| /* Intel 387 floating point stuff. |
| |
| Copyright (C) 1988-2021 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "frame.h" |
| #include "gdbcore.h" |
| #include "inferior.h" |
| #include "language.h" |
| #include "regcache.h" |
| #include "target-float.h" |
| #include "value.h" |
| |
| #include "i386-tdep.h" |
| #include "i387-tdep.h" |
| #include "gdbsupport/x86-xstate.h" |
| |
| /* Print the floating point number specified by RAW. */ |
| |
| static void |
| print_i387_value (struct gdbarch *gdbarch, |
| const gdb_byte *raw, struct ui_file *file) |
| { |
| /* We try to print 19 digits. The last digit may or may not contain |
| garbage, but we'd better print one too many. We need enough room |
| to print the value, 1 position for the sign, 1 for the decimal |
| point, 19 for the digits and 6 for the exponent adds up to 27. */ |
| const struct type *type = i387_ext_type (gdbarch); |
| std::string str = target_float_to_string (raw, type, " %-+27.19g"); |
| fprintf_filtered (file, "%s", str.c_str ()); |
| } |
| |
| /* Print the classification for the register contents RAW. */ |
| |
| static void |
| print_i387_ext (struct gdbarch *gdbarch, |
| const gdb_byte *raw, struct ui_file *file) |
| { |
| int sign; |
| int integer; |
| unsigned int exponent; |
| unsigned long fraction[2]; |
| |
| sign = raw[9] & 0x80; |
| integer = raw[7] & 0x80; |
| exponent = (((raw[9] & 0x7f) << 8) | raw[8]); |
| fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); |
| fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) |
| | (raw[5] << 8) | raw[4]); |
| |
| if (exponent == 0x7fff && integer) |
| { |
| if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000) |
| /* Infinity. */ |
| fprintf_filtered (file, " %cInf", (sign ? '-' : '+')); |
| else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000) |
| /* Real Indefinite (QNaN). */ |
| fputs_unfiltered (" Real Indefinite (QNaN)", file); |
| else if (fraction[1] & 0x40000000) |
| /* QNaN. */ |
| fputs_filtered (" QNaN", file); |
| else |
| /* SNaN. */ |
| fputs_filtered (" SNaN", file); |
| } |
| else if (exponent < 0x7fff && exponent > 0x0000 && integer) |
| /* Normal. */ |
| print_i387_value (gdbarch, raw, file); |
| else if (exponent == 0x0000) |
| { |
| /* Denormal or zero. */ |
| print_i387_value (gdbarch, raw, file); |
| |
| if (integer) |
| /* Pseudo-denormal. */ |
| fputs_filtered (" Pseudo-denormal", file); |
| else if (fraction[0] || fraction[1]) |
| /* Denormal. */ |
| fputs_filtered (" Denormal", file); |
| } |
| else |
| /* Unsupported. */ |
| fputs_filtered (" Unsupported", file); |
| } |
| |
| /* Print the status word STATUS. If STATUS_P is false, then STATUS |
| was unavailable. */ |
| |
| static void |
| print_i387_status_word (int status_p, |
| unsigned int status, struct ui_file *file) |
| { |
| fprintf_filtered (file, "Status Word: "); |
| if (!status_p) |
| { |
| fprintf_filtered (file, "%s\n", _("<unavailable>")); |
| return; |
| } |
| |
| fprintf_filtered (file, "%s", hex_string_custom (status, 4)); |
| fputs_filtered (" ", file); |
| fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " "); |
| fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " "); |
| fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " "); |
| fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " "); |
| fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " "); |
| fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " "); |
| fputs_filtered (" ", file); |
| fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " "); |
| fputs_filtered (" ", file); |
| fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " "); |
| fputs_filtered (" ", file); |
| fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " "); |
| fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " "); |
| fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " "); |
| fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " "); |
| |
| fputs_filtered ("\n", file); |
| |
| fprintf_filtered (file, |
| " TOP: %d\n", ((status >> 11) & 7)); |
| } |
| |
| /* Print the control word CONTROL. If CONTROL_P is false, then |
| CONTROL was unavailable. */ |
