| /* Copyright (C) 2009-2021 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "osabi.h" |
| #include "amd64-tdep.h" |
| #include "gdbsupport/x86-xstate.h" |
| #include "gdbtypes.h" |
| #include "gdbcore.h" |
| #include "regcache.h" |
| #include "windows-tdep.h" |
| #include "frame.h" |
| #include "objfiles.h" |
| #include "frame-unwind.h" |
| #include "coff/internal.h" |
| #include "coff/i386.h" |
| #include "coff/pe.h" |
| #include "libcoff.h" |
| #include "value.h" |
| #include <algorithm> |
| |
| /* The registers used to pass integer arguments during a function call. */ |
| static int amd64_windows_dummy_call_integer_regs[] = |
| { |
| AMD64_RCX_REGNUM, /* %rcx */ |
| AMD64_RDX_REGNUM, /* %rdx */ |
| AMD64_R8_REGNUM, /* %r8 */ |
| AMD64_R9_REGNUM /* %r9 */ |
| }; |
| |
| /* This vector maps GDB's idea of a register's number into an offset into |
| the Windows API CONTEXT structure. */ |
| static int amd64_windows_gregset_reg_offset[] = |
| { |
| 120, /* Rax */ |
| 144, /* Rbx */ |
| 128, /* Rcx */ |
| 136, /* Rdx */ |
| 168, /* Rsi */ |
| 176, /* Rdi */ |
| 160, /* Rbp */ |
| 152, /* Rsp */ |
| 184, /* R8 */ |
| 192, /* R9 */ |
| 200, /* R10 */ |
| 208, /* R11 */ |
| 216, /* R12 */ |
| 224, /* R13 */ |
| 232, /* R14 */ |
| 240, /* R15 */ |
| 248, /* Rip */ |
| 68, /* EFlags */ |
| 56, /* SegCs */ |
| 66, /* SegSs */ |
| 58, /* SegDs */ |
| 60, /* SegEs */ |
| 62, /* SegFs */ |
| 64, /* SegGs */ |
| 288, /* FloatSave.FloatRegisters[0] */ |
| 304, /* FloatSave.FloatRegisters[1] */ |
| 320, /* FloatSave.FloatRegisters[2] */ |
| 336, /* FloatSave.FloatRegisters[3] */ |
| 352, /* FloatSave.FloatRegisters[4] */ |
| 368, /* FloatSave.FloatRegisters[5] */ |
| 384, /* FloatSave.FloatRegisters[6] */ |
| 400, /* FloatSave.FloatRegisters[7] */ |
| 256, /* FloatSave.ControlWord */ |
| 258, /* FloatSave.StatusWord */ |
| 260, /* FloatSave.TagWord */ |
| 268, /* FloatSave.ErrorSelector */ |
| 264, /* FloatSave.ErrorOffset */ |
| 276, /* FloatSave.DataSelector */ |
| 272, /* FloatSave.DataOffset */ |
| 268, /* FloatSave.ErrorSelector */ |
| 416, /* Xmm0 */ |
| 432, /* Xmm1 */ |
| 448, /* Xmm2 */ |
| 464, /* Xmm3 */ |
| 480, /* Xmm4 */ |
| 496, /* Xmm5 */ |
| 512, /* Xmm6 */ |
| 528, /* Xmm7 */ |
| 544, /* Xmm8 */ |
| 560, /* Xmm9 */ |
| 576, /* Xmm10 */ |
| 592, /* Xmm11 */ |
| 608, /* Xmm12 */ |
| 624, /* Xmm13 */ |
| 640, /* Xmm14 */ |
| 656, /* Xmm15 */ |
| 280, /* FloatSave.MxCsr */ |
| }; |
| |
| #define AMD64_WINDOWS_SIZEOF_GREGSET 1232 |
| |
| /* Return nonzero if an argument of type TYPE should be passed |
| via one of the integer registers. */ |
| |
| static int |
| amd64_windows_passed_by_integer_register (struct type *type) |
| { |
| switch (type->code ()) |
| { |
| case TYPE_CODE_INT: |
| case TYPE_CODE_ENUM: |
| case TYPE_CODE_BOOL: |
| case TYPE_CODE_RANGE: |
| case TYPE_CODE_CHAR: |
| case TYPE_CODE_PTR: |
| case TYPE_CODE_REF: |
| case TYPE_CODE_RVALUE_REF: |
| case TYPE_CODE_STRUCT: |
| case TYPE_CODE_UNION: |
| case TYPE_CODE_COMPLEX: |
| return (TYPE_LENGTH (type) == 1 |
| || TYPE_LENGTH (type) == 2 |
| || TYPE_LENGTH (type) == 4 |
| || TYPE_LENGTH (type) == 8); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return nonzero if an argument of type TYPE should be passed |
| via one of the XMM registers. */ |
| |
| static int |
| amd64_windows_passed_by_xmm_register (struct type *type) |
| { |
| return ((type->code () == TYPE_CODE_FLT |
| || type->code () == TYPE_CODE_DECFLOAT) |
| && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8)); |
| } |
| |
| /* Return non-zero iff an argument of the given TYPE should be passed |
| by pointer. */ |
| |
| static int |
| amd64_windows_passed_by_pointer (struct type *type) |
| { |
| if (amd64_windows_passed_by_integer_register (type)) |
| return 0; |
| |
| if (amd64_windows_passed_by_xmm_register (type)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* For each argument that should be passed by pointer, reserve some |
| stack space, store a copy of the argument on the stack, and replace |
| the argument by its address. Return the new Stack Pointer value. |
| |
| NARGS is the number of arguments. ARGS is the array containing |
| the value of each argument. SP is value of the Stack Pointer. */ |
| |
| static CORE_ADDR |
| amd64_windows_adjust_args_passed_by_pointer (struct value **args, |
| int nargs, CORE_ADDR sp) |
| { |
| int i; |
| |
| for (i = 0; i < nargs; i++) |
| if (amd64_windows_passed_by_pointer (value_type (args[i]))) |
| { |
| struct type *type = value_type (args[i]); |
| const gdb_byte *valbuf = value_contents (args[i]); |
| const int len = TYPE_LENGTH (type); |
| |
| /* Store a copy of that argument on the stack, aligned to |
| a 16 bytes boundary, and then use the copy's address as |
| the argument. */ |
| |
| sp -= len; |
| sp &= ~0xf; |
| write_memory (sp, valbuf, len); |
| |
| args[i] |
