a |
| name. So, for now, we do something simpler: re-use the C++/Fortran |
| namespace machinery. */ |
| r_name = (renaming->alias != NULL |
| ? renaming->alias |
| : renaming->declaration); |
| if (name_match (r_name, lookup_name, NULL)) |
| { |
| lookup_name_info decl_lookup_name (renaming->declaration, |
| lookup_name.match_type ()); |
| ada_add_all_symbols (result, block, decl_lookup_name, domain, |
| 1, NULL); |
| } |
| renaming->searched = 0; |
| } |
| return result.size () != defns_mark; |
| } |
| |
| /* Implements compare_names, but only applying the comparision using |
| the given CASING. */ |
| |
| static int |
| compare_names_with_case (const char *string1, const char *string2, |
| enum case_sensitivity casing) |
| { |
| while (*string1 != '\0' && *string2 != '\0') |
| { |
| char c1, c2; |
| |
| if (isspace (*string1) || isspace (*string2)) |
| return strcmp_iw_ordered (string1, string2); |
| |
| if (casing == case_sensitive_off) |
| { |
| c1 = tolower (*string1); |
| c2 = tolower (*string2); |
| } |
| else |
| { |
| c1 = *string1; |
| c2 = *string2; |
| } |
| if (c1 != c2) |
| break; |
| |
| string1 += 1; |
| string2 += 1; |
| } |
| |
| switch (*string1) |
| { |
| case '(': |
| return strcmp_iw_ordered (string1, string2); |
| case '_': |
| if (*string2 == '\0') |
| { |
| if (is_name_suffix (string1)) |
| return 0; |
| else |
| return 1; |
| } |
| /* FALLTHROUGH */ |
| default: |
| if (*string2 == '(') |
| return strcmp_iw_ordered (string1, string2); |
| else |
| { |
| if (casing == case_sensitive_off) |
| return tolower (*string1) - tolower (*string2); |
| else |
| return *string1 - *string2; |
| } |
| } |
| } |
| |
| /* Compare STRING1 to STRING2, with results as for strcmp. |
| Compatible with strcmp_iw_ordered in that... |
| |
| strcmp_iw_ordered (STRING1, STRING2) <= 0 |
| |
| ... implies... |
| |
| compare_names (STRING1, STRING2) <= 0 |
| |
| (they may differ as to what symbols compare equal). */ |
| |
| static int |
| compare_names (const char *string1, const char *string2) |
| { |
| int result; |
| |
| /* Similar to what strcmp_iw_ordered does, we need to perform |
| a case-insensitive comparison first, and only resort to |
| a second, case-sensitive, comparison if the first one was |
| not sufficient to differentiate the two strings. */ |
| |
| result = compare_names_with_case (string1, string2, case_sensitive_off); |
| if (result == 0) |
| result = compare_names_with_case (string1, string2, case_sensitive_on); |
| |
| return result; |
| } |
| |
| /* Convenience function to get at the Ada encoded lookup name for |
| LOOKUP_NAME, as a C string. */ |
| |
| static const char * |
| ada_lookup_name (const lookup_name_info &lookup_name) |
| { |
| return lookup_name.ada ().lookup_name ().c_str (); |
| } |
| |
| /* A helper for add_nonlocal_symbols. Call expand_matching_symbols |
| for OBJFILE, then walk the objfile's symtabs and update the |
| results. */ |
| |
| static void |
| map_matching_symbols (struct objfile *objfile, |
| const lookup_name_info &lookup_name, |
| bool is_wild_match, |
| domain_enum domain, |
| int global, |
| match_data &data) |
| { |
| data.objfile = objfile; |
| objfile->expand_matching_symbols (lookup_name, domain, global, |
| is_wild_match ? nullptr : compare_names); |
| |
| const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK; |
| for (compunit_symtab *symtab : objfile->compunits ()) |
| { |
| const struct block *block |
| = BLOCKVECTOR_BLOCK (symtab->blockvector (), block_kind); |
| if (!iterate_over_symbols_terminated (block, lookup_name, |
| domain, data)) |
| break; |
| } |
| } |
| |
| /* Add to RESULT all non-local symbols whose name and domain match |
| LOOKUP_NAME and DOMAIN respectively. The search is performed on |
| GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK |
| symbols otherwise. */ |
| |
| static void |
| add_nonlocal_symbols (std::vector<struct block_symbol> &result, |
| const lookup_name_info &lookup_name, |
| domain_enum domain, int global) |
| { |
| struct match_data data (&result); |
| |
| bool is_wild_match = lookup_name.ada ().wild_match_p (); |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| map_matching_symbols (objfile, lookup_name, is_wild_match, domain, |
| global, data); |
| |
| for (compunit_symtab *cu : objfile->compunits ()) |
| { |
| const struct block *global_block |
| = BLOCKVECTOR_BLOCK (cu->blockvector (), GLOBAL_BLOCK); |
| |
| if (ada_add_block_renamings (result, global_block, lookup_name, |
| domain)) |
| data.found_sym = true; |
| } |
| } |
| |
| if (result.empty () && global && !is_wild_match) |
| { |
| const char *name = ada_lookup_name (lookup_name); |
| std::string bracket_name = std::string ("<_ada_") + name + '>'; |
| lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL); |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| map_matching_symbols (objfile, name1, false, domain, global, data); |
| } |
| } |
| |
| /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if |
| FULL_SEARCH is non-zero, enclosing scope and in global scopes, |
| returning the number of matches. Add these to RESULT. |
| |
| When FULL_SEARCH is non-zero, any non-function/non-enumeral |
| symbol match within the nest of blocks whose innermost member is BLOCK, |
| is the one match returned (no other matches in that or |
| enclosing blocks is returned). If there are any matches in or |
| surrounding BLOCK, then these alone are returned. |
| |
| Names prefixed with "standard__" are handled specially: |
| "standard__" is first stripped off (by the lookup_name |
| constructor), and only static and global symbols are searched. |
| |
| If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
| to lookup global symbols. */ |
| |
| static void |
| ada_add_all_symbols (std::vector<struct block_symbol> &result, |
| const struct block *block, |
| const lookup_name_info &lookup_name, |
| domain_enum domain, |
| int full_search, |
| int *made_global_lookup_p) |
| { |
| struct symbol *sym; |
| |
| if (made_global_lookup_p) |
| *made_global_lookup_p = 0; |
| |
| /* Special case: If the user specifies a symbol name inside package |
| Standard, do a non-wild matching of the symbol name without |
| the "standard__" prefix. This was primarily introduced in order |
| to allow the user to specifically access the standard exceptions |
| using, for instance, Standard.Constraint_Error when Constraint_Error |
| is ambiguous (due to the user defining its own Constraint_Error |
| entity inside its program). */ |
| if (lookup_name.ada ().standard_p ()) |
| block = NULL; |
| |
| /* Check the non-global symbols. If we have ANY match, then we're done. */ |
| |
| if (block != NULL) |
| { |
| if (full_search) |
| ada_add_local_symbols (result, lookup_name, block, domain); |
| else |
| { |
| /* In the !full_search case we're are being called by |
| iterate_over_symbols, and we don't want to search |
| superblocks. */ |
| ada_add_block_symbols (result, block, lookup_name, domain, NULL); |
| } |
| if (!result.empty () || !full_search) |
| return; |
| } |
| |
| /* No non-global symbols found. Check our cache to see if we have |
| already performed this search before. If we have, then return |
| the same result. */ |
| |
| if (lookup_cached_symbol (ada_lookup_name (lookup_name), |
| domain, &sym, &block)) |
| { |
| if (sym != NULL) |
| add_defn_to_vec (result, sym, block); |
| return; |
| } |
| |
| if (made_global_lookup_p) |
| *made_global_lookup_p = 1; |
| |
| /* Search symbols from all global blocks. */ |
| |
| add_nonlocal_symbols (result, lookup_name, domain, 1); |
| |
| /* Now add symbols from all per-file blocks if we've gotten no hits |
| (not strictly correct, but perhaps better than an error). */ |
| |
| if (result.empty ()) |
| add_nonlocal_symbols (result, lookup_name, domain, 0); |
| } |
| |
| /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH |
| is non-zero, enclosing scope and in global scopes. |
| |
| Returns (SYM,BLOCK) tuples, indicating the symbols found and the |
| blocks and symbol tables (if any) in which they were found. |
| |
| When full_search is non-zero, any non-function/non-enumeral |
| symbol match within the nest of blocks whose innermost member is BLOCK, |
| is the one match returned (no other matches in that or |
| enclosing blocks is returned). If there are any matches in or |
| surrounding BLOCK, then these alone are returned. |
| |
| Names prefixed with "standard__" are handled specially: "standard__" |
| is first stripped off, and only static and global symbols are searched. */ |
| |
| static std::vector<struct block_symbol> |
| ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name, |
| const struct block *block, |
| domain_enum domain, |
| int full_search) |
| { |
| int syms_from_global_search; |
| std::vector<struct block_symbol> results; |
| |
| ada_add_all_symbols (results, block, lookup_name, |
| domain, full_search, &syms_from_global_search); |
| |
| remove_extra_symbols (&results); |
| |
| if (results.empty () && full_search && syms_from_global_search) |
| cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL); |
| |
| if (results.size () == 1 && full_search && syms_from_global_search) |
| cache_symbol (ada_lookup_name (lookup_name), domain, |
| results[0].symbol, results[0].block); |
| |
| remove_irrelevant_renamings (&results, block); |
| return results; |
| } |
| |
| /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and |
| in global scopes, returning (SYM,BLOCK) tuples. |
| |
| See ada_lookup_symbol_list_worker for further details. */ |
| |
| std::vector<struct block_symbol> |
| ada_lookup_symbol_list (const char *name, const struct block *block, |
| domain_enum domain) |
| { |
| symbol_name_match_type name_match_type = name_match_type_from_name (name); |
| lookup_name_info lookup_name (name, name_match_type); |
| |
| return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1); |
| } |
| |
| /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
| to 1, but choosing the first symbol found if there are multiple |
| choices. |
| |
| The result is stored in *INFO, which must be non-NULL. |
| If no match is found, INFO->SYM is set to NULL. */ |
| |
| void |
| ada_lookup_encoded_symbol (const char *name, const struct block *block, |
| domain_enum domain, |
| struct block_symbol *info) |
| { |
| /* Since we already have an encoded name, wrap it in '<>' to force a |
| verbatim match. Otherwise, if the name happens to not look like |
| an encoded name (because it doesn't include a "__"), |
| ada_lookup_name_info would re-encode/fold it again, and that |
| would e.g., incorrectly lowercase object renaming names like |
| "R28b" -> "r28b". */ |
| std::string verbatim = add_angle_brackets (name); |
| |
| gdb_assert (info != NULL); |
| *info = ada_lookup_symbol (verbatim.c_str (), block, domain); |
| } |
| |
| /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing |
| scope and in global scopes, or NULL if none. NAME is folded and |
| encoded first. Otherwise, the result is as for ada_lookup_symbol_list, |
| choosing the first symbol if there are multiple choices. */ |
| |
| struct block_symbol |
| ada_lookup_symbol (const char *name, const struct block *block0, |
| domain_enum domain) |
| { |
| std::vector<struct block_symbol> candidates |
| = ada_lookup_symbol_list (name, block0, domain); |
| |
| if (candidates.empty ()) |
| return {}; |
| |
| block_symbol info = candidates[0]; |
| info.symbol = fixup_symbol_section (info.symbol, NULL); |
| return info; |
| } |
| |
| |
| /* True iff STR is a possible encoded suffix of a normal Ada name |
| that is to be ignored for matching purposes. Suffixes of parallel |
| names (e.g., XVE) are not included here. Currently, the possible suffixes |
| are given by any of the regular expressions: |
| |
| [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
| ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] |
| TKB [subprogram suffix for task bodies] |
| _E[0-9]+[bs]$ [protected object entry suffixes] |
| (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
| |
| Also, any leading "__[0-9]+" sequence is skipped before the suffix |
| match is performed. This sequence is used to differentiate homonyms, |
| is an optional part of a valid name suffix. */ |
| |
| static int |
| is_name_suffix (const char *str) |
| { |
| int k; |
| const char *matching; |
| const int len = strlen (str); |
| |
| /* Skip optional leading __[0-9]+. */ |
| |
| if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
| { |
| str += 3; |
| while (isdigit (str[0])) |
| str += 1; |
| } |
| |
| /* [.$][0-9]+ */ |
| |
| if (str[0] == '.' || str[0] == '$') |
| { |
| matching = str + 1; |
| while (isdigit (matching[0])) |
| matching += 1; |
| if (matching[0] == '\0') |
| return 1; |
| } |
| |
| /* ___[0-9]+ */ |
| |
| if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
| { |
| matching = str + 3; |
| while (isdigit (matching[0])) |
| matching += 1; |
| if (matching[0] == '\0') |
| return 1; |
| } |
| |
| /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
| |
| if (strcmp (str, "TKB") == 0) |
| return 1; |
| |
| #if 0 |
| /* FIXME: brobecker/2005-09-23: Protected Object subprograms end |
| with a N at the end. Unfortunately, the compiler uses the same |
| convention for other internal types it creates. So treating |
| all entity names that end with an "N" as a name suffix causes |
| some regressions. For instance, consider the case of an enumerated |
| type. To support the 'Image attribute, it creates an array whose |
| name ends with N. |
| Having a single character like this as a suffix carrying some |
| information is a bit risky. Perhaps we should change the encoding |
| to be something like "_N" instead. In the meantime, do not do |
| the following check. */ |
| /* Protected Object Subprograms */ |
| if (len == 1 && str [0] == 'N') |
| return 1; |
| #endif |
| |
| /* _E[0-9]+[bs]$ */ |
| if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) |
| { |
| matching = str + 3; |
| while (isdigit (matching[0])) |
| matching += 1; |
| if ((matching[0] == 'b' || matching[0] == 's') |
| && matching [1] == '\0') |
| return 1; |
| } |
| |
| /* ??? We should not modify STR directly, as we are doing below. This |
| is fine in this case, but may become problematic later if we find |
| that this alternative did not work, and want to try matching |
| another one from the begining of STR. Since we modified it, we |
| won't be able to find the begining of the string anymore! */ |
| if (str[0] == 'X') |
| { |
| str += 1; |
| while (str[0] != '_' && str[0] != '\0') |
| { |
| if (str[0] != 'n' && str[0] != 'b') |
| return 0; |
| str += 1; |
| } |
| } |
| |
| if (str[0] == '\000') |
| return 1; |
| |
| if (str[0] == '_') |
| { |
| if (str[1] != '_' || str[2] == '\000') |
| return 0; |
| if (str[2] == '_') |
| { |
| if (strcmp (str + 3, "JM") == 0) |
| return 1; |
| /* FIXME: brobecker/2004-09-30: GNAT will soon stop using |
| the LJM suffix in favor of the JM one. But we will |
| still accept LJM as a valid suffix for a reasonable |
| amount of time, just to allow ourselves to debug programs |
| compiled using an older version of GNAT. */ |
| if (strcmp (str + 3, "LJM") == 0) |
| return 1; |
| if (str[3] != 'X') |
| return 0; |
| if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
| || str[4] == 'U' || str[4] == 'P') |
| return 1; |
| if (str[4] == 'R' && str[5] != 'T') |
| return 1; |
| return 0; |
| } |
| if (!isdigit (str[2])) |
| return 0; |
| for (k = 3; str[k] != '\0'; k += 1) |
| if (!isdigit (str[k]) && str[k] != '_') |
| return 0; |
| return 1; |
| } |
| if (str[0] == '$' && isdigit (str[1])) |
| { |
| for (k = 2; str[k] != '\0'; k += 1) |
| if (!isdigit (str[k]) && str[k] != '_') |
| return 0; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Return non-zero if the string starting at NAME and ending before |
| NAME_END contains no capital letters. */ |
| |
| static int |
| is_valid_name_for_wild_match (const char *name0) |
| { |
| std::string decoded_name = ada_decode (name0); |
| int i; |
| |
| /* If the decoded name starts with an angle bracket, it means that |
| NAME0 does not follow the GNAT encoding format. It should then |
| not be allowed as a possible wild match. */ |
| if (decoded_name[0] == '<') |
| return 0; |
| |
| for (i=0; decoded_name[i] != '\0'; i++) |
| if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0 |
| character which could start a simple name. Assumes that *NAMEP points |
| somewhere inside the string beginning at NAME0. */ |
| |
| static int |
| advance_wild_match (const char **namep, const char *name0, char target0) |
| { |
| const char *name = *namep; |
| |
| while (1) |
| { |
| char t0, t1; |
| |
| t0 = *name; |
| if (t0 == '_') |
| { |
| t1 = name[1]; |
| if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) |
| { |
| name += 1; |
| if (name == name0 + 5 && startswith (name0, "_ada")) |
| break; |
| else |
| name += 1; |
| } |
| else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
| || name[2] == target0)) |
| { |
| name += 2; |
| break; |
| } |
| else if (t1 == '_' && name[2] == 'B' && name[3] == '_') |
| { |
| /* Names like "pkg__B_N__name", where N is a number, are |
| block-local. We can handle these by simply skipping |
| the "B_" here. */ |
| name += 4; |
| } |
| else |
| return 0; |
| } |
| else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) |
| name += 1; |
| else |
| return 0; |
| } |
| |
| *namep = name; |
| return 1; |
| } |
| |
| /* Return true iff NAME encodes a name of the form prefix.PATN. |
| Ignores any informational suffixes of NAME (i.e., for which |
| is_name_suffix is true). Assumes that PATN is a lower-cased Ada |
| simple name. */ |
| |
| static bool |
| wild_match (const char *name, const char *patn) |
| { |
| const char *p; |
| const char *name0 = name; |
| |
| if (startswith (name, "___ghost_")) |
| name += 9; |
| |
| while (1) |
| { |
| const char *match = name; |
| |
| if (*name == *patn) |
| { |
| for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) |
| if (*p != *name) |
| break; |
| if (*p == '\0' && is_name_suffix (name)) |
| return match == name0 || is_valid_name_for_wild_match (name0); |
| |
| if (name[-1] == '_') |
| name -= 1; |
| } |
| if (!advance_wild_match (&name, name0, *patn)) |
| return false; |
| } |
| } |
| |
| /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if |
| necessary). OBJFILE is the section containing BLOCK. */ |
| |
| static void |
| ada_add_block_symbols (std::vector<struct block_symbol> &result, |
| const struct block *block, |
| const lookup_name_info &lookup_name, |
| domain_enum domain, struct objfile *objfile) |
| { |
| struct block_iterator iter; |
| /* A matching argument symbol, if any. */ |
| struct symbol *arg_sym; |
| /* Set true when we find a matching non-argument symbol. */ |
| bool found_sym; |
| struct symbol *sym; |
| |
| arg_sym = NULL; |
| found_sym = false; |
| for (sym = block_iter_match_first (block, lookup_name, &iter); |
| sym != NULL; |
| sym = block_iter_match_next (lookup_name, &iter)) |
| { |
| if (symbol_matches_domain (sym->language (), sym->domain (), domain)) |
| { |
| if (sym->aclass () != LOC_UNRESOLVED) |
| { |
| if (sym->is_argument ()) |
| arg_sym = sym; |
| else |
| { |
| found_sym = true; |
| add_defn_to_vec (result, |
| fixup_symbol_section (sym, objfile), |
| block); |
| } |
| } |
| } |
| } |
| |
| /* Handle renamings. */ |
| |
| if (ada_add_block_renamings (result, block, lookup_name, domain)) |
| found_sym = true; |
| |
| if (!found_sym && arg_sym != NULL) |
| { |
| add_defn_to_vec (result, |
| fixup_symbol_section (arg_sym, objfile), |
| block); |
| } |
| |
| if (!lookup_name.ada ().wild_match_p ()) |
| { |
| arg_sym = NULL; |
| found_sym = false; |
| const std::string &ada_lookup_name = lookup_name.ada ().lookup_name (); |
| const char *name = ada_lookup_name.c_str (); |
| size_t name_len = ada_lookup_name.size (); |
| |
| ALL_BLOCK_SYMBOLS (block, iter, sym) |
| { |
| if (symbol_matches_domain (sym->language (), |
| sym->domain (), domain)) |
| { |
| int cmp; |
| |
| cmp = (int) '_' - (int) sym->linkage_name ()[0]; |
| if (cmp == 0) |
| { |
| cmp = !startswith (sym->linkage_name (), "_ada_"); |
| if (cmp == 0) |
| cmp = strncmp (name, sym->linkage_name () + 5, |
| name_len); |
| } |
| |
| if (cmp == 0 |
| && is_name_suffix (sym->linkage_name () + name_len + 5)) |
| { |
| if (sym->aclass () != LOC_UNRESOLVED) |
| { |
| if (sym->is_argument ()) |
| arg_sym = sym; |
| else |
| { |
| found_sym = true; |
| add_defn_to_vec (result, |
| fixup_symbol_section (sym, objfile), |
| block); |
| } |
| } |
| } |
| } |
| } |
| |
| /* NOTE: This really shouldn't be needed for _ada_ symbols. |
| They aren't parameters, right? */ |
| if (!found_sym && arg_sym != NULL) |
| { |
| add_defn_to_vec (result, |
| fixup_symbol_section (arg_sym, objfile), |
| block); |
| } |
| } |
| } |
| |
| |
| /* Symbol Completion */ |
| |
| /* See symtab.h. */ |
| |
| bool |
| ada_lookup_name_info::matches |
| (const char *sym_name, |
| symbol_name_match_type match_type, |
| completion_match_result *comp_match_res) const |
| { |
| bool match = false; |
| const char *text = m_encoded_name.c_str (); |
| size_t text_len = m_encoded_name.size (); |
| |
| /* First, test against the fully qualified name of the symbol. */ |
| |
| if (strncmp (sym_name, text, text_len) == 0) |
| match = true; |
| |
| std::string decoded_name = ada_decode (sym_name); |
| if (match && !m_encoded_p) |
| { |
| /* One needed check before declaring a positive match is to verify |
| that iff we are doing a verbatim match, the decoded version |
| of the symbol name starts with '<'. Otherwise, this symbol name |
| is not a suitable completion. */ |
| |
| bool has_angle_bracket = (decoded_name[0] == '<'); |
| match = (has_angle_bracket == m_verbatim_p); |
| } |
| |
| if (match && !m_verbatim_p) |
| { |
| /* When doing non-verbatim match, another check that needs to |
| be done is to verify that the potentially matching symbol name |
| does not include capital letters, because the ada-mode would |
| not be able to understand these symbol names without the |
| angle bracket notation. */ |
| const char *tmp; |
| |
| for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); |
| if (*tmp != '\0') |
| match = false; |
| } |
| |
| /* Second: Try wild matching... */ |
| |
| if (!match && m_wild_match_p) |
| { |
| /* Since we are doing wild matching, this means that TEXT |
| may represent an unqualified symbol name. We therefore must |
| also compare TEXT against the unqualified name of the symbol. */ |
| sym_name = ada_unqualified_name (decoded_name.c_str ()); |
| |
| if (strncmp (sym_name, text, text_len) == 0) |
| match = true; |
| } |
| |
| /* Finally: If we found a match, prepare the result to return. */ |
| |
| if (!match) |
| return false; |
| |
| if (comp_match_res != NULL) |
| { |
| std::string &match_str = comp_match_res->match.storage (); |
| |
| if (!m_encoded_p) |
| match_str = ada_decode (sym_name); |
| else |
| { |
| if (m_verbatim_p) |
| match_str = add_angle_brackets (sym_name); |
| else |
| match_str = sym_name; |
| |
| } |
| |
| comp_match_res->set_match (match_str.c_str ()); |
| } |
| |
| return true; |
| } |
| |
| /* Field Access */ |
| |
| /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
| for tagged types. */ |
| |
| static int |
| ada_is_dispatch_table_ptr_type (struct type *type) |
| { |
| const char *name; |
| |
| if (type->code () != TYPE_CODE_PTR) |
| return 0; |
| |
| name = TYPE_TARGET_TYPE (type)->name (); |
| if (name == NULL) |
| return 0; |
| |
| return (strcmp (name, "ada__tags__dispatch_table") == 0); |
| } |
| |
| /* Return non-zero if TYPE is an interface tag. */ |
| |
| static int |
| ada_is_interface_tag (struct type *type) |
| { |
| const char *name = type->name (); |
| |
| if (name == NULL) |
| return 0; |
| |
| return (strcmp (name, "ada__tags__interface_tag") == 0); |
| } |
| |
| /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
| to be invisible to users. */ |
| |
| int |
| ada_is_ignored_field (struct type *type, int field_num) |
| { |
| if (field_num < 0 || field_num > type->num_fields ()) |
| return 1; |
| |
| /* Check the name of that field. */ |
| { |
| const char *name = type->field (field_num).name (); |
| |
| /* Anonymous field names should not be printed. |
| brobecker/2007-02-20: I don't think this can actually happen |
| but we don't want to print the value of anonymous fields anyway. */ |
| if (name == NULL) |
| return 1; |
| |
| /* Normally, fields whose name start with an underscore ("_") |
| are fields that have been internally generated by the compiler, |
| and thus should not be printed. The "_parent" field is special, |
| however: This is a field internally generated by the compiler |
| for tagged types, and it contains the components inherited from |
| the parent type. This field should not be printed as is, but |
| should not be ignored either. */ |
| if (name[0] == '_' && !startswith (name, "_parent")) |
| return 1; |
| |
| /* The compiler doesn't document this, but sometimes it emits |
| a field whose name starts with a capital letter, like 'V148s'. |
| These aren't marked as artificial in any way, but we know they |
| should be ignored. However, wrapper fields should not be |
| ignored. */ |
| if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O') |
| { |
| /* Wrapper field. */ |
| } |
| else if (isupper (name[0])) |
| return 1; |
| } |
| |
| /* If this is the dispatch table of a tagged type or an interface tag, |
| then ignore. */ |
| if (ada_is_tagged_type (type, 1) |
| && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ()) |
| || ada_is_interface_tag (type->field (field_num).type ()))) |
| return 1; |
| |
| /* Not a special field, so it should not be ignored. */ |
| return 0; |
| } |
| |
| /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
| pointer or reference type whose ultimate target has a tag field. */ |
| |
| int |
| ada_is_tagged_type (struct type *type, int refok) |
| { |
| return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL); |
| } |
| |
| /* True iff TYPE represents the type of X'Tag */ |
| |
| int |
| ada_is_tag_type (struct type *type) |
| { |
| type = ada_check_typedef (type); |
| |
| if (type == NULL || type->code () != TYPE_CODE_PTR) |
| return 0; |
| else |
| { |
| const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
| |
| return (name != NULL |
| && strcmp (name, "ada__tags__dispatch_table") == 0); |
| } |
| } |
| |
| /* The type of the tag on VAL. */ |
| |
| static struct type * |
| ada_tag_type (struct value *val) |
| { |
| return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0); |
| } |
| |
| /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
| retired at Ada 05). */ |
| |
| static int |
| is_ada95_tag (struct value *tag) |
| { |
| return ada_value_struct_elt (tag, "tsd", 1) != NULL; |
| } |
| |
| /* The value of the tag on VAL. */ |
| |
| static struct value * |
| ada_value_tag (struct value *val) |
| { |
| return ada_value_struct_elt (val, "_tag", 0); |
| } |
| |
| /* The value of the tag on the object of type TYPE whose contents are |
| saved at VALADDR, if it is non-null, or is at memory address |
| ADDRESS. */ |
| |
| static struct value * |
| value_tag_from_contents_and_address (struct type *type, |
| const gdb_byte *valaddr, |
| CORE_ADDR address) |
| { |
| int tag_byte_offset; |
| struct type *tag_type; |
| |
| gdb::array_view<const gdb_byte> contents; |
| if (valaddr != nullptr) |
| contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type)); |
| struct type *resolved_type = resolve_dynamic_type (type, contents, address); |
| if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset, |
| NULL, NULL, NULL)) |
| { |
| const gdb_byte *valaddr1 = ((valaddr == NULL) |
| ? NULL |
| : valaddr + tag_byte_offset); |
| CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
| |
| return value_from_contents_and_address (tag_type, valaddr1, address1); |
| } |
| return NULL; |
| } |
| |
| static struct type * |
| type_from_tag (struct value *tag) |
| { |
| gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag); |
| |
| if (type_name != NULL) |
| return ada_find_any_type (ada_encode (type_name.get ()).c_str ()); |
| return NULL; |
| } |
| |
| /* Given a value OBJ of a tagged type, return a value of this |
| type at the base address of the object. The base address, as |
| defined in Ada.Tags, it is the address of the primary tag of |
| the object, and therefore where the field values of its full |
| view can be fetched. */ |
| |
| struct value * |
| ada_tag_value_at_base_address (struct value *obj) |
| { |
| struct value *val; |
| LONGEST offset_to_top = 0; |
| struct type *ptr_type, *obj_type; |
| struct value *tag; |
| CORE_ADDR base_address; |
| |
| obj_type = value_type (obj); |
| |
| /* It is the responsability of the caller to deref pointers. */ |
| |
| if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF) |
| return obj; |
| |
| tag = ada_value_tag (obj); |
| if (!tag) |
| return obj; |
| |
| /* Base addresses only appeared with Ada 05 and multiple inheritance. */ |
| |
| if (is_ada95_tag (tag)) |
| return obj; |
| |
| struct type *offset_type |
| = language_lookup_primitive_type (language_def (language_ada), |
| target_gdbarch(), "storage_offset"); |
| ptr_type = lookup_pointer_type (offset_type); |
| val = value_cast (ptr_type, tag); |
| if (!val) |
| return obj; |
| |
| /* It is perfectly possible that an exception be raised while |
| trying to determine the base address, just like for the tag; |
| see ada_tag_name for more details. We do not print the error |
| message for the same reason. */ |
| |
| try |
| { |
| offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); |
| } |
| |
| catch (const gdb_exception_error &e) |
| { |
| return obj; |
| } |
| |
| /* If offset is null, nothing to do. */ |
| |
| if (offset_to_top == 0) |
| return obj; |
| |
| /* -1 is a special case in Ada.Tags; however, what should be done |
| is not quite clear from the documentation. So do nothing for |
| now. */ |
| |
| if (offset_to_top == -1) |
| return obj; |
| |
| /* Storage_Offset'Last is used to indicate that a dynamic offset to |
| top is used. In this situation the offset is stored just after |
| the tag, in the object itself. */ |
| ULONGEST last = (((ULONGEST) 1) << (8 * TYPE_LENGTH (offset_type) - 1)) - 1; |
| if (offset_to_top == last) |
| { |
| struct value *tem = value_addr (tag); |
| tem = value_ptradd (tem, 1); |
| tem = value_cast (ptr_type, tem); |
| offset_to_top = value_as_long (value_ind (tem)); |
| } |
| else if (offset_to_top > 0) |
| { |
| /* OFFSET_TO_TOP used to be a positive value to be subtracted |
| from the base address. This was however incompatible with |
| C++ dispatch table: C++ uses a *negative* value to *add* |
| to the base address. Ada's convention has therefore been |
| changed in GNAT 19.0w 20171023: since then, C++ and Ada |
| use the same convention. Here, we support both cases by |
| checking the sign of OFFSET_TO_TOP. */ |
| offset_to_top = -offset_to_top; |
| } |
| |
| base_address = value_address (obj) + offset_to_top; |
| tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); |
| |
| /* Make sure that we have a proper tag at the new address. |
| Otherwise, offset_to_top is bogus (which can happen when |
| the object is not initialized yet). */ |
| |
| if (!tag) |
| return obj; |
| |
| obj_type = type_from_tag (tag); |
| |
| if (!obj_type) |
| return obj; |
| |
| return value_from_contents_and_address (obj_type, NULL, base_address); |
| } |
| |
| /* Return the "ada__tags__type_specific_data" type. */ |
| |
| static struct type * |
| ada_get_tsd_type (struct inferior *inf) |
| { |
| struct ada_inferior_data *data = get_ada_inferior_data (inf); |
| |
| if (data->tsd_type == 0) |
| data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); |
| return data->tsd_type; |
| } |
| |
| /* Return the TSD (type-specific data) associated to the given TAG. |
| TAG is assumed to be the tag of a tagged-type entity. |
| |
| May return NULL if we are unable to get the TSD. */ |
| |
| static struct value * |
| ada_get_tsd_from_tag (struct value *tag) |
| { |
| struct value *val; |
| struct type *type; |
| |
| /* First option: The TSD is simply stored as a field of our TAG. |
| Only older versions of GNAT would use this format, but we have |
| to test it first, because there are no visible markers for |
| the current approach except the absence of that field. */ |
| |
| val = ada_value_struct_elt (tag, "tsd", 1); |
| if (val) |
| return val; |
| |
| /* Try the second representation for the dispatch table (in which |
| there is no explicit 'tsd' field in the referent of the tag pointer, |
| and instead the tsd pointer is stored just before the dispatch |
| table. */ |
| |
| type = ada_get_tsd_type (current_inferior()); |
| if (type == NULL) |
| return NULL; |
| type = lookup_pointer_type (lookup_pointer_type (type)); |
| val = value_cast (type, tag); |
| if (val == NULL) |
| return NULL; |
| return value_ind (value_ptradd (val, -1)); |
| } |
| |
| /* Given the TSD of a tag (type-specific data), return a string |
| containing the name of the associated type. |
| |
| May return NULL if we are unable to determine the tag name. */ |
| |
| static gdb::unique_xmalloc_ptr<char> |
| ada_tag_name_from_tsd (struct value *tsd) |
| { |
