| /* Target-dependent code for the CSKY architecture, for GDB. |
| |
| Copyright (C) 2010-2021 Free Software Foundation, Inc. |
| |
| Contributed by C-SKY Microsystems and Mentor Graphics. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "gdbsupport/gdb_assert.h" |
| #include "frame.h" |
| #include "inferior.h" |
| #include "symtab.h" |
| #include "value.h" |
| #include "gdbcmd.h" |
| #include "language.h" |
| #include "gdbcore.h" |
| #include "symfile.h" |
| #include "objfiles.h" |
| #include "gdbtypes.h" |
| #include "target.h" |
| #include "arch-utils.h" |
| #include "regcache.h" |
| #include "osabi.h" |
| #include "block.h" |
| #include "reggroups.h" |
| #include "elf/csky.h" |
| #include "elf-bfd.h" |
| #include "symcat.h" |
| #include "sim-regno.h" |
| #include "dis-asm.h" |
| #include "frame-unwind.h" |
| #include "frame-base.h" |
| #include "trad-frame.h" |
| #include "infcall.h" |
| #include "floatformat.h" |
| #include "remote.h" |
| #include "target-descriptions.h" |
| #include "dwarf2/frame.h" |
| #include "user-regs.h" |
| #include "valprint.h" |
| #include "csky-tdep.h" |
| #include "regset.h" |
| #include "opcode/csky.h" |
| #include <algorithm> |
| #include <vector> |
| |
| /* Control debugging information emitted in this file. */ |
| static bool csky_debug = false; |
| |
| static struct reggroup *cr_reggroup; |
| static struct reggroup *fr_reggroup; |
| static struct reggroup *vr_reggroup; |
| static struct reggroup *mmu_reggroup; |
| static struct reggroup *prof_reggroup; |
| |
| /* Convenience function to print debug messages in prologue analysis. */ |
| |
| static void |
| print_savedreg_msg (int regno, int offsets[], bool print_continuing) |
| { |
| fprintf_unfiltered (gdb_stdlog, "csky: r%d saved at offset 0x%x\n", |
| regno, offsets[regno]); |
| if (print_continuing) |
| fprintf_unfiltered (gdb_stdlog, "csky: continuing\n"); |
| } |
| |
| /* Check whether the instruction at ADDR is 16-bit or not. */ |
| |
| static int |
| csky_pc_is_csky16 (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| gdb_byte target_mem[2]; |
| int status; |
| unsigned int insn; |
| int ret = 1; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| status = target_read_memory (addr, target_mem, 2); |
| /* Assume a 16-bit instruction if we can't read memory. */ |
| if (status) |
| return 1; |
| |
| /* Get instruction from memory. */ |
| insn = extract_unsigned_integer (target_mem, 2, byte_order); |
| if ((insn & CSKY_32_INSN_MASK) == CSKY_32_INSN_MASK) |
| ret = 0; |
| else if (insn == CSKY_BKPT_INSN) |
| { |
| /* Check for 32-bit bkpt instruction which is all 0. */ |
| status = target_read_memory (addr + 2, target_mem, 2); |
| if (status) |
| return 1; |
| |
| insn = extract_unsigned_integer (target_mem, 2, byte_order); |
| if (insn == CSKY_BKPT_INSN) |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| /* Get one instruction at ADDR and store it in INSN. Return 2 for |
| a 16-bit instruction or 4 for a 32-bit instruction. */ |
| |
| static int |
| csky_get_insn (struct gdbarch *gdbarch, CORE_ADDR addr, unsigned int *insn) |
| { |
| gdb_byte target_mem[2]; |
| unsigned int insn_type; |
| int status; |
| int insn_len = 2; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| status = target_read_memory (addr, target_mem, 2); |
| if (status) |
| memory_error (TARGET_XFER_E_IO, addr); |
| |
| insn_type = extract_unsigned_integer (target_mem, 2, byte_order); |
| if (CSKY_32_INSN_MASK == (insn_type & CSKY_32_INSN_MASK)) |
| { |
| status = target_read_memory (addr + 2, target_mem, 2); |
| if (status) |
| memory_error (TARGET_XFER_E_IO, addr); |
| insn_type = ((insn_type << 16) |
| | extract_unsigned_integer (target_mem, 2, byte_order)); |
| insn_len = 4; |
| } |
| *insn = insn_type; |
| return insn_len; |
| } |
| |
| /* Implement the read_pc gdbarch method. */ |
| |
| static CORE_ADDR |
| csky_read_pc (readable_regcache *regcache) |
| { |
| ULONGEST pc; |
| regcache->cooked_read (CSKY_PC_REGNUM, &pc); |
| return pc; |
| } |
| |
| /* Implement the write_pc gdbarch method. */ |
| |
| static void |
| csky_write_pc (regcache *regcache, CORE_ADDR val) |
| { |
| regcache_cooked_write_unsigned (regcache, CSKY_PC_REGNUM, val); |
| } |
| |
| /* C-Sky ABI register names. */ |
| |
| static const char * const csky_register_names[] = |
| { |
| /* General registers 0 - 31. */ |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
| |
| /* DSP hilo registers 36 and 37. */ |
| "", "", "", "", "hi", "lo", "", "", |
| |
| /* FPU/VPU general registers 40 - 71. */ |
| "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", |
| "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", |
| "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", |
| "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", |
| |
| /* Program counter 72. */ |
| "pc", |
| |
| /* Optional registers (ar) 73 - 88. */ |
| "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", |
| "ar8", "ar9", "ar10", "ar11", "ar12", "ar13", "ar14", "ar15", |
| |
| /* Control registers (cr) 89 - 119. */ |
| "psr", "vbr", "epsr", "fpsr", "epc", "fpc", "ss0", "ss1", |
| "ss2", "ss3", "ss4", "gcr", "gsr", "cr13", "cr14", "cr15", |
| "cr16", "cr17", "cr18", "cr19", "cr20", "cr21", "cr22", "cr23", |
| "cr24", "cr25", "cr26", "cr27", "cr28", "cr29", "cr30", "cr31", |
| |
| /* FPU/VPU control registers 121 ~ 123. */ |
| /* User sp 127. */ |
| "fid", "fcr", "fesr", "", "", "", "usp", |
| |
| /* MMU control registers: 128 - 136. */ |
| "mcr0", "mcr2", "mcr3", "mcr4", "mcr6", "mcr8", "mcr29", "mcr30", |
| "mcr31", "", "", "", |
| |
| /* Profiling control registers 140 - 143. */ |
| /* Profiling software general registers 144 - 157. */ |
| "profcr0", "profcr1", "profcr2", "profcr3", "profsgr0", "profsgr1", |
| "profsgr2", "profsgr3", "profsgr4", "profsgr5", "profsgr6", "profsgr7", |
| "profsgr8", "profsgr9", "profsgr10","profsgr11","profsgr12", "profsgr13", |
| "", "", |
| |
| /* Profiling architecture general registers 160 - 174. */ |
| "profagr0", "profagr1", "profagr2", "profagr3", "profagr4", "profagr5", |
| "profagr6", "profagr7", "profagr8", "profagr9", "profagr10","profagr11", |
| "profagr12","profagr13","profagr14", "", |
| |
| /* Profiling extension general registers 176 - 188. */ |
| "profxgr0", "profxgr1", "profxgr2", "profxgr3", "profxgr4", "profxgr5", |
| "profxgr6", "profxgr7", "profxgr8", "profxgr9", "profxgr10","profxgr11", |
| "profxgr12", |
| |
| /* Control registers in bank1. */ |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "cp1cr16", "cp1cr17", "cp1cr18", "cp1cr19", "cp1cr20", "", "", "", |
| "", "", "", "", "", "", "", "", |
| |
| /* Control registers in bank3 (ICE). */ |
| "sepsr", "sevbr", "seepsr", "", "seepc", "", "nsssp", "seusp", |
| "sedcr", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "" |
| }; |
| |
| /* Implement the register_name gdbarch method. */ |
| |
| static const char * |
| csky_register_name (struct gdbarch *gdbarch, int reg_nr) |
| { |
| if (reg_nr < 0) |
| return NULL; |
| |
| if (reg_nr >= gdbarch_num_regs (gdbarch)) |
| return NULL; |
| |
| return csky_register_names[reg_nr]; |
| } |
| |
| /* Construct vector type for vrx registers. */ |
| |
| static struct type * |
| csky_vector_type (struct gdbarch *gdbarch) |
| { |
| const struct builtin_type *bt = builtin_type (gdbarch); |
| |
| struct type *t; |
| |
| t = arch_composite_type (gdbarch, "__gdb_builtin_type_vec128i", |
| TYPE_CODE_UNION); |
| |