| = value_addr (value_from_contents_and_address (type, valbuf, sp)); |
| } |
| |
| return sp; |
| } |
| |
| /* Store the value of ARG in register REGNO (right-justified). |
| REGCACHE is the register cache. */ |
| |
| static void |
| amd64_windows_store_arg_in_reg (struct regcache *regcache, |
| struct value *arg, int regno) |
| { |
| struct type *type = value_type (arg); |
| const gdb_byte *valbuf = value_contents (arg); |
| gdb_byte buf[8]; |
| |
| gdb_assert (TYPE_LENGTH (type) <= 8); |
| memset (buf, 0, sizeof buf); |
| memcpy (buf, valbuf, std::min (TYPE_LENGTH (type), (ULONGEST) 8)); |
| regcache->cooked_write (regno, buf); |
| } |
| |
| /* Push the arguments for an inferior function call, and return |
| the updated value of the SP (Stack Pointer). |
| |
| All arguments are identical to the arguments used in |
| amd64_windows_push_dummy_call. */ |
| |
| static CORE_ADDR |
| amd64_windows_push_arguments (struct regcache *regcache, int nargs, |
| struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method) |
| { |
| int reg_idx = 0; |
| int i; |
| struct value **stack_args = XALLOCAVEC (struct value *, nargs); |
| int num_stack_args = 0; |
| int num_elements = 0; |
| int element = 0; |
| |
| /* First, handle the arguments passed by pointer. |
| |
| These arguments are replaced by pointers to a copy we are making |
| in inferior memory. So use a copy of the ARGS table, to avoid |
| modifying the original one. */ |
| { |
| struct value **args1 = XALLOCAVEC (struct value *, nargs); |
| |
| memcpy (args1, args, nargs * sizeof (struct value *)); |
| sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp); |
| args = args1; |
| } |
| |
| /* Reserve a register for the "hidden" argument. */ |
| if (return_method == return_method_struct) |
| reg_idx++; |
| |
| for (i = 0; i < nargs; i++) |
| { |
| struct type *type = value_type (args[i]); |
| int len = TYPE_LENGTH (type); |
| int on_stack_p = 1; |
| |
| if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs)) |
| { |
| if (amd64_windows_passed_by_integer_register (type)) |
| { |
| amd64_windows_store_arg_in_reg |
| (regcache, args[i], |
| amd64_windows_dummy_call_integer_regs[reg_idx]); |
| on_stack_p = 0; |
| reg_idx++; |
| } |
| else if (amd64_windows_passed_by_xmm_register (type)) |
| { |
| amd64_windows_store_arg_in_reg |
| (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx); |
| /* In case of varargs, these parameters must also be |
| passed via the integer registers. */ |
| amd64_windows_store_arg_in_reg |
| (regcache, args[i], |
| amd64_windows_dummy_call_integer_regs[reg_idx]); |
| on_stack_p = 0; |
| reg_idx++; |
| } |
| } |
| |
| if (on_stack_p) |
| { |
| num_elements += ((len + 7) / 8); |
| stack_args[num_stack_args++] = args[i]; |
| } |
| } |
| |
| /* Allocate space for the arguments on the stack, keeping it |
| aligned on a 16 byte boundary. */ |
| sp -= num_elements * 8; |
| sp &= ~0xf; |
| |
| /* Write out the arguments to the stack. */ |
| for (i = 0; i < num_stack_args; i++) |
| { |
| struct type *type = value_type (stack_args[i]); |
| const gdb_byte *valbuf = value_contents (stack_args[i]); |
| |
| write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type)); |
| element += ((TYPE_LENGTH (type) + 7) / 8); |
| } |
| |
| return sp; |
| } |
| |
| /* Implement the "push_dummy_call" gdbarch method. */ |
| |
| static CORE_ADDR |
| amd64_windows_push_dummy_call |
| (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, CORE_ADDR struct_addr) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| gdb_byte buf[8]; |
| |
| /* Pass arguments. */ |
| sp = amd64_windows_push_arguments (regcache, nargs, args, sp, |
| return_method); |
| |
| /* Pass "hidden" argument". */ |
| if (return_method == return_method_struct) |
| { |
| /* The "hidden" argument is passed throught the first argument |
| register. */ |
| const int arg_regnum = amd64_windows_dummy_call_integer_regs[0]; |
| |
| store_unsigned_integer (buf, 8, byte_order, struct_addr); |
| regcache->cooked_write (arg_regnum, buf); |
| } |
| |
| /* Reserve some memory on the stack for the integer-parameter |
| registers, as required by the ABI. */ |
| sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8; |
| |
| /* Store return address. */ |
| sp -= 8; |
| store_unsigned_integer (buf, 8, byte_order, bp_addr); |
| write_memory (sp, buf, 8); |
| |
| /* Update the stack pointer... */ |
| store_unsigned_integer (buf, 8, byte_order, sp); |
| regcache->cooked_write (AMD64_RSP_REGNUM, buf); |
| |
| /* ...and fake a frame pointer. */ |
| regcache->cooked_write (AMD64_RBP_REGNUM, buf); |
| |
| return sp + 16; |
| } |
| |
| /* Implement the "return_value" gdbarch method for amd64-windows. */ |
| |
| static enum return_value_convention |
| amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *type, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| int len = TYPE_LENGTH (type); |