| struct value *val; |
| |
| val = ada_value_struct_elt (tsd, "expanded_name", 1); |
| if (val == NULL) |
| return NULL; |
| gdb::unique_xmalloc_ptr<char> buffer |
| = target_read_string (value_as_address (val), INT_MAX); |
| if (buffer == nullptr) |
| return nullptr; |
| |
| try |
| { |
| /* Let this throw an exception on error. If the data is |
| uninitialized, we'd rather not have the user see a |
| warning. */ |
| const char *folded = ada_fold_name (buffer.get (), true); |
| return make_unique_xstrdup (folded); |
| } |
| catch (const gdb_exception &) |
| { |
| return nullptr; |
| } |
| } |
| |
| /* The type name of the dynamic type denoted by the 'tag value TAG, as |
| a C string. |
| |
| Return NULL if the TAG is not an Ada tag, or if we were unable to |
| determine the name of that tag. */ |
| |
| gdb::unique_xmalloc_ptr<char> |
| ada_tag_name (struct value *tag) |
| { |
| gdb::unique_xmalloc_ptr<char> name; |
| |
| if (!ada_is_tag_type (value_type (tag))) |
| return NULL; |
| |
| /* It is perfectly possible that an exception be raised while trying |
| to determine the TAG's name, even under normal circumstances: |
| The associated variable may be uninitialized or corrupted, for |
| instance. We do not let any exception propagate past this point. |
| instead we return NULL. |
| |
| We also do not print the error message either (which often is very |
| low-level (Eg: "Cannot read memory at 0x[...]"), but instead let |
| the caller print a more meaningful message if necessary. */ |
| try |
| { |
| struct value *tsd = ada_get_tsd_from_tag (tag); |
| |
| if (tsd != NULL) |
| name = ada_tag_name_from_tsd (tsd); |
| } |
| catch (const gdb_exception_error &e) |
| { |
| } |
| |
| return name; |
| } |
| |
| /* The parent type of TYPE, or NULL if none. */ |
| |
| struct type * |
| ada_parent_type (struct type *type) |
| { |
| int i; |
| |
| type = ada_check_typedef (type); |
| |
| if (type == NULL || type->code () != TYPE_CODE_STRUCT) |
| return NULL; |
| |
| for (i = 0; i < type->num_fields (); i += 1) |
| if (ada_is_parent_field (type, i)) |
| { |
| struct type *parent_type = type->field (i).type (); |
| |
| /* If the _parent field is a pointer, then dereference it. */ |
| if (parent_type->code () == TYPE_CODE_PTR) |
| parent_type = TYPE_TARGET_TYPE (parent_type); |
| /* If there is a parallel XVS type, get the actual base type. */ |
| parent_type = ada_get_base_type (parent_type); |
| |
| return ada_check_typedef (parent_type); |
| } |
| |
| return NULL; |
| } |
| |
| /* True iff field number FIELD_NUM of structure type TYPE contains the |
| parent-type (inherited) fields of a derived type. Assumes TYPE is |
| a structure type with at least FIELD_NUM+1 fields. */ |
| |
| int |
| ada_is_parent_field (struct type *type, int field_num) |
| { |
| const char *name = ada_check_typedef (type)->field (field_num).name (); |
| |
| return (name != NULL |
| && (startswith (name, "PARENT") |
| || startswith (name, "_parent"))); |
| } |
| |
| /* True iff field number FIELD_NUM of structure type TYPE is a |
| transparent wrapper field (which should be silently traversed when doing |
| field selection and flattened when printing). Assumes TYPE is a |
| structure type with at least FIELD_NUM+1 fields. Such fields are always |
| structures. */ |
| |
| int |
| ada_is_wrapper_field (struct type *type, int field_num) |
| { |
| const char *name = type->field (field_num).name (); |
| |
| if (name != NULL && strcmp (name, "RETVAL") == 0) |
| { |
| /* This happens in functions with "out" or "in out" parameters |
| which are passed by copy. For such functions, GNAT describes |
| the function's return type as being a struct where the return |
| value is in a field called RETVAL, and where the other "out" |
| or "in out" parameters are fields of that struct. This is not |
| a wrapper. */ |
| return 0; |
| } |
| |
| return (name != NULL |
| && (startswith (name, "PARENT") |
| || strcmp (name, "REP") == 0 |
| || startswith (name, "_parent") |
| || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
| } |
| |
| /* True iff field number FIELD_NUM of structure or union type TYPE |
| is a variant wrapper. Assumes TYPE is a structure type with at least |
| FIELD_NUM+1 fields. */ |
| |
| int |
| ada_is_variant_part (struct type *type, int field_num) |
| { |
| /* Only Ada types are eligible. */ |
| if (!ADA_TYPE_P (type)) |
| return 0; |
| |
| struct type *field_type = type->field (field_num).type (); |
| |
| return (field_type->code () == TYPE_CODE_UNION |
| || (is_dynamic_field (type, field_num) |
| && (TYPE_TARGET_TYPE (field_type)->code () |
| == TYPE_CODE_UNION))); |
| } |
| |
| /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) |
| whose discriminants are contained in the record type OUTER_TYPE, |
| returns the type of the controlling discriminant for the variant. |
| May return NULL if the type could not be found. */ |
| |
| struct type * |
| ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
| { |
| const char *name = ada_variant_discrim_name (var_type); |
| |
| return ada_lookup_struct_elt_type (outer_type, name, 1, 1); |
| } |
| |
| /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
| valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
| represents a 'when others' clause; otherwise 0. */ |
| |
| static int |
| ada_is_others_clause (struct type *type, int field_num) |
| { |
| const char *name = type->field (field_num).name (); |
| |
| return (name != NULL && name[0] == 'O'); |
| } |
| |
| /* Assuming that TYPE0 is the type of the variant part of a record, |
| returns the name of the discriminant controlling the variant. |
| The value is valid until the next call to ada_variant_discrim_name. */ |
| |
| const char * |
| ada_variant_discrim_name (struct type *type0) |
| { |
| static std::string result; |
| struct type *type; |
| const char *name; |
| const char *discrim_end; |
| const char *discrim_start; |
| |
| if (type0->code () == TYPE_CODE_PTR) |
| type = TYPE_TARGET_TYPE (type0); |
| else |
| type = type0; |
| |
| name = ada_type_name (type); |
| |
| if (name == NULL || name[0] == '\000') |
| return ""; |
| |
| for (discrim_end = name + strlen (name) - 6; discrim_end != name; |
| discrim_end -= 1) |
| { |
| if (startswith (discrim_end, "___XVN")) |
| break; |
| } |
| if (discrim_end == name) |
| return ""; |
| |
| for (discrim_start = discrim_end; discrim_start != name + 3; |
| discrim_start -= 1) |
| { |
| if (discrim_start == name + 1) |
| return ""; |
| if ((discrim_start > name + 3 |
| && startswith (discrim_start - 3, "___")) |
| || discrim_start[-1] == '.') |
| break; |
| } |
| |
| result = std::string (discrim_start, discrim_end - discrim_start); |
| return result.c_str (); |
| } |
| |
| /* Scan STR for a subtype-encoded number, beginning at position K. |
| Put the position of the character just past the number scanned in |
| *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. |
| Return 1 if there was a valid number at the given position, and 0 |
| otherwise. A "subtype-encoded" number consists of the absolute value |
| in decimal, followed by the letter 'm' to indicate a negative number. |
| Assumes 0m does not occur. */ |
| |
| int |
| ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
| { |
| ULONGEST RU; |
| |
| if (!isdigit (str[k])) |
| return 0; |
| |
| /* Do it the hard way so as not to make any assumption about |
| the relationship of unsigned long (%lu scan format code) and |
| LONGEST. */ |
| RU = 0; |
| while (isdigit (str[k])) |
| { |
| RU = RU * 10 + (str[k] - '0'); |
| k += 1; |
| } |
| |
| if (str[k] == 'm') |
| { |
| if (R != NULL) |
| *R = (-(LONGEST) (RU - 1)) - 1; |
| k += 1; |
| } |
| else if (R != NULL) |
| *R = (LONGEST) RU; |
| |
| /* NOTE on the above: Technically, C does not say what the results of |
| - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
| number representable as a LONGEST (although either would probably work |
| in most implementations). When RU>0, the locution in the then branch |
| above is always equivalent to the negative of RU. */ |
| |
| if (new_k != NULL) |
| *new_k = k; |
| return 1; |
| } |
| |
| /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
| and FIELD_NUM is a valid field number within it, returns 1 iff VAL is |
| in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ |
| |
| static int |
| ada_in_variant (LONGEST val, struct type *type, int field_num) |
| { |
| const char *name = type->field (field_num).name (); |
| int p; |
| |
| p = 0; |
| while (1) |
| { |
| switch (name[p]) |
| { |
| case '\0': |
| return 0; |
| case 'S': |
| { |
| LONGEST W; |
| |
| if (!ada_scan_number (name, p + 1, &W, &p)) |
| return 0; |
| if (val == W) |
| return 1; |
| break; |
| } |
| case 'R': |
| { |
| LONGEST L, U; |
| |
| if (!ada_scan_number (name, p + 1, &L, &p) |
| || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) |
| return 0; |
| if (val >= L && val <= U) |
| return 1; |
| break; |
| } |
| case 'O': |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| } |
| |
| /* FIXME: Lots of redundancy below. Try to consolidate. */ |
| |
| /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type |
| ARG_TYPE, extract and return the value of one of its (non-static) |
| fields. FIELDNO says which field. Differs from value_primitive_field |
| only in that it can handle packed values of arbitrary type. */ |
| |
| struct value * |
| ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
| struct type *arg_type) |
| { |
| struct type *type; |
| |
| arg_type = ada_check_typedef (arg_type); |
| type = arg_type->field (fieldno).type (); |
| |
| /* Handle packed fields. It might be that the field is not packed |
| relative to its containing structure, but the structure itself is |
| packed; in this case we must take the bit-field path. */ |
| if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0) |
| { |
| int bit_pos = arg_type->field (fieldno).loc_bitpos (); |
| int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); |
| |
| return ada_value_primitive_packed_val (arg1, |
| value_contents (arg1).data (), |
| offset + bit_pos / 8, |
| bit_pos % 8, bit_size, type); |
| } |
| else |
| return value_primitive_field (arg1, offset, fieldno, arg_type); |
| } |
| |
| /* Find field with name NAME in object of type TYPE. If found, |
| set the following for each argument that is non-null: |
| - *FIELD_TYPE_P to the field's type; |
| - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within |
| an object of that type; |
| - *BIT_OFFSET_P to the bit offset modulo byte size of the field; |
| - *BIT_SIZE_P to its size in bits if the field is packed, and |
| 0 otherwise; |
| If INDEX_P is non-null, increment *INDEX_P by the number of source-visible |
| fields up to but not including the desired field, or by the total |
| number of fields if not found. A NULL value of NAME never |
| matches; the function just counts visible fields in this case. |
| |
| Notice that we need to handle when a tagged record hierarchy |
| has some components with the same name, like in this scenario: |
| |
| type Top_T is tagged record |
| N : Integer := 1; |
| U : Integer := 974; |
| A : Integer := 48; |
| end record; |
| |
| type Middle_T is new Top.Top_T with record |
| N : Character := 'a'; |
| C : Integer := 3; |
| end record; |
| |
| type Bottom_T is new Middle.Middle_T with record |
| N : Float := 4.0; |
| C : Character := '5'; |
| X : Integer := 6; |
| A : Character := 'J'; |
| end record; |
| |
| Let's say we now have a variable declared and initialized as follow: |
| |
| TC : Top_A := new Bottom_T; |
| |
| And then we use this variable to call this function |
| |
| procedure Assign (Obj: in out Top_T; TV : Integer); |
| |
| as follow: |
| |
| Assign (Top_T (B), 12); |
| |
| Now, we're in the debugger, and we're inside that procedure |
| then and we want to print the value of obj.c: |
| |
| Usually, the tagged record or one of the parent type owns the |
| component to print and there's no issue but in this particular |
| case, what does it mean to ask for Obj.C? Since the actual |
| type for object is type Bottom_T, it could mean two things: type |
| component C from the Middle_T view, but also component C from |
| Bottom_T. So in that "undefined" case, when the component is |
| not found in the non-resolved type (which includes all the |
| components of the parent type), then resolve it and see if we |
| get better luck once expanded. |
| |
| In the case of homonyms in the derived tagged type, we don't |
| guaranty anything, and pick the one that's easiest for us |
| to program. |
| |
| Returns 1 if found, 0 otherwise. */ |
| |
| static int |
| find_struct_field (const char *name, struct type *type, int offset, |
| struct type **field_type_p, |
| int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
| int *index_p) |
| { |
| int i; |
| int parent_offset = -1; |
| |
| type = ada_check_typedef (type); |
| |
| if (field_type_p != NULL) |
| *field_type_p = NULL; |
| if (byte_offset_p != NULL) |
| *byte_offset_p = 0; |
| if (bit_offset_p != NULL) |
| *bit_offset_p = 0; |
| if (bit_size_p != NULL) |
| *bit_size_p = 0; |
| |
| for (i = 0; i < type->num_fields (); i += 1) |
| { |
| /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic |
| type. However, we only need the values to be correct when |
| the caller asks for them. */ |
| int bit_pos = 0, fld_offset = 0; |
| if (byte_offset_p != nullptr || bit_offset_p != nullptr) |
| { |
| bit_pos = type->field (i).loc_bitpos (); |
| fld_offset = offset + bit_pos / 8; |
| } |
| |
| const char *t_field_name = type->field (i).name (); |
| |
| if (t_field_name == NULL) |
| continue; |
| |
| else if (ada_is_parent_field (type, i)) |
| { |
| /* This is a field pointing us to the parent type of a tagged |
| type. As hinted in this function's documentation, we give |
| preference to fields in the current record first, so what |
| we do here is just record the index of this field before |
| we skip it. If it turns out we couldn't find our field |
| in the current record, then we'll get back to it and search |
| inside it whether the field might exist in the parent. */ |
| |
| parent_offset = i; |
| continue; |
| } |
| |
| else if (name != NULL && field_name_match (t_field_name, name)) |
| { |
| int bit_size = TYPE_FIELD_BITSIZE (type, i); |
| |
| if (field_type_p != NULL) |
| *field_type_p = type->field (i).type (); |
| if (byte_offset_p != NULL) |
| *byte_offset_p = fld_offset; |
| if (bit_offset_p != NULL) |
| *bit_offset_p = bit_pos % 8; |
| if (bit_size_p != NULL) |
| *bit_size_p = bit_size; |
| return 1; |
| } |
| else if (ada_is_wrapper_field (type, i)) |
| { |
| if (find_struct_field (name, type->field (i).type (), fld_offset, |
| field_type_p, byte_offset_p, bit_offset_p, |
| bit_size_p, index_p)) |
| return 1; |
| } |
| else if (ada_is_variant_part (type, i)) |
| { |
| /* PNH: Wait. Do we ever execute this section, or is ARG always of |
| fixed type?? */ |
| int j; |
| struct type *field_type |
| = ada_check_typedef (type->field (i).type ()); |
| |
| for (j = 0; j < field_type->num_fields (); j += 1) |
| { |
| if (find_struct_field (name, field_type->field (j).type (), |
| fld_offset |
| + field_type->field (j).loc_bitpos () / 8, |
| field_type_p, byte_offset_p, |
| bit_offset_p, bit_size_p, index_p)) |
| return 1; |
| } |
| } |
| else if (index_p != NULL) |
| *index_p += 1; |
| } |
| |
| /* Field not found so far. If this is a tagged type which |
| has a parent, try finding that field in the parent now. */ |
| |
| if (parent_offset != -1) |
| { |
| /* As above, only compute the offset when truly needed. */ |
| int fld_offset = offset; |
| if (byte_offset_p != nullptr || bit_offset_p != nullptr) |
| { |
| int bit_pos = type->field (parent_offset).loc_bitpos (); |
| fld_offset += bit_pos / 8; |
| } |
| |
| if (find_struct_field (name, type->field (parent_offset).type (), |
| fld_offset, field_type_p, byte_offset_p, |
| bit_offset_p, bit_size_p, index_p)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Number of user-visible fields in record type TYPE. */ |
| |
| static int |
| num_visible_fields (struct type *type) |
| { |
| int n; |
| |
| n = 0; |
| find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); |
| return n; |
| } |
| |
| /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
| and search in it assuming it has (class) type TYPE. |
| If found, return value, else return NULL. |
| |
| Searches recursively through wrapper fields (e.g., '_parent'). |
| |
| In the case of homonyms in the tagged types, please refer to the |
| long explanation in find_struct_field's function documentation. */ |
| |
| static struct value * |
| ada_search_struct_field (const char *name, struct value *arg, int offset, |
| struct type *type) |
| { |
| int i; |
| int parent_offset = -1; |
| |
| type = ada_check_typedef (type); |
| for (i = 0; i < type->num_fields (); i += 1) |
| { |
| const char *t_field_name = type->field (i).name (); |
| |
| if (t_field_name == NULL) |
| continue; |
| |
| else if (ada_is_parent_field (type, i)) |
| { |
| /* This is a field pointing us to the parent type of a tagged |
| type. As hinted in this function's documentation, we give |
| preference to fields in the current record first, so what |
| we do here is just record the index of this field before |
| we skip it. If it turns out we couldn't find our field |
| in the current record, then we'll get back to it and search |
| inside it whether the field might exist in the parent. */ |
| |
| parent_offset = i; |
| continue; |
| } |
| |
| else if (field_name_match (t_field_name, name)) |
| return ada_value_primitive_field (arg, offset, i, type); |
| |
| else if (ada_is_wrapper_field (type, i)) |
| { |
| struct value *v = /* Do not let indent join lines here. */ |
| ada_search_struct_field (name, arg, |
| offset + type->field (i).loc_bitpos () / 8, |
| type->field (i).type ()); |
| |
| if (v != NULL) |
| return v; |
| } |
| |
| else if (ada_is_variant_part (type, i)) |
| { |
| /* PNH: Do we ever get here? See find_struct_field. */ |
| int j; |
| struct type *field_type = ada_check_typedef (type->field (i).type ()); |
| int var_offset = offset + type->field (i).loc_bitpos () / 8; |
| |
| for (j = 0; j < field_type->num_fields (); j += 1) |
| { |
| struct value *v = ada_search_struct_field /* Force line |
| break. */ |
| (name, arg, |
| var_offset + field_type->field (j).loc_bitpos () / 8, |
| field_type->field (j).type ()); |
| |
| if (v != NULL) |
| return v; |
| } |
| } |
| } |
| |
| /* Field not found so far. If this is a tagged type which |
| has a parent, try finding that field in the parent now. */ |
| |
| if (parent_offset != -1) |
| { |
| struct value *v = ada_search_struct_field ( |
| name, arg, offset + type->field (parent_offset).loc_bitpos () / 8, |
| type->field (parent_offset).type ()); |
| |
| if (v != NULL) |
| return v; |
| } |
| |
| return NULL; |
| } |
| |
| static struct value *ada_index_struct_field_1 (int *, struct value *, |
| int, struct type *); |
| |
| |
| /* Return field #INDEX in ARG, where the index is that returned by |
| * find_struct_field through its INDEX_P argument. Adjust the address |
| * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. |
| * If found, return value, else return NULL. */ |
| |
| static struct value * |
| ada_index_struct_field (int index, struct value *arg, int offset, |
| struct type *type) |
| { |
| return ada_index_struct_field_1 (&index, arg, offset, type); |
| } |
| |
| |
| /* Auxiliary function for ada_index_struct_field. Like |
| * ada_index_struct_field, but takes index from *INDEX_P and modifies |
| * *INDEX_P. */ |
| |
| static struct value * |
| ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, |
| struct type *type) |
| { |
| int i; |
| type = ada_check_typedef (type); |
| |
| for (i = 0; i < type->num_fields (); i += 1) |
| { |
| if (type->field (i).name () == NULL) |
| continue; |
| else if (ada_is_wrapper_field (type, i)) |
| { |
| struct value *v = /* Do not let indent join lines here. */ |
| ada_index_struct_field_1 (index_p, arg, |
| offset + type->field (i).loc_bitpos () / 8, |
| type->field (i).type ()); |
| |
| if (v != NULL) |
| return v; |
| } |
| |
| else if (ada_is_variant_part (type, i)) |
| { |
| /* PNH: Do we ever get here? See ada_search_struct_field, |
| find_struct_field. */ |
| error (_("Cannot assign this kind of variant record")); |
| } |
| else if (*index_p == 0) |
| return ada_value_primitive_field (arg, offset, i, type); |
| else |
| *index_p -= 1; |
| } |
| return NULL; |
| } |
| |
| /* Return a string representation of type TYPE. */ |
| |
| static std::string |
| type_as_string (struct type *type) |
| { |
| string_file tmp_stream; |
| |
| type_print (type, "", &tmp_stream, -1); |
| |
| return tmp_stream.release (); |
| } |
| |
| /* Given a type TYPE, look up the type of the component of type named NAME. |
| If DISPP is non-null, add its byte displacement from the beginning of a |
| structure (pointed to by a value) of type TYPE to *DISPP (does not |
| work for packed fields). |
| |
| Matches any field whose name has NAME as a prefix, possibly |
| followed by "___". |
| |
| TYPE can be either a struct or union. If REFOK, TYPE may also |
| be a (pointer or reference)+ to a struct or union, and the |
| ultimate target type will be searched. |
| |
| Looks recursively into variant clauses and parent types. |
| |
| In the case of homonyms in the tagged types, please refer to the |
| long explanation in find_struct_field's function documentation. |
| |
| If NOERR is nonzero, return NULL if NAME is not suitably defined or |
| TYPE is not a type of the right kind. */ |
| |
| static struct type * |
| ada_lookup_struct_elt_type (struct type *type, const char *name, int refok, |
| int noerr) |
| { |
| int i; |
| int parent_offset = -1; |
| |
| if (name == NULL) |
| goto BadName; |
| |
| if (refok && type != NULL) |
| while (1) |
| { |
| type = ada_check_typedef (type); |
| if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF) |
| break; |
| type = TYPE_TARGET_TYPE (type); |
| } |
| |
| if (type == NULL |
| || (type->code () != TYPE_CODE_STRUCT |
| && type->code () != TYPE_CODE_UNION)) |
| { |
| if (noerr) |
| return NULL; |
| |
| error (_("Type %s is not a structure or union type"), |
| type != NULL ? type_as_string (type).c_str () : _("(null)")); |
| } |
| |
| type = to_static_fixed_type (type); |
| |
| for (i = 0; i < type->num_fields (); i += 1) |
| { |
| const char *t_field_name = type->field (i).name (); |
| struct type *t; |
| |
| if (t_field_name == NULL) |
| continue; |
| |
| else if (ada_is_parent_field (type, i)) |
| { |
| /* This is a field pointing us to the parent type of a tagged |
| type. As hinted in this function's documentation, we give |
| preference to fields in the current record first, so what |
| we do here is just record the index of this field before |
| we skip it. If it turns out we couldn't find our field |
| in the current record, then we'll get back to it and search |
| inside it whether the field might exist in the parent. */ |
| |
| parent_offset = i; |
| continue; |
| } |
| |
| else if (field_name_match (t_field_name, name)) |
| return type->field (i).type (); |
| |
| else if (ada_is_wrapper_field (type, i)) |
| { |
| t = ada_lookup_struct_elt_type (type->field (i).type (), name, |
| 0, 1); |
| if (t != NULL) |
| return t; |
| } |
| |
| else if (ada_is_variant_part (type, i)) |
| { |
| int j; |
| struct type *field_type = ada_check_typedef (type->field (i).type ()); |
| |
| for (j = field_type->num_fields () - 1; j >= 0; j -= 1) |
| { |
| /* FIXME pnh 2008/01/26: We check for a field that is |
| NOT wrapped in a struct, since the compiler sometimes |
| generates these for unchecked variant types. Revisit |
| if the compiler changes this practice. */ |
| const char *v_field_name = field_type->field (j).name (); |
| |
| if (v_field_name != NULL |
| && field_name_match (v_field_name, name)) |
| t = field_type->field (j).type (); |
| else |
| t = ada_lookup_struct_elt_type (field_type->field (j).type (), |
| name, 0, 1); |
| |
| if (t != NULL) |
| return t; |
| } |
| } |
| |
| } |
| |
| /* Field not found so far. If this is a tagged type which |
| has a parent, try finding that field in the parent now. */ |
| |
| if (parent_offset != -1) |
| { |
| struct type *t; |
| |
| t = ada_lookup_struct_elt_type (type->field (parent_offset).type (), |
| name, 0, 1); |
| if (t != NULL) |
| return t; |
| } |
| |
| BadName: |
| if (!noerr) |
| { |
| const char *name_str = name != NULL ? name : _("<null>"); |
| |
| error (_("Type %s has no component named %s"), |
| type_as_string (type).c_str (), name_str); |
| } |
| |
| return NULL; |
| } |
| |
| /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
| within a value of type OUTER_TYPE, return true iff VAR_TYPE |
| represents an unchecked union (that is, the variant part of a |
| record that is named in an Unchecked_Union pragma). */ |
| |
| static int |
| is_unchecked_variant (struct type *var_type, struct type *outer_type) |
| { |
| const char *discrim_name = ada_variant_discrim_name (var_type); |
| |
| return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL); |
| } |
| |
| |
| /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
| within OUTER, determine which variant clause (field number in VAR_TYPE, |
| numbering from 0) is applicable. Returns -1 if none are. */ |
| |
| int |
| ada_which_variant_applies (struct type *var_type, struct value *outer) |
| { |
| int others_clause; |
| int i; |
| const char *discrim_name = ada_variant_discrim_name (var_type); |
| struct value *discrim; |
| LONGEST discrim_val; |
| |
| /* Using plain value_from_contents_and_address here causes problems |
| because we will end up trying to resolve a type that is currently |
| being constructed. */ |
| discrim = ada_value_struct_elt (outer, discrim_name, 1); |
| if (discrim == NULL) |
| return -1; |
| discrim_val = value_as_long (discrim); |
| |
| others_clause = -1; |
| for (i = 0; i < var_type->num_fields (); i += 1) |
| { |
| if (ada_is_others_clause (var_type, i)) |
| others_clause = i; |
| else if (ada_in_variant (discrim_val, var_type, i)) |
| return i; |
| } |
| |
| return others_clause; |
| } |
| |
| |
| |
| /* Dynamic-Sized Records */ |
| |
| /* Strategy: The type ostensibly attached to a value with dynamic size |
| (i.e., a size that is not statically recorded in the debugging |
| data) does not accurately reflect the size or layout of the value. |
| Our strategy is to convert these values to values with accurate, |
| conventional types that are constructed on the fly. */ |
| |
| /* There is a subtle and tricky problem here. In general, we cannot |
| determine the size of dynamic records without its data. However, |
| the 'struct value' data structure, which GDB uses to represent |
| quantities in the inferior process (the target), requires the size |
| of the type at the time of its allocation in order to reserve space |
| for GDB's internal copy of the data. That's why the |
| 'to_fixed_xxx_type' routines take (target) addresses as parameters, |
| rather than struct value*s. |
| |
| However, GDB's internal history variables ($1, $2, etc.) are |
| struct value*s containing internal copies of the data that are not, in |
| general, the same as the data at their corresponding addresses in |
| the target. Fortunately, the types we give to these values are all |
| conventional, fixed-size types (as per the strategy described |
| above), so that we don't usually have to perform the |
| 'to_fixed_xxx_type' conversions to look at their values. |
| Unfortunately, there is one exception: if one of the internal |
| history variables is an array whose elements are unconstrained |
| records, then we will need to create distinct fixed types for each |
| element selected. */ |
| |
| /* The upshot of all of this is that many routines take a (type, host |
| address, target address) triple as arguments to represent a value. |
| The host address, if non-null, is supposed to contain an internal |
| copy of the relevant data; otherwise, the program is to consult the |
| target at the target address. */ |
| |
| /* Assuming that VAL0 represents a pointer value, the result of |
| dereferencing it. Differs from value_ind in its treatment of |
| dynamic-sized types. */ |
| |
| struct value * |
| ada_value_ind (struct value *val0) |
| { |
| struct value *val = value_ind (val0); |
| |
| if (ada_is_tagged_type (value_type (val), 0)) |
| val = ada_tag_value_at_base_address (val); |
| |
| return ada_to_fixed_value (val); |
| } |
| |
| /* The value resulting from dereferencing any "reference to" |
| qualifiers on VAL0. */ |
| |
| static struct value * |
| ada_coerce_ref (struct value *val0) |
| { |
| if (value_type (val0)->code () == TYPE_CODE_REF) |
| { |
| struct value *val = val0; |
| |
| val = coerce_ref (val); |
| |
| if (ada_is_tagged_type (value_type (val), 0)) |
| val = ada_tag_value_at_base_address (val); |
| |
| return ada_to_fixed_value (val); |
| } |
| else |
| return val0; |
| } |
| |
| /* Return the bit alignment required for field #F of template type TYPE. */ |
| |
| static unsigned int |
| field_alignment (struct type *type, int f) |
| { |
| const char *name = type->field (f).name (); |
| int len; |
| int align_offset; |
| |
| /* The field name should never be null, unless the debugging information |
| is somehow malformed. In this case, we assume the field does not |
| require any alignment. */ |
| if (name == NULL) |
| return 1; |
| |
| len = strlen (name); |
| |
| if (!isdigit (name[len - 1])) |
| return 1; |
| |
| if (isdigit (name[len - 2])) |
| align_offset = len - 2; |
| else |
| align_offset = len - 1; |
| |
| if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
| return TARGET_CHAR_BIT; |
| |
| return atoi (name + align_offset) * TARGET_CHAR_BIT; |
| } |
| |
| /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
| |
| static struct symbol * |
| ada_find_any_type_symbol (const char *name) |
| { |
| struct symbol *sym; |
| |
| sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); |
| if (sym != NULL && sym->aclass () == LOC_TYPEDEF) |
| return sym; |
| |
| sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
| return sym; |
| } |
| |
| /* Find a type named NAME. Ignores ambiguity. This routine will look |
| solely for types defined by debug info, it will not search the GDB |
| primitive types. */ |
| |
| static struct type * |
| ada_find_any_type (const char *name) |
| { |
| struct symbol *sym = ada_find_any_type_symbol (name); |
| |
| if (sym != NULL) |
| return sym->type (); |
| |
| return NULL; |
| } |
| |
| /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
| associated with NAME_SYM's name. NAME_SYM may itself be a renaming |
| symbol, in which case it is returned. Otherwise, this looks for |
| symbols whose name is that of NAME_SYM suffixed with "___XR". |
| Return symbol if found, and NULL otherwise. */ |
| |
| static bool |
| ada_is_renaming_symbol (struct symbol *name_sym) |
| { |
| const char *name = name_sym->linkage_name (); |
| return strstr (name, "___XR") != NULL; |
| } |
| |
| /* Because of GNAT encoding conventions, several GDB symbols may match a |
| given type name. If the type denoted by TYPE0 is to be preferred to |
| that of TYPE1 for purposes of type printing, return non-zero; |
| otherwise return 0. */ |
| |
| int |
| ada_prefer_type (struct type *type0, struct type *type1) |
| { |
| if (type1 == NULL) |
| return 1; |
| else if (type0 == NULL) |
| return 0; |
| else if (type1->code () == TYPE_CODE_VOID) |
| return 1; |
| else if (type0->code () == TYPE_CODE_VOID) |
| return 0; |
| else if (type1->name () == NULL && type0->name () != NULL) |
| return 1; |
| else if (ada_is_constrained_packed_array_type (type0)) |
| return 1; |
| else if (ada_is_array_descriptor_type (type0) |
| && !ada_is_array_descriptor_type (type1)) |
| return 1; |
| else |
| { |
| const char *type0_name = type0->name (); |
| const char *type1_name = type1->name (); |
| |
| if (type0_name != NULL && strstr (type0_name, "___XR") != NULL |
| && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is |
| null. */ |
| |
| const char * |
| ada_type_name (struct type *type) |
| { |
| if (type == NULL) |
| return NULL; |
| return type->name (); |
| } |
| |
| /* Search the list of "descriptive" types associated to TYPE for a type |
| whose name is NAME. */ |
| |
| static struct type * |
| find_parallel_type_by_descriptive_type (struct type *type, const char *name) |
| { |
| struct type *result, *tmp; |
| |
| if (ada_ignore_descriptive_types_p) |
| return NULL; |
| |
| /* If there no descriptive-type info, then there is no parallel type |
| to be found. */ |
| if (!HAVE_GNAT_AUX_INFO (type)) |
| return NULL; |
| |
| result = TYPE_DESCRIPTIVE_TYPE (type); |
| while (result != NULL) |
| { |
| const char *result_name = ada_type_name (result); |
| |
| if (result_name == NULL) |
| { |
| warning (_("unexpected null name on descriptive type")); |
| return NULL; |
| } |
| |
| /* If the names match, stop. */ |
| if (strcmp (result_name, name) == 0) |
| break; |
| |
| /* Otherwise, look at the next item on the list, if any. */ |
| if (HAVE_GNAT_AUX_INFO (result)) |
| tmp = TYPE_DESCRIPTIVE_TYPE (result); |
| else |
| tmp = NULL; |
| |
| /* If not found either, try after having resolved the typedef. */ |
| if (tmp != NULL) |