| append_composite_type_field (t, "u32", |
| init_vector_type (bt->builtin_int32, 4)); |
| append_composite_type_field (t, "u16", |
| init_vector_type (bt->builtin_int16, 8)); |
| append_composite_type_field (t, "u8", |
| init_vector_type (bt->builtin_int8, 16)); |
| |
| t->set_is_vector (true); |
| t->set_name ("builtin_type_vec128i"); |
| |
| return t; |
| } |
| |
| /* Return the GDB type object for the "standard" data type |
| of data in register N. */ |
| |
| static struct type * |
| csky_register_type (struct gdbarch *gdbarch, int reg_nr) |
| { |
| /* PC, EPC, FPC is a text pointer. */ |
| if ((reg_nr == CSKY_PC_REGNUM) || (reg_nr == CSKY_EPC_REGNUM) |
| || (reg_nr == CSKY_FPC_REGNUM)) |
| return builtin_type (gdbarch)->builtin_func_ptr; |
| |
| /* VBR is a data pointer. */ |
| if (reg_nr == CSKY_VBR_REGNUM) |
| return builtin_type (gdbarch)->builtin_data_ptr; |
| |
| /* Float register has 64 bits, and only in ck810. */ |
| if ((reg_nr >=CSKY_FR0_REGNUM) && (reg_nr <= CSKY_FR0_REGNUM + 15)) |
| return arch_float_type (gdbarch, 64, "builtin_type_csky_ext", |
| floatformats_ieee_double); |
| |
| /* Vector register has 128 bits, and only in ck810. */ |
| if ((reg_nr >= CSKY_VR0_REGNUM) && (reg_nr <= CSKY_VR0_REGNUM + 15)) |
| return csky_vector_type (gdbarch); |
| |
| /* Profiling general register has 48 bits, we use 64bit. */ |
| if ((reg_nr >= CSKY_PROFGR_REGNUM) && (reg_nr <= CSKY_PROFGR_REGNUM + 44)) |
| return builtin_type (gdbarch)->builtin_uint64; |
| |
| if (reg_nr == CSKY_SP_REGNUM) |
| return builtin_type (gdbarch)->builtin_data_ptr; |
| |
| /* Others are 32 bits. */ |
| return builtin_type (gdbarch)->builtin_int32; |
| } |
| |
| /* Data structure to marshall items in a dummy stack frame when |
| calling a function in the inferior. */ |
| |
| struct stack_item |
| { |
| stack_item (int len_, const gdb_byte *data_) |
| : len (len_), data (data_) |
| {} |
| |
| int len; |
| const gdb_byte *data; |
| }; |
| |
| /* Implement the push_dummy_call gdbarch method. */ |
| |
| static CORE_ADDR |
| csky_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| int argnum; |
| int argreg = CSKY_ABI_A0_REGNUM; |
| int last_arg_regnum = CSKY_ABI_LAST_ARG_REGNUM; |
| int need_dummy_stack = 0; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| std::vector<stack_item> stack_items; |
| |
| /* Set the return address. For CSKY, the return breakpoint is |
| always at BP_ADDR. */ |
| regcache_cooked_write_unsigned (regcache, CSKY_LR_REGNUM, bp_addr); |
| |
| /* The struct_return pointer occupies the first parameter |
| passing register. */ |
| if (return_method == return_method_struct) |
| { |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: struct return in %s = %s\n", |
| gdbarch_register_name (gdbarch, argreg), |
| paddress (gdbarch, struct_addr)); |
| } |
| regcache_cooked_write_unsigned (regcache, argreg, struct_addr); |
| argreg++; |
| } |
| |
| /* Put parameters into argument registers in REGCACHE. |
| In ABI argument registers are r0 through r3. */ |
| for (argnum = 0; argnum < nargs; argnum++) |
| { |
| int len; |
| struct type *arg_type; |
| const gdb_byte *val; |
| |
| arg_type = check_typedef (value_type (args[argnum])); |
| len = TYPE_LENGTH (arg_type); |
| val = value_contents (args[argnum]); |
| |
| /* Copy the argument to argument registers or the dummy stack. |
| Large arguments are split between registers and stack. |
| |
| If len < 4, there is no need to worry about endianness since |
| the arguments will always be stored in the low address. */ |
| if (len < 4) |
| { |
| CORE_ADDR regval |
| = extract_unsigned_integer (val, len, byte_order); |
| regcache_cooked_write_unsigned (regcache, argreg, regval); |
| argreg++; |
| } |
| else |
| { |
| while (len > 0) |
| { |
| int partial_len = len < 4 ? len : 4; |
| if (argreg <= last_arg_regnum) |
| { |
| /* The argument is passed in an argument register. */ |
| CORE_ADDR regval |
| = extract_unsigned_integer (val, partial_len, |
| byte_order); |
| if (byte_order == BFD_ENDIAN_BIG) |
| regval <<= (4 - partial_len) * 8; |
| |
| /* Put regval into register in REGCACHE. */ |
| regcache_cooked_write_unsigned (regcache, argreg, |
| regval); |
| argreg++; |
| } |
| else |
| { |
| /* The argument should be pushed onto the dummy stack. */ |
| stack_items.emplace_back (4, val); |
| need_dummy_stack += 4; |
| } |
| len -= partial_len; |
| val += partial_len; |
| } |
| } |
| } |
| |
| /* Transfer the dummy stack frame to the target. */ |
| std::vector<stack_item>::reverse_iterator iter; |
| for (iter = stack_items.rbegin (); iter != stack_items.rend (); ++iter) |
| { |
| sp -= iter->len; |
| write_memory (sp, iter->data, iter->len); |
| } |
| |
| /* Finally, update the SP register. */ |
| regcache_cooked_write_unsigned (regcache, CSKY_SP_REGNUM, sp); |
| return sp; |
| } |
| |
| /* Implement the return_value gdbarch method. */ |
| |
| static enum return_value_convention |
| csky_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *valtype, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| CORE_ADDR regval; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int len = TYPE_LENGTH (valtype); |
| unsigned int ret_regnum = CSKY_RET_REGNUM; |
| |
| /* Csky abi specifies that return values larger than 8 bytes |
| are put on the stack. */ |
| if (len > 8) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| else |
| { |
| if (readbuf != NULL) |
| { |
| ULONGEST tmp; |
| /* By using store_unsigned_integer we avoid having to do |
| anything special for small big-endian values. */ |
| regcache->cooked_read (ret_regnum, &tmp); |
| store_unsigned_integer (readbuf, (len > 4 ? 4 : len), |
| byte_order, tmp); |
| if (len > 4) |
| { |
| regcache->cooked_read (ret_regnum + 1, &tmp); |
| store_unsigned_integer (readbuf + 4, 4, byte_order, tmp); |
| } |
| } |
| if (writebuf != NULL) |
| { |
| regval = extract_unsigned_integer (writebuf, len > 4 ? 4 : len, |
| byte_order); |
| regcache_cooked_write_unsigned (regcache, ret_regnum, regval); |
| if (len > 4) |
| { |
| regval = extract_unsigned_integer ((gdb_byte *) writebuf + 4, |
| 4, byte_order); |
| regcache_cooked_write_unsigned (regcache, ret_regnum + 1, |
| regval); |
| } |
| |
| } |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| } |
| |
| /* Implement the frame_align gdbarch method. |
| |
| Adjust the address downward (direction of stack growth) so that it |
| is correctly aligned for a new stack frame. */ |
| |
| static CORE_ADDR |
| csky_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| return align_down (addr, 4); |
| } |
| |
| /* Unwind cache used for gdbarch fallback unwinder. */ |
| |
| struct csky_unwind_cache |
| { |
| /* The stack pointer at the time this frame was created; i.e. the |
| caller's stack pointer when this function was called. It is used |
| to identify this frame. */ |
| CORE_ADDR prev_sp; |
| |
| /* The frame base for this frame is just prev_sp - frame size. |
| FRAMESIZE is the distance from the frame pointer to the |
| initial stack pointer. */ |
| int framesize; |
| |
| /* The register used to hold the frame pointer for this frame. */ |
| int framereg; |
| |
| /* Saved register offsets. */ |
| trad_frame_saved_reg *saved_regs; |
| }; |
| |
| /* Do prologue analysis, returning the PC of the first instruction |
| after the function prologue. */ |
| |
| static CORE_ADDR |
| csky_analyze_prologue (struct gdbarch *gdbarch, |
| CORE_ADDR start_pc, |
| CORE_ADDR limit_pc, |
| CORE_ADDR end_pc, |