| |
| static void |
| print_i387_control_word (int control_p, |
| unsigned int control, struct ui_file *file) |
| { |
| fprintf_filtered (file, "Control Word: "); |
| if (!control_p) |
| { |
| fprintf_filtered (file, "%s\n", _("<unavailable>")); |
| return; |
| } |
| |
| fprintf_filtered (file, "%s", hex_string_custom (control, 4)); |
| fputs_filtered (" ", file); |
| fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " "); |
| fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " "); |
| fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " "); |
| fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " "); |
| fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " "); |
| fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " "); |
| |
| fputs_filtered ("\n", file); |
| |
| fputs_filtered (" PC: ", file); |
| switch ((control >> 8) & 3) |
| { |
| case 0: |
| fputs_filtered ("Single Precision (24-bits)\n", file); |
| break; |
| case 1: |
| fputs_filtered ("Reserved\n", file); |
| break; |
| case 2: |
| fputs_filtered ("Double Precision (53-bits)\n", file); |
| break; |
| case 3: |
| fputs_filtered ("Extended Precision (64-bits)\n", file); |
| break; |
| } |
| |
| fputs_filtered (" RC: ", file); |
| switch ((control >> 10) & 3) |
| { |
| case 0: |
| fputs_filtered ("Round to nearest\n", file); |
| break; |
| case 1: |
| fputs_filtered ("Round down\n", file); |
| break; |
| case 2: |
| fputs_filtered ("Round up\n", file); |
| break; |
| case 3: |
| fputs_filtered ("Round toward zero\n", file); |
| break; |
| } |
| } |
| |
| /* Print out the i387 floating point state. Note that we ignore FRAME |
| in the code below. That's OK since floating-point registers are |
| never saved on the stack. */ |
| |
| void |
| i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
| struct frame_info *frame, const char *args) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); |
| ULONGEST fctrl; |
| int fctrl_p; |
| ULONGEST fstat; |
| int fstat_p; |
| ULONGEST ftag; |
| int ftag_p; |
| ULONGEST fiseg; |
| int fiseg_p; |
| ULONGEST fioff; |
| int fioff_p; |
| ULONGEST foseg; |
| int foseg_p; |
| ULONGEST fooff; |
| int fooff_p; |
| ULONGEST fop; |
| int fop_p; |
| int fpreg; |
| int top; |
| |
| gdb_assert (gdbarch == get_frame_arch (frame)); |
| |
| fctrl_p = read_frame_register_unsigned (frame, |
| I387_FCTRL_REGNUM (tdep), &fctrl); |
| fstat_p = read_frame_register_unsigned (frame, |
| I387_FSTAT_REGNUM (tdep), &fstat); |
| ftag_p = read_frame_register_unsigned (frame, |
| I387_FTAG_REGNUM (tdep), &ftag); |
| fiseg_p = read_frame_register_unsigned (frame, |
| I387_FISEG_REGNUM (tdep), &fiseg); |
| fioff_p = read_frame_register_unsigned (frame, |
| I387_FIOFF_REGNUM (tdep), &fioff); |
| foseg_p = read_frame_register_unsigned (frame, |
| I387_FOSEG_REGNUM (tdep), &foseg); |
| fooff_p = read_frame_register_unsigned (frame, |
| I387_FOOFF_REGNUM (tdep), &fooff); |
| fop_p = read_frame_register_unsigned (frame, |
| I387_FOP_REGNUM (tdep), &fop); |
| |
| if (fstat_p) |
| { |
| top = ((fstat >> 11) & 7); |
| |
| for (fpreg = 7; fpreg >= 0; fpreg--) |
| { |
| struct value *regval; |
| int regnum; |
| int i; |
| int tag = -1; |
| |
| fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg); |
| |
| if (ftag_p) |
| { |
| tag = (ftag >> (fpreg * 2)) & 3; |
| |
| switch (tag) |
| { |
| case 0: |
| fputs_filtered ("Valid ", file); |
| break; |
| case 1: |
| fputs_filtered ("Zero ", file); |
| break; |
| case 2: |
| fputs_filtered ("Special ", file); |
| break; |
| case 3: |
| fputs_filtered ("Empty ", file); |
| break; |
| } |
| } |
| else |
| fputs_filtered ("Unknown ", file); |
| |
| regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep); |
| regval = get_frame_register_value (frame, regnum); |
| |
| if (value_entirely_available (regval)) |
| { |
| const gdb_byte *raw = value_contents (regval); |
| |
| fputs_filtered ("0x", file); |
| for (i = 9; i >= 0; i--) |
| fprintf_filtered (file, "%02x", raw[i]); |
| |
| if (tag != -1 && tag != 3) |
| print_i387_ext (gdbarch, raw, file); |
| } |
| else |
| fprintf_filtered (file, "%s", _("<unavailable>")); |