| result = tmp; |
| else |
| { |
| result = check_typedef (result); |
| if (HAVE_GNAT_AUX_INFO (result)) |
| result = TYPE_DESCRIPTIVE_TYPE (result); |
| else |
| result = NULL; |
| } |
| } |
| |
| /* If we didn't find a match, see whether this is a packed array. With |
| older compilers, the descriptive type information is either absent or |
| irrelevant when it comes to packed arrays so the above lookup fails. |
| Fall back to using a parallel lookup by name in this case. */ |
| if (result == NULL && ada_is_constrained_packed_array_type (type)) |
| return ada_find_any_type (name); |
| |
| return result; |
| } |
| |
| /* Find a parallel type to TYPE with the specified NAME, using the |
| descriptive type taken from the debugging information, if available, |
| and otherwise using the (slower) name-based method. */ |
| |
| static struct type * |
| ada_find_parallel_type_with_name (struct type *type, const char *name) |
| { |
| struct type *result = NULL; |
| |
| if (HAVE_GNAT_AUX_INFO (type)) |
| result = find_parallel_type_by_descriptive_type (type, name); |
| else |
| result = ada_find_any_type (name); |
| |
| return result; |
| } |
| |
| /* Same as above, but specify the name of the parallel type by appending |
| SUFFIX to the name of TYPE. */ |
| |
| struct type * |
| ada_find_parallel_type (struct type *type, const char *suffix) |
| { |
| char *name; |
| const char *type_name = ada_type_name (type); |
| int len; |
| |
| if (type_name == NULL) |
| return NULL; |
| |
| len = strlen (type_name); |
| |
| name = (char *) alloca (len + strlen (suffix) + 1); |
| |
| strcpy (name, type_name); |
| strcpy (name + len, suffix); |
| |
| return ada_find_parallel_type_with_name (type, name); |
| } |
| |
| /* If TYPE is a variable-size record type, return the corresponding template |
| type describing its fields. Otherwise, return NULL. */ |
| |
| static struct type * |
| dynamic_template_type (struct type *type) |
| { |
| type = ada_check_typedef (type); |
| |
| if (type == NULL || type->code () != TYPE_CODE_STRUCT |
| || ada_type_name (type) == NULL) |
| return NULL; |
| else |
| { |
| int len = strlen (ada_type_name (type)); |
| |
| if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
| return type; |
| else |
| return ada_find_parallel_type (type, "___XVE"); |
| } |
| } |
| |
| /* Assuming that TEMPL_TYPE is a union or struct type, returns |
| non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
| |
| static int |
| is_dynamic_field (struct type *templ_type, int field_num) |
| { |
| const char *name = templ_type->field (field_num).name (); |
| |
| return name != NULL |
| && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR |
| && strstr (name, "___XVL") != NULL; |
| } |
| |
| /* The index of the variant field of TYPE, or -1 if TYPE does not |
| represent a variant record type. */ |
| |
| static int |
| variant_field_index (struct type *type) |
| { |
| int f; |
| |
| if (type == NULL || type->code () != TYPE_CODE_STRUCT) |
| return -1; |
| |
| for (f = 0; f < type->num_fields (); f += 1) |
| { |
| if (ada_is_variant_part (type, f)) |
| return f; |
| } |
| return -1; |
| } |
| |
| /* A record type with no fields. */ |
| |
| static struct type * |
| empty_record (struct type *templ) |
| { |
| struct type *type = alloc_type_copy (templ); |
| |
| type->set_code (TYPE_CODE_STRUCT); |
| INIT_NONE_SPECIFIC (type); |
| type->set_name ("<empty>"); |
| TYPE_LENGTH (type) = 0; |
| return type; |
| } |
| |
| /* An ordinary record type (with fixed-length fields) that describes |
| the value of type TYPE at VALADDR or ADDRESS (see comments at |
| the beginning of this section) VAL according to GNAT conventions. |
| DVAL0 should describe the (portion of a) record that contains any |
| necessary discriminants. It should be NULL if value_type (VAL) is |
| an outer-level type (i.e., as opposed to a branch of a variant.) A |
| variant field (unless unchecked) is replaced by a particular branch |
| of the variant. |
| |
| If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
| length are not statically known are discarded. As a consequence, |
| VALADDR, ADDRESS and DVAL0 are ignored. |
| |
| NOTE: Limitations: For now, we assume that dynamic fields and |
| variants occupy whole numbers of bytes. However, they need not be |
| byte-aligned. */ |
| |
| struct type * |
| ada_template_to_fixed_record_type_1 (struct type *type, |
| const gdb_byte *valaddr, |
| CORE_ADDR address, struct value *dval0, |
| int keep_dynamic_fields) |
| { |
| struct value *mark = value_mark (); |
| struct value *dval; |
| struct type *rtype; |
| int nfields, bit_len; |
| int variant_field; |
| long off; |
| int fld_bit_len; |
| int f; |
| |
| /* Compute the number of fields in this record type that are going |
| to be processed: unless keep_dynamic_fields, this includes only |
| fields whose position and length are static will be processed. */ |
| if (keep_dynamic_fields) |
| nfields = type->num_fields (); |
| else |
| { |
| nfields = 0; |
| while (nfields < type->num_fields () |
| && !ada_is_variant_part (type, nfields) |
| && !is_dynamic_field (type, nfields)) |
| nfields++; |
| } |
| |
| rtype = alloc_type_copy (type); |
| rtype->set_code (TYPE_CODE_STRUCT); |
| INIT_NONE_SPECIFIC (rtype); |
| rtype->set_num_fields (nfields); |
| rtype->set_fields |
| ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field))); |
| rtype->set_name (ada_type_name (type)); |
| rtype->set_is_fixed_instance (true); |
| |
| off = 0; |
| bit_len = 0; |
| variant_field = -1; |
| |
| for (f = 0; f < nfields; f += 1) |
| { |
| off = align_up (off, field_alignment (type, f)) |
| + type->field (f).loc_bitpos (); |
| rtype->field (f).set_loc_bitpos (off); |
| TYPE_FIELD_BITSIZE (rtype, f) = 0; |
| |
| if (ada_is_variant_part (type, f)) |
| { |
| variant_field = f; |
| fld_bit_len = 0; |
| } |
| else if (is_dynamic_field (type, f)) |
| { |
| const gdb_byte *field_valaddr = valaddr; |
| CORE_ADDR field_address = address; |
| struct type *field_type = |
| TYPE_TARGET_TYPE (type->field (f).type ()); |
| |
| if (dval0 == NULL) |
| { |
| /* Using plain value_from_contents_and_address here |
| causes problems because we will end up trying to |
| resolve a type that is currently being |
| constructed. */ |
| dval = value_from_contents_and_address_unresolved (rtype, |
| valaddr, |
| address); |
| rtype = value_type (dval); |
| } |
| else |
| dval = dval0; |
| |
| /* If the type referenced by this field is an aligner type, we need |
| to unwrap that aligner type, because its size might not be set. |
| Keeping the aligner type would cause us to compute the wrong |
| size for this field, impacting the offset of the all the fields |
| that follow this one. */ |
| if (ada_is_aligner_type (field_type)) |
| { |
| long field_offset = type->field (f).loc_bitpos (); |
| |
| field_valaddr = cond_offset_host (field_valaddr, field_offset); |
| field_address = cond_offset_target (field_address, field_offset); |
| field_type = ada_aligned_type (field_type); |
| } |
| |
| field_valaddr = cond_offset_host (field_valaddr, |
| off / TARGET_CHAR_BIT); |
| field_address = cond_offset_target (field_address, |
| off / TARGET_CHAR_BIT); |
| |
| /* Get the fixed type of the field. Note that, in this case, |
| we do not want to get the real type out of the tag: if |
| the current field is the parent part of a tagged record, |
| we will get the tag of the object. Clearly wrong: the real |
| type of the parent is not the real type of the child. We |
| would end up in an infinite loop. */ |
| field_type = ada_get_base_type (field_type); |
| field_type = ada_to_fixed_type (field_type, field_valaddr, |
| field_address, dval, 0); |
| |
| rtype->field (f).set_type (field_type); |
| rtype->field (f).set_name (type->field (f).name ()); |
| /* The multiplication can potentially overflow. But because |
| the field length has been size-checked just above, and |
| assuming that the maximum size is a reasonable value, |
| an overflow should not happen in practice. So rather than |
| adding overflow recovery code to this already complex code, |
| we just assume that it's not going to happen. */ |
| fld_bit_len = |
| TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT; |
| } |
| else |
| { |
| /* Note: If this field's type is a typedef, it is important |
| to preserve the typedef layer. |
| |
| Otherwise, we might be transforming a typedef to a fat |
| pointer (encoding a pointer to an unconstrained array), |
| into a basic fat pointer (encoding an unconstrained |
| array). As both types are implemented using the same |
| structure, the typedef is the only clue which allows us |
| to distinguish between the two options. Stripping it |
| would prevent us from printing this field appropriately. */ |
| rtype->field (f).set_type (type->field (f).type ()); |
| rtype->field (f).set_name (type->field (f).name ()); |
| if (TYPE_FIELD_BITSIZE (type, f) > 0) |
| fld_bit_len = |
| TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
| else |
| { |
| struct type *field_type = type->field (f).type (); |
| |
| /* We need to be careful of typedefs when computing |
| the length of our field. If this is a typedef, |
| get the length of the target type, not the length |
| of the typedef. */ |
| if (field_type->code () == TYPE_CODE_TYPEDEF) |
| field_type = ada_typedef_target_type (field_type); |
| |
| fld_bit_len = |
| TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
| } |
| } |
| if (off + fld_bit_len > bit_len) |
| bit_len = off + fld_bit_len; |
| off += fld_bit_len; |
| TYPE_LENGTH (rtype) = |
| align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; |
| } |
| |
| /* We handle the variant part, if any, at the end because of certain |
| odd cases in which it is re-ordered so as NOT to be the last field of |
| the record. This can happen in the presence of representation |
| clauses. */ |
| if (variant_field >= 0) |
| { |
| struct type *branch_type; |
| |
| off = rtype->field (variant_field).loc_bitpos (); |
| |
| if (dval0 == NULL) |
| { |
| /* Using plain value_from_contents_and_address here causes |
| problems because we will end up trying to resolve a type |
| that is currently being constructed. */ |
| dval = value_from_contents_and_address_unresolved (rtype, valaddr, |
| address); |
| rtype = value_type (dval); |
| } |
| else |
| dval = dval0; |
| |
| branch_type = |
| to_fixed_variant_branch_type |
| (type->field (variant_field).type (), |
| cond_offset_host (valaddr, off / TARGET_CHAR_BIT), |
| cond_offset_target (address, off / TARGET_CHAR_BIT), dval); |
| if (branch_type == NULL) |
| { |
| for (f = variant_field + 1; f < rtype->num_fields (); f += 1) |
| rtype->field (f - 1) = rtype->field (f); |
| rtype->set_num_fields (rtype->num_fields () - 1); |
| } |
| else |
| { |
| rtype->field (variant_field).set_type (branch_type); |
| rtype->field (variant_field).set_name ("S"); |
| fld_bit_len = |
| TYPE_LENGTH (rtype->field (variant_field).type ()) * |
| TARGET_CHAR_BIT; |
| if (off + fld_bit_len > bit_len) |
| bit_len = off + fld_bit_len; |
| TYPE_LENGTH (rtype) = |
| align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; |
| } |
| } |
| |
| /* According to exp_dbug.ads, the size of TYPE for variable-size records |
| should contain the alignment of that record, which should be a strictly |
| positive value. If null or negative, then something is wrong, most |
| probably in the debug info. In that case, we don't round up the size |
| of the resulting type. If this record is not part of another structure, |
| the current RTYPE length might be good enough for our purposes. */ |
| if (TYPE_LENGTH (type) <= 0) |
| { |
| if (rtype->name ()) |
| warning (_("Invalid type size for `%s' detected: %s."), |
| rtype->name (), pulongest (TYPE_LENGTH (type))); |
| else |
| warning (_("Invalid type size for <unnamed> detected: %s."), |
| pulongest (TYPE_LENGTH (type))); |
| } |
| else |
| { |
| TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype), |
| TYPE_LENGTH (type)); |
| } |
| |
| value_free_to_mark (mark); |
| return rtype; |
| } |
| |
| /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
| of 1. */ |
| |
| static struct type * |
| template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
| CORE_ADDR address, struct value *dval0) |
| { |
| return ada_template_to_fixed_record_type_1 (type, valaddr, |
| address, dval0, 1); |
| } |
| |
| /* An ordinary record type in which ___XVL-convention fields and |
| ___XVU- and ___XVN-convention field types in TYPE0 are replaced with |
| static approximations, containing all possible fields. Uses |
| no runtime values. Useless for use in values, but that's OK, |
| since the results are used only for type determinations. Works on both |
| structs and unions. Representation note: to save space, we memorize |
| the result of this function in the TYPE_TARGET_TYPE of the |
| template type. */ |
| |
| static struct type * |
| template_to_static_fixed_type (struct type *type0) |
| { |
| struct type *type; |
| int nfields; |
| int f; |
| |
| /* No need no do anything if the input type is already fixed. */ |
| if (type0->is_fixed_instance ()) |
| return type0; |
| |
| /* Likewise if we already have computed the static approximation. */ |
| if (TYPE_TARGET_TYPE (type0) != NULL) |
| return TYPE_TARGET_TYPE (type0); |
| |
| /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
| type = type0; |
| nfields = type0->num_fields (); |
| |
| /* Whether or not we cloned TYPE0, cache the result so that we don't do |
| recompute all over next time. */ |
| TYPE_TARGET_TYPE (type0) = type; |
| |
| for (f = 0; f < nfields; f += 1) |
| { |
| struct type *field_type = type0->field (f).type (); |
| struct type *new_type; |
| |
| if (is_dynamic_field (type0, f)) |
| { |
| field_type = ada_check_typedef (field_type); |
| new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); |
| } |
| else |
| new_type = static_unwrap_type (field_type); |
| |
| if (new_type != field_type) |
| { |
| /* Clone TYPE0 only the first time we get a new field type. */ |
| if (type == type0) |
| { |
| TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
| type->set_code (type0->code ()); |
| INIT_NONE_SPECIFIC (type); |
| type->set_num_fields (nfields); |
| |
| field *fields = |
| ((struct field *) |
| TYPE_ALLOC (type, nfields * sizeof (struct field))); |
| memcpy (fields, type0->fields (), |
| sizeof (struct field) * nfields); |
| type->set_fields (fields); |
| |
| type->set_name (ada_type_name (type0)); |
| type->set_is_fixed_instance (true); |
| TYPE_LENGTH (type) = 0; |
| } |
| type->field (f).set_type (new_type); |
| type->field (f).set_name (type0->field (f).name ()); |
| } |
| } |
| |
| return type; |
| } |
| |
| /* Given an object of type TYPE whose contents are at VALADDR and |
| whose address in memory is ADDRESS, returns a revision of TYPE, |
| which should be a non-dynamic-sized record, in which the variant |
| part, if any, is replaced with the appropriate branch. Looks |
| for discriminant values in DVAL0, which can be NULL if the record |
| contains the necessary discriminant values. */ |
| |
| static struct type * |
| to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
| CORE_ADDR address, struct value *dval0) |
| { |
| struct value *mark = value_mark (); |
| struct value *dval; |
| struct type *rtype; |
| struct type *branch_type; |
| int nfields = type->num_fields (); |
| int variant_field = variant_field_index (type); |
| |
| if (variant_field == -1) |
| return type; |
| |
| if (dval0 == NULL) |
| { |
| dval = value_from_contents_and_address (type, valaddr, address); |
| type = value_type (dval); |
| } |
| else |
| dval = dval0; |
| |
| rtype = alloc_type_copy (type); |
| rtype->set_code (TYPE_CODE_STRUCT); |
| INIT_NONE_SPECIFIC (rtype); |
| rtype->set_num_fields (nfields); |
| |
| field *fields = |
| (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
| memcpy (fields, type->fields (), sizeof (struct field) * nfields); |
| rtype->set_fields (fields); |
| |
| rtype->set_name (ada_type_name (type)); |
| rtype->set_is_fixed_instance (true); |
| TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
| |
| branch_type = to_fixed_variant_branch_type |
| (type->field (variant_field).type (), |
| cond_offset_host (valaddr, |
| type->field (variant_field).loc_bitpos () |
| / TARGET_CHAR_BIT), |
| cond_offset_target (address, |
| type->field (variant_field).loc_bitpos () |
| / TARGET_CHAR_BIT), dval); |
| if (branch_type == NULL) |
| { |
| int f; |
| |
| for (f = variant_field + 1; f < nfields; f += 1) |
| rtype->field (f - 1) = rtype->field (f); |
| rtype->set_num_fields (rtype->num_fields () - 1); |
| } |
| else |
| { |
| rtype->field (variant_field).set_type (branch_type); |
| rtype->field (variant_field).set_name ("S"); |
| TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; |
| TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
| } |
| TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ()); |
| |
| value_free_to_mark (mark); |
| return rtype; |
| } |
| |
| /* An ordinary record type (with fixed-length fields) that describes |
| the value at (TYPE0, VALADDR, ADDRESS) [see explanation at |
| beginning of this section]. Any necessary discriminants' values |
| should be in DVAL, a record value; it may be NULL if the object |
| at ADDR itself contains any necessary discriminant values. |
| Additionally, VALADDR and ADDRESS may also be NULL if no discriminant |
| values from the record are needed. Except in the case that DVAL, |
| VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless |
| unchecked) is replaced by a particular branch of the variant. |
| |
| NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 |
| is questionable and may be removed. It can arise during the |
| processing of an unconstrained-array-of-record type where all the |
| variant branches have exactly the same size. This is because in |
| such cases, the compiler does not bother to use the XVS convention |
| when encoding the record. I am currently dubious of this |
| shortcut and suspect the compiler should be altered. FIXME. */ |
| |
| static struct type * |
| to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
| CORE_ADDR address, struct value *dval) |
| { |
| struct type *templ_type; |
| |
| if (type0->is_fixed_instance ()) |
| return type0; |
| |
| templ_type = dynamic_template_type (type0); |
| |
| if (templ_type != NULL) |
| return template_to_fixed_record_type (templ_type, valaddr, address, dval); |
| else if (variant_field_index (type0) >= 0) |
| { |
| if (dval == NULL && valaddr == NULL && address == 0) |
| return type0; |
| return to_record_with_fixed_variant_part (type0, valaddr, address, |
| dval); |
| } |
| else |
| { |
| type0->set_is_fixed_instance (true); |
| return type0; |
| } |
| |
| } |
| |
| /* An ordinary record type (with fixed-length fields) that describes |
| the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a |
| union type. Any necessary discriminants' values should be in DVAL, |
| a record value. That is, this routine selects the appropriate |
| branch of the union at ADDR according to the discriminant value |
| indicated in the union's type name. Returns VAR_TYPE0 itself if |
| it represents a variant subject to a pragma Unchecked_Union. */ |
| |
| static struct type * |
| to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
| CORE_ADDR address, struct value *dval) |
| { |
| int which; |
| struct type *templ_type; |
| struct type *var_type; |
| |
| if (var_type0->code () == TYPE_CODE_PTR) |
| var_type = TYPE_TARGET_TYPE (var_type0); |
| else |
| var_type = var_type0; |
| |
| templ_type = ada_find_parallel_type (var_type, "___XVU"); |
| |
| if (templ_type != NULL) |
| var_type = templ_type; |
| |
| if (is_unchecked_variant (var_type, value_type (dval))) |
| return var_type0; |
| which = ada_which_variant_applies (var_type, dval); |
| |
| if (which < 0) |
| return empty_record (var_type); |
| else if (is_dynamic_field (var_type, which)) |
| return to_fixed_record_type |
| (TYPE_TARGET_TYPE (var_type->field (which).type ()), |
| valaddr, address, dval); |
| else if (variant_field_index (var_type->field (which).type ()) >= 0) |
| return |
| to_fixed_record_type |
| (var_type->field (which).type (), valaddr, address, dval); |
| else |
| return var_type->field (which).type (); |
| } |
| |
| /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
| ENCODING_TYPE, a type following the GNAT conventions for discrete |
| type encodings, only carries redundant information. */ |
| |
| static int |
| ada_is_redundant_range_encoding (struct type *range_type, |
| struct type *encoding_type) |
| { |
| const char *bounds_str; |
| int n; |
| LONGEST lo, hi; |
| |
| gdb_assert (range_type->code () == TYPE_CODE_RANGE); |
| |
| if (get_base_type (range_type)->code () |
| != get_base_type (encoding_type)->code ()) |
| { |
| /* The compiler probably used a simple base type to describe |
| the range type instead of the range's actual base type, |
| expecting us to get the real base type from the encoding |
| anyway. In this situation, the encoding cannot be ignored |
| as redundant. */ |
| return 0; |
| } |
| |
| if (is_dynamic_type (range_type)) |
| return 0; |
| |
| if (encoding_type->name () == NULL) |
| return 0; |
| |
| bounds_str = strstr (encoding_type->name (), "___XDLU_"); |
| if (bounds_str == NULL) |
| return 0; |
| |
| n = 8; /* Skip "___XDLU_". */ |
| if (!ada_scan_number (bounds_str, n, &lo, &n)) |
| return 0; |
| if (range_type->bounds ()->low.const_val () != lo) |
| return 0; |
| |
| n += 2; /* Skip the "__" separator between the two bounds. */ |
| if (!ada_scan_number (bounds_str, n, &hi, &n)) |
| return 0; |
| if (range_type->bounds ()->high.const_val () != hi) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, |
| a type following the GNAT encoding for describing array type |
| indices, only carries redundant information. */ |
| |
| static int |
| ada_is_redundant_index_type_desc (struct type *array_type, |
| struct type *desc_type) |
| { |
| struct type *this_layer = check_typedef (array_type); |
| int i; |
| |
| for (i = 0; i < desc_type->num_fields (); i++) |
| { |
| if (!ada_is_redundant_range_encoding (this_layer->index_type (), |
| desc_type->field (i).type ())) |
| return 0; |
| this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); |
| } |
| |
| return 1; |
| } |
| |
| /* Assuming that TYPE0 is an array type describing the type of a value |
| at ADDR, and that DVAL describes a record containing any |
| discriminants used in TYPE0, returns a type for the value that |
| contains no dynamic components (that is, no components whose sizes |
| are determined by run-time quantities). Unless IGNORE_TOO_BIG is |
| true, gives an error message if the resulting type's size is over |
| varsize_limit. */ |
| |
| static struct type * |
| to_fixed_array_type (struct type *type0, struct value *dval, |
| int ignore_too_big) |
| { |
| struct type *index_type_desc; |
| struct type *result; |
| int constrained_packed_array_p; |
| static const char *xa_suffix = "___XA"; |
| |
| type0 = ada_check_typedef (type0); |
| if (type0->is_fixed_instance ()) |
| return type0; |
| |
| constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
| if (constrained_packed_array_p) |
| { |
| type0 = decode_constrained_packed_array_type (type0); |
| if (type0 == nullptr) |
| error (_("could not decode constrained packed array type")); |
| } |
| |
| index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
| |
| /* As mentioned in exp_dbug.ads, for non bit-packed arrays an |
| encoding suffixed with 'P' may still be generated. If so, |
| it should be used to find the XA type. */ |
| |
| if (index_type_desc == NULL) |
| { |
| const char *type_name = ada_type_name (type0); |
| |
| if (type_name != NULL) |
| { |
| const int len = strlen (type_name); |
| char *name = (char *) alloca (len + strlen (xa_suffix)); |
| |
| if (type_name[len - 1] == 'P') |
| { |
| strcpy (name, type_name); |
| strcpy (name + len - 1, xa_suffix); |
| index_type_desc = ada_find_parallel_type_with_name (type0, name); |
| } |
| } |
| } |
| |
| ada_fixup_array_indexes_type (index_type_desc); |
| if (index_type_desc != NULL |
| && ada_is_redundant_index_type_desc (type0, index_type_desc)) |
| { |
| /* Ignore this ___XA parallel type, as it does not bring any |
| useful information. This allows us to avoid creating fixed |
| versions of the array's index types, which would be identical |
| to the original ones. This, in turn, can also help avoid |
| the creation of fixed versions of the array itself. */ |
| index_type_desc = NULL; |
| } |
| |
| if (index_type_desc == NULL) |
| { |
| struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
| |
| /* NOTE: elt_type---the fixed version of elt_type0---should never |
| depend on the contents of the array in properly constructed |
| debugging data. */ |
| /* Create a fixed version of the array element type. |
| We're not providing the address of an element here, |
| and thus the actual object value cannot be inspected to do |
| the conversion. This should not be a problem, since arrays of |
| unconstrained objects are not allowed. In particular, all |
| the elements of an array of a tagged type should all be of |
| the same type specified in the debugging info. No need to |
| consult the object tag. */ |
| struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
| |
| /* Make sure we always create a new array type when dealing with |
| packed array types, since we're going to fix-up the array |
| type length and element bitsize a little further down. */ |
| if (elt_type0 == elt_type && !constrained_packed_array_p) |
| result = type0; |
| else |
| result = create_array_type (alloc_type_copy (type0), |
| elt_type, type0->index_type ()); |
| } |
| else |
| { |
| int i; |
| struct type *elt_type0; |
| |
| elt_type0 = type0; |
| for (i = index_type_desc->num_fields (); i > 0; i -= 1) |
| elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
| |
| /* NOTE: result---the fixed version of elt_type0---should never |
| depend on the contents of the array in properly constructed |
| debugging data. */ |
| /* Create a fixed version of the array element type. |
| We're not providing the address of an element here, |
| and thus the actual object value cannot be inspected to do |
| the conversion. This should not be a problem, since arrays of |
| unconstrained objects are not allowed. In particular, all |
| the elements of an array of a tagged type should all be of |
| the same type specified in the debugging info. No need to |
| consult the object tag. */ |
| result = |
| ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); |
| |
| elt_type0 = type0; |
| for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1) |
| { |
| struct type *range_type = |
| to_fixed_range_type (index_type_desc->field (i).type (), dval); |
| |
| result = create_array_type (alloc_type_copy (elt_type0), |
| result, range_type); |
| elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
| } |
| } |
| |
| /* We want to preserve the type name. This can be useful when |
| trying to get the type name of a value that has already been |
| printed (for instance, if the user did "print VAR; whatis $". */ |
| result->set_name (type0->name ()); |
| |
| if (constrained_packed_array_p) |
| { |
| /* So far, the resulting type has been created as if the original |
| type was a regular (non-packed) array type. As a result, the |
| bitsize of the array elements needs to be set again, and the array |
| length needs to be recomputed based on that bitsize. */ |
| int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); |
| int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); |
| |
| TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); |
| TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; |
| if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) |
| TYPE_LENGTH (result)++; |
| } |
| |
| result->set_is_fixed_instance (true); |
| return result; |
| } |
| |
| |
| /* A standard type (containing no dynamically sized components) |
| corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) |
| DVAL describes a record containing any discriminants used in TYPE0, |
| and may be NULL if there are none, or if the object of type TYPE at |
| ADDRESS or in VALADDR contains these discriminants. |
| |
| If CHECK_TAG is not null, in the case of tagged types, this function |
| attempts to locate the object's tag and use it to compute the actual |
| type. However, when ADDRESS is null, we cannot use it to determine the |
| location of the tag, and therefore compute the tagged type's actual type. |
| So we return the tagged type without consulting the tag. */ |
| |
| static struct type * |
| ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, |
| CORE_ADDR address, struct value *dval, int check_tag) |
| { |
| type = ada_check_typedef (type); |
| |
| /* Only un-fixed types need to be handled here. */ |
| if (!HAVE_GNAT_AUX_INFO (type)) |
| return type; |
| |
| switch (type->code ()) |
| { |
| default: |
| return type; |
| case TYPE_CODE_STRUCT: |
| { |
| struct type *static_type = to_static_fixed_type (type); |
| struct type *fixed_record_type = |
| to_fixed_record_type (type, valaddr, address, NULL); |
| |
| /* If STATIC_TYPE is a tagged type and we know the object's address, |
| then we can determine its tag, and compute the object's actual |
| type from there. Note that we have to use the fixed record |
| type (the parent part of the record may have dynamic fields |
| and the way the location of _tag is expressed may depend on |
| them). */ |
| |
| if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
| { |
| struct value *tag = |
| value_tag_from_contents_and_address |
| (fixed_record_type, |
| valaddr, |
| address); |
| struct type *real_type = type_from_tag (tag); |
| struct value *obj = |
| value_from_contents_and_address (fixed_record_type, |
| valaddr, |
| address); |
| fixed_record_type = value_type (obj); |
| if (real_type != NULL) |
| return to_fixed_record_type |
| (real_type, NULL, |
| value_address (ada_tag_value_at_base_address (obj)), NULL); |
| } |
| |
| /* Check to see if there is a parallel ___XVZ variable. |
| If there is, then it provides the actual size of our type. */ |
| else if (ada_type_name (fixed_record_type) != NULL) |
| { |
| const char *name = ada_type_name (fixed_record_type); |
| char *xvz_name |
| = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); |
| bool xvz_found = false; |
| LONGEST size; |
| |
| xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
| try |
| { |
| xvz_found = get_int_var_value (xvz_name, size); |
| } |
| catch (const gdb_exception_error &except) |
| { |
| /* We found the variable, but somehow failed to read |
| its value. Rethrow the same error, but with a little |
| bit more information, to help the user understand |
| what went wrong (Eg: the variable might have been |
| optimized out). */ |
| throw_error (except.error, |
| _("unable to read value of %s (%s)"), |
| xvz_name, except.what ()); |
| } |
| |
| if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) |
| { |
| fixed_record_type = copy_type (fixed_record_type); |
| TYPE_LENGTH (fixed_record_type) = size; |
| |
| /* The FIXED_RECORD_TYPE may have be a stub. We have |
| observed this when the debugging info is STABS, and |
| apparently it is something that is hard to fix. |
| |
| In practice, we don't need the actual type definition |
| at all, because the presence of the XVZ variable allows us |
| to assume that there must be a XVS type as well, which we |
| should be able to use later, when we need the actual type |
| definition. |
| |
| In the meantime, pretend that the "fixed" type we are |
| returning is NOT a stub, because this can cause trouble |
| when using this type to create new types targeting it. |
| Indeed, the associated creation routines often check |
| whether the target type is a stub and will try to replace |
| it, thus using a type with the wrong size. This, in turn, |
| might cause the new type to have the wrong size too. |
| Consider the case of an array, for instance, where the size |
| of the array is computed from the number of elements in |
| our array multiplied by the size of its element. */ |
| fixed_record_type->set_is_stub (false); |
| } |
| } |
| return fixed_record_type; |
| } |
| case TYPE_CODE_ARRAY: |
| return to_fixed_array_type (type, dval, 1); |
| case TYPE_CODE_UNION: |
| if (dval == NULL) |
| return type; |
| else |
| return to_fixed_variant_branch_type (type, valaddr, address, dval); |
| } |
| } |
| |
| /* The same as ada_to_fixed_type_1, except that it preserves the type |
| if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. |
| |
| The typedef layer needs be preserved in order to differentiate between |
| arrays and array pointers when both types are implemented using the same |
| fat pointer. In the array pointer case, the pointer is encoded as |
| a typedef of the pointer type. For instance, considering: |
| |
| type String_Access is access String; |
| S1 : String_Access := null; |
| |
| To the debugger, S1 is defined as a typedef of type String. But |
| to the user, it is a pointer. So if the user tries to print S1, |
| we should not dereference the array, but print the array address |
| instead. |
| |
| If we didn't preserve the typedef layer, we would lose the fact that |