| struct frame_info *this_frame, |
| struct csky_unwind_cache *this_cache, |
| lr_type_t lr_type) |
| { |
| CORE_ADDR addr; |
| unsigned int insn, rn; |
| int framesize = 0; |
| int stacksize = 0; |
| int register_offsets[CSKY_NUM_GREGS_SAVED_GREGS]; |
| int insn_len; |
| /* For adjusting fp. */ |
| int is_fp_saved = 0; |
| int adjust_fp = 0; |
| |
| /* REGISTER_OFFSETS will contain offsets from the top of the frame |
| (NOT the frame pointer) for the various saved registers, or -1 |
| if the register is not saved. */ |
| for (rn = 0; rn < CSKY_NUM_GREGS_SAVED_GREGS; rn++) |
| register_offsets[rn] = -1; |
| |
| /* Analyze the prologue. Things we determine from analyzing the |
| prologue include the size of the frame and which registers are |
| saved (and where). */ |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: Scanning prologue: start_pc = 0x%x," |
| "limit_pc = 0x%x\n", (unsigned int) start_pc, |
| (unsigned int) limit_pc); |
| } |
| |
| /* Default to 16 bit instruction. */ |
| insn_len = 2; |
| stacksize = 0; |
| for (addr = start_pc; addr < limit_pc; addr += insn_len) |
| { |
| /* Get next insn. */ |
| insn_len = csky_get_insn (gdbarch, addr, &insn); |
| |
| /* Check if 32 bit. */ |
| if (insn_len == 4) |
| { |
| /* subi32 sp,sp oimm12. */ |
| if (CSKY_32_IS_SUBI0 (insn)) |
| { |
| /* Got oimm12. */ |
| int offset = CSKY_32_SUBI_IMM (insn); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: got subi sp,%d; continuing\n", |
| offset); |
| } |
| stacksize += offset; |
| continue; |
| } |
| /* stm32 ry-rz,(sp). */ |
| else if (CSKY_32_IS_STMx0 (insn)) |
| { |
| /* Spill register(s). */ |
| int start_register; |
| int reg_count; |
| int offset; |
| |
| /* BIG WARNING! The CKCore ABI does not restrict functions |
| to taking only one stack allocation. Therefore, when |
| we save a register, we record the offset of where it was |
| saved relative to the current stacksize. This will |
| then give an offset from the SP upon entry to our |
| function. Remember, stacksize is NOT constant until |
| we're done scanning the prologue. */ |
| start_register = CSKY_32_STM_VAL_REGNUM (insn); |
| reg_count = CSKY_32_STM_SIZE (insn); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: got stm r%d-r%d,(sp)\n", |
| start_register, |
| start_register + reg_count); |
| } |
| |
| for (rn = start_register, offset = 0; |
| rn <= start_register + reg_count; |
| rn++, offset += 4) |
| { |
| register_offsets[rn] = stacksize - offset; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: r%d saved at 0x%x" |
| " (offset %d)\n", |
| rn, register_offsets[rn], |
| offset); |
| } |
| } |
| if (csky_debug) |
| fprintf_unfiltered (gdb_stdlog, "csky: continuing\n"); |
| continue; |
| } |
| /* stw ry,(sp,disp). */ |
| else if (CSKY_32_IS_STWx0 (insn)) |
| { |
| /* Spill register: see note for IS_STM above. */ |
| int disp; |
| |
| rn = CSKY_32_ST_VAL_REGNUM (insn); |
| disp = CSKY_32_ST_OFFSET (insn); |
| register_offsets[rn] = stacksize - disp; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| else if (CSKY_32_IS_MOV_FP_SP (insn)) |
| { |
| /* SP is saved to FP reg, means code afer prologue may |
| modify SP. */ |
| is_fp_saved = 1; |
| adjust_fp = stacksize; |
| continue; |
| } |
| else if (CSKY_32_IS_MFCR_EPSR (insn)) |
| { |
| unsigned int insn2; |
| addr += 4; |
| int mfcr_regnum = insn & 0x1f; |
| insn_len = csky_get_insn (gdbarch, addr, &insn2); |
| if (insn_len == 2) |
| { |
| int stw_regnum = (insn2 >> 5) & 0x7; |
| if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum)) |
| { |
| int offset; |
| |
| /* CSKY_EPSR_REGNUM. */ |
| rn = CSKY_NUM_GREGS; |
| offset = CSKY_16_STWx0_OFFSET (insn2); |
| register_offsets[rn] = stacksize - offset; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| break; |
| } |
| else |
| { |
| /* INSN_LEN == 4. */ |
| int stw_regnum = (insn2 >> 21) & 0x1f; |
| if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum)) |
| { |
| int offset; |
| |
| /* CSKY_EPSR_REGNUM. */ |
| rn = CSKY_NUM_GREGS; |
| offset = CSKY_32_ST_OFFSET (insn2); |
| register_offsets[rn] = framesize - offset; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| break; |
| } |
| } |
| else if (CSKY_32_IS_MFCR_FPSR (insn)) |
| { |
| unsigned int insn2; |
| addr += 4; |
| int mfcr_regnum = insn & 0x1f; |
| insn_len = csky_get_insn (gdbarch, addr, &insn2); |
| if (insn_len == 2) |
| { |
| int stw_regnum = (insn2 >> 5) & 0x7; |
| if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum |
| == stw_regnum)) |
| { |
| int offset; |
| |
| /* CSKY_FPSR_REGNUM. */ |
| rn = CSKY_NUM_GREGS + 1; |
| offset = CSKY_16_STWx0_OFFSET (insn2); |
| register_offsets[rn] = stacksize - offset; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| break; |
| } |
| else |
| { |
| /* INSN_LEN == 4. */ |
| int stw_regnum = (insn2 >> 21) & 0x1f; |
| if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum)) |
| { |
| int offset; |
| |
| /* CSKY_FPSR_REGNUM. */ |
| rn = CSKY_NUM_GREGS + 1; |
| offset = CSKY_32_ST_OFFSET (insn2); |
| register_offsets[rn] = framesize - offset; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| break; |
| } |
| } |
| else if (CSKY_32_IS_MFCR_EPC (insn)) |
| { |
| unsigned int insn2; |
| addr += 4; |
| int mfcr_regnum = insn & 0x1f; |
| insn_len = csky_get_insn (gdbarch, addr, &insn2); |
| if (insn_len == 2) |
| { |
| int stw_regnum = (insn2 >> 5) & 0x7; |
| if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum)) |
| { |
| int offset; |
| |
| /* CSKY_EPC_REGNUM. */ |
| rn = CSKY_NUM_GREGS + 2; |
| offset = CSKY_16_STWx0_OFFSET (insn2); |
| register_offsets[rn] = stacksize - offset; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| break; |
| } |
| else |
| { |
| /* INSN_LEN == 4. */ |
| int stw_regnum = (insn2 >> 21) & 0x1f; |
| if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum)) |
| { |
| int offset; |
| |
| /* CSKY_EPC_REGNUM. */ |
| rn = CSKY_NUM_GREGS + 2; |
| offset = CSKY_32_ST_OFFSET (insn2); |
| register_offsets[rn] = framesize - offset; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| break; |
| } |
| } |
| else if (CSKY_32_IS_MFCR_FPC (insn)) |
| { |
| unsigned int insn2; |
| addr += 4; |
| int mfcr_regnum = insn & 0x1f; |
| insn_len = csky_get_insn (gdbarch, addr, &insn2); |
| if (insn_len == 2) |
| { |
| int stw_regnum = (insn2 >> 5) & 0x7; |
| if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum)) |
| { |
| int offset; |
| |
| /* CSKY_FPC_REGNUM. */ |
| rn = CSKY_NUM_GREGS + 3; |
| offset = CSKY_16_STWx0_OFFSET (insn2); |
| register_offsets[rn] = stacksize - offset; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| break; |
| } |
| else |
| { |
| /* INSN_LEN == 4. */ |
| int stw_regnum = (insn2 >> 21) & 0x1f; |
| if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum)) |
| { |
| int offset; |
| |
| /* CSKY_FPC_REGNUM. */ |
| rn = CSKY_NUM_GREGS + 3; |
| offset = CSKY_32_ST_OFFSET (insn2); |
| register_offsets[rn] = framesize - offset; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| break; |
| } |
| } |
| else if (CSKY_32_IS_PUSH (insn)) |
| { |
| /* Push for 32_bit. */ |
| int offset = 0; |
| if (CSKY_32_IS_PUSH_R29 (insn)) |
| { |
| stacksize += 4; |
| register_offsets[29] = stacksize; |
| if (csky_debug) |
| print_savedreg_msg (29, register_offsets, false); |
| offset += 4; |
| } |
| if (CSKY_32_PUSH_LIST2 (insn)) |
| { |
| int num = CSKY_32_PUSH_LIST2 (insn); |
| int tmp = 0; |
| stacksize += num * 4; |