| int regnum = -1; |
| |
| /* See if our value is returned through a register. If it is, then |
| store the associated register number in REGNUM. */ |
| switch (type->code ()) |
| { |
| case TYPE_CODE_FLT: |
| /* floats, and doubles are returned via XMM0. */ |
| if (len == 4 || len == 8) |
| regnum = AMD64_XMM0_REGNUM; |
| break; |
| case TYPE_CODE_ARRAY: |
| /* __m128, __m128i and __m128d are returned via XMM0. */ |
| if (type->is_vector () && len == 16) |
| { |
| enum type_code code = TYPE_TARGET_TYPE (type)->code (); |
| if (code == TYPE_CODE_INT || code == TYPE_CODE_FLT) |
| { |
| regnum = AMD64_XMM0_REGNUM; |
| break; |
| } |
| } |
| /* fall through */ |
| default: |
| /* All other values that are 1, 2, 4 or 8 bytes long are returned |
| via RAX. */ |
| if (len == 1 || len == 2 || len == 4 || len == 8) |
| regnum = AMD64_RAX_REGNUM; |
| else if (len == 16 && type->code () == TYPE_CODE_INT) |
| regnum = AMD64_XMM0_REGNUM; |
| break; |
| } |
| |
| if (regnum < 0) |
| { |
| /* RAX contains the address where the return value has been stored. */ |
| if (readbuf) |
| { |
| ULONGEST addr; |
| |
| regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); |
| read_memory (addr, readbuf, TYPE_LENGTH (type)); |
| } |
| return RETURN_VALUE_ABI_RETURNS_ADDRESS; |
| } |
| else |
| { |
| /* Extract the return value from the register where it was stored. */ |
| if (readbuf) |
| regcache->raw_read_part (regnum, 0, len, readbuf); |
| if (writebuf) |
| regcache->raw_write_part (regnum, 0, len, writebuf); |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| } |
| |
| /* Check that the code pointed to by PC corresponds to a call to |
| __main, skip it if so. Return PC otherwise. */ |
| |
| static CORE_ADDR |
| amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| gdb_byte op; |
| |
| target_read_memory (pc, &op, 1); |
| if (op == 0xe8) |
| { |
| gdb_byte buf[4]; |
| |
| if (target_read_memory (pc + 1, buf, sizeof buf) == 0) |
| { |
| struct bound_minimal_symbol s; |
| CORE_ADDR call_dest; |
| |
| call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order); |
| s = lookup_minimal_symbol_by_pc (call_dest); |
| if (s.minsym != NULL |
| && s.minsym->linkage_name () != NULL |
| && strcmp (s.minsym->linkage_name (), "__main") == 0) |
| pc += 5; |
| } |
| } |
| |
| return pc; |
| } |
| |
| struct amd64_windows_frame_cache |
| { |
| /* ImageBase for the module. */ |
| CORE_ADDR image_base; |
| |
| /* Function start and end rva. */ |
| CORE_ADDR start_rva; |
| CORE_ADDR end_rva; |
| |
| /* Next instruction to be executed. */ |
| CORE_ADDR pc; |
| |
| /* Current sp. */ |
| CORE_ADDR sp; |
| |
| /* Address of saved integer and xmm registers. */ |
| CORE_ADDR prev_reg_addr[16]; |
| CORE_ADDR prev_xmm_addr[16]; |
| |
| /* These two next fields are set only for machine info frames. */ |
| |
| /* Likewise for RIP. */ |
| CORE_ADDR prev_rip_addr; |
| |
| /* Likewise for RSP. */ |
| CORE_ADDR prev_rsp_addr; |
| |
| /* Address of the previous frame. */ |
| CORE_ADDR prev_sp; |
| }; |
| |
| /* Convert a Windows register number to gdb. */ |
| static const enum amd64_regnum amd64_windows_w2gdb_regnum[] = |
| { |
| AMD64_RAX_REGNUM, |
| AMD64_RCX_REGNUM, |
| AMD64_RDX_REGNUM, |
| AMD64_RBX_REGNUM, |
| AMD64_RSP_REGNUM, |
| AMD64_RBP_REGNUM, |
| AMD64_RSI_REGNUM, |
| AMD64_RDI_REGNUM, |
| AMD64_R8_REGNUM, |
| AMD64_R9_REGNUM, |
| AMD64_R10_REGNUM, |
| AMD64_R11_REGNUM, |
| AMD64_R12_REGNUM, |
| AMD64_R13_REGNUM, |
| AMD64_R14_REGNUM, |
| AMD64_R15_REGNUM |
| }; |
| |
| /* Return TRUE iff PC is the range of the function corresponding to |
| CACHE. */ |
| |
| static int |
| pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache) |
| { |
| return (pc >= cache->image_base + cache->start_rva |
| && pc < cache->image_base + cache->end_rva); |
| } |
| |
| /* Try to recognize and decode an epilogue sequence. |
| |
| Return -1 if we fail to read the instructions for any reason. |
| Return 1 if an epilogue sequence was recognized, 0 otherwise. */ |
| |
| static int |
| amd64_windows_frame_decode_epilogue (struct frame_info *this_frame, |
| struct amd64_windows_frame_cache *cache) |
| { |
| /* According to MSDN an epilogue "must consist of either an add RSP,constant |
| or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte |
| register pops and a return or a jmp". |
| |
| Furthermore, according to RtlVirtualUnwind, the complete list of |
| epilog marker is: |
| - ret [c3] |
| - ret n [c2 imm16] |
| - rep ret [f3 c3] |
| - jmp imm8 | imm32 [eb rel8] or [e9 rel32] |
| - jmp qword ptr imm32 - not handled |
| - rex.w jmp reg [4X ff eY] |
| */ |
| |
| CORE_ADDR pc = cache->pc; |
| CORE_ADDR cur_sp = cache->sp; |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| gdb_byte op; |
| gdb_byte rex; |
| |
| /* We don't care about the instruction deallocating the frame: |