| the type is to be presented as a pointer (needs de-reference before |
| being printed). And we would also use the source-level type name. */ |
| |
| struct type * |
| ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, |
| CORE_ADDR address, struct value *dval, int check_tag) |
| |
| { |
| struct type *fixed_type = |
| ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); |
| |
| /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
| then preserve the typedef layer. |
| |
| Implementation note: We can only check the main-type portion of |
| the TYPE and FIXED_TYPE, because eliminating the typedef layer |
| from TYPE now returns a type that has the same instance flags |
| as TYPE. For instance, if TYPE is a "typedef const", and its |
| target type is a "struct", then the typedef elimination will return |
| a "const" version of the target type. See check_typedef for more |
| details about how the typedef layer elimination is done. |
| |
| brobecker/2010-11-19: It seems to me that the only case where it is |
| useful to preserve the typedef layer is when dealing with fat pointers. |
| Perhaps, we could add a check for that and preserve the typedef layer |
| only in that situation. But this seems unnecessary so far, probably |
| because we call check_typedef/ada_check_typedef pretty much everywhere. |
| */ |
| if (type->code () == TYPE_CODE_TYPEDEF |
| && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
| == TYPE_MAIN_TYPE (fixed_type))) |
| return type; |
| |
| return fixed_type; |
| } |
| |
| /* A standard (static-sized) type corresponding as well as possible to |
| TYPE0, but based on no runtime data. */ |
| |
| static struct type * |
| to_static_fixed_type (struct type *type0) |
| { |
| struct type *type; |
| |
| if (type0 == NULL) |
| return NULL; |
| |
| if (type0->is_fixed_instance ()) |
| return type0; |
| |
| type0 = ada_check_typedef (type0); |
| |
| switch (type0->code ()) |
| { |
| default: |
| return type0; |
| case TYPE_CODE_STRUCT: |
| type = dynamic_template_type (type0); |
| if (type != NULL) |
| return template_to_static_fixed_type (type); |
| else |
| return template_to_static_fixed_type (type0); |
| case TYPE_CODE_UNION: |
| type = ada_find_parallel_type (type0, "___XVU"); |
| if (type != NULL) |
| return template_to_static_fixed_type (type); |
| else |
| return template_to_static_fixed_type (type0); |
| } |
| } |
| |
| /* A static approximation of TYPE with all type wrappers removed. */ |
| |
| static struct type * |
| static_unwrap_type (struct type *type) |
| { |
| if (ada_is_aligner_type (type)) |
| { |
| struct type *type1 = ada_check_typedef (type)->field (0).type (); |
| if (ada_type_name (type1) == NULL) |
| type1->set_name (ada_type_name (type)); |
| |
| return static_unwrap_type (type1); |
| } |
| else |
| { |
| struct type *raw_real_type = ada_get_base_type (type); |
| |
| if (raw_real_type == type) |
| return type; |
| else |
| return to_static_fixed_type (raw_real_type); |
| } |
| } |
| |
| /* In some cases, incomplete and private types require |
| cross-references that are not resolved as records (for example, |
| type Foo; |
| type FooP is access Foo; |
| V: FooP; |
| type Foo is array ...; |
| ). In these cases, since there is no mechanism for producing |
| cross-references to such types, we instead substitute for FooP a |
| stub enumeration type that is nowhere resolved, and whose tag is |
| the name of the actual type. Call these types "non-record stubs". */ |
| |
| /* A type equivalent to TYPE that is not a non-record stub, if one |
| exists, otherwise TYPE. */ |
| |
| struct type * |
| ada_check_typedef (struct type *type) |
| { |
| if (type == NULL) |
| return NULL; |
| |
| /* If our type is an access to an unconstrained array, which is encoded |
| as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done. |
| We don't want to strip the TYPE_CODE_TYPDEF layer, because this is |
| what allows us to distinguish between fat pointers that represent |
| array types, and fat pointers that represent array access types |
| (in both cases, the compiler implements them as fat pointers). */ |
| if (ada_is_access_to_unconstrained_array (type)) |
| return type; |
| |
| type = check_typedef (type); |
| if (type == NULL || type->code () != TYPE_CODE_ENUM |
| || !type->is_stub () |
| || type->name () == NULL) |
| return type; |
| else |
| { |
| const char *name = type->name (); |
| struct type *type1 = ada_find_any_type (name); |
| |
| if (type1 == NULL) |
| return type; |
| |
| /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with |
| stubs pointing to arrays, as we don't create symbols for array |
| types, only for the typedef-to-array types). If that's the case, |
| strip the typedef layer. */ |
| if (type1->code () == TYPE_CODE_TYPEDEF) |
| type1 = ada_check_typedef (type1); |
| |
| return type1; |
| } |
| } |
| |
| /* A value representing the data at VALADDR/ADDRESS as described by |
| type TYPE0, but with a standard (static-sized) type that correctly |
| describes it. If VAL0 is not NULL and TYPE0 already is a standard |
| type, then return VAL0 [this feature is simply to avoid redundant |
| creation of struct values]. */ |
| |
| static struct value * |
| ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, |
| struct value *val0) |
| { |
| struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
| |
| if (type == type0 && val0 != NULL) |
| return val0; |
| |
| if (VALUE_LVAL (val0) != lval_memory) |
| { |
| /* Our value does not live in memory; it could be a convenience |
| variable, for instance. Create a not_lval value using val0's |
| contents. */ |
| return value_from_contents (type, value_contents (val0).data ()); |
| } |
| |
| return value_from_contents_and_address (type, 0, address); |
| } |
| |
| /* A value representing VAL, but with a standard (static-sized) type |
| that correctly describes it. Does not necessarily create a new |
| value. */ |
| |
| struct value * |
| ada_to_fixed_value (struct value *val) |
| { |
| val = unwrap_value (val); |
| val = ada_to_fixed_value_create (value_type (val), value_address (val), val); |
| return val; |
| } |
| |
| |
| /* Attributes */ |
| |
| /* Table mapping attribute numbers to names. |
| NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ |
| |
| static const char * const attribute_names[] = { |
| "<?>", |
| |
| "first", |
| "last", |
| "length", |
| "image", |
| "max", |
| "min", |
| "modulus", |
| "pos", |
| "size", |
| "tag", |
| "val", |
| 0 |
| }; |
| |
| static const char * |
| ada_attribute_name (enum exp_opcode n) |
| { |
| if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
| return attribute_names[n - OP_ATR_FIRST + 1]; |
| else |
| return attribute_names[0]; |
| } |
| |
| /* Evaluate the 'POS attribute applied to ARG. */ |
| |
| static LONGEST |
| pos_atr (struct value *arg) |
| { |
| struct value *val = coerce_ref (arg); |
| struct type *type = value_type (val); |
| |
| if (!discrete_type_p (type)) |
| error (_("'POS only defined on discrete types")); |
| |
| gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val)); |
| if (!result.has_value ()) |
| error (_("enumeration value is invalid: can't find 'POS")); |
| |
| return *result; |
| } |
| |
| struct value * |
| ada_pos_atr (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg) |
| { |
| struct type *type = builtin_type (exp->gdbarch)->builtin_int; |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (type, not_lval); |
| return value_from_longest (type, pos_atr (arg)); |
| } |
| |
| /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
| |
| static struct value * |
| val_atr (struct type *type, LONGEST val) |
| { |
| gdb_assert (discrete_type_p (type)); |
| if (type->code () == TYPE_CODE_RANGE) |
| type = TYPE_TARGET_TYPE (type); |
| if (type->code () == TYPE_CODE_ENUM) |
| { |
| if (val < 0 || val >= type->num_fields ()) |
| error (_("argument to 'VAL out of range")); |
| val = type->field (val).loc_enumval (); |
| } |
| return value_from_longest (type, val); |
| } |
| |
| struct value * |
| ada_val_atr (enum noside noside, struct type *type, struct value *arg) |
| { |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (type, not_lval); |
| |
| if (!discrete_type_p (type)) |
| error (_("'VAL only defined on discrete types")); |
| if (!integer_type_p (value_type (arg))) |
| error (_("'VAL requires integral argument")); |
| |
| return val_atr (type, value_as_long (arg)); |
| } |
| |
| |
| /* Evaluation */ |
| |
| /* True if TYPE appears to be an Ada character type. |
| [At the moment, this is true only for Character and Wide_Character; |
| It is a heuristic test that could stand improvement]. */ |
| |
| bool |
| ada_is_character_type (struct type *type) |
| { |
| const char *name; |
| |
| /* If the type code says it's a character, then assume it really is, |
| and don't check any further. */ |
| if (type->code () == TYPE_CODE_CHAR) |
| return true; |
| |
| /* Otherwise, assume it's a character type iff it is a discrete type |
| with a known character type name. */ |
| name = ada_type_name (type); |
| return (name != NULL |
| && (type->code () == TYPE_CODE_INT |
| || type->code () == TYPE_CODE_RANGE) |
| && (strcmp (name, "character") == 0 |
| || strcmp (name, "wide_character") == 0 |
| || strcmp (name, "wide_wide_character") == 0 |
| || strcmp (name, "unsigned char") == 0)); |
| } |
| |
| /* True if TYPE appears to be an Ada string type. */ |
| |
| bool |
| ada_is_string_type (struct type *type) |
| { |
| type = ada_check_typedef (type); |
| if (type != NULL |
| && type->code () != TYPE_CODE_PTR |
| && (ada_is_simple_array_type (type) |
| || ada_is_array_descriptor_type (type)) |
| && ada_array_arity (type) == 1) |
| { |
| struct type *elttype = ada_array_element_type (type, 1); |
| |
| return ada_is_character_type (elttype); |
| } |
| else |
| return false; |
| } |
| |
| /* The compiler sometimes provides a parallel XVS type for a given |
| PAD type. Normally, it is safe to follow the PAD type directly, |
| but older versions of the compiler have a bug that causes the offset |
| of its "F" field to be wrong. Following that field in that case |
| would lead to incorrect results, but this can be worked around |
| by ignoring the PAD type and using the associated XVS type instead. |
| |
| Set to True if the debugger should trust the contents of PAD types. |
| Otherwise, ignore the PAD type if there is a parallel XVS type. */ |
| static bool trust_pad_over_xvs = true; |
| |
| /* True if TYPE is a struct type introduced by the compiler to force the |
| alignment of a value. Such types have a single field with a |
| distinctive name. */ |
| |
| int |
| ada_is_aligner_type (struct type *type) |
| { |
| type = ada_check_typedef (type); |
| |
| if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
| return 0; |
| |
| return (type->code () == TYPE_CODE_STRUCT |
| && type->num_fields () == 1 |
| && strcmp (type->field (0).name (), "F") == 0); |
| } |
| |
| /* If there is an ___XVS-convention type parallel to SUBTYPE, return |
| the parallel type. */ |
| |
| struct type * |
| ada_get_base_type (struct type *raw_type) |
| { |
| struct type *real_type_namer; |
| struct type *raw_real_type; |
| |
| if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT) |
| return raw_type; |
| |
| if (ada_is_aligner_type (raw_type)) |
| /* The encoding specifies that we should always use the aligner type. |
| So, even if this aligner type has an associated XVS type, we should |
| simply ignore it. |
| |
| According to the compiler gurus, an XVS type parallel to an aligner |
| type may exist because of a stabs limitation. In stabs, aligner |
| types are empty because the field has a variable-sized type, and |
| thus cannot actually be used as an aligner type. As a result, |
| we need the associated parallel XVS type to decode the type. |
| Since the policy in the compiler is to not change the internal |
| representation based on the debugging info format, we sometimes |
| end up having a redundant XVS type parallel to the aligner type. */ |
| return raw_type; |
| |
| real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
| if (real_type_namer == NULL |
| || real_type_namer->code () != TYPE_CODE_STRUCT |
| || real_type_namer->num_fields () != 1) |
| return raw_type; |
| |
| if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF) |
| { |
| /* This is an older encoding form where the base type needs to be |
| looked up by name. We prefer the newer encoding because it is |
| more efficient. */ |
| raw_real_type = ada_find_any_type (real_type_namer->field (0).name ()); |
| if (raw_real_type == NULL) |
| return raw_type; |
| else |
| return raw_real_type; |
| } |
| |
| /* The field in our XVS type is a reference to the base type. */ |
| return TYPE_TARGET_TYPE (real_type_namer->field (0).type ()); |
| } |
| |
| /* The type of value designated by TYPE, with all aligners removed. */ |
| |
| struct type * |
| ada_aligned_type (struct type *type) |
| { |
| if (ada_is_aligner_type (type)) |
| return ada_aligned_type (type->field (0).type ()); |
| else |
| return ada_get_base_type (type); |
| } |
| |
| |
| /* The address of the aligned value in an object at address VALADDR |
| having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
| |
| const gdb_byte * |
| ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) |
| { |
| if (ada_is_aligner_type (type)) |
| return ada_aligned_value_addr |
| (type->field (0).type (), |
| valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT); |
| else |
| return valaddr; |
| } |
| |
| |
| |
| /* The printed representation of an enumeration literal with encoded |
| name NAME. The value is good to the next call of ada_enum_name. */ |
| const char * |
| ada_enum_name (const char *name) |
| { |
| static std::string storage; |
| const char *tmp; |
| |
| /* First, unqualify the enumeration name: |
| 1. Search for the last '.' character. If we find one, then skip |
| all the preceding characters, the unqualified name starts |
| right after that dot. |
| 2. Otherwise, we may be debugging on a target where the compiler |
| translates dots into "__". Search forward for double underscores, |
| but stop searching when we hit an overloading suffix, which is |
| of the form "__" followed by digits. */ |
| |
| tmp = strrchr (name, '.'); |
| if (tmp != NULL) |
| name = tmp + 1; |
| else |
| { |
| while ((tmp = strstr (name, "__")) != NULL) |
| { |
| if (isdigit (tmp[2])) |
| break; |
| else |
| name = tmp + 2; |
| } |
| } |
| |
| if (name[0] == 'Q') |
| { |
| int v; |
| |
| if (name[1] == 'U' || name[1] == 'W') |
| { |
| int offset = 2; |
| if (name[1] == 'W' && name[2] == 'W') |
| { |
| /* Also handle the QWW case. */ |
| ++offset; |
| } |
| if (sscanf (name + offset, "%x", &v) != 1) |
| return name; |
| } |
| else if (((name[1] >= '0' && name[1] <= '9') |
| || (name[1] >= 'a' && name[1] <= 'z')) |
| && name[2] == '\0') |
| { |
| storage = string_printf ("'%c'", name[1]); |
| return storage.c_str (); |
| } |
| else |
| return name; |
| |
| if (isascii (v) && isprint (v)) |
| storage = string_printf ("'%c'", v); |
| else if (name[1] == 'U') |
| storage = string_printf ("'[\"%02x\"]'", v); |
| else if (name[2] != 'W') |
| storage = string_printf ("'[\"%04x\"]'", v); |
| else |
| storage = string_printf ("'[\"%06x\"]'", v); |
| |
| return storage.c_str (); |
| } |
| else |
| { |
| tmp = strstr (name, "__"); |
| if (tmp == NULL) |
| tmp = strstr (name, "$"); |
| if (tmp != NULL) |
| { |
| storage = std::string (name, tmp - name); |
| return storage.c_str (); |
| } |
| |
| return name; |
| } |
| } |
| |
| /* If VAL is wrapped in an aligner or subtype wrapper, return the |
| value it wraps. */ |
| |
| static struct value * |
| unwrap_value (struct value *val) |
| { |
| struct type *type = ada_check_typedef (value_type (val)); |
| |
| if (ada_is_aligner_type (type)) |
| { |
| struct value *v = ada_value_struct_elt (val, "F", 0); |
| struct type *val_type = ada_check_typedef (value_type (v)); |
| |
| if (ada_type_name (val_type) == NULL) |
| val_type->set_name (ada_type_name (type)); |
| |
| return unwrap_value (v); |
| } |
| else |
| { |
| struct type *raw_real_type = |
| ada_check_typedef (ada_get_base_type (type)); |
| |
| /* If there is no parallel XVS or XVE type, then the value is |
| already unwrapped. Return it without further modification. */ |
| if ((type == raw_real_type) |
| && ada_find_parallel_type (type, "___XVE") == NULL) |
| return val; |
| |
| return |
| coerce_unspec_val_to_type |
| (val, ada_to_fixed_type (raw_real_type, 0, |
| value_address (val), |
| NULL, 1)); |
| } |
| } |
| |
| /* Given two array types T1 and T2, return nonzero iff both arrays |
| contain the same number of elements. */ |
| |
| static int |
| ada_same_array_size_p (struct type *t1, struct type *t2) |
| { |
| LONGEST lo1, hi1, lo2, hi2; |
| |
| /* Get the array bounds in order to verify that the size of |
| the two arrays match. */ |
| if (!get_array_bounds (t1, &lo1, &hi1) |
| || !get_array_bounds (t2, &lo2, &hi2)) |
| error (_("unable to determine array bounds")); |
| |
| /* To make things easier for size comparison, normalize a bit |
| the case of empty arrays by making sure that the difference |
| between upper bound and lower bound is always -1. */ |
| if (lo1 > hi1) |
| hi1 = lo1 - 1; |
| if (lo2 > hi2) |
| hi2 = lo2 - 1; |
| |
| return (hi1 - lo1 == hi2 - lo2); |
| } |
| |
| /* Assuming that VAL is an array of integrals, and TYPE represents |
| an array with the same number of elements, but with wider integral |
| elements, return an array "casted" to TYPE. In practice, this |
| means that the returned array is built by casting each element |
| of the original array into TYPE's (wider) element type. */ |
| |
| static struct value * |
| ada_promote_array_of_integrals (struct type *type, struct value *val) |
| { |
| struct type *elt_type = TYPE_TARGET_TYPE (type); |
| LONGEST lo, hi; |
| LONGEST i; |
| |
| /* Verify that both val and type are arrays of scalars, and |
| that the size of val's elements is smaller than the size |
| of type's element. */ |
| gdb_assert (type->code () == TYPE_CODE_ARRAY); |
| gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); |
| gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY); |
| gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); |
| gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) |
| > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); |
| |
| if (!get_array_bounds (type, &lo, &hi)) |
| error (_("unable to determine array bounds")); |
| |
| value *res = allocate_value (type); |
| gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res); |
| |
| /* Promote each array element. */ |
| for (i = 0; i < hi - lo + 1; i++) |
| { |
| struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); |
| int elt_len = TYPE_LENGTH (elt_type); |
| |
| copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len)); |
| } |
| |
| return res; |
| } |
| |
| /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
| return the converted value. */ |
| |
| static struct value * |
| coerce_for_assign (struct type *type, struct value *val) |
| { |
| struct type *type2 = value_type (val); |
| |
| if (type == type2) |
| return val; |
| |
| type2 = ada_check_typedef (type2); |
| type = ada_check_typedef (type); |
| |
| if (type2->code () == TYPE_CODE_PTR |
| && type->code () == TYPE_CODE_ARRAY) |
| { |
| val = ada_value_ind (val); |
| type2 = value_type (val); |
| } |
| |
| if (type2->code () == TYPE_CODE_ARRAY |
| && type->code () == TYPE_CODE_ARRAY) |
| { |
| if (!ada_same_array_size_p (type, type2)) |
| error (_("cannot assign arrays of different length")); |
| |
| if (is_integral_type (TYPE_TARGET_TYPE (type)) |
| && is_integral_type (TYPE_TARGET_TYPE (type2)) |
| && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
| < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) |
| { |
| /* Allow implicit promotion of the array elements to |
| a wider type. */ |
| return ada_promote_array_of_integrals (type, val); |
| } |
| |
| if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
| != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) |
| error (_("Incompatible types in assignment")); |
| deprecated_set_value_type (val, type); |
| } |
| return val; |
| } |
| |
| static struct value * |
| ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) |
| { |
| struct value *val; |
| struct type *type1, *type2; |
| LONGEST v, v1, v2; |
| |
| arg1 = coerce_ref (arg1); |
| arg2 = coerce_ref (arg2); |
| type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
| type2 = get_base_type (ada_check_typedef (value_type (arg2))); |
| |
| if (type1->code () != TYPE_CODE_INT |
| || type2->code () != TYPE_CODE_INT) |
| return value_binop (arg1, arg2, op); |
| |
| switch (op) |
| { |
| case BINOP_MOD: |
| case BINOP_DIV: |
| case BINOP_REM: |
| break; |
| default: |
| return value_binop (arg1, arg2, op); |
| } |
| |
| v2 = value_as_long (arg2); |
| if (v2 == 0) |
| { |
| const char *name; |
| if (op == BINOP_MOD) |
| name = "mod"; |
| else if (op == BINOP_DIV) |
| name = "/"; |
| else |
| { |
| gdb_assert (op == BINOP_REM); |
| name = "rem"; |
| } |
| |
| error (_("second operand of %s must not be zero."), name); |
| } |
| |
| if (type1->is_unsigned () || op == BINOP_MOD) |
| return value_binop (arg1, arg2, op); |
| |
| v1 = value_as_long (arg1); |
| switch (op) |
| { |
| case BINOP_DIV: |
| v = v1 / v2; |
| if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
| v += v > 0 ? -1 : 1; |
| break; |
| case BINOP_REM: |
| v = v1 % v2; |
| if (v * v1 < 0) |
| v -= v2; |
| break; |
| default: |
| /* Should not reach this point. */ |
| v = 0; |
| } |
| |
| val = allocate_value (type1); |
| store_unsigned_integer (value_contents_raw (val).data (), |
| TYPE_LENGTH (value_type (val)), |
| type_byte_order (type1), v); |
| return val; |
| } |
| |
| static int |
| ada_value_equal (struct value *arg1, struct value *arg2) |
| { |
| if (ada_is_direct_array_type (value_type (arg1)) |
| || ada_is_direct_array_type (value_type (arg2))) |
| { |
| struct type *arg1_type, *arg2_type; |
| |
| /* Automatically dereference any array reference before |
| we attempt to perform the comparison. */ |
| arg1 = ada_coerce_ref (arg1); |
| arg2 = ada_coerce_ref (arg2); |
| |
| arg1 = ada_coerce_to_simple_array (arg1); |
| arg2 = ada_coerce_to_simple_array (arg2); |
| |
| arg1_type = ada_check_typedef (value_type (arg1)); |
| arg2_type = ada_check_typedef (value_type (arg2)); |
| |
| if (arg1_type->code () != TYPE_CODE_ARRAY |
| || arg2_type->code () != TYPE_CODE_ARRAY) |
| error (_("Attempt to compare array with non-array")); |
| /* FIXME: The following works only for types whose |
| representations use all bits (no padding or undefined bits) |
| and do not have user-defined equality. */ |
| return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type) |
| && memcmp (value_contents (arg1).data (), |
| value_contents (arg2).data (), |
| TYPE_LENGTH (arg1_type)) == 0); |
| } |
| return value_equal (arg1, arg2); |
| } |
| |
| namespace expr |
| { |
| |
| bool |
| check_objfile (const std::unique_ptr<ada_component> &comp, |
| struct objfile *objfile) |
| { |
| return comp->uses_objfile (objfile); |
| } |
| |
| /* Assign the result of evaluating ARG starting at *POS to the INDEXth |
| component of LHS (a simple array or a record). Does not modify the |
| inferior's memory, nor does it modify LHS (unless LHS == |
| CONTAINER). */ |
| |
| static void |
| assign_component (struct value *container, struct value *lhs, LONGEST index, |
| struct expression *exp, operation_up &arg) |
| { |
| scoped_value_mark mark; |
| |
| struct value *elt; |
| struct type *lhs_type = check_typedef (value_type (lhs)); |
| |
| if (lhs_type->code () == TYPE_CODE_ARRAY) |
| { |
| struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
| struct value *index_val = value_from_longest (index_type, index); |
| |
| elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
| } |
| else |
| { |
| elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); |
| elt = ada_to_fixed_value (elt); |
| } |
| |
| ada_aggregate_operation *ag_op |
| = dynamic_cast<ada_aggregate_operation *> (arg.get ()); |
| if (ag_op != nullptr) |
| ag_op->assign_aggregate (container, elt, exp); |
| else |
| value_assign_to_component (container, elt, |
| arg->evaluate (nullptr, exp, |
| EVAL_NORMAL)); |
| } |
| |
| bool |
| ada_aggregate_component::uses_objfile (struct objfile *objfile) |
| { |
| for (const auto &item : m_components) |
| if (item->uses_objfile (objfile)) |
| return true; |
| return false; |
| } |
| |
| void |
| ada_aggregate_component::dump (ui_file *stream, int depth) |
| { |
| gdb_printf (stream, _("%*sAggregate\n"), depth, ""); |
| for (const auto &item : m_components) |
| item->dump (stream, depth + 1); |
| } |
| |
| void |
| ada_aggregate_component::assign (struct value *container, |
| struct value *lhs, struct expression *exp, |
| std::vector<LONGEST> &indices, |
| LONGEST low, LONGEST high) |
| { |
| for (auto &item : m_components) |
| item->assign (container, lhs, exp, indices, low, high); |
| } |
| |
| /* See ada-exp.h. */ |
| |
| value * |
| ada_aggregate_operation::assign_aggregate (struct value *container, |
| struct value *lhs, |
| struct expression *exp) |
| { |
| struct type *lhs_type; |
| LONGEST low_index, high_index; |
| |
| container = ada_coerce_ref (container); |
| if (ada_is_direct_array_type (value_type (container))) |
| container = ada_coerce_to_simple_array (container); |
| lhs = ada_coerce_ref (lhs); |
| if (!deprecated_value_modifiable (lhs)) |
| error (_("Left operand of assignment is not a modifiable lvalue.")); |
| |
| lhs_type = check_typedef (value_type (lhs)); |
| if (ada_is_direct_array_type (lhs_type)) |
| { |
| lhs = ada_coerce_to_simple_array (lhs); |
| lhs_type = check_typedef (value_type (lhs)); |
| low_index = lhs_type->bounds ()->low.const_val (); |
| high_index = lhs_type->bounds ()->high.const_val (); |
| } |
| else if (lhs_type->code () == TYPE_CODE_STRUCT) |
| { |
| low_index = 0; |
| high_index = num_visible_fields (lhs_type) - 1; |
| } |
| else |
| error (_("Left-hand side must be array or record.")); |
| |
| std::vector<LONGEST> indices (4); |
| indices[0] = indices[1] = low_index - 1; |
| indices[2] = indices[3] = high_index + 1; |
| |
| std::get<0> (m_storage)->assign (container, lhs, exp, indices, |
| low_index, high_index); |
| |
| return container; |
| } |
| |
| bool |
| ada_positional_component::uses_objfile (struct objfile *objfile) |
| { |
| return m_op->uses_objfile (objfile); |
| } |
| |
| void |
| ada_positional_component::dump (ui_file *stream, int depth) |
| { |
| gdb_printf (stream, _("%*sPositional, index = %d\n"), |
| depth, "", m_index); |
| m_op->dump (stream, depth + 1); |
| } |
| |
| /* Assign into the component of LHS indexed by the OP_POSITIONAL |
| construct, given that the positions are relative to lower bound |
| LOW, where HIGH is the upper bound. Record the position in |
| INDICES. CONTAINER is as for assign_aggregate. */ |
| void |
| ada_positional_component::assign (struct value *container, |
| struct value *lhs, struct expression *exp, |
| std::vector<LONGEST> &indices, |
| LONGEST low, LONGEST high) |
| { |
| LONGEST ind = m_index + low; |
| |
| if (ind - 1 == high) |
| warning (_("Extra components in aggregate ignored.")); |
| if (ind <= high) |
| { |
| add_component_interval (ind, ind, indices); |
| assign_component (container, lhs, ind, exp, m_op); |
| } |
| } |
| |
| bool |
| ada_discrete_range_association::uses_objfile (struct objfile *objfile) |
| { |
| return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile); |
| } |
| |
| void |
| ada_discrete_range_association::dump (ui_file *stream, int depth) |
| { |
| gdb_printf (stream, _("%*sDiscrete range:\n"), depth, ""); |
| m_low->dump (stream, depth + 1); |
| m_high->dump (stream, depth + 1); |
| } |
| |
| void |
| ada_discrete_range_association::assign (struct value *container, |
| struct value *lhs, |
| struct expression *exp, |
| std::vector<LONGEST> &indices, |
| LONGEST low, LONGEST high, |
| operation_up &op) |
| { |
| LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL)); |
| LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL)); |
| |
| if (lower <= upper && (lower < low || upper > high)) |
| error (_("Index in component association out of bounds.")); |
| |
| add_component_interval (lower, upper, indices); |
| while (lower <= upper) |
| { |
| assign_component (container, lhs, lower, exp, op); |
| lower += 1; |
| } |
| } |
| |
| bool |
| ada_name_association::uses_objfile (struct objfile *objfile) |
| { |
| return m_val->uses_objfile (objfile); |
| } |
| |
| void |
| ada_name_association::dump (ui_file *stream, int depth) |
| { |
| gdb_printf (stream, _("%*sName:\n"), depth, ""); |
| m_val->dump (stream, depth + 1); |
| } |
| |
| void |
| ada_name_association::assign (struct value *container, |
| struct value *lhs, |
| struct expression *exp, |
| std::vector<LONGEST> &indices, |
| LONGEST low, LONGEST high, |
| operation_up &op) |
| { |
| int index; |
| |
| if (ada_is_direct_array_type (value_type (lhs))) |
| index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp, |
| EVAL_NORMAL))); |
| else |
| { |
| ada_string_operation *strop |
| = dynamic_cast<ada_string_operation *> (m_val.get ()); |
| |
| const char *name; |
| if (strop != nullptr) |
| name = strop->get_name (); |
| else |
| { |
| ada_var_value_operation *vvo |
| = dynamic_cast<ada_var_value_operation *> (m_val.get ()); |
| if (vvo != nullptr) |
| error (_("Invalid record component association.")); |
| name = vvo->get_symbol ()->natural_name (); |
| } |
| |
| index = 0; |
| if (! find_struct_field (name, value_type (lhs), 0, |
| NULL, NULL, NULL, NULL, &index)) |
| error (_("Unknown component name: %s."), name); |
| } |
| |
| add_component_interval (index, index, indices); |
| assign_component (container, lhs, index, exp, op); |
| } |
| |
| bool |
| ada_choices_component::uses_objfile (struct objfile *objfile) |
| { |
| if (m_op->uses_objfile (objfile)) |
| return true; |
| for (const auto &item : m_assocs) |
| if (item->uses_objfile (objfile)) |
| return true; |
| return false; |
| } |
| |
| void |
| ada_choices_component::dump (ui_file *stream, int depth) |
| { |
| gdb_printf (stream, _("%*sChoices:\n"), depth, ""); |
| m_op->dump (stream, depth + 1); |
| for (const auto &item : m_assocs) |
| item->dump (stream, depth + 1); |
| } |
| |
| /* Assign into the components of LHS indexed by the OP_CHOICES |
| construct at *POS, updating *POS past the construct, given that |
| the allowable indices are LOW..HIGH. Record the indices assigned |
| to in INDICES. CONTAINER is as for assign_aggregate. */ |
| void |
| ada_choices_component::assign (struct value *container, |
| struct value *lhs, struct expression *exp, |
| std::vector<LONGEST> &indices, |
| LONGEST low, LONGEST high) |
| { |
| for (auto &item : m_assocs) |
| item->assign (container, lhs, exp, indices, low, high, m_op); |
| } |
| |
| bool |
| ada_others_component::uses_objfile (struct objfile *objfile) |
| { |
| return m_op->uses_objfile (objfile); |
| } |
| |
| void |
| ada_others_component::dump (ui_file *stream, int depth) |
| { |
| gdb_printf (stream, _("%*sOthers:\n"), depth, ""); |
| m_op->dump (stream, depth + 1); |
| } |
| |
| /* Assign the value of the expression in the OP_OTHERS construct in |
| EXP at *POS into the components of LHS indexed from LOW .. HIGH that |
| have not been previously assigned. The index intervals already assigned |
| are in INDICES. CONTAINER is as for assign_aggregate. */ |
| void |
| ada_others_component::assign (struct value *container, |
| struct value *lhs, struct expression *exp, |
| std::vector<LONGEST> &indices, |
| LONGEST low, LONGEST high) |
| { |
| int num_indices = indices.size (); |
| for (int i = 0; i < num_indices - 2; i += 2) |
| { |
| for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
| assign_component (container, lhs, ind, exp, m_op); |
| } |
| } |
| |
| struct value * |
| ada_assign_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); |
| |
| ada_aggregate_operation *ag_op |
| = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ()); |
| if (ag_op != nullptr) |
| { |
| if (noside != EVAL_NORMAL) |
| return arg1; |
| |
| arg1 = ag_op->assign_aggregate (arg1, arg1, exp); |
| return ada_value_assign (arg1, arg1); |
| } |
| /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
| except if the lhs of our assignment is a convenience variable. |
| In the case of assigning to a convenience variable, the lhs |
| should be exactly the result of the evaluation of the rhs. */ |
| struct type *type = value_type (arg1); |
| if (VALUE_LVAL (arg1) == lval_internalvar) |
| type = NULL; |
| value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside); |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return arg1; |
| if (VALUE_LVAL (arg1) == lval_internalvar) |
| { |
| /* Nothing. */ |
| } |
| else |
| arg2 = coerce_for_assign (value_type (arg1), arg2); |
| return ada_value_assign (arg1, arg2); |
| } |
| |
| } /* namespace expr */ |
| |
| /* Add the interval [LOW .. HIGH] to the sorted set of intervals |
| [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not |
| overlap. */ |
| static void |
| add_component_interval (LONGEST low, LONGEST high, |