| |
| fputs_filtered ("\n", file); |
| } |
| } |
| |
| fputs_filtered ("\n", file); |
| print_i387_status_word (fstat_p, fstat, file); |
| print_i387_control_word (fctrl_p, fctrl, file); |
| fprintf_filtered (file, "Tag Word: %s\n", |
| ftag_p ? hex_string_custom (ftag, 4) : _("<unavailable>")); |
| fprintf_filtered (file, "Instruction Pointer: %s:", |
| fiseg_p ? hex_string_custom (fiseg, 2) : _("<unavailable>")); |
| fprintf_filtered (file, "%s\n", |
| fioff_p ? hex_string_custom (fioff, 8) : _("<unavailable>")); |
| fprintf_filtered (file, "Operand Pointer: %s:", |
| foseg_p ? hex_string_custom (foseg, 2) : _("<unavailable>")); |
| fprintf_filtered (file, "%s\n", |
| fooff_p ? hex_string_custom (fooff, 8) : _("<unavailable>")); |
| fprintf_filtered (file, "Opcode: %s\n", |
| fop_p |
| ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4)) |
| : _("<unavailable>")); |
| } |
| |
| |
| /* Return nonzero if a value of type TYPE stored in register REGNUM |
| needs any special handling. */ |
| |
| int |
| i387_convert_register_p (struct gdbarch *gdbarch, int regnum, |
| struct type *type) |
| { |
| if (i386_fp_regnum_p (gdbarch, regnum)) |
| { |
| /* Floating point registers must be converted unless we are |
| accessing them in their hardware type or TYPE is not float. */ |
| if (type == i387_ext_type (gdbarch) |
| || type->code () != TYPE_CODE_FLT) |
| return 0; |
| else |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Read a value of type TYPE from register REGNUM in frame FRAME, and |
| return its contents in TO. */ |
| |
| int |
| i387_register_to_value (struct frame_info *frame, int regnum, |
| struct type *type, gdb_byte *to, |
| int *optimizedp, int *unavailablep) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| gdb_byte from[I386_MAX_REGISTER_SIZE]; |
| |
| gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); |
| |
| /* We only support floating-point values. */ |
| if (type->code () != TYPE_CODE_FLT) |
| { |
| warning (_("Cannot convert floating-point register value " |
| "to non-floating-point type.")); |
| *optimizedp = *unavailablep = 0; |
| return 0; |
| } |
| |
| /* Convert to TYPE. */ |
| if (!get_frame_register_bytes (frame, regnum, 0, |
| gdb::make_array_view (from, |
| register_size (gdbarch, |
| regnum)), |
| optimizedp, unavailablep)) |
| return 0; |
| |
| target_float_convert (from, i387_ext_type (gdbarch), to, type); |
| *optimizedp = *unavailablep = 0; |
| return 1; |
| } |
| |
| /* Write the contents FROM of a value of type TYPE into register |
| REGNUM in frame FRAME. */ |
| |
| void |
| i387_value_to_register (struct frame_info *frame, int regnum, |
| struct type *type, const gdb_byte *from) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| gdb_byte to[I386_MAX_REGISTER_SIZE]; |
| |
| gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); |
| |
| /* We only support floating-point values. */ |
| if (type->code () != TYPE_CODE_FLT) |
| { |
| warning (_("Cannot convert non-floating-point type " |
| "to floating-point register value.")); |
| return; |
| } |
| |
| /* Convert from TYPE. */ |
| target_float_convert (from, type, to, i387_ext_type (gdbarch)); |
| put_frame_register (frame, regnum, to); |
| } |
| |
| |
| /* Handle FSAVE and FXSAVE formats. */ |
| |
| /* At fsave_offset[REGNUM] you'll find the offset to the location in |
| the data structure used by the "fsave" instruction where GDB |
| register REGNUM is stored. */ |
| |
| static int fsave_offset[] = |
| { |
| 28 + 0 * 10, /* %st(0) ... */ |
| 28 + 1 * 10, |
| 28 + 2 * 10, |
| 28 + 3 * 10, |
| 28 + 4 * 10, |
| 28 + 5 * 10, |
| 28 + 6 * 10, |
| 28 + 7 * 10, /* ... %st(7). */ |
| 0, /* `fctrl' (16 bits). */ |
| 4, /* `fstat' (16 bits). */ |
| 8, /* `ftag' (16 bits). */ |
| 16, /* `fiseg' (16 bits). */ |
| 12, /* `fioff'. */ |
| 24, /* `foseg' (16 bits). */ |
| 20, /* `fooff'. */ |
| 18 /* `fop' (bottom 11 bits). */ |
| }; |
| |
| #define FSAVE_ADDR(tdep, fsave, regnum) \ |
| (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)]) |
| |
| |
| /* Fill register REGNUM in REGCACHE with the appropriate value from |
| *FSAVE. This function masks off any of the reserved bits in |