| if it hasn't been executed, the pc is still in the body, |
| if it has been executed, the following epilog decoding will work. */ |
| |
| /* First decode: |
| - pop reg [41 58-5f] or [58-5f]. */ |
| |
| while (1) |
| { |
| /* Read opcode. */ |
| if (target_read_memory (pc, &op, 1) != 0) |
| return -1; |
| |
| if (op >= 0x40 && op <= 0x4f) |
| { |
| /* REX prefix. */ |
| rex = op; |
| |
| /* Read opcode. */ |
| if (target_read_memory (pc + 1, &op, 1) != 0) |
| return -1; |
| } |
| else |
| rex = 0; |
| |
| if (op >= 0x58 && op <= 0x5f) |
| { |
| /* pop reg */ |
| gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3); |
| |
| cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp; |
| cur_sp += 8; |
| pc += rex ? 2 : 1; |
| } |
| else |
| break; |
| |
| /* Allow the user to break this loop. This shouldn't happen as the |
| number of consecutive pop should be small. */ |
| QUIT; |
| } |
| |
| /* Then decode the marker. */ |
| |
| /* Read opcode. */ |
| if (target_read_memory (pc, &op, 1) != 0) |
| return -1; |
| |
| switch (op) |
| { |
| case 0xc3: |
| /* Ret. */ |
| cache->prev_rip_addr = cur_sp; |
| cache->prev_sp = cur_sp + 8; |
| return 1; |
| |
| case 0xeb: |
| { |
| /* jmp rel8 */ |
| gdb_byte rel8; |
| CORE_ADDR npc; |
| |
| if (target_read_memory (pc + 1, &rel8, 1) != 0) |
| return -1; |
| npc = pc + 2 + (signed char) rel8; |
| |
| /* If the jump is within the function, then this is not a marker, |
| otherwise this is a tail-call. */ |
| return !pc_in_range (npc, cache); |
| } |
| |
| case 0xec: |
| { |
| /* jmp rel32 */ |
| gdb_byte rel32[4]; |
| CORE_ADDR npc; |
| |
| if (target_read_memory (pc + 1, rel32, 4) != 0) |
| return -1; |
| npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order); |
| |
| /* If the jump is within the function, then this is not a marker, |
| otherwise this is a tail-call. */ |
| return !pc_in_range (npc, cache); |
| } |
| |
| case 0xc2: |
| { |
| /* ret n */ |
| gdb_byte imm16[2]; |
| |
| if (target_read_memory (pc + 1, imm16, 2) != 0) |
| return -1; |
| cache->prev_rip_addr = cur_sp; |
| cache->prev_sp = cur_sp |
| + extract_unsigned_integer (imm16, 4, byte_order); |
| return 1; |
| } |
| |
| case 0xf3: |
| { |
| /* rep; ret */ |
| gdb_byte op1; |
| |
| if (target_read_memory (pc + 2, &op1, 1) != 0) |
| return -1; |
| if (op1 != 0xc3) |
| return 0; |
| |
| cache->prev_rip_addr = cur_sp; |
| cache->prev_sp = cur_sp + 8; |
| return 1; |
| } |
| |
| case 0x40: |
| case 0x41: |
| case 0x42: |
| case 0x43: |
| case 0x44: |
| case 0x45: |
| case 0x46: |
| case 0x47: |
| case 0x48: |
| case 0x49: |
| case 0x4a: |
| case 0x4b: |
| case 0x4c: |
| case 0x4d: |
| case 0x4e: |
| case 0x4f: |
| /* Got a REX prefix, read next byte. */ |
| rex = op; |
| if (target_read_memory (pc + 1, &op, 1) != 0) |
| return -1; |
| |
| if (op == 0xff) |
| { |
| /* rex jmp reg */ |
| gdb_byte op1; |
| |
| if (target_read_memory (pc + 2, &op1, 1) != 0) |
| return -1; |
| return (op1 & 0xf8) == 0xe0; |
| } |
| else |
| return 0; |
| |
| default: |
| /* Not REX, so unknown. */ |
| return 0; |
| } |
| } |
| |
| /* Decode and execute unwind insns at UNWIND_INFO. */ |
| |
| static void |
| amd64_windows_frame_decode_insns (struct frame_info *this_frame, |
| struct amd64_windows_frame_cache *cache, |
| CORE_ADDR unwind_info) |
| { |
| CORE_ADDR save_addr = 0; |
| CORE_ADDR cur_sp = cache->sp; |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int first = 1; |
| |
| /* There are at least 3 possibilities to share an unwind info entry: |
| 1. Two different runtime_function entries (in .pdata) can point to the |
| same unwind info entry. There is no such indication while unwinding, |
| so we don't really care about that case. We suppose this scheme is |
| used to save memory when the unwind entries are exactly the same. |
| 2. Chained unwind_info entries, with no unwind codes (no prologue). |
| There is a major difference with the previous case: the pc range for |
| the function is different (in case 1, the pc range comes from the |
| runtime_function entry; in case 2, the pc range for the chained entry |
| comes from the first unwind entry). Case 1 cannot be used instead as |
| the pc is not in the prologue. This case is officially documented. |
| (There might be unwind code in the first unwind entry to handle |
| additional unwinding). GCC (at least until gcc 5.0) doesn't chain |
| entries. |
| 3. Undocumented unwind info redirection. Hard to know the exact purpose, |
| so it is considered as a memory optimization of case 2. |
| */ |
| |
| if (unwind_info & 1) |
| { |
| /* Unofficially documented unwind info redirection, when UNWIND_INFO |
| address is odd (http://www.codemachine.com/article_x64deepdive.html). |
| */ |
| struct external_pex64_runtime_function d; |
| |
| if (target_read_memory (cache->image_base + (unwind_info & ~1), |
| (gdb_byte *) &d, sizeof (d)) != 0) |