| std::vector<LONGEST> &indices) |
| { |
| int i, j; |
| |
| int size = indices.size (); |
| for (i = 0; i < size; i += 2) { |
| if (high >= indices[i] && low <= indices[i + 1]) |
| { |
| int kh; |
| |
| for (kh = i + 2; kh < size; kh += 2) |
| if (high < indices[kh]) |
| break; |
| if (low < indices[i]) |
| indices[i] = low; |
| indices[i + 1] = indices[kh - 1]; |
| if (high > indices[i + 1]) |
| indices[i + 1] = high; |
| memcpy (indices.data () + i + 2, indices.data () + kh, size - kh); |
| indices.resize (kh - i - 2); |
| return; |
| } |
| else if (high < indices[i]) |
| break; |
| } |
| |
| indices.resize (indices.size () + 2); |
| for (j = indices.size () - 1; j >= i + 2; j -= 1) |
| indices[j] = indices[j - 2]; |
| indices[i] = low; |
| indices[i + 1] = high; |
| } |
| |
| /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
| is different. */ |
| |
| static struct value * |
| ada_value_cast (struct type *type, struct value *arg2) |
| { |
| if (type == ada_check_typedef (value_type (arg2))) |
| return arg2; |
| |
| return value_cast (type, arg2); |
| } |
| |
| /* Evaluating Ada expressions, and printing their result. |
| ------------------------------------------------------ |
| |
| 1. Introduction: |
| ---------------- |
| |
| We usually evaluate an Ada expression in order to print its value. |
| We also evaluate an expression in order to print its type, which |
| happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, |
| but we'll focus mostly on the EVAL_NORMAL phase. In practice, the |
| EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of |
| the evaluation compared to the EVAL_NORMAL, but is otherwise very |
| similar. |
| |
| Evaluating expressions is a little more complicated for Ada entities |
| than it is for entities in languages such as C. The main reason for |
| this is that Ada provides types whose definition might be dynamic. |
| One example of such types is variant records. Or another example |
| would be an array whose bounds can only be known at run time. |
| |
| The following description is a general guide as to what should be |
| done (and what should NOT be done) in order to evaluate an expression |
| involving such types, and when. This does not cover how the semantic |
| information is encoded by GNAT as this is covered separatly. For the |
| document used as the reference for the GNAT encoding, see exp_dbug.ads |
| in the GNAT sources. |
| |
| Ideally, we should embed each part of this description next to its |
| associated code. Unfortunately, the amount of code is so vast right |
| now that it's hard to see whether the code handling a particular |
| situation might be duplicated or not. One day, when the code is |
| cleaned up, this guide might become redundant with the comments |
| inserted in the code, and we might want to remove it. |
| |
| 2. ``Fixing'' an Entity, the Simple Case: |
| ----------------------------------------- |
| |
| When evaluating Ada expressions, the tricky issue is that they may |
| reference entities whose type contents and size are not statically |
| known. Consider for instance a variant record: |
| |
| type Rec (Empty : Boolean := True) is record |
| case Empty is |
| when True => null; |
| when False => Value : Integer; |
| end case; |
| end record; |
| Yes : Rec := (Empty => False, Value => 1); |
| No : Rec := (empty => True); |
| |
| The size and contents of that record depends on the value of the |
| descriminant (Rec.Empty). At this point, neither the debugging |
| information nor the associated type structure in GDB are able to |
| express such dynamic types. So what the debugger does is to create |
| "fixed" versions of the type that applies to the specific object. |
| We also informally refer to this operation as "fixing" an object, |
| which means creating its associated fixed type. |
| |
| Example: when printing the value of variable "Yes" above, its fixed |
| type would look like this: |
| |
| type Rec is record |
| Empty : Boolean; |
| Value : Integer; |
| end record; |
| |
| On the other hand, if we printed the value of "No", its fixed type |
| would become: |
| |
| type Rec is record |
| Empty : Boolean; |
| end record; |
| |
| Things become a little more complicated when trying to fix an entity |
| with a dynamic type that directly contains another dynamic type, |
| such as an array of variant records, for instance. There are |
| two possible cases: Arrays, and records. |
| |
| 3. ``Fixing'' Arrays: |
| --------------------- |
| |
| The type structure in GDB describes an array in terms of its bounds, |
| and the type of its elements. By design, all elements in the array |
| have the same type and we cannot represent an array of variant elements |
| using the current type structure in GDB. When fixing an array, |
| we cannot fix the array element, as we would potentially need one |
| fixed type per element of the array. As a result, the best we can do |
| when fixing an array is to produce an array whose bounds and size |
| are correct (allowing us to read it from memory), but without having |
| touched its element type. Fixing each element will be done later, |
| when (if) necessary. |
| |
| Arrays are a little simpler to handle than records, because the same |
| amount of memory is allocated for each element of the array, even if |
| the amount of space actually used by each element differs from element |
| to element. Consider for instance the following array of type Rec: |
| |
| type Rec_Array is array (1 .. 2) of Rec; |
| |
| The actual amount of memory occupied by each element might be different |
| from element to element, depending on the value of their discriminant. |
| But the amount of space reserved for each element in the array remains |
| fixed regardless. So we simply need to compute that size using |
| the debugging information available, from which we can then determine |
| the array size (we multiply the number of elements of the array by |
| the size of each element). |
| |
| The simplest case is when we have an array of a constrained element |
| type. For instance, consider the following type declarations: |
| |
| type Bounded_String (Max_Size : Integer) is |
| Length : Integer; |
| Buffer : String (1 .. Max_Size); |
| end record; |
| type Bounded_String_Array is array (1 ..2) of Bounded_String (80); |
| |
| In this case, the compiler describes the array as an array of |
| variable-size elements (identified by its XVS suffix) for which |
| the size can be read in the parallel XVZ variable. |
| |
| In the case of an array of an unconstrained element type, the compiler |
| wraps the array element inside a private PAD type. This type should not |
| be shown to the user, and must be "unwrap"'ed before printing. Note |
| that we also use the adjective "aligner" in our code to designate |
| these wrapper types. |
| |
| In some cases, the size allocated for each element is statically |
| known. In that case, the PAD type already has the correct size, |
| and the array element should remain unfixed. |
| |
| But there are cases when this size is not statically known. |
| For instance, assuming that "Five" is an integer variable: |
| |
| type Dynamic is array (1 .. Five) of Integer; |
| type Wrapper (Has_Length : Boolean := False) is record |
| Data : Dynamic; |
| case Has_Length is |
| when True => Length : Integer; |
| when False => null; |
| end case; |
| end record; |
| type Wrapper_Array is array (1 .. 2) of Wrapper; |
| |
| Hello : Wrapper_Array := (others => (Has_Length => True, |
| Data => (others => 17), |
| Length => 1)); |
| |
| |
| The debugging info would describe variable Hello as being an |
| array of a PAD type. The size of that PAD type is not statically |
| known, but can be determined using a parallel XVZ variable. |
| In that case, a copy of the PAD type with the correct size should |
| be used for the fixed array. |
| |
| 3. ``Fixing'' record type objects: |
| ---------------------------------- |
| |
| Things are slightly different from arrays in the case of dynamic |
| record types. In this case, in order to compute the associated |
| fixed type, we need to determine the size and offset of each of |
| its components. This, in turn, requires us to compute the fixed |
| type of each of these components. |
| |
| Consider for instance the example: |
| |
| type Bounded_String (Max_Size : Natural) is record |
| Str : String (1 .. Max_Size); |
| Length : Natural; |
| end record; |
| My_String : Bounded_String (Max_Size => 10); |
| |
| In that case, the position of field "Length" depends on the size |
| of field Str, which itself depends on the value of the Max_Size |
| discriminant. In order to fix the type of variable My_String, |
| we need to fix the type of field Str. Therefore, fixing a variant |
| record requires us to fix each of its components. |
| |
| However, if a component does not have a dynamic size, the component |
| should not be fixed. In particular, fields that use a PAD type |
| should not fixed. Here is an example where this might happen |
| (assuming type Rec above): |
| |
| type Container (Big : Boolean) is record |
| First : Rec; |
| After : Integer; |
| case Big is |
| when True => Another : Integer; |
| when False => null; |
| end case; |
| end record; |
| My_Container : Container := (Big => False, |
| First => (Empty => True), |
| After => 42); |
| |
| In that example, the compiler creates a PAD type for component First, |
| whose size is constant, and then positions the component After just |
| right after it. The offset of component After is therefore constant |
| in this case. |
| |
| The debugger computes the position of each field based on an algorithm |
| that uses, among other things, the actual position and size of the field |
| preceding it. Let's now imagine that the user is trying to print |
| the value of My_Container. If the type fixing was recursive, we would |
| end up computing the offset of field After based on the size of the |
| fixed version of field First. And since in our example First has |
| only one actual field, the size of the fixed type is actually smaller |
| than the amount of space allocated to that field, and thus we would |
| compute the wrong offset of field After. |
| |
| To make things more complicated, we need to watch out for dynamic |
| components of variant records (identified by the ___XVL suffix in |
| the component name). Even if the target type is a PAD type, the size |
| of that type might not be statically known. So the PAD type needs |
| to be unwrapped and the resulting type needs to be fixed. Otherwise, |
| we might end up with the wrong size for our component. This can be |
| observed with the following type declarations: |
| |
| type Octal is new Integer range 0 .. 7; |
| type Octal_Array is array (Positive range <>) of Octal; |
| pragma Pack (Octal_Array); |
| |
| type Octal_Buffer (Size : Positive) is record |
| Buffer : Octal_Array (1 .. Size); |
| Length : Integer; |
| end record; |
| |
| In that case, Buffer is a PAD type whose size is unset and needs |
| to be computed by fixing the unwrapped type. |
| |
| 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
| ---------------------------------------------------------- |
| |
| Lastly, when should the sub-elements of an entity that remained unfixed |
| thus far, be actually fixed? |
| |
| The answer is: Only when referencing that element. For instance |
| when selecting one component of a record, this specific component |
| should be fixed at that point in time. Or when printing the value |
| of a record, each component should be fixed before its value gets |
| printed. Similarly for arrays, the element of the array should be |
| fixed when printing each element of the array, or when extracting |
| one element out of that array. On the other hand, fixing should |
| not be performed on the elements when taking a slice of an array! |
| |
| Note that one of the side effects of miscomputing the offset and |
| size of each field is that we end up also miscomputing the size |
| of the containing type. This can have adverse results when computing |
| the value of an entity. GDB fetches the value of an entity based |
| on the size of its type, and thus a wrong size causes GDB to fetch |
| the wrong amount of memory. In the case where the computed size is |
| too small, GDB fetches too little data to print the value of our |
| entity. Results in this case are unpredictable, as we usually read |
| past the buffer containing the data =:-o. */ |
| |
| /* A helper function for TERNOP_IN_RANGE. */ |
| |
| static value * |
| eval_ternop_in_range (struct type *expect_type, struct expression *exp, |
| enum noside noside, |
| value *arg1, value *arg2, value *arg3) |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); |
| struct type *type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return |
| value_from_longest (type, |
| (value_less (arg1, arg3) |
| || value_equal (arg1, arg3)) |
| && (value_less (arg2, arg1) |
| || value_equal (arg2, arg1))); |
| } |
| |
| /* A helper function for UNOP_NEG. */ |
| |
| value * |
| ada_unop_neg (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg1) |
| { |
| unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
| return value_neg (arg1); |
| } |
| |
| /* A helper function for UNOP_IN_RANGE. */ |
| |
| value * |
| ada_unop_in_range (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg1, struct type *type) |
| { |
| struct value *arg2, *arg3; |
| switch (type->code ()) |
| { |
| default: |
| lim_warning (_("Membership test incompletely implemented; " |
| "always returns true")); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) 1); |
| |
| case TYPE_CODE_RANGE: |
| arg2 = value_from_longest (type, |
| type->bounds ()->low.const_val ()); |
| arg3 = value_from_longest (type, |
| type->bounds ()->high.const_val ()); |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return |
| value_from_longest (type, |
| (value_less (arg1, arg3) |
| || value_equal (arg1, arg3)) |
| && (value_less (arg2, arg1) |
| || value_equal (arg2, arg1))); |
| } |
| } |
| |
| /* A helper function for OP_ATR_TAG. */ |
| |
| value * |
| ada_atr_tag (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg1) |
| { |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (ada_tag_type (arg1), not_lval); |
| |
| return ada_value_tag (arg1); |
| } |
| |
| /* A helper function for OP_ATR_SIZE. */ |
| |
| value * |
| ada_atr_size (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg1) |
| { |
| struct type *type = value_type (arg1); |
| |
| /* If the argument is a reference, then dereference its type, since |
| the user is really asking for the size of the actual object, |
| not the size of the pointer. */ |
| if (type->code () == TYPE_CODE_REF) |
| type = TYPE_TARGET_TYPE (type); |
| |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
| else |
| return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
| TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
| } |
| |
| /* A helper function for UNOP_ABS. */ |
| |
| value * |
| ada_abs (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg1) |
| { |
| unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
| if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
| return value_neg (arg1); |
| else |
| return arg1; |
| } |
| |
| /* A helper function for BINOP_MUL. */ |
| |
| value * |
| ada_mult_binop (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg1, struct value *arg2) |
| { |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| return value_zero (value_type (arg1), not_lval); |
| } |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| return ada_value_binop (arg1, arg2, op); |
| } |
| } |
| |
| /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */ |
| |
| value * |
| ada_equal_binop (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg1, struct value *arg2) |
| { |
| int tem; |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| tem = 0; |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| tem = ada_value_equal (arg1, arg2); |
| } |
| if (op == BINOP_NOTEQUAL) |
| tem = !tem; |
| struct type *type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) tem); |
| } |
| |
| /* A helper function for TERNOP_SLICE. */ |
| |
| value * |
| ada_ternop_slice (struct expression *exp, |
| enum noside noside, |
| struct value *array, struct value *low_bound_val, |
| struct value *high_bound_val) |
| { |
| LONGEST low_bound; |
| LONGEST high_bound; |
| |
| low_bound_val = coerce_ref (low_bound_val); |
| high_bound_val = coerce_ref (high_bound_val); |
| low_bound = value_as_long (low_bound_val); |
| high_bound = value_as_long (high_bound_val); |
| |
| /* If this is a reference to an aligner type, then remove all |
| the aligners. */ |
| if (value_type (array)->code () == TYPE_CODE_REF |
| && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) |
| TYPE_TARGET_TYPE (value_type (array)) = |
| ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); |
| |
| if (ada_is_any_packed_array_type (value_type (array))) |
| error (_("cannot slice a packed array")); |
| |
| /* If this is a reference to an array or an array lvalue, |
| convert to a pointer. */ |
| if (value_type (array)->code () == TYPE_CODE_REF |
| || (value_type (array)->code () == TYPE_CODE_ARRAY |
| && VALUE_LVAL (array) == lval_memory)) |
| array = value_addr (array); |
| |
| if (noside == EVAL_AVOID_SIDE_EFFECTS |
| && ada_is_array_descriptor_type (ada_check_typedef |
| (value_type (array)))) |
| return empty_array (ada_type_of_array (array, 0), low_bound, |
| high_bound); |
| |
| array = ada_coerce_to_simple_array_ptr (array); |
| |
| /* If we have more than one level of pointer indirection, |
| dereference the value until we get only one level. */ |
| while (value_type (array)->code () == TYPE_CODE_PTR |
| && (TYPE_TARGET_TYPE (value_type (array))->code () |
| == TYPE_CODE_PTR)) |
| array = value_ind (array); |
| |
| /* Make sure we really do have an array type before going further, |
| to avoid a SEGV when trying to get the index type or the target |
| type later down the road if the debug info generated by |
| the compiler is incorrect or incomplete. */ |
| if (!ada_is_simple_array_type (value_type (array))) |
| error (_("cannot take slice of non-array")); |
| |
| if (ada_check_typedef (value_type (array))->code () |
| == TYPE_CODE_PTR) |
| { |
| struct type *type0 = ada_check_typedef (value_type (array)); |
| |
| if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
| return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound); |
| else |
| { |
| struct type *arr_type0 = |
| to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
| |
| return ada_value_slice_from_ptr (array, arr_type0, |
| longest_to_int (low_bound), |
| longest_to_int (high_bound)); |
| } |
| } |
| else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return array; |
| else if (high_bound < low_bound) |
| return empty_array (value_type (array), low_bound, high_bound); |
| else |
| return ada_value_slice (array, longest_to_int (low_bound), |
| longest_to_int (high_bound)); |
| } |
| |
| /* A helper function for BINOP_IN_BOUNDS. */ |
| |
| value * |
| ada_binop_in_bounds (struct expression *exp, enum noside noside, |
| struct value *arg1, struct value *arg2, int n) |
| { |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| struct type *type = language_bool_type (exp->language_defn, |
| exp->gdbarch); |
| return value_zero (type, not_lval); |
| } |
| |
| struct type *type = ada_index_type (value_type (arg2), n, "range"); |
| if (!type) |
| type = value_type (arg1); |
| |
| value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1)); |
| arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0)); |
| |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, |
| (value_less (arg1, arg3) |
| || value_equal (arg1, arg3)) |
| && (value_less (arg2, arg1) |
| || value_equal (arg2, arg1))); |
| } |
| |
| /* A helper function for some attribute operations. */ |
| |
| static value * |
| ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op, |
| struct value *arg1, struct type *type_arg, int tem) |
| { |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| if (type_arg == NULL) |
| type_arg = value_type (arg1); |
| |
| if (ada_is_constrained_packed_array_type (type_arg)) |
| type_arg = decode_constrained_packed_array_type (type_arg); |
| |
| if (!discrete_type_p (type_arg)) |
| { |
| switch (op) |
| { |
| default: /* Should never happen. */ |
| error (_("unexpected attribute encountered")); |
| case OP_ATR_FIRST: |
| case OP_ATR_LAST: |
| type_arg = ada_index_type (type_arg, tem, |
| ada_attribute_name (op)); |
| break; |
| case OP_ATR_LENGTH: |
| type_arg = builtin_type (exp->gdbarch)->builtin_int; |
| break; |
| } |
| } |
| |
| return value_zero (type_arg, not_lval); |
| } |
| else if (type_arg == NULL) |
| { |
| arg1 = ada_coerce_ref (arg1); |
| |
| if (ada_is_constrained_packed_array_type (value_type (arg1))) |
| arg1 = ada_coerce_to_simple_array (arg1); |
| |
| struct type *type; |
| if (op == OP_ATR_LENGTH) |
| type = builtin_type (exp->gdbarch)->builtin_int; |
| else |
| { |
| type = ada_index_type (value_type (arg1), tem, |
| ada_attribute_name (op)); |
| if (type == NULL) |
| type = builtin_type (exp->gdbarch)->builtin_int; |
| } |
| |
| switch (op) |
| { |
| default: /* Should never happen. */ |
| error (_("unexpected attribute encountered")); |
| case OP_ATR_FIRST: |
| return value_from_longest |
| (type, ada_array_bound (arg1, tem, 0)); |
| case OP_ATR_LAST: |
| return value_from_longest |
| (type, ada_array_bound (arg1, tem, 1)); |
| case OP_ATR_LENGTH: |
| return value_from_longest |
| (type, ada_array_length (arg1, tem)); |
| } |
| } |
| else if (discrete_type_p (type_arg)) |
| { |
| struct type *range_type; |
| const char *name = ada_type_name (type_arg); |
| |
| range_type = NULL; |
| if (name != NULL && type_arg->code () != TYPE_CODE_ENUM) |
| range_type = to_fixed_range_type (type_arg, NULL); |
| if (range_type == NULL) |
| range_type = type_arg; |
| switch (op) |
| { |
| default: |
| error (_("unexpected attribute encountered")); |
| case OP_ATR_FIRST: |
| return value_from_longest |
| (range_type, ada_discrete_type_low_bound (range_type)); |
| case OP_ATR_LAST: |
| return value_from_longest |
| (range_type, ada_discrete_type_high_bound (range_type)); |
| case OP_ATR_LENGTH: |
| error (_("the 'length attribute applies only to array types")); |
| } |
| } |
| else if (type_arg->code () == TYPE_CODE_FLT) |
| error (_("unimplemented type attribute")); |
| else |
| { |
| LONGEST low, high; |
| |
| if (ada_is_constrained_packed_array_type (type_arg)) |
| type_arg = decode_constrained_packed_array_type (type_arg); |
| |
| struct type *type; |
| if (op == OP_ATR_LENGTH) |
| type = builtin_type (exp->gdbarch)->builtin_int; |
| else |
| { |
| type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
| if (type == NULL) |
| type = builtin_type (exp->gdbarch)->builtin_int; |
| } |
| |
| switch (op) |
| { |
| default: |
| error (_("unexpected attribute encountered")); |
| case OP_ATR_FIRST: |
| low = ada_array_bound_from_type (type_arg, tem, 0); |
| return value_from_longest (type, low); |
| case OP_ATR_LAST: |
| high = ada_array_bound_from_type (type_arg, tem, 1); |
| return value_from_longest (type, high); |
| case OP_ATR_LENGTH: |
| low = ada_array_bound_from_type (type_arg, tem, 0); |
| high = ada_array_bound_from_type (type_arg, tem, 1); |
| return value_from_longest (type, high - low + 1); |
| } |
| } |
| } |
| |
| /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */ |
| |
| struct value * |
| ada_binop_minmax (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg1, struct value *arg2) |
| { |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (value_type (arg1), not_lval); |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| return value_binop (arg1, arg2, op); |
| } |
| } |
| |
| /* A helper function for BINOP_EXP. */ |
| |
| struct value * |
| ada_binop_exp (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside, enum exp_opcode op, |
| struct value *arg1, struct value *arg2) |
| { |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (value_type (arg1), not_lval); |
| else |
| { |
| /* For integer exponentiation operations, |
| only promote the first argument. */ |
| if (is_integral_type (value_type (arg2))) |
| unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
| else |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| |
| return value_binop (arg1, arg2, op); |
| } |
| } |
| |
| namespace expr |
| { |
| |
| /* See ada-exp.h. */ |
| |
| operation_up |
| ada_resolvable::replace (operation_up &&owner, |
| struct expression *exp, |
| bool deprocedure_p, |
| bool parse_completion, |
| innermost_block_tracker *tracker, |
| struct type *context_type) |
| { |
| if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type)) |
| return (make_operation<ada_funcall_operation> |
| (std::move (owner), |
| std::vector<operation_up> ())); |
| return std::move (owner); |
| } |
| |
| /* Convert the character literal whose value would be VAL to the |
| appropriate value of type TYPE, if there is a translation. |
| Otherwise return VAL. Hence, in an enumeration type ('A', 'B'), |
| the literal 'A' (VAL == 65), returns 0. */ |
| |
| static LONGEST |
| convert_char_literal (struct type *type, LONGEST val) |
| { |
| char name[12]; |
| int f; |
| |
| if (type == NULL) |
| return val; |
| type = check_typedef (type); |
| if (type->code () != TYPE_CODE_ENUM) |
| return val; |
| |
| if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9')) |
| xsnprintf (name, sizeof (name), "Q%c", (int) val); |
| else if (val >= 0 && val < 256) |
| xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val); |
| else if (val >= 0 && val < 0x10000) |
| xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val); |
| else |
| xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val); |
| size_t len = strlen (name); |
| for (f = 0; f < type->num_fields (); f += 1) |
| { |
| /* Check the suffix because an enum constant in a package will |
| have a name like "pkg__QUxx". This is safe enough because we |
| already have the correct type, and because mangling means |
| there can't be clashes. */ |
| const char *ename = type->field (f).name (); |
| size_t elen = strlen (ename); |
| |
| if (elen >= len && strcmp (name, ename + elen - len) == 0) |
| return type->field (f).loc_enumval (); |
| } |
| return val; |
| } |
| |
| value * |
| ada_char_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| value *result = long_const_operation::evaluate (expect_type, exp, noside); |
| if (expect_type != nullptr) |
| result = ada_value_cast (expect_type, result); |
| return result; |
| } |
| |
| /* See ada-exp.h. */ |
| |
| operation_up |
| ada_char_operation::replace (operation_up &&owner, |
| struct expression *exp, |
| bool deprocedure_p, |
| bool parse_completion, |
| innermost_block_tracker *tracker, |
| struct type *context_type) |
| { |
| operation_up result = std::move (owner); |
| |
| if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM) |
| { |
| gdb_assert (result.get () == this); |
| std::get<0> (m_storage) = context_type; |
| std::get<1> (m_storage) |
| = convert_char_literal (context_type, std::get<1> (m_storage)); |
| } |
| |
| return result; |
| } |
| |
| value * |
| ada_wrapped_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside); |
| if (noside == EVAL_NORMAL) |
| result = unwrap_value (result); |
| |
| /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided, |
| then we need to perform the conversion manually, because |
| evaluate_subexp_standard doesn't do it. This conversion is |
| necessary in Ada because the different kinds of float/fixed |
| types in Ada have different representations. |
| |
| Similarly, we need to perform the conversion from OP_LONG |
| ourselves. */ |
| if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL) |
| result = ada_value_cast (expect_type, result); |
| |
| return result; |
| } |
| |
| value * |
| ada_string_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| struct type *char_type; |
| if (expect_type != nullptr && ada_is_string_type (expect_type)) |
| char_type = ada_array_element_type (expect_type, 1); |
| else |
| char_type = language_string_char_type (exp->language_defn, exp->gdbarch); |
| |
| const std::string &str = std::get<0> (m_storage); |
| const char *encoding; |
| switch (TYPE_LENGTH (char_type)) |
| { |
| case 1: |
| { |
| /* Simply copy over the data -- this isn't perhaps strictly |
| correct according to the encodings, but it is gdb's |
| historical behavior. */ |
| struct type *stringtype |
| = lookup_array_range_type (char_type, 1, str.length ()); |
| struct value *val = allocate_value (stringtype); |
| memcpy (value_contents_raw (val).data (), str.c_str (), |
| str.length ()); |
| return val; |
| } |
| |
| case 2: |
| if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG) |
| encoding = "UTF-16BE"; |
| else |
| encoding = "UTF-16LE"; |
| break; |
| |
| case 4: |
| if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG) |
| encoding = "UTF-32BE"; |
| else |
| encoding = "UTF-32LE"; |
| break; |
| |
| default: |
| error (_("unexpected character type size %s"), |
| pulongest (TYPE_LENGTH (char_type))); |
| } |
| |
| auto_obstack converted; |
| convert_between_encodings (host_charset (), encoding, |
| (const gdb_byte *) str.c_str (), |
| str.length (), 1, |
| &converted, translit_none); |
| |
| struct type *stringtype |
| = lookup_array_range_type (char_type, 1, |
| obstack_object_size (&converted) |
| / TYPE_LENGTH (char_type)); |
| struct value *val = allocate_value (stringtype); |
| memcpy (value_contents_raw (val).data (), |
| obstack_base (&converted), |
| obstack_object_size (&converted)); |
| return val; |
| } |
| |
| value * |
| ada_concat_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| /* If one side is a literal, evaluate the other side first so that |
| the expected type can be set properly. */ |
| const operation_up &lhs_expr = std::get<0> (m_storage); |
| const operation_up &rhs_expr = std::get<1> (m_storage); |
| |
| value *lhs, *rhs; |
| if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr) |
| { |
| rhs = rhs_expr->evaluate (nullptr, exp, noside); |
| lhs = lhs_expr->evaluate (value_type (rhs), exp, noside); |
| } |
| else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr) |
| { |
| rhs = rhs_expr->evaluate (nullptr, exp, noside); |
| struct type *rhs_type = check_typedef (value_type (rhs)); |
| struct type *elt_type = nullptr; |
| if (rhs_type->code () == TYPE_CODE_ARRAY) |
| elt_type = TYPE_TARGET_TYPE (rhs_type); |
| lhs = lhs_expr->evaluate (elt_type, exp, noside); |
| } |
| else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr) |
| { |
| lhs = lhs_expr->evaluate (nullptr, exp, noside); |
| rhs = rhs_expr->evaluate (value_type (lhs), exp, noside); |
| } |
| else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr) |
| { |
| lhs = lhs_expr->evaluate (nullptr, exp, noside); |
| struct type *lhs_type = check_typedef (value_type (lhs)); |
| struct type *elt_type = nullptr; |
| if (lhs_type->code () == TYPE_CODE_ARRAY) |
| elt_type = TYPE_TARGET_TYPE (lhs_type); |
| rhs = rhs_expr->evaluate (elt_type, exp, noside); |
| } |
| else |
| return concat_operation::evaluate (expect_type, exp, noside); |
| |
| return value_concat (lhs, rhs); |
| } |
| |
| value * |
| ada_qual_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| struct type *type = std::get<1> (m_storage); |
| return std::get<0> (m_storage)->evaluate (type, exp, noside); |
| } |
| |
| value * |
| ada_ternop_range_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); |
| value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside); |
| value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside); |
| return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2); |
| } |
| |
| value * |
| ada_binop_addsub_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside); |
| value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside); |
| |
| auto do_op = [=] (LONGEST x, LONGEST y) |
| { |
| if (std::get<0> (m_storage) == BINOP_ADD) |
| return x + y; |
| return x - y; |
| }; |
| |
| if (value_type (arg1)->code () == TYPE_CODE_PTR) |
| return (value_from_longest |
| (value_type (arg1), |
| do_op (value_as_long (arg1), value_as_long (arg2)))); |
| if (value_type (arg2)->code () == TYPE_CODE_PTR) |
| return (value_from_longest |
| (value_type (arg2), |
| do_op (value_as_long (arg1), value_as_long (arg2)))); |
| /* Preserve the original type for use by the range case below. |
| We cannot cast the result to a reference type, so if ARG1 is |
| a reference type, find its underlying type. */ |
| struct type *type = value_type (arg1); |
| while (type->code () == TYPE_CODE_REF) |
| type = TYPE_TARGET_TYPE (type); |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| arg1 = value_binop (arg1, arg2, std::get<0> (m_storage)); |
| /* We need to special-case the result with a range. |
| This is done for the benefit of "ptype". gdb's Ada support |
| historically used the LHS to set the result type here, so |
| preserve this behavior. */ |
| if (type->code () == TYPE_CODE_RANGE) |
| arg1 = value_cast (type, arg1); |
| return arg1; |
| } |
| |
| value * |