| offset += num * 4; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: push regs_array: r16-r%d\n", |
| 16 + num - 1); |
| } |
| for (rn = 16; rn <= 16 + num - 1; rn++) |
| { |
| register_offsets[rn] = stacksize - tmp; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: r%d saved at 0x%x" |
| " (offset %d)\n", rn, |
| register_offsets[rn], tmp); |
| } |
| tmp += 4; |
| } |
| } |
| if (CSKY_32_IS_PUSH_R15 (insn)) |
| { |
| stacksize += 4; |
| register_offsets[15] = stacksize; |
| if (csky_debug) |
| print_savedreg_msg (15, register_offsets, false); |
| offset += 4; |
| } |
| if (CSKY_32_PUSH_LIST1 (insn)) |
| { |
| int num = CSKY_32_PUSH_LIST1 (insn); |
| int tmp = 0; |
| stacksize += num * 4; |
| offset += num * 4; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: push regs_array: r4-r%d\n", |
| 4 + num - 1); |
| } |
| for (rn = 4; rn <= 4 + num - 1; rn++) |
| { |
| register_offsets[rn] = stacksize - tmp; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: r%d saved at 0x%x" |
| " (offset %d)\n", rn, |
| register_offsets[rn], tmp); |
| } |
| tmp += 4; |
| } |
| } |
| |
| framesize = stacksize; |
| if (csky_debug) |
| fprintf_unfiltered (gdb_stdlog, "csky: continuing\n"); |
| continue; |
| } |
| else if (CSKY_32_IS_LRW4 (insn) || CSKY_32_IS_MOVI4 (insn) |
| || CSKY_32_IS_MOVIH4 (insn) || CSKY_32_IS_BMASKI4 (insn)) |
| { |
| int adjust = 0; |
| int offset = 0; |
| unsigned int insn2; |
| |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: looking at large frame\n"); |
| } |
| if (CSKY_32_IS_LRW4 (insn)) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int literal_addr = (addr + ((insn & 0xffff) << 2)) |
| & 0xfffffffc; |
| adjust = read_memory_unsigned_integer (literal_addr, 4, |
| byte_order); |
| } |
| else if (CSKY_32_IS_MOVI4 (insn)) |
| adjust = (insn & 0xffff); |
| else if (CSKY_32_IS_MOVIH4 (insn)) |
| adjust = (insn & 0xffff) << 16; |
| else |
| { |
| /* CSKY_32_IS_BMASKI4 (insn). */ |
| adjust = (1 << (((insn & 0x3e00000) >> 21) + 1)) - 1; |
| } |
| |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: base stacksize=0x%x\n", adjust); |
| |
| /* May have zero or more insns which modify r4. */ |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: looking for r4 adjusters...\n"); |
| } |
| |
| offset = 4; |
| insn_len = csky_get_insn (gdbarch, addr + offset, &insn2); |
| while (CSKY_IS_R4_ADJUSTER (insn2)) |
| { |
| if (CSKY_32_IS_ADDI4 (insn2)) |
| { |
| int imm = (insn2 & 0xfff) + 1; |
| adjust += imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: addi r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_SUBI4 (insn2)) |
| { |
| int imm = (insn2 & 0xfff) + 1; |
| adjust -= imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: subi r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_NOR4 (insn2)) |
| { |
| adjust = ~adjust; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: nor r4,r4,r4\n"); |
| } |
| } |
| else if (CSKY_32_IS_ROTLI4 (insn2)) |
| { |
| int imm = ((insn2 >> 21) & 0x1f); |
| int temp = adjust >> (32 - imm); |
| adjust <<= imm; |
| adjust |= temp; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: rotli r4,r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_LISI4 (insn2)) |
| { |
| int imm = ((insn2 >> 21) & 0x1f); |
| adjust <<= imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: lsli r4,r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_BSETI4 (insn2)) |
| { |
| int imm = ((insn2 >> 21) & 0x1f); |
| adjust |= (1 << imm); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: bseti r4,r4 %d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_BCLRI4 (insn2)) |
| { |
| int imm = ((insn2 >> 21) & 0x1f); |
| adjust &= ~(1 << imm); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: bclri r4,r4 %d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_IXH4 (insn2)) |
| { |
| adjust *= 3; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: ixh r4,r4,r4\n"); |
| } |
| } |
| else if (CSKY_32_IS_IXW4 (insn2)) |
| { |
| adjust *= 5; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: ixw r4,r4,r4\n"); |
| } |
| } |
| else if (CSKY_16_IS_ADDI4 (insn2)) |
| { |
| int imm = (insn2 & 0xff) + 1; |
| adjust += imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: addi r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_16_IS_SUBI4 (insn2)) |
| { |
| int imm = (insn2 & 0xff) + 1; |
| adjust -= imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: subi r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_16_IS_NOR4 (insn2)) |
| { |
| adjust = ~adjust; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: nor r4,r4\n"); |
| } |
| } |
| else if (CSKY_16_IS_BSETI4 (insn2)) |
| { |
| int imm = (insn2 & 0x1f); |
| adjust |= (1 << imm); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: bseti r4, %d\n", imm); |
| } |
| } |
| else if (CSKY_16_IS_BCLRI4 (insn2)) |
| { |
| int imm = (insn2 & 0x1f); |
| adjust &= ~(1 << imm); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: bclri r4, %d\n", imm); |
| } |
| } |
| else if (CSKY_16_IS_LSLI4 (insn2)) |
| { |
| int imm = (insn2 & 0x1f); |
| adjust <<= imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: lsli r4,r4, %d\n", imm); |
| } |
| } |
| |
| offset += insn_len; |
| insn_len = csky_get_insn (gdbarch, addr + offset, &insn2); |
| }; |
| |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "csky: done looking for" |
| " r4 adjusters\n"); |
| } |
| |
| /* If the next insn adjusts the stack pointer, we keep |
| everything; if not, we scrap it and we've found the |
| end of the prologue. */ |
| if (CSKY_IS_SUBU4 (insn2)) |
| { |
| addr += offset; |
| stacksize += adjust; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: found stack adjustment of" |
| " 0x%x bytes.\n", adjust); |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: skipping to new address %s\n", |
| core_addr_to_string_nz (addr)); |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: continuing\n"); |
| } |
| continue; |
| } |
| |
| /* None of these instructions are prologue, so don't touch |
| anything. */ |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: no subu sp,sp,r4; NOT altering" |
| " stacksize.\n"); |
| } |
| break; |
| } |
| } |
| else |
| { |
| /* insn_len != 4. */ |
| |
| /* subi.sp sp,disp. */ |
| if (CSKY_16_IS_SUBI0 (insn)) |
| { |
| int offset = CSKY_16_SUBI_IMM (insn); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: got subi r0,%d; continuing\n", |
| offset); |
| } |
| stacksize += offset; |
| continue; |
| } |
| /* stw.16 rz,(sp,disp). */ |
| else if (CSKY_16_IS_STWx0 (insn)) |
| { |
| /* Spill register: see note for IS_STM above. */ |
| int disp; |
| |
| rn = CSKY_16_ST_VAL_REGNUM (insn); |
| disp = CSKY_16_ST_OFFSET (insn); |
| register_offsets[rn] = stacksize - disp; |
| if (csky_debug) |
| print_savedreg_msg (rn, register_offsets, true); |
| continue; |
| } |
| else if (CSKY_16_IS_MOV_FP_SP (insn)) |
| { |
| /* SP is saved to FP reg, means prologue may modify SP. */ |
| is_fp_saved = 1; |
| adjust_fp = stacksize; |
| continue; |
| } |
| else if (CSKY_16_IS_PUSH (insn)) |
| { |
| /* Push for 16_bit. */ |
| int offset = 0; |
| if (CSKY_16_IS_PUSH_R15 (insn)) |
| { |
| stacksize += 4; |
| register_offsets[15] = stacksize; |
| if (csky_debug) |
| print_savedreg_msg (15, register_offsets, false); |
| offset += 4; |
| } |
| if (CSKY_16_PUSH_LIST1 (insn)) |
| { |
| int num = CSKY_16_PUSH_LIST1 (insn); |
| int tmp = 0; |
| stacksize += num * 4; |
| offset += num * 4; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: push regs_array: r4-r%d\n", |