| return; |
| |
| cache->start_rva |
| = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); |
| cache->end_rva |
| = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); |
| unwind_info |
| = extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); |
| } |
| |
| while (1) |
| { |
| struct external_pex64_unwind_info ex_ui; |
| /* There are at most 256 16-bit unwind insns. */ |
| gdb_byte insns[2 * 256]; |
| gdb_byte *p; |
| gdb_byte *end_insns; |
| unsigned char codes_count; |
| unsigned char frame_reg; |
| CORE_ADDR start; |
| |
| /* Read and decode header. */ |
| if (target_read_memory (cache->image_base + unwind_info, |
| (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0) |
| return; |
| |
| frame_debug_printf ("%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x", |
| paddress (gdbarch, unwind_info), |
| ex_ui.Version_Flags, ex_ui.SizeOfPrologue, |
| ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset); |
| |
| /* Check version. */ |
| if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1 |
| && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2) |
| return; |
| |
| start = cache->image_base + cache->start_rva; |
| if (first |
| && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue)) |
| { |
| /* We want to detect if the PC points to an epilogue. This needs |
| to be checked only once, and an epilogue can be anywhere but in |
| the prologue. If so, the epilogue detection+decoding function is |
| sufficient. Otherwise, the unwinder will consider that the PC |
| is in the body of the function and will need to decode unwind |
| info. */ |
| if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1) |
| return; |
| |
| /* Not in an epilog. Clear possible side effects. */ |
| memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr)); |
| } |
| |
| codes_count = ex_ui.CountOfCodes; |
| frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset); |
| |
| if (frame_reg != 0) |
| { |
| /* According to msdn: |
| If an FP reg is used, then any unwind code taking an offset must |
| only be used after the FP reg is established in the prolog. */ |
| gdb_byte buf[8]; |
| int frreg = amd64_windows_w2gdb_regnum[frame_reg]; |
| |
| get_frame_register (this_frame, frreg, buf); |
| save_addr = extract_unsigned_integer (buf, 8, byte_order); |
| |
| frame_debug_printf (" frame_reg=%s, val=%s", |
| gdbarch_register_name (gdbarch, frreg), |
| paddress (gdbarch, save_addr)); |
| } |
| |
| /* Read opcodes. */ |
| if (codes_count != 0 |
| && target_read_memory (cache->image_base + unwind_info |
| + sizeof (ex_ui), |
| insns, codes_count * 2) != 0) |
| return; |
| |
| end_insns = &insns[codes_count * 2]; |
| p = insns; |
| |
| /* Skip opcodes 6 of version 2. This opcode is not documented. */ |
| if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2) |
| { |
| for (; p < end_insns; p += 2) |
| if (PEX64_UNWCODE_CODE (p[1]) != 6) |
| break; |
| } |
| |
| for (; p < end_insns; p += 2) |
| { |
| int reg; |
| |
| /* Virtually execute the operation if the pc is after the |
| corresponding instruction (that does matter in case of break |
| within the prologue). Note that for chained info (!first), the |
| prologue has been fully executed. */ |
| if (cache->pc >= start + p[0] || cache->pc < start) |
| { |
| frame_debug_printf (" op #%u: off=0x%02x, insn=0x%02x", |
| (unsigned) (p - insns), p[0], p[1]); |
| |
| /* If there is no frame registers defined, the current value of |
| rsp is used instead. */ |
| if (frame_reg == 0) |
| save_addr = cur_sp; |
| |
| reg = -1; |
| |
| switch (PEX64_UNWCODE_CODE (p[1])) |
| { |
| case UWOP_PUSH_NONVOL: |
| /* Push pre-decrements RSP. */ |
| reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; |
| cache->prev_reg_addr[reg] = cur_sp; |
| cur_sp += 8; |
| break; |
| case UWOP_ALLOC_LARGE: |
| if (PEX64_UNWCODE_INFO (p[1]) == 0) |
| cur_sp += |
| 8 * extract_unsigned_integer (p + 2, 2, byte_order); |
| else if (PEX64_UNWCODE_INFO (p[1]) == 1) |
| cur_sp += extract_unsigned_integer (p + 2, 4, byte_order); |
| else |
| return; |
| break; |
| case UWOP_ALLOC_SMALL: |
| cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]); |
| break; |
| case UWOP_SET_FPREG: |
| cur_sp = save_addr |
| - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16; |
| break; |
| case UWOP_SAVE_NONVOL: |
| reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; |
| cache->prev_reg_addr[reg] = save_addr |
| + 8 * extract_unsigned_integer (p + 2, 2, byte_order); |
| break; |
| case UWOP_SAVE_NONVOL_FAR: |
| reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])]; |
| cache->prev_reg_addr[reg] = save_addr |
| + 8 * extract_unsigned_integer (p + 2, 4, byte_order); |
| break; |
| case UWOP_SAVE_XMM128: |
| cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = |
| save_addr |
| - 16 * extract_unsigned_integer (p + 2, 2, byte_order); |
| break; |