| ada_unop_atr_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| struct type *type_arg = nullptr; |
| value *val = nullptr; |
| |
| if (std::get<0> (m_storage)->opcode () == OP_TYPE) |
| { |
| value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp, |
| EVAL_AVOID_SIDE_EFFECTS); |
| type_arg = value_type (tem); |
| } |
| else |
| val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); |
| |
| return ada_unop_atr (exp, noside, std::get<1> (m_storage), |
| val, type_arg, std::get<2> (m_storage)); |
| } |
| |
| value * |
| ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (expect_type, not_lval); |
| |
| const bound_minimal_symbol &b = std::get<0> (m_storage); |
| value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym); |
| |
| val = ada_value_cast (expect_type, val); |
| |
| /* Follow the Ada language semantics that do not allow taking |
| an address of the result of a cast (view conversion in Ada). */ |
| if (VALUE_LVAL (val) == lval_memory) |
| { |
| if (value_lazy (val)) |
| value_fetch_lazy (val); |
| VALUE_LVAL (val) = not_lval; |
| } |
| return val; |
| } |
| |
| value * |
| ada_var_value_operation::evaluate_for_cast (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| value *val = evaluate_var_value (noside, |
| std::get<0> (m_storage).block, |
| std::get<0> (m_storage).symbol); |
| |
| val = ada_value_cast (expect_type, val); |
| |
| /* Follow the Ada language semantics that do not allow taking |
| an address of the result of a cast (view conversion in Ada). */ |
| if (VALUE_LVAL (val) == lval_memory) |
| { |
| if (value_lazy (val)) |
| value_fetch_lazy (val); |
| VALUE_LVAL (val) = not_lval; |
| } |
| return val; |
| } |
| |
| value * |
| ada_var_value_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| symbol *sym = std::get<0> (m_storage).symbol; |
| |
| if (sym->domain () == UNDEF_DOMAIN) |
| /* Only encountered when an unresolved symbol occurs in a |
| context other than a function call, in which case, it is |
| invalid. */ |
| error (_("Unexpected unresolved symbol, %s, during evaluation"), |
| sym->print_name ()); |
| |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| struct type *type = static_unwrap_type (sym->type ()); |
| /* Check to see if this is a tagged type. We also need to handle |
| the case where the type is a reference to a tagged type, but |
| we have to be careful to exclude pointers to tagged types. |
| The latter should be shown as usual (as a pointer), whereas |
| a reference should mostly be transparent to the user. */ |
| if (ada_is_tagged_type (type, 0) |
| || (type->code () == TYPE_CODE_REF |
| && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
| { |
| /* Tagged types are a little special in the fact that the real |
| type is dynamic and can only be determined by inspecting the |
| object's tag. This means that we need to get the object's |
| value first (EVAL_NORMAL) and then extract the actual object |
| type from its tag. |
| |
| Note that we cannot skip the final step where we extract |
| the object type from its tag, because the EVAL_NORMAL phase |
| results in dynamic components being resolved into fixed ones. |
| This can cause problems when trying to print the type |
| description of tagged types whose parent has a dynamic size: |
| We use the type name of the "_parent" component in order |
| to print the name of the ancestor type in the type description. |
| If that component had a dynamic size, the resolution into |
| a fixed type would result in the loss of that type name, |
| thus preventing us from printing the name of the ancestor |
| type in the type description. */ |
| value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL); |
| |
| if (type->code () != TYPE_CODE_REF) |
| { |
| struct type *actual_type; |
| |
| actual_type = type_from_tag (ada_value_tag (arg1)); |
| if (actual_type == NULL) |
| /* If, for some reason, we were unable to determine |
| the actual type from the tag, then use the static |
| approximation that we just computed as a fallback. |
| This can happen if the debugging information is |
| incomplete, for instance. */ |
| actual_type = type; |
| return value_zero (actual_type, not_lval); |
| } |
| else |
| { |
| /* In the case of a ref, ada_coerce_ref takes care |
| of determining the actual type. But the evaluation |
| should return a ref as it should be valid to ask |
| for its address; so rebuild a ref after coerce. */ |
| arg1 = ada_coerce_ref (arg1); |
| return value_ref (arg1, TYPE_CODE_REF); |
| } |
| } |
| |
| /* Records and unions for which GNAT encodings have been |
| generated need to be statically fixed as well. |
| Otherwise, non-static fixing produces a type where |
| all dynamic properties are removed, which prevents "ptype" |
| from being able to completely describe the type. |
| For instance, a case statement in a variant record would be |
| replaced by the relevant components based on the actual |
| value of the discriminants. */ |
| if ((type->code () == TYPE_CODE_STRUCT |
| && dynamic_template_type (type) != NULL) |
| || (type->code () == TYPE_CODE_UNION |
| && ada_find_parallel_type (type, "___XVU") != NULL)) |
| return value_zero (to_static_fixed_type (type), not_lval); |
| } |
| |
| value *arg1 = var_value_operation::evaluate (expect_type, exp, noside); |
| return ada_to_fixed_value (arg1); |
| } |
| |
| bool |
| ada_var_value_operation::resolve (struct expression *exp, |
| bool deprocedure_p, |
| bool parse_completion, |
| innermost_block_tracker *tracker, |
| struct type *context_type) |
| { |
| symbol *sym = std::get<0> (m_storage).symbol; |
| if (sym->domain () == UNDEF_DOMAIN) |
| { |
| block_symbol resolved |
| = ada_resolve_variable (sym, std::get<0> (m_storage).block, |
| context_type, parse_completion, |
| deprocedure_p, tracker); |
| std::get<0> (m_storage) = resolved; |
| } |
| |
| if (deprocedure_p |
| && (std::get<0> (m_storage).symbol->type ()->code () |
| == TYPE_CODE_FUNC)) |
| return true; |
| |
| return false; |
| } |
| |
| value * |
| ada_atr_val_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside); |
| return ada_val_atr (noside, std::get<0> (m_storage), arg); |
| } |
| |
| value * |
| ada_unop_ind_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside); |
| |
| struct type *type = ada_check_typedef (value_type (arg1)); |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| if (ada_is_array_descriptor_type (type)) |
| /* GDB allows dereferencing GNAT array descriptors. */ |
| { |
| struct type *arrType = ada_type_of_array (arg1, 0); |
| |
| if (arrType == NULL) |
| error (_("Attempt to dereference null array pointer.")); |
| return value_at_lazy (arrType, 0); |
| } |
| else if (type->code () == TYPE_CODE_PTR |
| || type->code () == TYPE_CODE_REF |
| /* In C you can dereference an array to get the 1st elt. */ |
| || type->code () == TYPE_CODE_ARRAY) |
| { |
| /* As mentioned in the OP_VAR_VALUE case, tagged types can |
| only be determined by inspecting the object's tag. |
| This means that we need to evaluate completely the |
| expression in order to get its type. */ |
| |
| if ((type->code () == TYPE_CODE_REF |
| || type->code () == TYPE_CODE_PTR) |
| && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
| { |
| arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, |
| EVAL_NORMAL); |
| type = value_type (ada_value_ind (arg1)); |
| } |
| else |
| { |
| type = to_static_fixed_type |
| (ada_aligned_type |
| (ada_check_typedef (TYPE_TARGET_TYPE (type)))); |
| } |
| return value_zero (type, lval_memory); |
| } |
| else if (type->code () == TYPE_CODE_INT) |
| { |
| /* GDB allows dereferencing an int. */ |
| if (expect_type == NULL) |
| return value_zero (builtin_type (exp->gdbarch)->builtin_int, |
| lval_memory); |
| else |
| { |
| expect_type = |
| to_static_fixed_type (ada_aligned_type (expect_type)); |
| return value_zero (expect_type, lval_memory); |
| } |
| } |
| else |
| error (_("Attempt to take contents of a non-pointer value.")); |
| } |
| arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
| type = ada_check_typedef (value_type (arg1)); |
| |
| if (type->code () == TYPE_CODE_INT) |
| /* GDB allows dereferencing an int. If we were given |
| the expect_type, then use that as the target type. |
| Otherwise, assume that the target type is an int. */ |
| { |
| if (expect_type != NULL) |
| return ada_value_ind (value_cast (lookup_pointer_type (expect_type), |
| arg1)); |
| else |
| return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, |
| (CORE_ADDR) value_as_address (arg1)); |
| } |
| |
| if (ada_is_array_descriptor_type (type)) |
| /* GDB allows dereferencing GNAT array descriptors. */ |
| return ada_coerce_to_simple_array (arg1); |
| else |
| return ada_value_ind (arg1); |
| } |
| |
| value * |
| ada_structop_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); |
| const char *str = std::get<1> (m_storage).c_str (); |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| struct type *type; |
| struct type *type1 = value_type (arg1); |
| |
| if (ada_is_tagged_type (type1, 1)) |
| { |
| type = ada_lookup_struct_elt_type (type1, str, 1, 1); |
| |
| /* If the field is not found, check if it exists in the |
| extension of this object's type. This means that we |
| need to evaluate completely the expression. */ |
| |
| if (type == NULL) |
| { |
| arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, |
| EVAL_NORMAL); |
| arg1 = ada_value_struct_elt (arg1, str, 0); |
| arg1 = unwrap_value (arg1); |
| type = value_type (ada_to_fixed_value (arg1)); |
| } |
| } |
| else |
| type = ada_lookup_struct_elt_type (type1, str, 1, 0); |
| |
| return value_zero (ada_aligned_type (type), lval_memory); |
| } |
| else |
| { |
| arg1 = ada_value_struct_elt (arg1, str, 0); |
| arg1 = unwrap_value (arg1); |
| return ada_to_fixed_value (arg1); |
| } |
| } |
| |
| value * |
| ada_funcall_operation::evaluate (struct type *expect_type, |
| struct expression *exp, |
| enum noside noside) |
| { |
| const std::vector<operation_up> &args_up = std::get<1> (m_storage); |
| int nargs = args_up.size (); |
| std::vector<value *> argvec (nargs); |
| operation_up &callee_op = std::get<0> (m_storage); |
| |
| ada_var_value_operation *avv |
| = dynamic_cast<ada_var_value_operation *> (callee_op.get ()); |
| if (avv != nullptr |
| && avv->get_symbol ()->domain () == UNDEF_DOMAIN) |
| error (_("Unexpected unresolved symbol, %s, during evaluation"), |
| avv->get_symbol ()->print_name ()); |
| |
| value *callee = callee_op->evaluate (nullptr, exp, noside); |
| for (int i = 0; i < args_up.size (); ++i) |
| argvec[i] = args_up[i]->evaluate (nullptr, exp, noside); |
| |
| if (ada_is_constrained_packed_array_type |
| (desc_base_type (value_type (callee)))) |
| callee = ada_coerce_to_simple_array (callee); |
| else if (value_type (callee)->code () == TYPE_CODE_ARRAY |
| && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0) |
| /* This is a packed array that has already been fixed, and |
| therefore already coerced to a simple array. Nothing further |
| to do. */ |
| ; |
| else if (value_type (callee)->code () == TYPE_CODE_REF) |
| { |
| /* Make sure we dereference references so that all the code below |
| feels like it's really handling the referenced value. Wrapping |
| types (for alignment) may be there, so make sure we strip them as |
| well. */ |
| callee = ada_to_fixed_value (coerce_ref (callee)); |
| } |
| else if (value_type (callee)->code () == TYPE_CODE_ARRAY |
| && VALUE_LVAL (callee) == lval_memory) |
| callee = value_addr (callee); |
| |
| struct type *type = ada_check_typedef (value_type (callee)); |
| |
| /* Ada allows us to implicitly dereference arrays when subscripting |
| them. So, if this is an array typedef (encoding use for array |
| access types encoded as fat pointers), strip it now. */ |
| if (type->code () == TYPE_CODE_TYPEDEF) |
| type = ada_typedef_target_type (type); |
| |
| if (type->code () == TYPE_CODE_PTR) |
| { |
| switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()) |
| { |
| case TYPE_CODE_FUNC: |
| type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
| break; |
| case TYPE_CODE_ARRAY: |
| break; |
| case TYPE_CODE_STRUCT: |
| if (noside != EVAL_AVOID_SIDE_EFFECTS) |
| callee = ada_value_ind (callee); |
| type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
| break; |
| default: |
| error (_("cannot subscript or call something of type `%s'"), |
| ada_type_name (value_type (callee))); |
| break; |
| } |
| } |
| |
| switch (type->code ()) |
| { |
| case TYPE_CODE_FUNC: |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| if (TYPE_TARGET_TYPE (type) == NULL) |
| error_call_unknown_return_type (NULL); |
| return allocate_value (TYPE_TARGET_TYPE (type)); |
| } |
| return call_function_by_hand (callee, NULL, argvec); |
| case TYPE_CODE_INTERNAL_FUNCTION: |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| /* We don't know anything about what the internal |
| function might return, but we have to return |
| something. */ |
| return value_zero (builtin_type (exp->gdbarch)->builtin_int, |
| not_lval); |
| else |
| return call_internal_function (exp->gdbarch, exp->language_defn, |
| callee, nargs, |
| argvec.data ()); |
| |
| case TYPE_CODE_STRUCT: |
| { |
| int arity; |
| |
| arity = ada_array_arity (type); |
| type = ada_array_element_type (type, nargs); |
| if (type == NULL) |
| error (_("cannot subscript or call a record")); |
| if (arity != nargs) |
| error (_("wrong number of subscripts; expecting %d"), arity); |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (ada_aligned_type (type), lval_memory); |
| return |
| unwrap_value (ada_value_subscript |
| (callee, nargs, argvec.data ())); |
| } |
| case TYPE_CODE_ARRAY: |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| type = ada_array_element_type (type, nargs); |
| if (type == NULL) |
| error (_("element type of array unknown")); |
| else |
| return value_zero (ada_aligned_type (type), lval_memory); |
| } |
| return |
| unwrap_value (ada_value_subscript |
| (ada_coerce_to_simple_array (callee), |
| nargs, argvec.data ())); |
| case TYPE_CODE_PTR: /* Pointer to array */ |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
| type = ada_array_element_type (type, nargs); |
| if (type == NULL) |
| error (_("element type of array unknown")); |
| else |
| return value_zero (ada_aligned_type (type), lval_memory); |
| } |
| return |
| unwrap_value (ada_value_ptr_subscript (callee, nargs, |
| argvec.data ())); |
| |
| default: |
| error (_("Attempt to index or call something other than an " |
| "array or function")); |
| } |
| } |
| |
| bool |
| ada_funcall_operation::resolve (struct expression *exp, |
| bool deprocedure_p, |
| bool parse_completion, |
| innermost_block_tracker *tracker, |
| struct type *context_type) |
| { |
| operation_up &callee_op = std::get<0> (m_storage); |
| |
| ada_var_value_operation *avv |
| = dynamic_cast<ada_var_value_operation *> (callee_op.get ()); |
| if (avv == nullptr) |
| return false; |
| |
| symbol *sym = avv->get_symbol (); |
| if (sym->domain () != UNDEF_DOMAIN) |
| return false; |
| |
| const std::vector<operation_up> &args_up = std::get<1> (m_storage); |
| int nargs = args_up.size (); |
| std::vector<value *> argvec (nargs); |
| |
| for (int i = 0; i < args_up.size (); ++i) |
| argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS); |
| |
| const block *block = avv->get_block (); |
| block_symbol resolved |
| = ada_resolve_funcall (sym, block, |
| context_type, parse_completion, |
| nargs, argvec.data (), |
| tracker); |
| |
| std::get<0> (m_storage) |
| = make_operation<ada_var_value_operation> (resolved); |
| return false; |
| } |
| |
| bool |
| ada_ternop_slice_operation::resolve (struct expression *exp, |
| bool deprocedure_p, |
| bool parse_completion, |
| innermost_block_tracker *tracker, |
| struct type *context_type) |
| { |
| /* Historically this check was done during resolution, so we |
| continue that here. */ |
| value *v = std::get<0> (m_storage)->evaluate (context_type, exp, |
| EVAL_AVOID_SIDE_EFFECTS); |
| if (ada_is_any_packed_array_type (value_type (v))) |
| error (_("cannot slice a packed array")); |
| return false; |
| } |
| |
| } |
| |
| |
| |
| /* Return non-zero iff TYPE represents a System.Address type. */ |
| |
| int |
| ada_is_system_address_type (struct type *type) |
| { |
| return (type->name () && strcmp (type->name (), "system__address") == 0); |
| } |
| |
| |
| |
| /* Range types */ |
| |
| /* Scan STR beginning at position K for a discriminant name, and |
| return the value of that discriminant field of DVAL in *PX. If |
| PNEW_K is not null, put the position of the character beyond the |
| name scanned in *PNEW_K. Return 1 if successful; return 0 and do |
| not alter *PX and *PNEW_K if unsuccessful. */ |
| |
| static int |
| scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
| int *pnew_k) |
| { |
| static std::string storage; |
| const char *pstart, *pend, *bound; |
| struct value *bound_val; |
| |
| if (dval == NULL || str == NULL || str[k] == '\0') |
| return 0; |
| |
| pstart = str + k; |
| pend = strstr (pstart, "__"); |
| if (pend == NULL) |
| { |
| bound = pstart; |
| k += strlen (bound); |
| } |
| else |
| { |
| int len = pend - pstart; |
| |
| /* Strip __ and beyond. */ |
| storage = std::string (pstart, len); |
| bound = storage.c_str (); |
| k = pend - str; |
| } |
| |
| bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
| if (bound_val == NULL) |
| return 0; |
| |
| *px = value_as_long (bound_val); |
| if (pnew_k != NULL) |
| *pnew_k = k; |
| return 1; |
| } |
| |
| /* Value of variable named NAME. Only exact matches are considered. |
| If no such variable found, then if ERR_MSG is null, returns 0, and |
| otherwise causes an error with message ERR_MSG. */ |
| |
| static struct value * |
| get_var_value (const char *name, const char *err_msg) |
| { |
| std::string quoted_name = add_angle_brackets (name); |
| |
| lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL); |
| |
| std::vector<struct block_symbol> syms |
| = ada_lookup_symbol_list_worker (lookup_name, |
| get_selected_block (0), |
| VAR_DOMAIN, 1); |
| |
| if (syms.size () != 1) |
| { |
| if (err_msg == NULL) |
| return 0; |
| else |
| error (("%s"), err_msg); |
| } |
| |
| return value_of_variable (syms[0].symbol, syms[0].block); |
| } |
| |
| /* Value of integer variable named NAME in the current environment. |
| If no such variable is found, returns false. Otherwise, sets VALUE |
| to the variable's value and returns true. */ |
| |
| bool |
| get_int_var_value (const char *name, LONGEST &value) |
| { |
| struct value *var_val = get_var_value (name, 0); |
| |
| if (var_val == 0) |
| return false; |
| |
| value = value_as_long (var_val); |
| return true; |
| } |
| |
| |
| /* Return a range type whose base type is that of the range type named |
| NAME in the current environment, and whose bounds are calculated |
| from NAME according to the GNAT range encoding conventions. |
| Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
| corresponding range type from debug information; fall back to using it |
| if symbol lookup fails. If a new type must be created, allocate it |
| like ORIG_TYPE was. The bounds information, in general, is encoded |
| in NAME, the base type given in the named range type. */ |
| |
| static struct type * |
| to_fixed_range_type (struct type *raw_type, struct value *dval) |
| { |
| const char *name; |
| struct type *base_type; |
| const char *subtype_info; |
| |
| gdb_assert (raw_type != NULL); |
| gdb_assert (raw_type->name () != NULL); |
| |
| if (raw_type->code () == TYPE_CODE_RANGE) |
| base_type = TYPE_TARGET_TYPE (raw_type); |
| else |
| base_type = raw_type; |
| |
| name = raw_type->name (); |
| subtype_info = strstr (name, "___XD"); |
| if (subtype_info == NULL) |
| { |
| LONGEST L = ada_discrete_type_low_bound (raw_type); |
| LONGEST U = ada_discrete_type_high_bound (raw_type); |
| |
| if (L < INT_MIN || U > INT_MAX) |
| return raw_type; |
| else |
| return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
| L, U); |
| } |
| else |
| { |
| int prefix_len = subtype_info - name; |
| LONGEST L, U; |
| struct type *type; |
| const char *bounds_str; |
| int n; |
| |
| subtype_info += 5; |
| bounds_str = strchr (subtype_info, '_'); |
| n = 1; |
| |
| if (*subtype_info == 'L') |
| { |
| if (!ada_scan_number (bounds_str, n, &L, &n) |
| && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) |
| return raw_type; |
| if (bounds_str[n] == '_') |
| n += 2; |
| else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
| n += 1; |
| subtype_info += 1; |
| } |
| else |
| { |
| std::string name_buf = std::string (name, prefix_len) + "___L"; |
| if (!get_int_var_value (name_buf.c_str (), L)) |
| { |
| lim_warning (_("Unknown lower bound, using 1.")); |
| L = 1; |
| } |
| } |
| |
| if (*subtype_info == 'U') |
| { |
| if (!ada_scan_number (bounds_str, n, &U, &n) |
| && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) |
| return raw_type; |
| } |
| else |
| { |
| std::string name_buf = std::string (name, prefix_len) + "___U"; |
| if (!get_int_var_value (name_buf.c_str (), U)) |
| { |
| lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
| U = L; |
| } |
| } |
| |
| type = create_static_range_type (alloc_type_copy (raw_type), |
| base_type, L, U); |
| /* create_static_range_type alters the resulting type's length |
| to match the size of the base_type, which is not what we want. |
| Set it back to the original range type's length. */ |
| TYPE_LENGTH (type) = TYPE_LENGTH (raw_type); |
| type->set_name (name); |
| return type; |
| } |
| } |
| |
| /* True iff NAME is the name of a range type. */ |
| |
| int |
| ada_is_range_type_name (const char *name) |
| { |
| return (name != NULL && strstr (name, "___XD")); |
| } |
| |
| |
| /* Modular types */ |
| |
| /* True iff TYPE is an Ada modular type. */ |
| |
| int |
| ada_is_modular_type (struct type *type) |
| { |
| struct type *subranged_type = get_base_type (type); |
| |
| return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE |
| && subranged_type->code () == TYPE_CODE_INT |
| && subranged_type->is_unsigned ()); |
| } |
| |
| /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
| |
| ULONGEST |
| ada_modulus (struct type *type) |
| { |
| const dynamic_prop &high = type->bounds ()->high; |
| |
| if (high.kind () == PROP_CONST) |
| return (ULONGEST) high.const_val () + 1; |
| |
| /* If TYPE is unresolved, the high bound might be a location list. Return |
| 0, for lack of a better value to return. */ |
| return 0; |
| } |
| |
| |
| /* Ada exception catchpoint support: |
| --------------------------------- |
| |
| We support 3 kinds of exception catchpoints: |
| . catchpoints on Ada exceptions |
| . catchpoints on unhandled Ada exceptions |
| . catchpoints on failed assertions |
| |
| Exceptions raised during failed assertions, or unhandled exceptions |
| could perfectly be caught with the general catchpoint on Ada exceptions. |
| However, we can easily differentiate these two special cases, and having |
| the option to distinguish these two cases from the rest can be useful |
| to zero-in on certain situations. |
| |
| Exception catchpoints are a specialized form of breakpoint, |
| since they rely on inserting breakpoints inside known routines |
| of the GNAT runtime. The implementation therefore uses a standard |
| breakpoint structure of the BP_BREAKPOINT type, but with its own set |
| of breakpoint_ops. |
| |
| Support in the runtime for exception catchpoints have been changed |
| a few times already, and these changes affect the implementation |
| of these catchpoints. In order to be able to support several |
| variants of the runtime, we use a sniffer that will determine |
| the runtime variant used by the program being debugged. */ |
| |
| /* Ada's standard exceptions. |
| |
| The Ada 83 standard also defined Numeric_Error. But there so many |
| situations where it was unclear from the Ada 83 Reference Manual |
| (RM) whether Constraint_Error or Numeric_Error should be raised, |
| that the ARG (Ada Rapporteur Group) eventually issued a Binding |
| Interpretation saying that anytime the RM says that Numeric_Error |
| should be raised, the implementation may raise Constraint_Error. |
| Ada 95 went one step further and pretty much removed Numeric_Error |
| from the list of standard exceptions (it made it a renaming of |
| Constraint_Error, to help preserve compatibility when compiling |
| an Ada83 compiler). As such, we do not include Numeric_Error from |
| this list of standard exceptions. */ |
| |
| static const char * const standard_exc[] = { |
| "constraint_error", |
| "program_error", |
| "storage_error", |
| "tasking_error" |
| }; |
| |
| typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
| |
| /* A structure that describes how to support exception catchpoints |
| for a given executable. */ |
| |
| struct exception_support_info |
| { |
| /* The name of the symbol to break on in order to insert |
| a catchpoint on exceptions. */ |
| const char *catch_exception_sym; |
| |
| /* The name of the symbol to break on in order to insert |
| a catchpoint on unhandled exceptions. */ |
| const char *catch_exception_unhandled_sym; |
| |
| /* The name of the symbol to break on in order to insert |
| a catchpoint on failed assertions. */ |
| const char *catch_assert_sym; |
| |
| /* The name of the symbol to break on in order to insert |
| a catchpoint on exception handling. */ |
| const char *catch_handlers_sym; |
| |
| /* Assuming that the inferior just triggered an unhandled exception |
| catchpoint, this function is responsible for returning the address |
| in inferior memory where the name of that exception is stored. |
| Return zero if the address could not be computed. */ |
| ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; |
| }; |
| |
| static CORE_ADDR ada_unhandled_exception_name_addr (void); |
| static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); |
| |
| /* The following exception support info structure describes how to |
| implement exception catchpoints with the latest version of the |
| Ada runtime (as of 2019-08-??). */ |
| |
| static const struct exception_support_info default_exception_support_info = |
| { |
| "__gnat_debug_raise_exception", /* catch_exception_sym */ |
| "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ |
| "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ |
| "__gnat_begin_handler_v1", /* catch_handlers_sym */ |
| ada_unhandled_exception_name_addr |
| }; |
| |
| /* The following exception support info structure describes how to |
| implement exception catchpoints with an earlier version of the |
| Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */ |
| |
| static const struct exception_support_info exception_support_info_v0 = |
| { |
| "__gnat_debug_raise_exception", /* catch_exception_sym */ |
| "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ |
| "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ |
| "__gnat_begin_handler", /* catch_handlers_sym */ |
| ada_unhandled_exception_name_addr |
| }; |
| |
| /* The following exception support info structure describes how to |
| implement exception catchpoints with a slightly older version |
| of the Ada runtime. */ |
| |
| static const struct exception_support_info exception_support_info_fallback = |
| { |
| "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ |
| "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ |
| "system__assertions__raise_assert_failure", /* catch_assert_sym */ |
| "__gnat_begin_handler", /* catch_handlers_sym */ |
| ada_unhandled_exception_name_addr_from_raise |
| }; |
| |
| /* Return nonzero if we can detect the exception support routines |
| described in EINFO. |
| |
| This function errors out if an abnormal situation is detected |
| (for instance, if we find the exception support routines, but |
| that support is found to be incomplete). */ |
| |
| static int |
| ada_has_this_exception_support (const struct exception_support_info *einfo) |
| { |
| struct symbol *sym; |
| |
| /* The symbol we're looking up is provided by a unit in the GNAT runtime |
| that should be compiled with debugging information. As a result, we |
| expect to find that symbol in the symtabs. */ |
| |
| sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); |
| if (sym == NULL) |
| { |
| /* Perhaps we did not find our symbol because the Ada runtime was |
| compiled without debugging info, or simply stripped of it. |
| It happens on some GNU/Linux distributions for instance, where |
| users have to install a separate debug package in order to get |
| the runtime's debugging info. In that situation, let the user |
| know why we cannot insert an Ada exception catchpoint. |
| |
| Note: Just for the purpose of inserting our Ada exception |
| catchpoint, we could rely purely on the associated minimal symbol. |
| But we would be operating in degraded mode anyway, since we are |
| still lacking the debugging info needed later on to extract |
| the name of the exception being raised (this name is printed in |
| the catchpoint message, and is also used when trying to catch |
| a specific exception). We do not handle this case for now. */ |
| struct bound_minimal_symbol msym |
| = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
| |
| if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
| error (_("Your Ada runtime appears to be missing some debugging " |
| "information.\nCannot insert Ada exception catchpoint " |
| "in this configuration.")); |
| |
| return 0; |
| } |
| |
| /* Make sure that the symbol we found corresponds to a function. */ |
| |
| if (sym->aclass () != LOC_BLOCK) |
| { |
| error (_("Symbol \"%s\" is not a function (class = %d)"), |
| sym->linkage_name (), sym->aclass ()); |
| return 0; |
| } |
| |
| sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN); |
| if (sym == NULL) |
| { |
| struct bound_minimal_symbol msym |
| = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL); |
| |
| if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
| error (_("Your Ada runtime appears to be missing some debugging " |
| "information.\nCannot insert Ada exception catchpoint " |
| "in this configuration.")); |
| |
| return 0; |
| } |
| |
| /* Make sure that the symbol we found corresponds to a function. */ |
| |
| if (sym->aclass () != LOC_BLOCK) |
| { |
| error (_("Symbol \"%s\" is not a function (class = %d)"), |
| sym->linkage_name (), sym->aclass ()); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Inspect the Ada runtime and determine which exception info structure |
| should be used to provide support for exception catchpoints. |
| |
| This function will always set the per-inferior exception_info, |
| or raise an error. */ |
| |
| static void |
| ada_exception_support_info_sniffer (void) |
| { |
| struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
| |
| /* If the exception info is already known, then no need to recompute it. */ |
| if (data->exception_info != NULL) |
| return; |
| |
| /* Check the latest (default) exception support info. */ |
| if (ada_has_this_exception_support (&default_exception_support_info)) |
| { |
| data->exception_info = &default_exception_support_info; |
| return; |
| } |
| |
| /* Try the v0 exception suport info. */ |
| if (ada_has_this_exception_support (&exception_support_info_v0)) |
| { |
| data->exception_info = &exception_support_info_v0; |
| return; |
| } |
| |
| /* Try our fallback exception suport info. */ |
| if (ada_has_this_exception_support (&exception_support_info_fallback)) |
| { |
| data->exception_info = &exception_support_info_fallback; |
| return; |
| } |
| |
| /* Sometimes, it is normal for us to not be able to find the routine |
| we are looking for. This happens when the program is linked with |
| the shared version of the GNAT runtime, and the program has not been |
| started yet. Inform the user of these two possible causes if |
| applicable. */ |
| |
| if (ada_update_initial_language (language_unknown) != language_ada) |
| error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
| |
| /* If the symbol does not exist, then check that the program is |
| already started, to make sure that shared libraries have been |
| loaded. If it is not started, this may mean that the symbol is |
| in a shared library. */ |
| |
| if (inferior_ptid.pid () == 0) |
| error (_("Unable to insert catchpoint. Try to start the program first.")); |
| |
| /* At this point, we know that we are debugging an Ada program and |
| that the inferior has been started, but we still are not able to |
| find the run-time symbols. That can mean that we are in |
| configurable run time mode, or that a-except as been optimized |
| out by the linker... In any case, at this point it is not worth |
| supporting this feature. */ |
| |
| error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
| } |
| |
| /* True iff FRAME is very likely to be that of a function that is |
| part of the runtime system. This is all very heuristic, but is |
| intended to be used as advice as to what frames are uninteresting |
| to most users. */ |
| |
| static int |
| is_known_support_routine (struct frame_info *frame) |
| { |
| enum language func_lang; |
| int i; |
| const char *fullname; |
| |
| /* If this code does not have any debugging information (no symtab), |
| This cannot be any user code. */ |
| |