| 4 + num - 1); |
| } |
| for (rn = 4; rn <= 4 + num - 1; rn++) |
| { |
| register_offsets[rn] = stacksize - tmp; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: r%d saved at 0x%x" |
| " (offset %d)\n", rn, |
| register_offsets[rn], offset); |
| } |
| tmp += 4; |
| } |
| } |
| |
| framesize = stacksize; |
| if (csky_debug) |
| fprintf_unfiltered (gdb_stdlog, "csky: continuing\n"); |
| continue; |
| } |
| else if (CSKY_16_IS_LRW4 (insn) || CSKY_16_IS_MOVI4 (insn)) |
| { |
| int adjust = 0; |
| unsigned int insn2; |
| |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: looking at large frame\n"); |
| } |
| if (CSKY_16_IS_LRW4 (insn)) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int offset = ((insn & 0x300) >> 3) | (insn & 0x1f); |
| int literal_addr = (addr + ( offset << 2)) & 0xfffffffc; |
| adjust = read_memory_unsigned_integer (literal_addr, 4, |
| byte_order); |
| } |
| else |
| { |
| /* CSKY_16_IS_MOVI4 (insn). */ |
| adjust = (insn & 0xff); |
| } |
| |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: base stacksize=0x%x\n", adjust); |
| } |
| |
| /* May have zero or more instructions which modify r4. */ |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: looking for r4 adjusters...\n"); |
| } |
| int offset = 2; |
| insn_len = csky_get_insn (gdbarch, addr + offset, &insn2); |
| while (CSKY_IS_R4_ADJUSTER (insn2)) |
| { |
| if (CSKY_32_IS_ADDI4 (insn2)) |
| { |
| int imm = (insn2 & 0xfff) + 1; |
| adjust += imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: addi r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_SUBI4 (insn2)) |
| { |
| int imm = (insn2 & 0xfff) + 1; |
| adjust -= imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: subi r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_NOR4 (insn2)) |
| { |
| adjust = ~adjust; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: nor r4,r4,r4\n"); |
| } |
| } |
| else if (CSKY_32_IS_ROTLI4 (insn2)) |
| { |
| int imm = ((insn2 >> 21) & 0x1f); |
| int temp = adjust >> (32 - imm); |
| adjust <<= imm; |
| adjust |= temp; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: rotli r4,r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_LISI4 (insn2)) |
| { |
| int imm = ((insn2 >> 21) & 0x1f); |
| adjust <<= imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: lsli r4,r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_BSETI4 (insn2)) |
| { |
| int imm = ((insn2 >> 21) & 0x1f); |
| adjust |= (1 << imm); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: bseti r4,r4 %d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_BCLRI4 (insn2)) |
| { |
| int imm = ((insn2 >> 21) & 0x1f); |
| adjust &= ~(1 << imm); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: bclri r4,r4 %d\n", imm); |
| } |
| } |
| else if (CSKY_32_IS_IXH4 (insn2)) |
| { |
| adjust *= 3; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: ixh r4,r4,r4\n"); |
| } |
| } |
| else if (CSKY_32_IS_IXW4 (insn2)) |
| { |
| adjust *= 5; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: ixw r4,r4,r4\n"); |
| } |
| } |
| else if (CSKY_16_IS_ADDI4 (insn2)) |
| { |
| int imm = (insn2 & 0xff) + 1; |
| adjust += imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: addi r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_16_IS_SUBI4 (insn2)) |
| { |
| int imm = (insn2 & 0xff) + 1; |
| adjust -= imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: subi r4,%d\n", imm); |
| } |
| } |
| else if (CSKY_16_IS_NOR4 (insn2)) |
| { |
| adjust = ~adjust; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: nor r4,r4\n"); |
| } |
| } |
| else if (CSKY_16_IS_BSETI4 (insn2)) |
| { |
| int imm = (insn2 & 0x1f); |
| adjust |= (1 << imm); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: bseti r4, %d\n", imm); |
| } |
| } |
| else if (CSKY_16_IS_BCLRI4 (insn2)) |
| { |
| int imm = (insn2 & 0x1f); |
| adjust &= ~(1 << imm); |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: bclri r4, %d\n", imm); |
| } |
| } |
| else if (CSKY_16_IS_LSLI4 (insn2)) |
| { |
| int imm = (insn2 & 0x1f); |
| adjust <<= imm; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "csky: lsli r4,r4, %d\n", imm); |
| } |
| } |
| |
| offset += insn_len; |
| insn_len = csky_get_insn (gdbarch, addr + offset, &insn2); |
| }; |
| |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "csky: " |
| "done looking for r4 adjusters\n"); |
| } |
| |
| /* If the next instruction adjusts the stack pointer, we keep |
| everything; if not, we scrap it and we've found the end |
| of the prologue. */ |
| if (CSKY_IS_SUBU4 (insn2)) |
| { |
| addr += offset; |
| stacksize += adjust; |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "csky: " |
| "found stack adjustment of 0x%x" |
| " bytes.\n", adjust); |
| fprintf_unfiltered (gdb_stdlog, "csky: " |
| "skipping to new address %s\n", |
| core_addr_to_string_nz (addr)); |
| fprintf_unfiltered (gdb_stdlog, "csky: continuing\n"); |
| } |
| continue; |
| } |
| |
| /* None of these instructions are prologue, so don't touch |
| anything. */ |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "csky: no subu sp,r4; " |
| "NOT altering stacksize.\n"); |
| } |
| break; |
| } |
| } |
| |
| /* This is not a prologue instruction, so stop here. */ |
| if (csky_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "csky: insn is not a prologue" |
| " insn -- ending scan\n"); |
| } |
| break; |
| } |
| |
| if (this_cache) |
| { |
| CORE_ADDR unwound_fp; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| this_cache->framesize = framesize; |
| |
| if (is_fp_saved) |
| { |
| this_cache->framereg = CSKY_FP_REGNUM; |
| unwound_fp = get_frame_register_unsigned (this_frame, |
| this_cache->framereg); |
| this_cache->prev_sp = unwound_fp + adjust_fp; |
| } |
| else |
| { |
| this_cache->framereg = CSKY_SP_REGNUM; |
| unwound_fp = get_frame_register_unsigned (this_frame, |
| this_cache->framereg); |
| this_cache->prev_sp = unwound_fp + stacksize; |
| } |
| |
| /* Note where saved registers are stored. The offsets in |
| REGISTER_OFFSETS are computed relative to the top of the frame. */ |
| for (rn = 0; rn < CSKY_NUM_GREGS; rn++) |
| { |
| if (register_offsets[rn] >= 0) |
| { |
| this_cache->saved_regs[rn].set_addr (this_cache->prev_sp |
| - register_offsets[rn]); |
| if (csky_debug) |
| { |
| CORE_ADDR rn_value = read_memory_unsigned_integer ( |
| this_cache->saved_regs[rn].addr (), 4, byte_order); |
| fprintf_unfiltered (gdb_stdlog, "Saved register %s " |
| "stored at 0x%08lx, value=0x%08lx\n", |
| csky_register_names[rn], |
| (unsigned long) |
| this_cache->saved_regs[rn].addr (), |
| (unsigned long) rn_value); |
| } |
| } |
| } |
| if (lr_type == LR_TYPE_EPC) |
| { |
| /* rte || epc . */ |
| this_cache->saved_regs[CSKY_PC_REGNUM] |
| = this_cache->saved_regs[CSKY_EPC_REGNUM]; |
| } |
| else if (lr_type == LR_TYPE_FPC) |
| { |
| /* rfi || fpc . */ |
| this_cache->saved_regs[CSKY_PC_REGNUM] |
| = this_cache->saved_regs[CSKY_FPC_REGNUM]; |
| } |
| else |
| { |
| this_cache->saved_regs[CSKY_PC_REGNUM] |
| = this_cache->saved_regs[CSKY_LR_REGNUM]; |
| } |
| } |
| |
| return addr; |
| } |
| |
| /* Detect whether PC is at a point where the stack frame has been |
| destroyed. */ |
| |
| static int |
| csky_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| unsigned int insn; |
| CORE_ADDR addr; |
| CORE_ADDR func_start, func_end; |
| |
| if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) |
| return 0; |
| |