| case UWOP_SAVE_XMM128_FAR: |
| cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] = |
| save_addr |
| - 16 * extract_unsigned_integer (p + 2, 4, byte_order); |
| break; |
| case UWOP_PUSH_MACHFRAME: |
| if (PEX64_UNWCODE_INFO (p[1]) == 0) |
| { |
| cache->prev_rip_addr = cur_sp + 0; |
| cache->prev_rsp_addr = cur_sp + 24; |
| cur_sp += 40; |
| } |
| else if (PEX64_UNWCODE_INFO (p[1]) == 1) |
| { |
| cache->prev_rip_addr = cur_sp + 8; |
| cache->prev_rsp_addr = cur_sp + 32; |
| cur_sp += 48; |
| } |
| else |
| return; |
| break; |
| default: |
| return; |
| } |
| |
| /* Display address where the register was saved. */ |
| if (reg >= 0) |
| frame_debug_printf (" [reg %s at %s]", |
| gdbarch_register_name (gdbarch, reg), |
| paddress (gdbarch, |
| cache->prev_reg_addr[reg])); |
| } |
| |
| /* Adjust with the length of the opcode. */ |
| switch (PEX64_UNWCODE_CODE (p[1])) |
| { |
| case UWOP_PUSH_NONVOL: |
| case UWOP_ALLOC_SMALL: |
| case UWOP_SET_FPREG: |
| case UWOP_PUSH_MACHFRAME: |
| break; |
| case UWOP_ALLOC_LARGE: |
| if (PEX64_UNWCODE_INFO (p[1]) == 0) |
| p += 2; |
| else if (PEX64_UNWCODE_INFO (p[1]) == 1) |
| p += 4; |
| else |
| return; |
| break; |
| case UWOP_SAVE_NONVOL: |
| case UWOP_SAVE_XMM128: |
| p += 2; |
| break; |
| case UWOP_SAVE_NONVOL_FAR: |
| case UWOP_SAVE_XMM128_FAR: |
| p += 4; |
| break; |
| default: |
| return; |
| } |
| } |
| if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO) |
| { |
| /* End of unwind info. */ |
| break; |
| } |
| else |
| { |
| /* Read the chained unwind info. */ |
| struct external_pex64_runtime_function d; |
| CORE_ADDR chain_vma; |
| |
| /* Not anymore the first entry. */ |
| first = 0; |
| |
| /* Stay aligned on word boundary. */ |
| chain_vma = cache->image_base + unwind_info |
| + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2; |
| |
| if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0) |
| return; |
| |
| /* Decode begin/end. This may be different from .pdata index, as |
| an unwind info may be shared by several functions (in particular |
| if many functions have the same prolog and handler. */ |
| cache->start_rva = |
| extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); |
| cache->end_rva = |
| extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); |
| unwind_info = |
| extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); |
| |
| frame_debug_printf ("next in chain: unwind_data=%s, start_rva=%s, " |
| "end_rva=%s", |
| paddress (gdbarch, unwind_info), |
| paddress (gdbarch, cache->start_rva), |
| paddress (gdbarch, cache->end_rva)); |
| } |
| |
| /* Allow the user to break this loop. */ |
| QUIT; |
| } |
| /* PC is saved by the call. */ |
| if (cache->prev_rip_addr == 0) |
| cache->prev_rip_addr = cur_sp; |
| cache->prev_sp = cur_sp + 8; |
| |
| frame_debug_printf (" prev_sp: %s, prev_pc @%s", |
| paddress (gdbarch, cache->prev_sp), |
| paddress (gdbarch, cache->prev_rip_addr)); |
| } |
| |
| /* Find SEH unwind info for PC, returning 0 on success. |
| |
| UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE |
| to the base address of the corresponding image, and START_RVA |
| to the rva of the function containing PC. */ |
| |
| static int |
| amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc, |
| CORE_ADDR *unwind_info, |
| CORE_ADDR *image_base, |
| CORE_ADDR *start_rva, |
| CORE_ADDR *end_rva) |
| { |
| struct obj_section *sec; |
| pe_data_type *pe; |
| IMAGE_DATA_DIRECTORY *dir; |
| struct objfile *objfile; |
| unsigned long lo, hi; |
| CORE_ADDR base; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* Get the corresponding exception directory. */ |
| sec = find_pc_section (pc); |
| if (sec == NULL) |
| return -1; |
| objfile = sec->objfile; |
| pe = pe_data (sec->objfile->obfd); |
| dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE]; |
| |
| base = pe->pe_opthdr.ImageBase + objfile->text_section_offset (); |
| *image_base = base; |
| |
| /* Find the entry. |
| |
| Note: This does not handle dynamically added entries (for JIT |
| engines). For this, we would need to ask the kernel directly, |
| which means getting some info from the native layer. For the |
| rest of the code, however, it's probably faster to search |
| the entry ourselves. */ |
| lo = 0; |
| hi = dir->Size / sizeof (struct external_pex64_runtime_function); |
| *unwind_info = 0; |
| while (lo <= hi) |
| { |
| unsigned long mid = lo + (hi - lo) / 2; |
| struct external_pex64_runtime_function d; |
| CORE_ADDR sa, ea; |
| |
| if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d), |
| (gdb_byte *) &d, sizeof (d)) != 0) |
| return -1; |
| |
| sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order); |
| ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order); |
| if (pc < base + sa) |
| hi = mid - 1; |
| else if (pc >= base + ea) |
| lo = mid + 1; |
| else if (pc >= base + sa && pc < base + ea) |