| *FSAVE. */ |
| |
| void |
| i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| const gdb_byte *regs = (const gdb_byte *) fsave; |
| int i; |
| |
| gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); |
| |
| for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) |
| if (regnum == -1 || regnum == i) |
| { |
| if (fsave == NULL) |
| { |
| regcache->raw_supply (i, NULL); |
| continue; |
| } |
| |
| /* Most of the FPU control registers occupy only 16 bits in the |
| fsave area. Give those a special treatment. */ |
| if (i >= I387_FCTRL_REGNUM (tdep) |
| && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) |
| { |
| gdb_byte val[4]; |
| |
| memcpy (val, FSAVE_ADDR (tdep, regs, i), 2); |
| val[2] = val[3] = 0; |
| if (i == I387_FOP_REGNUM (tdep)) |
| val[1] &= ((1 << 3) - 1); |
| regcache->raw_supply (i, val); |
| } |
| else |
| regcache->raw_supply (i, FSAVE_ADDR (tdep, regs, i)); |
| } |
| |
| /* Provide dummy values for the SSE registers. */ |
| for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) |
| if (regnum == -1 || regnum == i) |
| regcache->raw_supply (i, NULL); |
| if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep)) |
| { |
| gdb_byte buf[4]; |
| |
| store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL); |
| regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf); |
| } |
| } |
| |
| /* Fill register REGNUM (if it is a floating-point register) in *FSAVE |
| with the value from REGCACHE. If REGNUM is -1, do this for all |
| registers. This function doesn't touch any of the reserved bits in |
| *FSAVE. */ |
| |
| void |
| i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); |
| gdb_byte *regs = (gdb_byte *) fsave; |
| int i; |
| |
| gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); |
| |
| for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) |
| if (regnum == -1 || regnum == i) |
| { |
| /* Most of the FPU control registers occupy only 16 bits in |
| the fsave area. Give those a special treatment. */ |
| if (i >= I387_FCTRL_REGNUM (tdep) |
| && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) |
| { |
| gdb_byte buf[4]; |
| |
| regcache->raw_collect (i, buf); |
| |
| if (i == I387_FOP_REGNUM (tdep)) |
| { |
| /* The opcode occupies only 11 bits. Make sure we |
| don't touch the other bits. */ |
| buf[1] &= ((1 << 3) - 1); |
| buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); |
| } |
| memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2); |
| } |
| else |
| regcache->raw_collect (i, FSAVE_ADDR (tdep, regs, i)); |
| } |
| } |
| |
| |
| /* At fxsave_offset[REGNUM] you'll find the offset to the location in |
| the data structure used by the "fxsave" instruction where GDB |
| register REGNUM is stored. */ |
| |
| static int fxsave_offset[] = |
| { |
| 32, /* %st(0) through ... */ |
| 48, |
| 64, |
| 80, |
| 96, |
| 112, |
| 128, |
| 144, /* ... %st(7) (80 bits each). */ |
| 0, /* `fctrl' (16 bits). */ |
| 2, /* `fstat' (16 bits). */ |
| 4, /* `ftag' (16 bits). */ |
| 12, /* `fiseg' (16 bits). */ |
| 8, /* `fioff'. */ |
| 20, /* `foseg' (16 bits). */ |
| 16, /* `fooff'. */ |
| 6, /* `fop' (bottom 11 bits). */ |
| 160 + 0 * 16, /* %xmm0 through ... */ |
| 160 + 1 * 16, |
| 160 + 2 * 16, |
| 160 + 3 * 16, |
| 160 + 4 * 16, |
| 160 + 5 * 16, |
| 160 + 6 * 16, |
| 160 + 7 * 16, |
| 160 + 8 * 16, |
| 160 + 9 * 16, |
| 160 + 10 * 16, |
| 160 + 11 * 16, |
| 160 + 12 * 16, |
| 160 + 13 * 16, |
| 160 + 14 * 16, |
| 160 + 15 * 16, /* ... %xmm15 (128 bits each). */ |
| }; |
| |
| #define FXSAVE_ADDR(tdep, fxsave, regnum) \ |
| (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)]) |
| |
| /* We made an unfortunate choice in putting %mxcsr after the SSE |
| registers %xmm0-%xmm7 instead of before, since it makes supporting |
| the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we |
| don't include the offset for %mxcsr here above. */ |
| |
| #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24) |
| |
| static int i387_tag (const gdb_byte *raw); |
| |
| |
| /* Fill register REGNUM in REGCACHE with the appropriate |
| floating-point or SSE register value from *FXSAVE. This function |