| bool fp_saved = false; |
| int insn_len; |
| for (addr = func_start; addr < func_end; addr += insn_len) |
| { |
| /* Get next insn. */ |
| insn_len = csky_get_insn (gdbarch, addr, &insn); |
| |
| if (insn_len == 2) |
| { |
| /* Is sp is saved to fp. */ |
| if (CSKY_16_IS_MOV_FP_SP (insn)) |
| fp_saved = true; |
| /* If sp was saved to fp and now being restored from |
| fp then it indicates the start of epilog. */ |
| else if (fp_saved && CSKY_16_IS_MOV_SP_FP (insn)) |
| return pc >= addr; |
| } |
| } |
| return 0; |
| } |
| |
| /* Implement the skip_prologue gdbarch hook. */ |
| |
| static CORE_ADDR |
| csky_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| CORE_ADDR func_addr, func_end; |
| struct symtab_and_line sal; |
| const int default_search_limit = 128; |
| |
| /* See if we can find the end of the prologue using the symbol table. */ |
| if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
| { |
| CORE_ADDR post_prologue_pc |
| = skip_prologue_using_sal (gdbarch, func_addr); |
| |
| if (post_prologue_pc != 0) |
| return std::max (pc, post_prologue_pc); |
| } |
| else |
| func_end = pc + default_search_limit; |
| |
| /* Find the end of prologue. Default lr_type. */ |
| return csky_analyze_prologue (gdbarch, pc, func_end, func_end, |
| NULL, NULL, LR_TYPE_R15); |
| } |
| |
| /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
| |
| static int |
| csky_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) |
| { |
| if (csky_pc_is_csky16 (gdbarch, *pcptr)) |
| return CSKY_INSN_SIZE16; |
| else |
| return CSKY_INSN_SIZE32; |
| } |
| |
| /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
| |
| static const gdb_byte * |
| csky_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) |
| { |
| *size = kind; |
| if (kind == CSKY_INSN_SIZE16) |
| { |
| static gdb_byte csky_16_breakpoint[] = { 0, 0 }; |
| return csky_16_breakpoint; |
| } |
| else |
| { |
| static gdb_byte csky_32_breakpoint[] = { 0, 0, 0, 0 }; |
| return csky_32_breakpoint; |
| } |
| } |
| |
| /* Implement the memory_insert_breakpoint gdbarch method. */ |
| |
| static int |
| csky_memory_insert_breakpoint (struct gdbarch *gdbarch, |
| struct bp_target_info *bp_tgt) |
| { |
| int val; |
| const unsigned char *bp; |
| gdb_byte bp_write_record1[] = { 0, 0, 0, 0 }; |
| gdb_byte bp_write_record2[] = { 0, 0, 0, 0 }; |
| gdb_byte bp_record[] = { 0, 0, 0, 0 }; |
| |
| /* Sanity-check bp_address. */ |
| if (bp_tgt->reqstd_address % 2) |
| warning (_("Invalid breakpoint address 0x%x is an odd number."), |
| (unsigned int) bp_tgt->reqstd_address); |
| scoped_restore restore_memory |
| = make_scoped_restore_show_memory_breakpoints (1); |
| |
| /* Determine appropriate breakpoint_kind for this address. */ |
| bp_tgt->kind = csky_breakpoint_kind_from_pc (gdbarch, |
| &bp_tgt->reqstd_address); |
| |
| /* Save the memory contents. */ |
| bp_tgt->shadow_len = bp_tgt->kind; |
| |
| /* Fill bp_tgt->placed_address. */ |
| bp_tgt->placed_address = bp_tgt->reqstd_address; |
| |
| if (bp_tgt->kind == CSKY_INSN_SIZE16) |
| { |
| if ((bp_tgt->reqstd_address % 4) == 0) |
| { |
| /* Read two bytes. */ |
| val = target_read_memory (bp_tgt->reqstd_address, |
| bp_tgt->shadow_contents, 2); |
| if (val) |
| return val; |
| |
| /* Read two bytes. */ |
| val = target_read_memory (bp_tgt->reqstd_address + 2, |
| bp_record, 2); |
| if (val) |
| return val; |
| |
| /* Write the breakpoint. */ |
| bp_write_record1[2] = bp_record[0]; |
| bp_write_record1[3] = bp_record[1]; |
| bp = bp_write_record1; |
| val = target_write_raw_memory (bp_tgt->reqstd_address, bp, |
| CSKY_WR_BKPT_MODE); |
| } |
| else |
| { |
| val = target_read_memory (bp_tgt->reqstd_address, |
| bp_tgt->shadow_contents, 2); |
| if (val) |
| return val; |
| |
| val = target_read_memory (bp_tgt->reqstd_address - 2, |
| bp_record, 2); |
| if (val) |
| return val; |
| |
| /* Write the breakpoint. */ |
| bp_write_record1[0] = bp_record[0]; |
| bp_write_record1[1] = bp_record[1]; |
| bp = bp_write_record1; |
| val = target_write_raw_memory (bp_tgt->reqstd_address - 2, |
| bp, CSKY_WR_BKPT_MODE); |
| } |
| } |
| else |
| { |
| if (bp_tgt->placed_address % 4 == 0) |
| { |
| val = target_read_memory (bp_tgt->reqstd_address, |
| bp_tgt->shadow_contents, |
| CSKY_WR_BKPT_MODE); |
| if (val) |
| return val; |
| |
| /* Write the breakpoint. */ |
| bp = bp_write_record1; |
| val = target_write_raw_memory (bp_tgt->reqstd_address, |
| bp, CSKY_WR_BKPT_MODE); |
| } |
| else |
| { |
| val = target_read_memory (bp_tgt->reqstd_address, |
| bp_tgt->shadow_contents, |
| CSKY_WR_BKPT_MODE); |
| if (val) |
| return val; |
| |
| val = target_read_memory (bp_tgt->reqstd_address - 2, |
| bp_record, 2); |
| if (val) |
| return val; |
| |
| val = target_read_memory (bp_tgt->reqstd_address + 4, |
| bp_record + 2, 2); |
| if (val) |
| return val; |
| |
| bp_write_record1[0] = bp_record[0]; |
| bp_write_record1[1] = bp_record[1]; |
| bp_write_record2[2] = bp_record[2]; |
| bp_write_record2[3] = bp_record[3]; |
| |
| /* Write the breakpoint. */ |
| bp = bp_write_record1; |
| val = target_write_raw_memory (bp_tgt->reqstd_address - 2, bp, |
| CSKY_WR_BKPT_MODE); |
| if (val) |
| return val; |
| |
| /* Write the breakpoint. */ |
| bp = bp_write_record2; |
| val = target_write_raw_memory (bp_tgt->reqstd_address + 2, bp, |
| CSKY_WR_BKPT_MODE); |
| } |
| } |
| return val; |
| } |
| |
| /* Restore the breakpoint shadow_contents to the target. */ |
| |
| static int |
| csky_memory_remove_breakpoint (struct gdbarch *gdbarch, |
| struct bp_target_info *bp_tgt) |
| { |
| int val; |
| gdb_byte bp_record[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; |
| /* Different for shadow_len 2 or 4. */ |
| if (bp_tgt->shadow_len == 2) |
| { |
| /* Do word-sized writes on word-aligned boundaries and read |
| padding bytes as necessary. */ |
| if (bp_tgt->reqstd_address % 4 == 0) |
| { |
| val = target_read_memory (bp_tgt->reqstd_address + 2, |
| bp_record + 2, 2); |
| if (val) |
| return val; |
| bp_record[0] = bp_tgt->shadow_contents[0]; |
| bp_record[1] = bp_tgt->shadow_contents[1]; |
| return target_write_raw_memory (bp_tgt->reqstd_address, |
| bp_record, CSKY_WR_BKPT_MODE); |
| } |
| else |
| { |
| val = target_read_memory (bp_tgt->reqstd_address - 2, |
| bp_record, 2); |
| if (val) |
| return val; |
| bp_record[2] = bp_tgt->shadow_contents[0]; |
| bp_record[3] = bp_tgt->shadow_contents[1]; |
| return target_write_raw_memory (bp_tgt->reqstd_address - 2, |
| bp_record, CSKY_WR_BKPT_MODE); |
| } |
| } |
| else |
| { |
| /* Do word-sized writes on word-aligned boundaries and read |
| padding bytes as necessary. */ |
| if (bp_tgt->placed_address % 4 == 0) |
| { |
| return target_write_raw_memory (bp_tgt->reqstd_address, |
| bp_tgt->shadow_contents, |
| CSKY_WR_BKPT_MODE); |
| } |
| else |
| { |
| val = target_read_memory (bp_tgt->reqstd_address - 2, |
| bp_record, 2); |
| if (val) |
| return val; |
| val = target_read_memory (bp_tgt->reqstd_address + 4, |
| bp_record+6, 2); |
| if (val) |
| return val; |
| |
| bp_record[2] = bp_tgt->shadow_contents[0]; |
| bp_record[3] = bp_tgt->shadow_contents[1]; |
| bp_record[4] = bp_tgt->shadow_contents[2]; |
| bp_record[5] = bp_tgt->shadow_contents[3]; |
| |
| return target_write_raw_memory (bp_tgt->reqstd_address - 2, |
| bp_record, |
| CSKY_WR_BKPT_MODE * 2); |
| } |
| } |
| } |
| |
| /* Determine link register type. */ |
| |
| static lr_type_t |
| csky_analyze_lr_type (struct gdbarch *gdbarch, |