| { |
| /* Got it. */ |
| *start_rva = sa; |
| *end_rva = ea; |
| *unwind_info = |
| extract_unsigned_integer (d.rva_UnwindData, 4, byte_order); |
| break; |
| } |
| else |
| break; |
| } |
| |
| frame_debug_printf ("image_base=%s, unwind_data=%s", |
| paddress (gdbarch, base), |
| paddress (gdbarch, *unwind_info)); |
| |
| return 0; |
| } |
| |
| /* Fill THIS_CACHE using the native amd64-windows unwinding data |
| for THIS_FRAME. */ |
| |
| static struct amd64_windows_frame_cache * |
| amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct amd64_windows_frame_cache *cache; |
| gdb_byte buf[8]; |
| CORE_ADDR pc; |
| CORE_ADDR unwind_info = 0; |
| |
| if (*this_cache) |
| return (struct amd64_windows_frame_cache *) *this_cache; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache); |
| *this_cache = cache; |
| |
| /* Get current PC and SP. */ |
| pc = get_frame_pc (this_frame); |
| get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); |
| cache->sp = extract_unsigned_integer (buf, 8, byte_order); |
| cache->pc = pc; |
| |
| if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, |
| &cache->image_base, |
| &cache->start_rva, |
| &cache->end_rva)) |
| return cache; |
| |
| if (unwind_info == 0) |
| { |
| /* Assume a leaf function. */ |
| cache->prev_sp = cache->sp + 8; |
| cache->prev_rip_addr = cache->sp; |
| } |
| else |
| { |
| /* Decode unwind insns to compute saved addresses. */ |
| amd64_windows_frame_decode_insns (this_frame, cache, unwind_info); |
| } |
| return cache; |
| } |
| |
| /* Implement the "prev_register" method of struct frame_unwind |
| using the standard Windows x64 SEH info. */ |
| |
| static struct value * |
| amd64_windows_frame_prev_register (struct frame_info *this_frame, |
| void **this_cache, int regnum) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct amd64_windows_frame_cache *cache = |
| amd64_windows_frame_cache (this_frame, this_cache); |
| CORE_ADDR prev; |
| |
| frame_debug_printf ("%s for sp=%s", |
| gdbarch_register_name (gdbarch, regnum), |
| paddress (gdbarch, cache->prev_sp)); |
| |
| if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15) |
| prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM]; |
| else if (regnum == AMD64_RSP_REGNUM) |
| { |
| prev = cache->prev_rsp_addr; |
| if (prev == 0) |
| return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); |
| } |
| else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM) |
| prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM]; |
| else if (regnum == AMD64_RIP_REGNUM) |
| prev = cache->prev_rip_addr; |
| else |
| prev = 0; |
| |
| if (prev != 0) |
| frame_debug_printf (" -> at %s", paddress (gdbarch, prev)); |
| |
| if (prev) |
| { |
| /* Register was saved. */ |
| return frame_unwind_got_memory (this_frame, regnum, prev); |
| } |
| else |
| { |
| /* Register is either volatile or not modified. */ |
| return frame_unwind_got_register (this_frame, regnum, regnum); |
| } |
| } |
| |
| /* Implement the "this_id" method of struct frame_unwind using |
| the standard Windows x64 SEH info. */ |
| |
| static void |
| amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct amd64_windows_frame_cache *cache = |
| amd64_windows_frame_cache (this_frame, this_cache); |
| |
| *this_id = frame_id_build (cache->prev_sp, |
| cache->image_base + cache->start_rva); |
| } |
| |
| /* Windows x64 SEH unwinder. */ |
| |
| static const struct frame_unwind amd64_windows_frame_unwind = |
| { |
| "amd64 windows", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| &amd64_windows_frame_this_id, |
| &amd64_windows_frame_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| /* Implement the "skip_prologue" gdbarch method. */ |
| |
| static CORE_ADDR |
| amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| CORE_ADDR func_addr; |
| CORE_ADDR unwind_info = 0; |
| CORE_ADDR image_base, start_rva, end_rva; |
| struct external_pex64_unwind_info ex_ui; |
| |
| /* Use prologue size from unwind info. */ |
| if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info, |
| &image_base, &start_rva, &end_rva) == 0) |
| { |
| if (unwind_info == 0) |
| { |
| /* Leaf function. */ |
| return pc; |
| } |
| else if (target_read_memory (image_base + unwind_info, |
| (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0 |
| && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1) |
| return std::max (pc, image_base + start_rva + ex_ui.SizeOfPrologue); |
| } |
| |
| /* See if we can determine the end of the prologue via the symbol |
| table. If so, then return either the PC, or the PC after |
| the prologue, whichever is greater. */ |
| if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) |
| { |
| CORE_ADDR post_prologue_pc |
| = skip_prologue_using_sal (gdbarch, func_addr); |
| |
| if (post_prologue_pc != 0) |
| return std::max (pc, post_prologue_pc); |
| } |