| symtab_and_line sal = find_frame_sal (frame); |
| if (sal.symtab == NULL) |
| return 1; |
| |
| /* If there is a symtab, but the associated source file cannot be |
| located, then assume this is not user code: Selecting a frame |
| for which we cannot display the code would not be very helpful |
| for the user. This should also take care of case such as VxWorks |
| where the kernel has some debugging info provided for a few units. */ |
| |
| fullname = symtab_to_fullname (sal.symtab); |
| if (access (fullname, R_OK) != 0) |
| return 1; |
| |
| /* Check the unit filename against the Ada runtime file naming. |
| We also check the name of the objfile against the name of some |
| known system libraries that sometimes come with debugging info |
| too. */ |
| |
| for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
| { |
| re_comp (known_runtime_file_name_patterns[i]); |
| if (re_exec (lbasename (sal.symtab->filename))) |
| return 1; |
| if (sal.symtab->objfile () != NULL |
| && re_exec (objfile_name (sal.symtab->objfile ()))) |
| return 1; |
| } |
| |
| /* Check whether the function is a GNAT-generated entity. */ |
| |
| gdb::unique_xmalloc_ptr<char> func_name |
| = find_frame_funname (frame, &func_lang, NULL); |
| if (func_name == NULL) |
| return 1; |
| |
| for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) |
| { |
| re_comp (known_auxiliary_function_name_patterns[i]); |
| if (re_exec (func_name.get ())) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Find the first frame that contains debugging information and that is not |
| part of the Ada run-time, starting from FI and moving upward. */ |
| |
| void |
| ada_find_printable_frame (struct frame_info *fi) |
| { |
| for (; fi != NULL; fi = get_prev_frame (fi)) |
| { |
| if (!is_known_support_routine (fi)) |
| { |
| select_frame (fi); |
| break; |
| } |
| } |
| |
| } |
| |
| /* Assuming that the inferior just triggered an unhandled exception |
| catchpoint, return the address in inferior memory where the name |
| of the exception is stored. |
| |
| Return zero if the address could not be computed. */ |
| |
| static CORE_ADDR |
| ada_unhandled_exception_name_addr (void) |
| { |
| return parse_and_eval_address ("e.full_name"); |
| } |
| |
| /* Same as ada_unhandled_exception_name_addr, except that this function |
| should be used when the inferior uses an older version of the runtime, |
| where the exception name needs to be extracted from a specific frame |
| several frames up in the callstack. */ |
| |
| static CORE_ADDR |
| ada_unhandled_exception_name_addr_from_raise (void) |
| { |
| int frame_level; |
| struct frame_info *fi; |
| struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
| |
| /* To determine the name of this exception, we need to select |
| the frame corresponding to RAISE_SYM_NAME. This frame is |
| at least 3 levels up, so we simply skip the first 3 frames |
| without checking the name of their associated function. */ |
| fi = get_current_frame (); |
| for (frame_level = 0; frame_level < 3; frame_level += 1) |
| if (fi != NULL) |
| fi = get_prev_frame (fi); |
| |
| while (fi != NULL) |
| { |
| enum language func_lang; |
| |
| gdb::unique_xmalloc_ptr<char> func_name |
| = find_frame_funname (fi, &func_lang, NULL); |
| if (func_name != NULL) |
| { |
| if (strcmp (func_name.get (), |
| data->exception_info->catch_exception_sym) == 0) |
| break; /* We found the frame we were looking for... */ |
| } |
| fi = get_prev_frame (fi); |
| } |
| |
| if (fi == NULL) |
| return 0; |
| |
| select_frame (fi); |
| return parse_and_eval_address ("id.full_name"); |
| } |
| |
| /* Assuming the inferior just triggered an Ada exception catchpoint |
| (of any type), return the address in inferior memory where the name |
| of the exception is stored, if applicable. |
| |
| Assumes the selected frame is the current frame. |
| |
| Return zero if the address could not be computed, or if not relevant. */ |
| |
| static CORE_ADDR |
| ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
| struct breakpoint *b) |
| { |
| struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
| |
| switch (ex) |
| { |
| case ada_catch_exception: |
| return (parse_and_eval_address ("e.full_name")); |
| break; |
| |
| case ada_catch_exception_unhandled: |
| return data->exception_info->unhandled_exception_name_addr (); |
| break; |
| |
| case ada_catch_handlers: |
| return 0; /* The runtimes does not provide access to the exception |
| name. */ |
| break; |
| |
| case ada_catch_assert: |
| return 0; /* Exception name is not relevant in this case. */ |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); |
| break; |
| } |
| |
| return 0; /* Should never be reached. */ |
| } |
| |
| /* Assuming the inferior is stopped at an exception catchpoint, |
| return the message which was associated to the exception, if |
| available. Return NULL if the message could not be retrieved. |
| |
| Note: The exception message can be associated to an exception |
| either through the use of the Raise_Exception function, or |
| more simply (Ada 2005 and later), via: |
| |
| raise Exception_Name with "exception message"; |
| |
| */ |
| |
| static gdb::unique_xmalloc_ptr<char> |
| ada_exception_message_1 (void) |
| { |
| struct value *e_msg_val; |
| int e_msg_len; |
| |
| /* For runtimes that support this feature, the exception message |
| is passed as an unbounded string argument called "message". */ |
| e_msg_val = parse_and_eval ("message"); |
| if (e_msg_val == NULL) |
| return NULL; /* Exception message not supported. */ |
| |
| e_msg_val = ada_coerce_to_simple_array (e_msg_val); |
| gdb_assert (e_msg_val != NULL); |
| e_msg_len = TYPE_LENGTH (value_type (e_msg_val)); |
| |
| /* If the message string is empty, then treat it as if there was |
| no exception message. */ |
| if (e_msg_len <= 0) |
| return NULL; |
| |
| gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1)); |
| read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (), |
| e_msg_len); |
| e_msg.get ()[e_msg_len] = '\0'; |
| |
| return e_msg; |
| } |
| |
| /* Same as ada_exception_message_1, except that all exceptions are |
| contained here (returning NULL instead). */ |
| |
| static gdb::unique_xmalloc_ptr<char> |
| ada_exception_message (void) |
| { |
| gdb::unique_xmalloc_ptr<char> e_msg; |
| |
| try |
| { |
| e_msg = ada_exception_message_1 (); |
| } |
| catch (const gdb_exception_error &e) |
| { |
| e_msg.reset (nullptr); |
| } |
| |
| return e_msg; |
| } |
| |
| /* Same as ada_exception_name_addr_1, except that it intercepts and contains |
| any error that ada_exception_name_addr_1 might cause to be thrown. |
| When an error is intercepted, a warning with the error message is printed, |
| and zero is returned. */ |
| |
| static CORE_ADDR |
| ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
| struct breakpoint *b) |
| { |
| CORE_ADDR result = 0; |
| |
| try |
| { |
| result = ada_exception_name_addr_1 (ex, b); |
| } |
| |
| catch (const gdb_exception_error &e) |
| { |
| warning (_("failed to get exception name: %s"), e.what ()); |
| return 0; |
| } |
| |
| return result; |
| } |
| |
| static std::string ada_exception_catchpoint_cond_string |
| (const char *excep_string, |
| enum ada_exception_catchpoint_kind ex); |
| |
| /* Ada catchpoints. |
| |
| In the case of catchpoints on Ada exceptions, the catchpoint will |
| stop the target on every exception the program throws. When a user |
| specifies the name of a specific exception, we translate this |
| request into a condition expression (in text form), and then parse |
| it into an expression stored in each of the catchpoint's locations. |
| We then use this condition to check whether the exception that was |
| raised is the one the user is interested in. If not, then the |
| target is resumed again. We store the name of the requested |
| exception, in order to be able to re-set the condition expression |
| when symbols change. */ |
| |
| /* An instance of this type is used to represent an Ada catchpoint |
| breakpoint location. */ |
| |
| class ada_catchpoint_location : public bp_location |
| { |
| public: |
| ada_catchpoint_location (breakpoint *owner) |
| : bp_location (owner, bp_loc_software_breakpoint) |
| {} |
| |
| /* The condition that checks whether the exception that was raised |
| is the specific exception the user specified on catchpoint |
| creation. */ |
| expression_up excep_cond_expr; |
| }; |
| |
| /* An instance of this type is used to represent an Ada catchpoint. */ |
| |
| struct ada_catchpoint : public breakpoint |
| { |
| explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind) |
| : m_kind (kind) |
| { |
| } |
| |
| /* The name of the specific exception the user specified. */ |
| std::string excep_string; |
| |
| /* What kind of catchpoint this is. */ |
| enum ada_exception_catchpoint_kind m_kind; |
| }; |
| |
| /* Parse the exception condition string in the context of each of the |
| catchpoint's locations, and store them for later evaluation. */ |
| |
| static void |
| create_excep_cond_exprs (struct ada_catchpoint *c, |
| enum ada_exception_catchpoint_kind ex) |
| { |
| /* Nothing to do if there's no specific exception to catch. */ |
| if (c->excep_string.empty ()) |
| return; |
| |
| /* Same if there are no locations... */ |
| if (c->loc == NULL) |
| return; |
| |
| /* Compute the condition expression in text form, from the specific |
| expection we want to catch. */ |
| std::string cond_string |
| = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex); |
| |
| /* Iterate over all the catchpoint's locations, and parse an |
| expression for each. */ |
| for (bp_location *bl : c->locations ()) |
| { |
| struct ada_catchpoint_location *ada_loc |
| = (struct ada_catchpoint_location *) bl; |
| expression_up exp; |
| |
| if (!bl->shlib_disabled) |
| { |
| const char *s; |
| |
| s = cond_string.c_str (); |
| try |
| { |
| exp = parse_exp_1 (&s, bl->address, |
| block_for_pc (bl->address), |
| 0); |
| } |
| catch (const gdb_exception_error &e) |
| { |
| warning (_("failed to reevaluate internal exception condition " |
| "for catchpoint %d: %s"), |
| c->number, e.what ()); |
| } |
| } |
| |
| ada_loc->excep_cond_expr = std::move (exp); |
| } |
| } |
| |
| /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops |
| structure for all exception catchpoint kinds. */ |
| |
| static struct bp_location * |
| allocate_location_exception (struct breakpoint *self) |
| { |
| return new ada_catchpoint_location (self); |
| } |
| |
| /* Implement the RE_SET method in the breakpoint_ops structure for all |
| exception catchpoint kinds. */ |
| |
| static void |
| re_set_exception (struct breakpoint *b) |
| { |
| struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
| |
| /* Call the base class's method. This updates the catchpoint's |
| locations. */ |
| bkpt_breakpoint_ops.re_set (b); |
| |
| /* Reparse the exception conditional expressions. One for each |
| location. */ |
| create_excep_cond_exprs (c, c->m_kind); |
| } |
| |
| /* Returns true if we should stop for this breakpoint hit. If the |
| user specified a specific exception, we only want to cause a stop |
| if the program thrown that exception. */ |
| |
| static bool |
| should_stop_exception (const struct bp_location *bl) |
| { |
| struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; |
| const struct ada_catchpoint_location *ada_loc |
| = (const struct ada_catchpoint_location *) bl; |
| bool stop; |
| |
| struct internalvar *var = lookup_internalvar ("_ada_exception"); |
| if (c->m_kind == ada_catch_assert) |
| clear_internalvar (var); |
| else |
| { |
| try |
| { |
| const char *expr; |
| |
| if (c->m_kind == ada_catch_handlers) |
| expr = ("GNAT_GCC_exception_Access(gcc_exception)" |
| ".all.occurrence.id"); |
| else |
| expr = "e"; |
| |
| struct value *exc = parse_and_eval (expr); |
| set_internalvar (var, exc); |
| } |
| catch (const gdb_exception_error &ex) |
| { |
| clear_internalvar (var); |
| } |
| } |
| |
| /* With no specific exception, should always stop. */ |
| if (c->excep_string.empty ()) |
| return true; |
| |
| if (ada_loc->excep_cond_expr == NULL) |
| { |
| /* We will have a NULL expression if back when we were creating |
| the expressions, this location's had failed to parse. */ |
| return true; |
| } |
| |
| stop = true; |
| try |
| { |
| struct value *mark; |
| |
| mark = value_mark (); |
| stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ())); |
| value_free_to_mark (mark); |
| } |
| catch (const gdb_exception &ex) |
| { |
| exception_fprintf (gdb_stderr, ex, |
| _("Error in testing exception condition:\n")); |
| } |
| |
| return stop; |
| } |
| |
| /* Implement the CHECK_STATUS method in the breakpoint_ops structure |
| for all exception catchpoint kinds. */ |
| |
| static void |
| check_status_exception (bpstat *bs) |
| { |
| bs->stop = should_stop_exception (bs->bp_location_at.get ()); |
| } |
| |
| /* Implement the PRINT_IT method in the breakpoint_ops structure |
| for all exception catchpoint kinds. */ |
| |
| static enum print_stop_action |
| print_it_exception (bpstat *bs) |
| { |
| struct ui_out *uiout = current_uiout; |
| struct breakpoint *b = bs->breakpoint_at; |
| |
| annotate_catchpoint (b->number); |
| |
| if (uiout->is_mi_like_p ()) |
| { |
| uiout->field_string ("reason", |
| async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); |
| uiout->field_string ("disp", bpdisp_text (b->disposition)); |
| } |
| |
| uiout->text (b->disposition == disp_del |
| ? "\nTemporary catchpoint " : "\nCatchpoint "); |
| uiout->field_signed ("bkptno", b->number); |
| uiout->text (", "); |
| |
| /* ada_exception_name_addr relies on the selected frame being the |
| current frame. Need to do this here because this function may be |
| called more than once when printing a stop, and below, we'll |
| select the first frame past the Ada run-time (see |
| ada_find_printable_frame). */ |
| select_frame (get_current_frame ()); |
| |
| struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
| switch (c->m_kind) |
| { |
| case ada_catch_exception: |
| case ada_catch_exception_unhandled: |
| case ada_catch_handlers: |
| { |
| const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b); |
| char exception_name[256]; |
| |
| if (addr != 0) |
| { |
| read_memory (addr, (gdb_byte *) exception_name, |
| sizeof (exception_name) - 1); |
| exception_name [sizeof (exception_name) - 1] = '\0'; |
| } |
| else |
| { |
| /* For some reason, we were unable to read the exception |
| name. This could happen if the Runtime was compiled |
| without debugging info, for instance. In that case, |
| just replace the exception name by the generic string |
| "exception" - it will read as "an exception" in the |
| notification we are about to print. */ |
| memcpy (exception_name, "exception", sizeof ("exception")); |
| } |
| /* In the case of unhandled exception breakpoints, we print |
| the exception name as "unhandled EXCEPTION_NAME", to make |
| it clearer to the user which kind of catchpoint just got |
| hit. We used ui_out_text to make sure that this extra |
| info does not pollute the exception name in the MI case. */ |
| if (c->m_kind == ada_catch_exception_unhandled) |
| uiout->text ("unhandled "); |
| uiout->field_string ("exception-name", exception_name); |
| } |
| break; |
| case ada_catch_assert: |
| /* In this case, the name of the exception is not really |
| important. Just print "failed assertion" to make it clearer |
| that his program just hit an assertion-failure catchpoint. |
| We used ui_out_text because this info does not belong in |
| the MI output. */ |
| uiout->text ("failed assertion"); |
| break; |
| } |
| |
| gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message (); |
| if (exception_message != NULL) |
| { |
| uiout->text (" ("); |
| uiout->field_string ("exception-message", exception_message.get ()); |
| uiout->text (")"); |
| } |
| |
| uiout->text (" at "); |
| ada_find_printable_frame (get_current_frame ()); |
| |
| return PRINT_SRC_AND_LOC; |
| } |
| |
| /* Implement the PRINT_ONE method in the breakpoint_ops structure |
| for all exception catchpoint kinds. */ |
| |
| static void |
| print_one_exception (struct breakpoint *b, struct bp_location **last_loc) |
| { |
| struct ui_out *uiout = current_uiout; |
| struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
| struct value_print_options opts; |
| |
| get_user_print_options (&opts); |
| |
| if (opts.addressprint) |
| uiout->field_skip ("addr"); |
| |
| annotate_field (5); |
| switch (c->m_kind) |
| { |
| case ada_catch_exception: |
| if (!c->excep_string.empty ()) |
| { |
| std::string msg = string_printf (_("`%s' Ada exception"), |
| c->excep_string.c_str ()); |
| |
| uiout->field_string ("what", msg); |
| } |
| else |
| uiout->field_string ("what", "all Ada exceptions"); |
| |
| break; |
| |
| case ada_catch_exception_unhandled: |
| uiout->field_string ("what", "unhandled Ada exceptions"); |
| break; |
| |
| case ada_catch_handlers: |
| if (!c->excep_string.empty ()) |
| { |
| uiout->field_fmt ("what", |
| _("`%s' Ada exception handlers"), |
| c->excep_string.c_str ()); |
| } |
| else |
| uiout->field_string ("what", "all Ada exceptions handlers"); |
| break; |
| |
| case ada_catch_assert: |
| uiout->field_string ("what", "failed Ada assertions"); |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); |
| break; |
| } |
| } |
| |
| /* Implement the PRINT_MENTION method in the breakpoint_ops structure |
| for all exception catchpoint kinds. */ |
| |
| static void |
| print_mention_exception (struct breakpoint *b) |
| { |
| struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
| struct ui_out *uiout = current_uiout; |
| |
| uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ") |
| : _("Catchpoint ")); |
| uiout->field_signed ("bkptno", b->number); |
| uiout->text (": "); |
| |
| switch (c->m_kind) |
| { |
| case ada_catch_exception: |
| if (!c->excep_string.empty ()) |
| { |
| std::string info = string_printf (_("`%s' Ada exception"), |
| c->excep_string.c_str ()); |
| uiout->text (info); |
| } |
| else |
| uiout->text (_("all Ada exceptions")); |
| break; |
| |
| case ada_catch_exception_unhandled: |
| uiout->text (_("unhandled Ada exceptions")); |
| break; |
| |
| case ada_catch_handlers: |
| if (!c->excep_string.empty ()) |
| { |
| std::string info |
| = string_printf (_("`%s' Ada exception handlers"), |
| c->excep_string.c_str ()); |
| uiout->text (info); |
| } |
| else |
| uiout->text (_("all Ada exceptions handlers")); |
| break; |
| |
| case ada_catch_assert: |
| uiout->text (_("failed Ada assertions")); |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); |
| break; |
| } |
| } |
| |
| /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
| for all exception catchpoint kinds. */ |
| |
| static void |
| print_recreate_exception (struct breakpoint *b, struct ui_file *fp) |
| { |
| struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
| |
| switch (c->m_kind) |
| { |
| case ada_catch_exception: |
| gdb_printf (fp, "catch exception"); |
| if (!c->excep_string.empty ()) |
| gdb_printf (fp, " %s", c->excep_string.c_str ()); |
| break; |
| |
| case ada_catch_exception_unhandled: |
| gdb_printf (fp, "catch exception unhandled"); |
| break; |
| |
| case ada_catch_handlers: |
| gdb_printf (fp, "catch handlers"); |
| break; |
| |
| case ada_catch_assert: |
| gdb_printf (fp, "catch assert"); |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); |
| } |
| print_recreate_thread (b, fp); |
| } |
| |
| /* Virtual table for breakpoint type. */ |
| static struct breakpoint_ops catch_exception_breakpoint_ops; |
| |
| /* See ada-lang.h. */ |
| |
| bool |
| is_ada_exception_catchpoint (breakpoint *bp) |
| { |
| return bp->ops == &catch_exception_breakpoint_ops; |
| } |
| |
| /* Split the arguments specified in a "catch exception" command. |
| Set EX to the appropriate catchpoint type. |
| Set EXCEP_STRING to the name of the specific exception if |
| specified by the user. |
| IS_CATCH_HANDLERS_CMD: True if the arguments are for a |
| "catch handlers" command. False otherwise. |
| If a condition is found at the end of the arguments, the condition |
| expression is stored in COND_STRING (memory must be deallocated |
| after use). Otherwise COND_STRING is set to NULL. */ |
| |
| static void |
| catch_ada_exception_command_split (const char *args, |
| bool is_catch_handlers_cmd, |
| enum ada_exception_catchpoint_kind *ex, |
| std::string *excep_string, |
| std::string *cond_string) |
| { |
| std::string exception_name; |
| |
| exception_name = extract_arg (&args); |
| if (exception_name == "if") |
| { |
| /* This is not an exception name; this is the start of a condition |
| expression for a catchpoint on all exceptions. So, "un-get" |
| this token, and set exception_name to NULL. */ |
| exception_name.clear (); |
| args -= 2; |
| } |
| |
| /* Check to see if we have a condition. */ |
| |
| args = skip_spaces (args); |
| if (startswith (args, "if") |
| && (isspace (args[2]) || args[2] == '\0')) |
| { |
| args += 2; |
| args = skip_spaces (args); |
| |
| if (args[0] == '\0') |
| error (_("Condition missing after `if' keyword")); |
| *cond_string = args; |
| |
| args += strlen (args); |
| } |
| |
| /* Check that we do not have any more arguments. Anything else |
| is unexpected. */ |
| |
| if (args[0] != '\0') |
| error (_("Junk at end of expression")); |
| |
| if (is_catch_handlers_cmd) |
| { |
| /* Catch handling of exceptions. */ |
| *ex = ada_catch_handlers; |
| *excep_string = exception_name; |
| } |
| else if (exception_name.empty ()) |
| { |
| /* Catch all exceptions. */ |
| *ex = ada_catch_exception; |
| excep_string->clear (); |
| } |
| else if (exception_name == "unhandled") |
| { |
| /* Catch unhandled exceptions. */ |
| *ex = ada_catch_exception_unhandled; |
| excep_string->clear (); |
| } |
| else |
| { |
| /* Catch a specific exception. */ |
| *ex = ada_catch_exception; |
| *excep_string = exception_name; |
| } |
| } |
| |
| /* Return the name of the symbol on which we should break in order to |
| implement a catchpoint of the EX kind. */ |
| |
| static const char * |
| ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
| { |
| struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
| |
| gdb_assert (data->exception_info != NULL); |
| |
| switch (ex) |
| { |
| case ada_catch_exception: |
| return (data->exception_info->catch_exception_sym); |
| break; |
| case ada_catch_exception_unhandled: |
| return (data->exception_info->catch_exception_unhandled_sym); |
| break; |
| case ada_catch_assert: |
| return (data->exception_info->catch_assert_sym); |
| break; |
| case ada_catch_handlers: |
| return (data->exception_info->catch_handlers_sym); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("unexpected catchpoint kind (%d)"), ex); |
| } |
| } |
| |
| /* Return the condition that will be used to match the current exception |
| being raised with the exception that the user wants to catch. This |
| assumes that this condition is used when the inferior just triggered |
| an exception catchpoint. |
| EX: the type of catchpoints used for catching Ada exceptions. */ |
| |
| static std::string |
| ada_exception_catchpoint_cond_string (const char *excep_string, |
| enum ada_exception_catchpoint_kind ex) |
| { |
| bool is_standard_exc = false; |
| std::string result; |
| |
| if (ex == ada_catch_handlers) |
| { |
| /* For exception handlers catchpoints, the condition string does |
| not use the same parameter as for the other exceptions. */ |
| result = ("long_integer (GNAT_GCC_exception_Access" |
| "(gcc_exception).all.occurrence.id)"); |
| } |
| else |
| result = "long_integer (e)"; |
| |
| /* The standard exceptions are a special case. They are defined in |
| runtime units that have been compiled without debugging info; if |
| EXCEP_STRING is the not-fully-qualified name of a standard |
| exception (e.g. "constraint_error") then, during the evaluation |
| of the condition expression, the symbol lookup on this name would |
| *not* return this standard exception. The catchpoint condition |
| may then be set only on user-defined exceptions which have the |
| same not-fully-qualified name (e.g. my_package.constraint_error). |
| |
| To avoid this unexcepted behavior, these standard exceptions are |
| systematically prefixed by "standard". This means that "catch |
| exception constraint_error" is rewritten into "catch exception |
| standard.constraint_error". |
| |
| If an exception named constraint_error is defined in another package of |
| the inferior program, then the only way to specify this exception as a |
| breakpoint condition is to use its fully-qualified named: |
| e.g. my_package.constraint_error. */ |
| |
| for (const char *name : standard_exc) |
| { |
| if (strcmp (name, excep_string) == 0) |
| { |
| is_standard_exc = true; |
| break; |
| } |
| } |
| |
| result += " = "; |
| |
| if (is_standard_exc) |
| string_appendf (result, "long_integer (&standard.%s)", excep_string); |
| else |
| string_appendf (result, "long_integer (&%s)", excep_string); |
| |
| return result; |
| } |
| |
| /* Return the symtab_and_line that should be used to insert an exception |
| catchpoint of the TYPE kind. |
| |
| ADDR_STRING returns the name of the function where the real |
| breakpoint that implements the catchpoints is set, depending on the |
| type of catchpoint we need to create. */ |
| |
| static struct symtab_and_line |
| ada_exception_sal (enum ada_exception_catchpoint_kind ex, |
| std::string *addr_string, const struct breakpoint_ops **ops) |
| { |
| const char *sym_name; |
| struct symbol *sym; |
| |
| /* First, find out which exception support info to use. */ |
| ada_exception_support_info_sniffer (); |
| |
| /* Then lookup the function on which we will break in order to catch |
| the Ada exceptions requested by the user. */ |
| sym_name = ada_exception_sym_name (ex); |
| sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); |
| |
| if (sym == NULL) |
| error (_("Catchpoint symbol not found: %s"), sym_name); |
| |
| if (sym->aclass () != LOC_BLOCK) |
| error (_("Unable to insert catchpoint. %s is not a function."), sym_name); |
| |
| /* Set ADDR_STRING. */ |
| *addr_string = sym_name; |
| |
| /* Set OPS. */ |
| *ops = &catch_exception_breakpoint_ops; |
| |
| return find_function_start_sal (sym, 1); |
| } |
| |
| /* Create an Ada exception catchpoint. |
| |
| EX_KIND is the kind of exception catchpoint to be created. |
| |
| If EXCEPT_STRING is empty, this catchpoint is expected to trigger |
| for all exceptions. Otherwise, EXCEPT_STRING indicates the name |
| of the exception to which this catchpoint applies. |
| |
| COND_STRING, if not empty, is the catchpoint condition. |
| |
| TEMPFLAG, if nonzero, means that the underlying breakpoint |
| should be temporary. |
| |
| FROM_TTY is the usual argument passed to all commands implementations. */ |
| |
| void |
| create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
| enum ada_exception_catchpoint_kind ex_kind, |
| const std::string &excep_string, |
| const std::string &cond_string, |
| int tempflag, |
| int disabled, |
| int from_tty) |
| { |
| std::string addr_string; |
| const struct breakpoint_ops *ops = NULL; |
| struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops); |
| |
| std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind)); |
| init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (), |
| ops, tempflag, disabled, from_tty); |
| c->excep_string = excep_string; |
| create_excep_cond_exprs (c.get (), ex_kind); |
| if (!cond_string.empty ()) |
| set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false); |
| install_breakpoint (0, std::move (c), 1); |
| } |
| |
| /* Implement the "catch exception" command. */ |
| |
| static void |
| catch_ada_exception_command (const char *arg_entry, int from_tty, |
| struct cmd_list_element *command) |
| { |
| const char *arg = arg_entry; |
| struct gdbarch *gdbarch = get_current_arch (); |
| int tempflag; |
| enum ada_exception_catchpoint_kind ex_kind; |
| std::string excep_string; |
| std::string cond_string; |
| |
| tempflag = command->context () == CATCH_TEMPORARY; |
| |
| if (!arg) |
| arg = ""; |
| catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string, |
| &cond_string); |
| create_ada_exception_catchpoint (gdbarch, ex_kind, |
| excep_string, cond_string, |
| tempflag, 1 /* enabled */, |
| from_tty); |
| } |
| |
| /* Implement the "catch handlers" command. */ |
| |
| static void |
| catch_ada_handlers_command (const char *arg_entry, int from_tty, |
| struct cmd_list_element *command) |
| { |
| const char *arg = arg_entry; |
| struct gdbarch *gdbarch = get_current_arch (); |
| int tempflag; |
| enum ada_exception_catchpoint_kind ex_kind; |
| std::string excep_string; |
| std::string cond_string; |
| |
| tempflag = command->context () == CATCH_TEMPORARY; |
| |
| if (!arg) |
| arg = ""; |
| catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string, |
| &cond_string); |
| create_ada_exception_catchpoint (gdbarch, ex_kind, |
| excep_string, cond_string, |
| tempflag, 1 /* enabled */, |
| from_tty); |
| } |
| |
| /* Completion function for the Ada "catch" commands. */ |
| |
| static void |
| catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker, |
| const char *text, const char *word) |
| { |
| std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL); |
| |
| for (const ada_exc_info &info : exceptions) |
| { |
| if (startswith (info.name, word)) |
| tracker.add_completion (make_unique_xstrdup (info.name)); |
| } |
| } |
| |
| /* Split the arguments specified in a "catch assert" command. |
| |
| ARGS contains the command's arguments (or the empty string if |
| no arguments were passed). |
| |
| If ARGS contains a condition, set COND_STRING to that condition |
| (the memory needs to be deallocated after use). */ |
| |
| static void |
| catch_ada_assert_command_split (const char *args, std::string &cond_string) |
| { |
| args = skip_spaces (args); |
| |
| /* Check whether a condition was provided. */ |
| if (startswith (args, "if") |
| && (isspace (args[2]) || args[2] == '\0')) |
| { |
| args += 2; |
| args = skip_spaces (args); |
| if (args[0] == '\0') |
| error (_("condition missing after `if' keyword")); |
| cond_string.assign (args); |
| } |
| |
| /* Otherwise, there should be no other argument at the end of |
| the command. */ |
| else if (args[0] != '\0') |
| error (_("Junk at end of arguments.")); |
| } |
| |
| /* Implement the "catch assert" command. */ |
| |
| static void |
| catch_assert_command (const char *arg_entry, int from_tty, |
| struct cmd_list_element *command) |
| { |
| const char *arg = arg_entry; |
| struct gdbarch *gdbarch = get_current_arch (); |
| int tempflag; |
| std::string cond_string; |
| |
| tempflag = command->context () == CATCH_TEMPORARY; |
| |
| if (!arg) |
| arg = ""; |
| catch_ada_assert_command_split (arg, cond_string); |
| create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
| "", cond_string, |
| tempflag, 1 /* enabled */, |
| from_tty); |
| } |
| |
| /* Return non-zero if the symbol SYM is an Ada exception object. */ |
| |
| static int |
| ada_is_exception_sym (struct symbol *sym) |
| { |
| const char *type_name = sym->type ()->name (); |
| |
| return (sym->aclass () != LOC_TYPEDEF |
| && sym->aclass () != LOC_BLOCK |
| && sym->aclass () != LOC_CONST |
| && sym->aclass () != LOC_UNRESOLVED |
| && type_name != NULL && strcmp (type_name, "exception") == 0); |
| } |
| |
| /* Given a global symbol SYM, return non-zero iff SYM is a non-standard |
| Ada exception object. This matches all exceptions except the ones |
| defined by the Ada language. */ |
| |
| static int |
| ada_is_non_standard_exception_sym (struct symbol *sym) |
| { |
| if (!ada_is_exception_sym (sym)) |
| return 0; |
| |
| for (const char *name : standard_exc) |
| if (strcmp (sym->linkage_name (), name) == 0) |
| return 0; /* A standard exception. */ |
| |
| /* Numeric_Error is also a standard exception, so exclude it. |
| See the STANDARD_EXC description for more details as to why |
| this exception is not listed in that array. */ |
| if (strcmp (sym->linkage_name (), "numeric_error") == 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* A helper function for std::sort, comparing two struct ada_exc_info |
| objects. |
| |
| The comparison is determined first by exception name, and then |
| by exception address. */ |
| |
| bool |
| ada_exc_info::operator< (const ada_exc_info &other) const |
| { |
| int result; |
| |
| result = strcmp (name, other.name); |
| if (result < 0) |
| return true; |
| if (result == 0 && addr < other.addr) |
| return true; |
| return false; |
| } |
| |
| bool |
| ada_exc_info::operator== (const ada_exc_info &other) const |
| { |
| return addr == other.addr && strcmp (name, other.name) == 0; |
| } |
| |
| /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison |
| routine, but keeping the first SKIP elements untouched. |
| |
| All duplicates are also removed. */ |
| |
| static void |
| sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions, |
| int skip) |
| { |
| std::sort (exceptions->begin () + skip, exceptions->end ()); |
| exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()), |
| exceptions->end ()); |
| } |
| |
| /* Add all exceptions defined by the Ada standard whose name match |