| CORE_ADDR start_pc, CORE_ADDR end_pc) |
| { |
| CORE_ADDR addr; |
| unsigned int insn, insn_len; |
| insn_len = 2; |
| |
| for (addr = start_pc; addr < end_pc; addr += insn_len) |
| { |
| insn_len = csky_get_insn (gdbarch, addr, &insn); |
| if (insn_len == 4) |
| { |
| if (CSKY_32_IS_MFCR_EPSR (insn) || CSKY_32_IS_MFCR_EPC (insn) |
| || CSKY_32_IS_RTE (insn)) |
| return LR_TYPE_EPC; |
| } |
| else if (CSKY_32_IS_MFCR_FPSR (insn) || CSKY_32_IS_MFCR_FPC (insn) |
| || CSKY_32_IS_RFI (insn)) |
| return LR_TYPE_FPC; |
| else if (CSKY_32_IS_JMP (insn) || CSKY_32_IS_BR (insn) |
| || CSKY_32_IS_JMPIX (insn) || CSKY_32_IS_JMPI (insn)) |
| return LR_TYPE_R15; |
| else |
| { |
| /* 16 bit instruction. */ |
| if (CSKY_16_IS_JMP (insn) || CSKY_16_IS_BR (insn) |
| || CSKY_16_IS_JMPIX (insn)) |
| return LR_TYPE_R15; |
| } |
| } |
| return LR_TYPE_R15; |
| } |
| |
| /* Heuristic unwinder. */ |
| |
| static struct csky_unwind_cache * |
| csky_frame_unwind_cache (struct frame_info *this_frame) |
| { |
| CORE_ADDR prologue_start, prologue_end, func_end, prev_pc, block_addr; |
| struct csky_unwind_cache *cache; |
| const struct block *bl; |
| unsigned long func_size = 0; |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| unsigned int sp_regnum = CSKY_SP_REGNUM; |
| |
| /* Default lr type is r15. */ |
| lr_type_t lr_type = LR_TYPE_R15; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct csky_unwind_cache); |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| /* Assume there is no frame until proven otherwise. */ |
| cache->framereg = sp_regnum; |
| |
| cache->framesize = 0; |
| |
| prev_pc = get_frame_pc (this_frame); |
| block_addr = get_frame_address_in_block (this_frame); |
| if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
| &func_end) == 0) |
| /* We couldn't find a function containing block_addr, so bail out |
| and hope for the best. */ |
| return cache; |
| |
| /* Get the (function) symbol matching prologue_start. */ |
| bl = block_for_pc (prologue_start); |
| if (bl != NULL) |
| func_size = bl->endaddr - bl->startaddr; |
| else |
| { |
| struct bound_minimal_symbol msymbol |
| = lookup_minimal_symbol_by_pc (prologue_start); |
| if (msymbol.minsym != NULL) |
| func_size = MSYMBOL_SIZE (msymbol.minsym); |
| } |
| |
| /* If FUNC_SIZE is 0 we may have a special-case use of lr |
| e.g. exception or interrupt. */ |
| if (func_size == 0) |
| lr_type = csky_analyze_lr_type (gdbarch, prologue_start, func_end); |
| |
| prologue_end = std::min (func_end, prev_pc); |
| |
| /* Analyze the function prologue. */ |
| csky_analyze_prologue (gdbarch, prologue_start, prologue_end, |
| func_end, this_frame, cache, lr_type); |
| |
| /* gdbarch_sp_regnum contains the value and not the address. */ |
| cache->saved_regs[sp_regnum].set_value (cache->prev_sp); |
| return cache; |
| } |
| |
| /* Implement the this_id function for the normal unwinder. */ |
| |
| static void |
| csky_frame_this_id (struct frame_info *this_frame, |
| void **this_prologue_cache, struct frame_id *this_id) |
| { |
| struct csky_unwind_cache *cache; |
| struct frame_id id; |
| |
| if (*this_prologue_cache == NULL) |
| *this_prologue_cache = csky_frame_unwind_cache (this_frame); |
| cache = (struct csky_unwind_cache *) *this_prologue_cache; |
| |
| /* This marks the outermost frame. */ |
| if (cache->prev_sp == 0) |
| return; |
| |
| id = frame_id_build (cache->prev_sp, get_frame_func (this_frame)); |
| *this_id = id; |
| } |
| |
| /* Implement the prev_register function for the normal unwinder. */ |
| |
| static struct value * |
| csky_frame_prev_register (struct frame_info *this_frame, |
| void **this_prologue_cache, int regnum) |
| { |
| struct csky_unwind_cache *cache; |
| |
| if (*this_prologue_cache == NULL) |
| *this_prologue_cache = csky_frame_unwind_cache (this_frame); |
| cache = (struct csky_unwind_cache *) *this_prologue_cache; |
| |
| return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
| regnum); |
| } |
| |
| /* Data structures for the normal prologue-analysis-based |
| unwinder. */ |
| |
| static const struct frame_unwind csky_unwind_cache = { |
| "cski prologue", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| csky_frame_this_id, |
| csky_frame_prev_register, |
| NULL, |
| default_frame_sniffer, |
| NULL, |
| NULL |
| }; |
| |
| |
| |
| static int |
| csky_stub_unwind_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| CORE_ADDR addr_in_block; |
| |
| addr_in_block = get_frame_address_in_block (this_frame); |
| |
| if (find_pc_partial_function (addr_in_block, NULL, NULL, NULL) == 0 |
| || in_plt_section (addr_in_block)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct csky_unwind_cache * |
| csky_make_stub_cache (struct frame_info *this_frame) |
| { |
| struct csky_unwind_cache *cache; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct csky_unwind_cache); |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| cache->prev_sp = get_frame_register_unsigned (this_frame, CSKY_SP_REGNUM); |
| |
| return cache; |
| } |
| |
| static void |
| csky_stub_this_id (struct frame_info *this_frame, |
| void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct csky_unwind_cache *cache; |
| |
| if (*this_cache == NULL) |
| *this_cache = csky_make_stub_cache (this_frame); |
| cache = (struct csky_unwind_cache *) *this_cache; |
| |
| /* Our frame ID for a stub frame is the current SP and LR. */ |
| *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame)); |
| } |
| |
| static struct value * |
| csky_stub_prev_register (struct frame_info *this_frame, |
| void **this_cache, |
| int prev_regnum) |
| { |
| struct csky_unwind_cache *cache; |
| |
| if (*this_cache == NULL) |
| *this_cache = csky_make_stub_cache (this_frame); |
| cache = (struct csky_unwind_cache *) *this_cache; |
| |
| /* If we are asked to unwind the PC, then return the LR. */ |
| if (prev_regnum == CSKY_PC_REGNUM) |
| { |
| CORE_ADDR lr; |
| |
| lr = frame_unwind_register_unsigned (this_frame, CSKY_LR_REGNUM); |
| return frame_unwind_got_constant (this_frame, prev_regnum, lr); |
| } |
| |
| if (prev_regnum == CSKY_SP_REGNUM) |
| return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp); |
| |
| return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
| prev_regnum); |
| } |
| |
| static frame_unwind csky_stub_unwind = { |
| "csky stub", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| csky_stub_this_id, |
| csky_stub_prev_register, |
| NULL, |
| csky_stub_unwind_sniffer |
| }; |
| |
| /* Implement the this_base, this_locals, and this_args hooks |
| for the normal unwinder. */ |
| |
| static CORE_ADDR |
| csky_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| { |
| struct csky_unwind_cache *cache; |
| |
| if (*this_cache == NULL) |
| *this_cache = csky_frame_unwind_cache (this_frame); |
| cache = (struct csky_unwind_cache *) *this_cache; |
| |
| return cache->prev_sp - cache->framesize; |
| } |
| |
| static const struct frame_base csky_frame_base = { |
| &csky_unwind_cache, |
| csky_frame_base_address, |
| csky_frame_base_address, |
| csky_frame_base_address |
| }; |
| |
| /* Initialize register access method. */ |
| |
| static void |
| csky_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, |
| struct dwarf2_frame_state_reg *reg, |
| struct frame_info *this_frame) |
| { |
| if (regnum == gdbarch_pc_regnum (gdbarch)) |
| reg->how = DWARF2_FRAME_REG_RA; |
| else if (regnum == gdbarch_sp_regnum (gdbarch)) |
| reg->how = DWARF2_FRAME_REG_CFA; |
| } |