| |
| return pc; |
| } |
| |
| /* Check Win64 DLL jmp trampolines and find jump destination. */ |
| |
| static CORE_ADDR |
| amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
| { |
| CORE_ADDR destination = 0; |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */ |
| if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff) |
| { |
| /* Get opcode offset and see if we can find a reference in our data. */ |
| ULONGEST offset |
| = read_memory_unsigned_integer (pc + 2, 4, byte_order); |
| |
| /* Get address of function pointer at end of pc. */ |
| CORE_ADDR indirect_addr = pc + offset + 6; |
| |
| struct minimal_symbol *indsym |
| = (indirect_addr |
| ? lookup_minimal_symbol_by_pc (indirect_addr).minsym |
| : NULL); |
| const char *symname = indsym ? indsym->linkage_name () : NULL; |
| |
| if (symname) |
| { |
| if (startswith (symname, "__imp_") |
| || startswith (symname, "_imp_")) |
| destination |
| = read_memory_unsigned_integer (indirect_addr, 8, byte_order); |
| } |
| } |
| |
| return destination; |
| } |
| |
| /* Implement the "auto_wide_charset" gdbarch method. */ |
| |
| static const char * |
| amd64_windows_auto_wide_charset (void) |
| { |
| return "UTF-16"; |
| } |
| |
| /* Common parts for gdbarch initialization for Windows and Cygwin on AMD64. */ |
| |
| static void |
| amd64_windows_init_abi_common (gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is |
| preferred over the SEH one. The reasons are: |
| - binaries without SEH but with dwarf2 debug info are correctly handled |
| (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH |
| info). |
| - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be |
| handled if the dwarf2 unwinder is used). |
| |
| The call to amd64_init_abi appends default unwinders, that aren't |
| compatible with the SEH one. |
| */ |
| frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind); |
| |
| amd64_init_abi (info, gdbarch, |
| amd64_target_description (X86_XSTATE_SSE_MASK, false)); |
| |
| /* Function calls. */ |
| set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call); |
| set_gdbarch_return_value (gdbarch, amd64_windows_return_value); |
| set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue); |
| set_gdbarch_skip_trampoline_code (gdbarch, |
| amd64_windows_skip_trampoline_code); |
| |
| set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue); |
| |
| tdep->gregset_reg_offset = amd64_windows_gregset_reg_offset; |
| tdep->gregset_num_regs = ARRAY_SIZE (amd64_windows_gregset_reg_offset); |
| tdep->sizeof_gregset = AMD64_WINDOWS_SIZEOF_GREGSET; |
| tdep->sizeof_fpregset = 0; |
| |
| /* Core file support. */ |
| set_gdbarch_core_xfer_shared_libraries |
| (gdbarch, windows_core_xfer_shared_libraries); |
| set_gdbarch_core_pid_to_str (gdbarch, windows_core_pid_to_str); |
| |
| set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset); |
| } |
| |
| /* gdbarch initialization for Windows on AMD64. */ |
| |
| static void |
| amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| amd64_windows_init_abi_common (info, gdbarch); |
| windows_init_abi (info, gdbarch); |
| |
| /* On Windows, "long"s are only 32bit. */ |
| set_gdbarch_long_bit (gdbarch, 32); |
| } |
| |
| /* gdbarch initialization for Cygwin on AMD64. */ |
| |
| static void |
| amd64_cygwin_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| amd64_windows_init_abi_common (info, gdbarch); |
| cygwin_init_abi (info, gdbarch); |
| } |
| |
| static gdb_osabi |
| amd64_windows_osabi_sniffer (bfd *abfd) |
| { |
| const char *target_name = bfd_get_target (abfd); |
| |
| if (!streq (target_name, "pei-x86-64")) |
| return GDB_OSABI_UNKNOWN; |
| |
| if (is_linked_with_cygwin_dll (abfd)) |
| return GDB_OSABI_CYGWIN; |
| |
| return GDB_OSABI_WINDOWS; |
| } |
| |
| static enum gdb_osabi |
| amd64_cygwin_core_osabi_sniffer (bfd *abfd) |
| { |
| const char *target_name = bfd_get_target (abfd); |
| |
| /* Cygwin uses elf core dumps. Do not claim all ELF executables, |
| check whether there is a .reg section of proper size. */ |
| if (strcmp (target_name, "elf64-x86-64") == 0) |
| { |
| asection *section = bfd_get_section_by_name (abfd, ".reg"); |
| if (section != nullptr |
| && bfd_section_size (section) == AMD64_WINDOWS_SIZEOF_GREGSET) |
| return GDB_OSABI_CYGWIN; |
| } |
| |
| return GDB_OSABI_UNKNOWN; |
| } |
| |
| void _initialize_amd64_windows_tdep (); |
| void |
| _initialize_amd64_windows_tdep () |
| { |
| gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_WINDOWS, |
| amd64_windows_init_abi); |
| gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN, |
| amd64_cygwin_init_abi); |
| |
| gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour, |
| amd64_windows_osabi_sniffer); |
| |
| /* Cygwin uses elf core dumps. */ |
| gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour, |
| amd64_cygwin_core_osabi_sniffer); |
| |
| } |