| a regular expression. |
| |
| If PREG is not NULL, then this regexp_t object is used to |
| perform the symbol name matching. Otherwise, no name-based |
| filtering is performed. |
| |
| EXCEPTIONS is a vector of exceptions to which matching exceptions |
| gets pushed. */ |
| |
| static void |
| ada_add_standard_exceptions (compiled_regex *preg, |
| std::vector<ada_exc_info> *exceptions) |
| { |
| for (const char *name : standard_exc) |
| { |
| if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0) |
| { |
| struct bound_minimal_symbol msymbol |
| = ada_lookup_simple_minsym (name); |
| |
| if (msymbol.minsym != NULL) |
| { |
| struct ada_exc_info info |
| = {name, BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
| |
| exceptions->push_back (info); |
| } |
| } |
| } |
| } |
| |
| /* Add all Ada exceptions defined locally and accessible from the given |
| FRAME. |
| |
| If PREG is not NULL, then this regexp_t object is used to |
| perform the symbol name matching. Otherwise, no name-based |
| filtering is performed. |
| |
| EXCEPTIONS is a vector of exceptions to which matching exceptions |
| gets pushed. */ |
| |
| static void |
| ada_add_exceptions_from_frame (compiled_regex *preg, |
| struct frame_info *frame, |
| std::vector<ada_exc_info> *exceptions) |
| { |
| const struct block *block = get_frame_block (frame, 0); |
| |
| while (block != 0) |
| { |
| struct block_iterator iter; |
| struct symbol *sym; |
| |
| ALL_BLOCK_SYMBOLS (block, iter, sym) |
| { |
| switch (sym->aclass ()) |
| { |
| case LOC_TYPEDEF: |
| case LOC_BLOCK: |
| case LOC_CONST: |
| break; |
| default: |
| if (ada_is_exception_sym (sym)) |
| { |
| struct ada_exc_info info = {sym->print_name (), |
| SYMBOL_VALUE_ADDRESS (sym)}; |
| |
| exceptions->push_back (info); |
| } |
| } |
| } |
| if (BLOCK_FUNCTION (block) != NULL) |
| break; |
| block = BLOCK_SUPERBLOCK (block); |
| } |
| } |
| |
| /* Return true if NAME matches PREG or if PREG is NULL. */ |
| |
| static bool |
| name_matches_regex (const char *name, compiled_regex *preg) |
| { |
| return (preg == NULL |
| || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0); |
| } |
| |
| /* Add all exceptions defined globally whose name name match |
| a regular expression, excluding standard exceptions. |
| |
| The reason we exclude standard exceptions is that they need |
| to be handled separately: Standard exceptions are defined inside |
| a runtime unit which is normally not compiled with debugging info, |
| and thus usually do not show up in our symbol search. However, |
| if the unit was in fact built with debugging info, we need to |
| exclude them because they would duplicate the entry we found |
| during the special loop that specifically searches for those |
| standard exceptions. |
| |
| If PREG is not NULL, then this regexp_t object is used to |
| perform the symbol name matching. Otherwise, no name-based |
| filtering is performed. |
| |
| EXCEPTIONS is a vector of exceptions to which matching exceptions |
| gets pushed. */ |
| |
| static void |
| ada_add_global_exceptions (compiled_regex *preg, |
| std::vector<ada_exc_info> *exceptions) |
| { |
| /* In Ada, the symbol "search name" is a linkage name, whereas the |
| regular expression used to do the matching refers to the natural |
| name. So match against the decoded name. */ |
| expand_symtabs_matching (NULL, |
| lookup_name_info::match_any (), |
| [&] (const char *search_name) |
| { |
| std::string decoded = ada_decode (search_name); |
| return name_matches_regex (decoded.c_str (), preg); |
| }, |
| NULL, |
| SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK, |
| VARIABLES_DOMAIN); |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (compunit_symtab *s : objfile->compunits ()) |
| { |
| const struct blockvector *bv = s->blockvector (); |
| int i; |
| |
| for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
| { |
| const struct block *b = BLOCKVECTOR_BLOCK (bv, i); |
| struct block_iterator iter; |
| struct symbol *sym; |
| |
| ALL_BLOCK_SYMBOLS (b, iter, sym) |
| if (ada_is_non_standard_exception_sym (sym) |
| && name_matches_regex (sym->natural_name (), preg)) |
| { |
| struct ada_exc_info info |
| = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)}; |
| |
| exceptions->push_back (info); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Implements ada_exceptions_list with the regular expression passed |
| as a regex_t, rather than a string. |
| |
| If not NULL, PREG is used to filter out exceptions whose names |
| do not match. Otherwise, all exceptions are listed. */ |
| |
| static std::vector<ada_exc_info> |
| ada_exceptions_list_1 (compiled_regex *preg) |
| { |
| std::vector<ada_exc_info> result; |
| int prev_len; |
| |
| /* First, list the known standard exceptions. These exceptions |
| need to be handled separately, as they are usually defined in |
| runtime units that have been compiled without debugging info. */ |
| |
| ada_add_standard_exceptions (preg, &result); |
| |
| /* Next, find all exceptions whose scope is local and accessible |
| from the currently selected frame. */ |
| |
| if (has_stack_frames ()) |
| { |
| prev_len = result.size (); |
| ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), |
| &result); |
| if (result.size () > prev_len) |
| sort_remove_dups_ada_exceptions_list (&result, prev_len); |
| } |
| |
| /* Add all exceptions whose scope is global. */ |
| |
| prev_len = result.size (); |
| ada_add_global_exceptions (preg, &result); |
| if (result.size () > prev_len) |
| sort_remove_dups_ada_exceptions_list (&result, prev_len); |
| |
| return result; |
| } |
| |
| /* Return a vector of ada_exc_info. |
| |
| If REGEXP is NULL, all exceptions are included in the result. |
| Otherwise, it should contain a valid regular expression, |
| and only the exceptions whose names match that regular expression |
| are included in the result. |
| |
| The exceptions are sorted in the following order: |
| - Standard exceptions (defined by the Ada language), in |
| alphabetical order; |
| - Exceptions only visible from the current frame, in |
| alphabetical order; |
| - Exceptions whose scope is global, in alphabetical order. */ |
| |
| std::vector<ada_exc_info> |
| ada_exceptions_list (const char *regexp) |
| { |
| if (regexp == NULL) |
| return ada_exceptions_list_1 (NULL); |
| |
| compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression")); |
| return ada_exceptions_list_1 (®); |
| } |
| |
| /* Implement the "info exceptions" command. */ |
| |
| static void |
| info_exceptions_command (const char *regexp, int from_tty) |
| { |
| struct gdbarch *gdbarch = get_current_arch (); |
| |
| std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp); |
| |
| if (regexp != NULL) |
| gdb_printf |
| (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); |
| else |
| gdb_printf (_("All defined Ada exceptions:\n")); |
| |
| for (const ada_exc_info &info : exceptions) |
| gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr)); |
| } |
| |
| |
| /* Language vector */ |
| |
| /* symbol_name_matcher_ftype adapter for wild_match. */ |
| |
| static bool |
| do_wild_match (const char *symbol_search_name, |
| const lookup_name_info &lookup_name, |
| completion_match_result *comp_match_res) |
| { |
| return wild_match (symbol_search_name, ada_lookup_name (lookup_name)); |
| } |
| |
| /* symbol_name_matcher_ftype adapter for full_match. */ |
| |
| static bool |
| do_full_match (const char *symbol_search_name, |
| const lookup_name_info &lookup_name, |
| completion_match_result *comp_match_res) |
| { |
| const char *lname = lookup_name.ada ().lookup_name ().c_str (); |
| |
| /* If both symbols start with "_ada_", just let the loop below |
| handle the comparison. However, if only the symbol name starts |
| with "_ada_", skip the prefix and let the match proceed as |
| usual. */ |
| if (startswith (symbol_search_name, "_ada_") |
| && !startswith (lname, "_ada")) |
| symbol_search_name += 5; |
| /* Likewise for ghost entities. */ |
| if (startswith (symbol_search_name, "___ghost_") |
| && !startswith (lname, "___ghost_")) |
| symbol_search_name += 9; |
| |
| int uscore_count = 0; |
| while (*lname != '\0') |
| { |
| if (*symbol_search_name != *lname) |
| { |
| if (*symbol_search_name == 'B' && uscore_count == 2 |
| && symbol_search_name[1] == '_') |
| { |
| symbol_search_name += 2; |
| while (isdigit (*symbol_search_name)) |
| ++symbol_search_name; |
| if (symbol_search_name[0] == '_' |
| && symbol_search_name[1] == '_') |
| { |
| symbol_search_name += 2; |
| continue; |
| } |
| } |
| return false; |
| } |
| |
| if (*symbol_search_name == '_') |
| ++uscore_count; |
| else |
| uscore_count = 0; |
| |
| ++symbol_search_name; |
| ++lname; |
| } |
| |
| return is_name_suffix (symbol_search_name); |
| } |
| |
| /* symbol_name_matcher_ftype for exact (verbatim) matches. */ |
| |
| static bool |
| do_exact_match (const char *symbol_search_name, |
| const lookup_name_info &lookup_name, |
| completion_match_result *comp_match_res) |
| { |
| return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0; |
| } |
| |
| /* Build the Ada lookup name for LOOKUP_NAME. */ |
| |
| ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name) |
| { |
| gdb::string_view user_name = lookup_name.name (); |
| |
| if (!user_name.empty () && user_name[0] == '<') |
| { |
| if (user_name.back () == '>') |
| m_encoded_name |
| = gdb::to_string (user_name.substr (1, user_name.size () - 2)); |
| else |
| m_encoded_name |
| = gdb::to_string (user_name.substr (1, user_name.size () - 1)); |
| m_encoded_p = true; |
| m_verbatim_p = true; |
| m_wild_match_p = false; |
| m_standard_p = false; |
| } |
| else |
| { |
| m_verbatim_p = false; |
| |
| m_encoded_p = user_name.find ("__") != gdb::string_view::npos; |
| |
| if (!m_encoded_p) |
| { |
| const char *folded = ada_fold_name (user_name); |
| m_encoded_name = ada_encode_1 (folded, false); |
| if (m_encoded_name.empty ()) |
| m_encoded_name = gdb::to_string (user_name); |
| } |
| else |
| m_encoded_name = gdb::to_string (user_name); |
| |
| /* Handle the 'package Standard' special case. See description |
| of m_standard_p. */ |
| if (startswith (m_encoded_name.c_str (), "standard__")) |
| { |
| m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1); |
| m_standard_p = true; |
| } |
| else |
| m_standard_p = false; |
| |
| /* If the name contains a ".", then the user is entering a fully |
| qualified entity name, and the match must not be done in wild |
| mode. Similarly, if the user wants to complete what looks |
| like an encoded name, the match must not be done in wild |
| mode. Also, in the standard__ special case always do |
| non-wild matching. */ |
| m_wild_match_p |
| = (lookup_name.match_type () != symbol_name_match_type::FULL |
| && !m_encoded_p |
| && !m_standard_p |
| && user_name.find ('.') == std::string::npos); |
| } |
| } |
| |
| /* symbol_name_matcher_ftype method for Ada. This only handles |
| completion mode. */ |
| |
| static bool |
| ada_symbol_name_matches (const char *symbol_search_name, |
| const lookup_name_info &lookup_name, |
| completion_match_result *comp_match_res) |
| { |
| return lookup_name.ada ().matches (symbol_search_name, |
| lookup_name.match_type (), |
| comp_match_res); |
| } |
| |
| /* A name matcher that matches the symbol name exactly, with |
| strcmp. */ |
| |
| static bool |
| literal_symbol_name_matcher (const char *symbol_search_name, |
| const lookup_name_info &lookup_name, |
| completion_match_result *comp_match_res) |
| { |
| gdb::string_view name_view = lookup_name.name (); |
| |
| if (lookup_name.completion_mode () |
| ? (strncmp (symbol_search_name, name_view.data (), |
| name_view.size ()) == 0) |
| : symbol_search_name == name_view) |
| { |
| if (comp_match_res != NULL) |
| comp_match_res->set_match (symbol_search_name); |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| /* Implement the "get_symbol_name_matcher" language_defn method for |
| Ada. */ |
| |
| static symbol_name_matcher_ftype * |
| ada_get_symbol_name_matcher (const lookup_name_info &lookup_name) |
| { |
| if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) |
| return literal_symbol_name_matcher; |
| |
| if (lookup_name.completion_mode ()) |
| return ada_symbol_name_matches; |
| else |
| { |
| if (lookup_name.ada ().wild_match_p ()) |
| return do_wild_match; |
| else if (lookup_name.ada ().verbatim_p ()) |
| return do_exact_match; |
| else |
| return do_full_match; |
| } |
| } |
| |
| /* Class representing the Ada language. */ |
| |
| class ada_language : public language_defn |
| { |
| public: |
| ada_language () |
| : language_defn (language_ada) |
| { /* Nothing. */ } |
| |
| /* See language.h. */ |
| |
| const char *name () const override |
| { return "ada"; } |
| |
| /* See language.h. */ |
| |
| const char *natural_name () const override |
| { return "Ada"; } |
| |
| /* See language.h. */ |
| |
| const std::vector<const char *> &filename_extensions () const override |
| { |
| static const std::vector<const char *> extensions |
| = { ".adb", ".ads", ".a", ".ada", ".dg" }; |
| return extensions; |
| } |
| |
| /* Print an array element index using the Ada syntax. */ |
| |
| void print_array_index (struct type *index_type, |
| LONGEST index, |
| struct ui_file *stream, |
| const value_print_options *options) const override |
| { |
| struct value *index_value = val_atr (index_type, index); |
| |
| value_print (index_value, stream, options); |
| gdb_printf (stream, " => "); |
| } |
| |
| /* Implement the "read_var_value" language_defn method for Ada. */ |
| |
| struct value *read_var_value (struct symbol *var, |
| const struct block *var_block, |
| struct frame_info *frame) const override |
| { |
| /* The only case where default_read_var_value is not sufficient |
| is when VAR is a renaming... */ |
| if (frame != nullptr) |
| { |
| const struct block *frame_block = get_frame_block (frame, NULL); |
| if (frame_block != nullptr && ada_is_renaming_symbol (var)) |
| return ada_read_renaming_var_value (var, frame_block); |
| } |
| |
| /* This is a typical case where we expect the default_read_var_value |
| function to work. */ |
| return language_defn::read_var_value (var, var_block, frame); |
| } |
| |
| /* See language.h. */ |
| virtual bool symbol_printing_suppressed (struct symbol *symbol) const override |
| { |
| return symbol->artificial; |
| } |
| |
| /* See language.h. */ |
| void language_arch_info (struct gdbarch *gdbarch, |
| struct language_arch_info *lai) const override |
| { |
| const struct builtin_type *builtin = builtin_type (gdbarch); |
| |
| /* Helper function to allow shorter lines below. */ |
| auto add = [&] (struct type *t) |
| { |
| lai->add_primitive_type (t); |
| }; |
| |
| add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), |
| 0, "integer")); |
| add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), |
| 0, "long_integer")); |
| add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), |
| 0, "short_integer")); |
| struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT, |
| 1, "character"); |
| lai->set_string_char_type (char_type); |
| add (char_type); |
| add (arch_character_type (gdbarch, 16, 1, "wide_character")); |
| add (arch_character_type (gdbarch, 32, 1, "wide_wide_character")); |
| add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), |
| "float", gdbarch_float_format (gdbarch))); |
| add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), |
| "long_float", gdbarch_double_format (gdbarch))); |
| add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), |
| 0, "long_long_integer")); |
| add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
| "long_long_float", |
| gdbarch_long_double_format (gdbarch))); |
| add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), |
| 0, "natural")); |
| add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), |
| 0, "positive")); |
| add (builtin->builtin_void); |
| |
| struct type *system_addr_ptr |
| = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, |
| "void")); |
| system_addr_ptr->set_name ("system__address"); |
| add (system_addr_ptr); |
| |
| /* Create the equivalent of the System.Storage_Elements.Storage_Offset |
| type. This is a signed integral type whose size is the same as |
| the size of addresses. */ |
| unsigned int addr_length = TYPE_LENGTH (system_addr_ptr); |
| add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0, |
| "storage_offset")); |
| |
| lai->set_bool_type (builtin->builtin_bool); |
| } |
| |
| /* See language.h. */ |
| |
| bool iterate_over_symbols |
| (const struct block *block, const lookup_name_info &name, |
| domain_enum domain, |
| gdb::function_view<symbol_found_callback_ftype> callback) const override |
| { |
| std::vector<struct block_symbol> results |
| = ada_lookup_symbol_list_worker (name, block, domain, 0); |
| for (block_symbol &sym : results) |
| { |
| if (!callback (&sym)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* See language.h. */ |
| bool sniff_from_mangled_name |
| (const char *mangled, |
| gdb::unique_xmalloc_ptr<char> *out) const override |
| { |
| std::string demangled = ada_decode (mangled); |
| |
| *out = NULL; |
| |
| if (demangled != mangled && demangled[0] != '<') |
| { |
| /* Set the gsymbol language to Ada, but still return 0. |
| Two reasons for that: |
| |
| 1. For Ada, we prefer computing the symbol's decoded name |
| on the fly rather than pre-compute it, in order to save |
| memory (Ada projects are typically very large). |
| |
| 2. There are some areas in the definition of the GNAT |
| encoding where, with a bit of bad luck, we might be able |
| to decode a non-Ada symbol, generating an incorrect |
| demangled name (Eg: names ending with "TB" for instance |
| are identified as task bodies and so stripped from |
| the decoded name returned). |
| |
| Returning true, here, but not setting *DEMANGLED, helps us get |
| a little bit of the best of both worlds. Because we're last, |
| we should not affect any of the other languages that were |
| able to demangle the symbol before us; we get to correctly |
| tag Ada symbols as such; and even if we incorrectly tagged a |
| non-Ada symbol, which should be rare, any routing through the |
| Ada language should be transparent (Ada tries to behave much |
| like C/C++ with non-Ada symbols). */ |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* See language.h. */ |
| |
| gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled, |
| int options) const override |
| { |
| return make_unique_xstrdup (ada_decode (mangled).c_str ()); |
| } |
| |
| /* See language.h. */ |
| |
| void print_type (struct type *type, const char *varstring, |
| struct ui_file *stream, int show, int level, |
| const struct type_print_options *flags) const override |
| { |
| ada_print_type (type, varstring, stream, show, level, flags); |
| } |
| |
| /* See language.h. */ |
| |
| const char *word_break_characters (void) const override |
| { |
| return ada_completer_word_break_characters; |
| } |
| |
| /* See language.h. */ |
| |
| void collect_symbol_completion_matches (completion_tracker &tracker, |
| complete_symbol_mode mode, |
| symbol_name_match_type name_match_type, |
| const char *text, const char *word, |
| enum type_code code) const override |
| { |
| struct symbol *sym; |
| const struct block *b, *surrounding_static_block = 0; |
| struct block_iterator iter; |
| |
| gdb_assert (code == TYPE_CODE_UNDEF); |
| |
| lookup_name_info lookup_name (text, name_match_type, true); |
| |
| /* First, look at the partial symtab symbols. */ |
| expand_symtabs_matching (NULL, |
| lookup_name, |
| NULL, |
| NULL, |
| SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK, |
| ALL_DOMAIN); |
| |
| /* At this point scan through the misc symbol vectors and add each |
| symbol you find to the list. Eventually we want to ignore |
| anything that isn't a text symbol (everything else will be |
| handled by the psymtab code above). */ |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (minimal_symbol *msymbol : objfile->msymbols ()) |
| { |
| QUIT; |
| |
| if (completion_skip_symbol (mode, msymbol)) |
| continue; |
| |
| language symbol_language = msymbol->language (); |
| |
| /* Ada minimal symbols won't have their language set to Ada. If |
| we let completion_list_add_name compare using the |
| default/C-like matcher, then when completing e.g., symbols in a |
| package named "pck", we'd match internal Ada symbols like |
| "pckS", which are invalid in an Ada expression, unless you wrap |
| them in '<' '>' to request a verbatim match. |
| |
| Unfortunately, some Ada encoded names successfully demangle as |
| C++ symbols (using an old mangling scheme), such as "name__2Xn" |
| -> "Xn::name(void)" and thus some Ada minimal symbols end up |
| with the wrong language set. Paper over that issue here. */ |
| if (symbol_language == language_auto |
| || symbol_language == language_cplus) |
| symbol_language = language_ada; |
| |
| completion_list_add_name (tracker, |
| symbol_language, |
| msymbol->linkage_name (), |
| lookup_name, text, word); |
| } |
| } |
| |
| /* Search upwards from currently selected frame (so that we can |
| complete on local vars. */ |
| |
| for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) |
| { |
| if (!BLOCK_SUPERBLOCK (b)) |
| surrounding_static_block = b; /* For elmin of dups */ |
| |
| ALL_BLOCK_SYMBOLS (b, iter, sym) |
| { |
| if (completion_skip_symbol (mode, sym)) |
| continue; |
| |
| completion_list_add_name (tracker, |
| sym->language (), |
| sym->linkage_name (), |
| lookup_name, text, word); |
| } |
| } |
| |
| /* Go through the symtabs and check the externs and statics for |
| symbols which match. */ |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (compunit_symtab *s : objfile->compunits ()) |
| { |
| QUIT; |
| b = BLOCKVECTOR_BLOCK (s->blockvector (), GLOBAL_BLOCK); |
| ALL_BLOCK_SYMBOLS (b, iter, sym) |
| { |
| if (completion_skip_symbol (mode, sym)) |
| continue; |
| |
| completion_list_add_name (tracker, |
| sym->language (), |
| sym->linkage_name (), |
| lookup_name, text, word); |
| } |
| } |
| } |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (compunit_symtab *s : objfile->compunits ()) |
| { |
| QUIT; |
| b = BLOCKVECTOR_BLOCK (s->blockvector (), STATIC_BLOCK); |
| /* Don't do this block twice. */ |
| if (b == surrounding_static_block) |
| continue; |
| ALL_BLOCK_SYMBOLS (b, iter, sym) |
| { |
| if (completion_skip_symbol (mode, sym)) |
| continue; |
| |
| completion_list_add_name (tracker, |
| sym->language (), |
| sym->linkage_name (), |
| lookup_name, text, word); |
| } |
| } |
| } |
| } |
| |
| /* See language.h. */ |
| |
| gdb::unique_xmalloc_ptr<char> watch_location_expression |
| (struct type *type, CORE_ADDR addr) const override |
| { |
| type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type))); |
| std::string name = type_to_string (type); |
| return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)); |
| } |
| |
| /* See language.h. */ |
| |
| void value_print (struct value *val, struct ui_file *stream, |
| const struct value_print_options *options) const override |
| { |
| return ada_value_print (val, stream, options); |
| } |
| |
| /* See language.h. */ |
| |
| void value_print_inner |
| (struct value *val, struct ui_file *stream, int recurse, |
| const struct value_print_options *options) const override |
| { |
| return ada_value_print_inner (val, stream, recurse, options); |
| } |
| |
| /* See language.h. */ |
| |
| struct block_symbol lookup_symbol_nonlocal |
| (const char *name, const struct block *block, |
| const domain_enum domain) const override |
| { |
| struct block_symbol sym; |
| |
| sym = ada_lookup_symbol (name, block_static_block (block), domain); |
| if (sym.symbol != NULL) |
| return sym; |
| |
| /* If we haven't found a match at this point, try the primitive |
| types. In other languages, this search is performed before |
| searching for global symbols in order to short-circuit that |
| global-symbol search if it happens that the name corresponds |
| to a primitive type. But we cannot do the same in Ada, because |
| it is perfectly legitimate for a program to declare a type which |
| has the same name as a standard type. If looking up a type in |
| that situation, we have traditionally ignored the primitive type |
| in favor of user-defined types. This is why, unlike most other |
| languages, we search the primitive types this late and only after |
| having searched the global symbols without success. */ |
| |
| if (domain == VAR_DOMAIN) |
| { |
| struct gdbarch *gdbarch; |
| |
| if (block == NULL) |
| gdbarch = target_gdbarch (); |
| else |
| gdbarch = block_gdbarch (block); |
| sym.symbol |
| = language_lookup_primitive_type_as_symbol (this, gdbarch, name); |
| if (sym.symbol != NULL) |
| return sym; |
| } |
| |
| return {}; |
| } |
| |
| /* See language.h. */ |
| |
| int parser (struct parser_state *ps) const override |
| { |
| warnings_issued = 0; |
| return ada_parse (ps); |
| } |
| |
| /* See language.h. */ |
| |
| void emitchar (int ch, struct type *chtype, |
| struct ui_file *stream, int quoter) const override |
| { |
| ada_emit_char (ch, chtype, stream, quoter, 1); |
| } |
| |
| /* See language.h. */ |
| |
| void printchar (int ch, struct type *chtype, |
| struct ui_file *stream) const override |
| { |
| ada_printchar (ch, chtype, stream); |
| } |
| |
| /* See language.h. */ |
| |
| void printstr (struct ui_file *stream, struct type *elttype, |
| const gdb_byte *string, unsigned int length, |
| const char *encoding, int force_ellipses, |
| const struct value_print_options *options) const override |
| { |
| ada_printstr (stream, elttype, string, length, encoding, |
| force_ellipses, options); |
| } |
| |
| /* See language.h. */ |
| |
| void print_typedef (struct type *type, struct symbol *new_symbol, |
| struct ui_file *stream) const override |
| { |
| ada_print_typedef (type, new_symbol, stream); |
| } |
| |
| /* See language.h. */ |
| |
| bool is_string_type_p (struct type *type) const override |
| { |
| return ada_is_string_type (type); |
| } |
| |
| /* See language.h. */ |
| |
| const char *struct_too_deep_ellipsis () const override |
| { return "(...)"; } |
| |
| /* See language.h. */ |
| |
| bool c_style_arrays_p () const override |
| { return false; } |
| |
| /* See language.h. */ |
| |
| bool store_sym_names_in_linkage_form_p () const override |
| { return true; } |
| |
| /* See language.h. */ |
| |
| const struct lang_varobj_ops *varobj_ops () const override |
| { return &ada_varobj_ops; } |
| |
| protected: |
| /* See language.h. */ |
| |
| symbol_name_matcher_ftype *get_symbol_name_matcher_inner |
| (const lookup_name_info &lookup_name) const override |
| { |
| return ada_get_symbol_name_matcher (lookup_name); |
| } |
| }; |
| |
| /* Single instance of the Ada language class. */ |
| |
| static ada_language ada_language_defn; |
| |
| /* Command-list for the "set/show ada" prefix command. */ |
| static struct cmd_list_element *set_ada_list; |
| static struct cmd_list_element *show_ada_list; |
| |
| static void |
| initialize_ada_catchpoint_ops (void) |
| { |
| struct breakpoint_ops *ops; |
| |
| initialize_breakpoint_ops (); |
| |
| ops = &catch_exception_breakpoint_ops; |
| *ops = bkpt_breakpoint_ops; |
| ops->allocate_location = allocate_location_exception; |
| ops->re_set = re_set_exception; |
| ops->check_status = check_status_exception; |
| ops->print_it = print_it_exception; |
| ops->print_one = print_one_exception; |
| ops->print_mention = print_mention_exception; |
| ops->print_recreate = print_recreate_exception; |
| } |
| |
| /* This module's 'new_objfile' observer. */ |
| |
| static void |
| ada_new_objfile_observer (struct objfile *objfile) |
| { |
| ada_clear_symbol_cache (); |
| } |
| |
| /* This module's 'free_objfile' observer. */ |
| |
| static void |
| ada_free_objfile_observer (struct objfile *objfile) |
| { |
| ada_clear_symbol_cache (); |
| } |
| |
| /* Charsets known to GNAT. */ |
| static const char * const gnat_source_charsets[] = |
| { |
| /* Note that code below assumes that the default comes first. |
| Latin-1 is the default here, because that is also GNAT's |
| default. */ |
| "ISO-8859-1", |
| "ISO-8859-2", |
| "ISO-8859-3", |
| "ISO-8859-4", |
| "ISO-8859-5", |
| "ISO-8859-15", |
| "CP437", |
| "CP850", |
| /* Note that this value is special-cased in the encoder and |
| decoder. */ |
| ada_utf8, |
| nullptr |
| }; |
| |
| void _initialize_ada_language (); |
| void |
| _initialize_ada_language () |
| { |
| initialize_ada_catchpoint_ops (); |
| |
| add_setshow_prefix_cmd |
| ("ada", no_class, |
| _("Prefix command for changing Ada-specific settings."), |
| _("Generic command for showing Ada-specific settings."), |
| &set_ada_list, &show_ada_list, |
| &setlist, &showlist); |
| |
| add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, |
| &trust_pad_over_xvs, _("\ |
| Enable or disable an optimization trusting PAD types over XVS types."), _("\ |
| Show whether an optimization trusting PAD types over XVS types is activated."), |
| _("\ |
| This is related to the encoding used by the GNAT compiler. The debugger\n\ |
| should normally trust the contents of PAD types, but certain older versions\n\ |
| of GNAT have a bug that sometimes causes the information in the PAD type\n\ |
| to be incorrect. Turning this setting \"off\" allows the debugger to\n\ |
| work around this bug. It is always safe to turn this option \"off\", but\n\ |
| this incurs a slight performance penalty, so it is recommended to NOT change\n\ |
| this option to \"off\" unless necessary."), |
| NULL, NULL, &set_ada_list, &show_ada_list); |
| |
| add_setshow_boolean_cmd ("print-signatures", class_vars, |
| &print_signatures, _("\ |
| Enable or disable the output of formal and return types for functions in the \ |
| overloads selection menu."), _("\ |
| Show whether the output of formal and return types for functions in the \ |
| overloads selection menu is activated."), |
| NULL, NULL, NULL, &set_ada_list, &show_ada_list); |
| |
| ada_source_charset = gnat_source_charsets[0]; |
| add_setshow_enum_cmd ("source-charset", class_files, |
| gnat_source_charsets, |
| &ada_source_charset, _("\ |
| Set the Ada source character set."), _("\ |
| Show the Ada source character set."), _("\ |
| The character set used for Ada source files.\n\ |
| This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."), |
| nullptr, nullptr, |
| &set_ada_list, &show_ada_list); |
| |
| add_catch_command ("exception", _("\ |
| Catch Ada exceptions, when raised.\n\ |
| Usage: catch exception [ARG] [if CONDITION]\n\ |
| Without any argument, stop when any Ada exception is raised.\n\ |
| If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\ |
| being raised does not have a handler (and will therefore lead to the task's\n\ |
| termination).\n\ |
| Otherwise, the catchpoint only stops when the name of the exception being\n\ |
| raised is the same as ARG.\n\ |
| CONDITION is a boolean expression that is evaluated to see whether the\n\ |
| exception should cause a stop."), |
| catch_ada_exception_command, |
| catch_ada_completer, |
| CATCH_PERMANENT, |
| CATCH_TEMPORARY); |
| |
| add_catch_command ("handlers", _("\ |
| Catch Ada exceptions, when handled.\n\ |
| Usage: catch handlers [ARG] [if CONDITION]\n\ |
| Without any argument, stop when any Ada exception is handled.\n\ |
| With an argument, catch only exceptions with the given name.\n\ |
| CONDITION is a boolean expression that is evaluated to see whether the\n\ |
| exception should cause a stop."), |
| catch_ada_handlers_command, |
| catch_ada_completer, |
| CATCH_PERMANENT, |
| CATCH_TEMPORARY); |
| add_catch_command ("assert", _("\ |
| Catch failed Ada assertions, when raised.\n\ |
| Usage: catch assert [if CONDITION]\n\ |
| CONDITION is a boolean expression that is evaluated to see whether the\n\ |
| exception should cause a stop."), |
| catch_assert_command, |
| NULL, |
| CATCH_PERMANENT, |
| CATCH_TEMPORARY); |
| |
| add_info ("exceptions", info_exceptions_command, |
| _("\ |
| List all Ada exception names.\n\ |
| Usage: info exceptions [REGEXP]\n\ |
| If a regular expression is passed as an argument, only those matching\n\ |
| the regular expression are listed.")); |
| |
| add_setshow_prefix_cmd ("ada", class_maintenance, |
| _("Set Ada maintenance-related variables."), |
| _("Show Ada maintenance-related variables."), |
| &maint_set_ada_cmdlist, &maint_show_ada_cmdlist, |
| &maintenance_set_cmdlist, &maintenance_show_cmdlist); |
| |
| add_setshow_boolean_cmd |
| ("ignore-descriptive-types", class_maintenance, |
| &ada_ignore_descriptive_types_p, |
| _("Set whether descriptive types generated by GNAT should be ignored."), |
| _("Show whether descriptive types generated by GNAT should be ignored."), |
| _("\ |
| When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ |
| DWARF attribute."), |
| NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); |
| |
| decoded_names_store = htab_create_alloc (256, htab_hash_string, |
| htab_eq_string, |
| NULL, xcalloc, xfree); |
| |
| /* The ada-lang observers. */ |
| gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang"); |
| gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang"); |
| gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang"); |
| } |