| |
| /* Create csky register groups. */ |
| |
| static void |
| csky_init_reggroup () |
| { |
| cr_reggroup = reggroup_new ("cr", USER_REGGROUP); |
| fr_reggroup = reggroup_new ("fr", USER_REGGROUP); |
| vr_reggroup = reggroup_new ("vr", USER_REGGROUP); |
| mmu_reggroup = reggroup_new ("mmu", USER_REGGROUP); |
| prof_reggroup = reggroup_new ("profiling", USER_REGGROUP); |
| } |
| |
| /* Add register groups into reggroup list. */ |
| |
| static void |
| csky_add_reggroups (struct gdbarch *gdbarch) |
| { |
| reggroup_add (gdbarch, all_reggroup); |
| reggroup_add (gdbarch, general_reggroup); |
| reggroup_add (gdbarch, cr_reggroup); |
| reggroup_add (gdbarch, fr_reggroup); |
| reggroup_add (gdbarch, vr_reggroup); |
| reggroup_add (gdbarch, mmu_reggroup); |
| reggroup_add (gdbarch, prof_reggroup); |
| } |
| |
| /* Return the groups that a CSKY register can be categorised into. */ |
| |
| static int |
| csky_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
| struct reggroup *reggroup) |
| { |
| int raw_p; |
| |
| if (gdbarch_register_name (gdbarch, regnum) == NULL |
| || gdbarch_register_name (gdbarch, regnum)[0] == '\0') |
| return 0; |
| |
| if (reggroup == all_reggroup) |
| return 1; |
| |
| raw_p = regnum < gdbarch_num_regs (gdbarch); |
| if (reggroup == save_reggroup || reggroup == restore_reggroup) |
| return raw_p; |
| |
| if (((regnum >= CSKY_R0_REGNUM) && (regnum <= CSKY_R0_REGNUM + 31)) |
| && (reggroup == general_reggroup)) |
| return 1; |
| |
| if (((regnum == CSKY_PC_REGNUM) |
| || ((regnum >= CSKY_CR0_REGNUM) |
| && (regnum <= CSKY_CR0_REGNUM + 30))) |
| && (reggroup == cr_reggroup)) |
| return 2; |
| |
| if ((((regnum >= CSKY_VR0_REGNUM) && (regnum <= CSKY_VR0_REGNUM + 15)) |
| || ((regnum >= CSKY_VCR0_REGNUM) |
| && (regnum <= CSKY_VCR0_REGNUM + 2))) |
| && (reggroup == vr_reggroup)) |
| return 3; |
| |
| if (((regnum >= CSKY_MMU_REGNUM) && (regnum <= CSKY_MMU_REGNUM + 8)) |
| && (reggroup == mmu_reggroup)) |
| return 4; |
| |
| if (((regnum >= CSKY_PROFCR_REGNUM) |
| && (regnum <= CSKY_PROFCR_REGNUM + 48)) |
| && (reggroup == prof_reggroup)) |
| return 5; |
| |
| if ((((regnum >= CSKY_FR0_REGNUM) && (regnum <= CSKY_FR0_REGNUM + 15)) |
| || ((regnum >= CSKY_VCR0_REGNUM) && (regnum <= CSKY_VCR0_REGNUM + 2))) |
| && (reggroup == fr_reggroup)) |
| return 6; |
| |
| return 0; |
| } |
| |
| /* Implement the dwarf2_reg_to_regnum gdbarch method. */ |
| |
| static int |
| csky_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg) |
| { |
| if (dw_reg < 0 || dw_reg >= CSKY_NUM_REGS) |
| return -1; |
| return dw_reg; |
| } |
| |
| /* Override interface for command: info register. */ |
| |
| static void |
| csky_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, |
| struct frame_info *frame, int regnum, int all) |
| { |
| /* Call default print_registers_info function. */ |
| default_print_registers_info (gdbarch, file, frame, regnum, all); |
| |
| /* For command: info register. */ |
| if (regnum == -1 && all == 0) |
| { |
| default_print_registers_info (gdbarch, file, frame, |
| CSKY_PC_REGNUM, 0); |
| default_print_registers_info (gdbarch, file, frame, |
| CSKY_EPC_REGNUM, 0); |
| default_print_registers_info (gdbarch, file, frame, |
| CSKY_CR0_REGNUM, 0); |
| default_print_registers_info (gdbarch, file, frame, |
| CSKY_EPSR_REGNUM, 0); |
| } |
| return; |
| } |
| |
| /* Initialize the current architecture based on INFO. If possible, |
| re-use an architecture from ARCHES, which is a list of |
| architectures already created during this debugging session. |
| |
| Called at program startup, when reading a core file, and when |
| reading a binary file. */ |
| |
| static struct gdbarch * |
| csky_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| { |
| struct gdbarch *gdbarch; |
| struct gdbarch_tdep *tdep; |
| |
| /* Find a candidate among the list of pre-declared architectures. */ |
| arches = gdbarch_list_lookup_by_info (arches, &info); |
| if (arches != NULL) |
| return arches->gdbarch; |
| |
| /* None found, create a new architecture from the information |
| provided. */ |
| tdep = XCNEW (struct gdbarch_tdep); |
| gdbarch = gdbarch_alloc (&info, tdep); |
| |
| /* Target data types. */ |
| set_gdbarch_ptr_bit (gdbarch, 32); |
| set_gdbarch_addr_bit (gdbarch, 32); |
| set_gdbarch_short_bit (gdbarch, 16); |
| set_gdbarch_int_bit (gdbarch, 32); |
| set_gdbarch_long_bit (gdbarch, 32); |
| set_gdbarch_long_long_bit (gdbarch, 64); |
| set_gdbarch_float_bit (gdbarch, 32); |
| set_gdbarch_double_bit (gdbarch, 64); |
| set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
| set_gdbarch_double_format (gdbarch, floatformats_ieee_double); |
| |
| /* Information about the target architecture. */ |
| set_gdbarch_return_value (gdbarch, csky_return_value); |
| set_gdbarch_breakpoint_kind_from_pc (gdbarch, csky_breakpoint_kind_from_pc); |
| set_gdbarch_sw_breakpoint_from_kind (gdbarch, csky_sw_breakpoint_from_kind); |
| |
| /* Register architecture. */ |
| set_gdbarch_num_regs (gdbarch, CSKY_NUM_REGS); |
| set_gdbarch_pc_regnum (gdbarch, CSKY_PC_REGNUM); |
| set_gdbarch_sp_regnum (gdbarch, CSKY_SP_REGNUM); |
| set_gdbarch_register_name (gdbarch, csky_register_name); |
| set_gdbarch_register_type (gdbarch, csky_register_type); |
| set_gdbarch_read_pc (gdbarch, csky_read_pc); |
| set_gdbarch_write_pc (gdbarch, csky_write_pc); |
| set_gdbarch_print_registers_info (gdbarch, csky_print_registers_info); |
| csky_add_reggroups (gdbarch); |
| set_gdbarch_register_reggroup_p (gdbarch, csky_register_reggroup_p); |
| set_gdbarch_stab_reg_to_regnum (gdbarch, csky_dwarf_reg_to_regnum); |
| set_gdbarch_dwarf2_reg_to_regnum (gdbarch, csky_dwarf_reg_to_regnum); |
| dwarf2_frame_set_init_reg (gdbarch, csky_dwarf2_frame_init_reg); |
| |
| /* Functions to analyze frames. */ |
| frame_base_set_default (gdbarch, &csky_frame_base); |
| set_gdbarch_skip_prologue (gdbarch, csky_skip_prologue); |
| set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| set_gdbarch_frame_align (gdbarch, csky_frame_align); |
| set_gdbarch_stack_frame_destroyed_p (gdbarch, csky_stack_frame_destroyed_p); |
| |
| /* Functions handling dummy frames. */ |
| set_gdbarch_push_dummy_call (gdbarch, csky_push_dummy_call); |
| |
| /* Frame unwinders. Use DWARF debug info if available, |
| otherwise use our own unwinder. */ |
| dwarf2_append_unwinders (gdbarch); |
| frame_unwind_append_unwinder (gdbarch, &csky_stub_unwind); |
| frame_unwind_append_unwinder (gdbarch, &csky_unwind_cache); |
| |
| /* Breakpoints. */ |
| set_gdbarch_memory_insert_breakpoint (gdbarch, |
| csky_memory_insert_breakpoint); |
| set_gdbarch_memory_remove_breakpoint (gdbarch, |
| csky_memory_remove_breakpoint); |
| |
| /* Hook in ABI-specific overrides, if they have been registered. */ |
| gdbarch_init_osabi (info, gdbarch); |
| |
| /* Support simple overlay manager. */ |
| set_gdbarch_overlay_update (gdbarch, simple_overlay_update); |
| set_gdbarch_char_signed (gdbarch, 0); |
| return gdbarch; |
| } |
| |
| void _initialize_csky_tdep (); |
| void |
| _initialize_csky_tdep () |
| { |
| |
| register_gdbarch_init (bfd_arch_csky, csky_gdbarch_init); |
| |
| csky_init_reggroup (); |
| |
| /* Allow debugging this file's internals. */ |
| add_setshow_boolean_cmd ("csky", class_maintenance, &csky_debug, |
| _("Set C-Sky debugging."), |
| _("Show C-Sky debugging."), |
| _("When on, C-Sky specific debugging is enabled."), |
| NULL, |
| NULL, |
| &setdebuglist, &showdebuglist); |
| } |