| masks off any of the reserved bits in *FXSAVE. */ |
| |
| void |
| i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); |
| const gdb_byte *regs = (const gdb_byte *) fxsave; |
| int i; |
| |
| gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); |
| gdb_assert (tdep->num_xmm_regs > 0); |
| |
| for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) |
| if (regnum == -1 || regnum == i) |
| { |
| if (regs == NULL) |
| { |
| regcache->raw_supply (i, NULL); |
| continue; |
| } |
| |
| /* Most of the FPU control registers occupy only 16 bits in |
| the fxsave area. Give those a special treatment. */ |
| if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) |
| && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) |
| { |
| gdb_byte val[4]; |
| |
| memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2); |
| val[2] = val[3] = 0; |
| if (i == I387_FOP_REGNUM (tdep)) |
| val[1] &= ((1 << 3) - 1); |
| else if (i== I387_FTAG_REGNUM (tdep)) |
| { |
| /* The fxsave area contains a simplified version of |
| the tag word. We have to look at the actual 80-bit |
| FP data to recreate the traditional i387 tag word. */ |
| |
| unsigned long ftag = 0; |
| int fpreg; |
| int top; |
| |
| top = ((FXSAVE_ADDR (tdep, regs, |
| I387_FSTAT_REGNUM (tdep)))[1] >> 3); |
| top &= 0x7; |
| |
| for (fpreg = 7; fpreg >= 0; fpreg--) |
| { |
| int tag; |
| |
| if (val[0] & (1 << fpreg)) |
| { |
| int thisreg = (fpreg + 8 - top) % 8 |
| + I387_ST0_REGNUM (tdep); |
| tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg)); |
| } |
| else |
| tag = 3; /* Empty */ |
| |
| ftag |= tag << (2 * fpreg); |
| } |
| val[0] = ftag & 0xff; |
| val[1] = (ftag >> 8) & 0xff; |
| } |
| regcache->raw_supply (i, val); |
| } |
| else |
| regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); |
| } |
| |
| if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) |
| { |
| if (regs == NULL) |
| regcache->raw_supply (I387_MXCSR_REGNUM (tdep), NULL); |
| else |
| regcache->raw_supply (I387_MXCSR_REGNUM (tdep), |
| FXSAVE_MXCSR_ADDR (regs)); |
| } |
| } |
| |
| /* Fill register REGNUM (if it is a floating-point or SSE register) in |
| *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for |
| all registers. This function doesn't touch any of the reserved |
| bits in *FXSAVE. */ |
| |
| void |
| i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); |
| gdb_byte *regs = (gdb_byte *) fxsave; |
| int i; |
| |
| gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); |
| gdb_assert (tdep->num_xmm_regs > 0); |
| |
| for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) |
| if (regnum == -1 || regnum == i) |
| { |
| /* Most of the FPU control registers occupy only 16 bits in |
| the fxsave area. Give those a special treatment. */ |
| if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) |
| && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) |
| { |
| gdb_byte buf[4]; |
| |
| regcache->raw_collect (i, buf); |
| |
| if (i == I387_FOP_REGNUM (tdep)) |
| { |
| /* The opcode occupies only 11 bits. Make sure we |
| don't touch the other bits. */ |
| buf[1] &= ((1 << 3) - 1); |
| buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); |
| } |
| else if (i == I387_FTAG_REGNUM (tdep)) |
| { |
| /* Converting back is much easier. */ |
| |
| unsigned short ftag; |
| int fpreg; |
| |
| ftag = (buf[1] << 8) | buf[0]; |
| buf[0] = 0; |
| buf[1] = 0; |
| |
| for (fpreg = 7; fpreg >= 0; fpreg--) |
| { |
| int tag = (ftag >> (fpreg * 2)) & 3; |
| |
| if (tag != 3) |
| buf[0] |= (1 << fpreg); |
| } |
| } |
| memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2); |
| } |
| else |
| regcache->raw_collect (i, FXSAVE_ADDR (tdep, regs, i)); |
| } |
| |
| if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) |
| regcache->raw_collect (I387_MXCSR_REGNUM (tdep), |
| FXSAVE_MXCSR_ADDR (regs)); |
| } |
| |
| /* `xstate_bv' is at byte offset 512. */ |
| #define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512) |
| |
| /* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in |
| the upper 128bit of AVX register data structure used by the "xsave" |
| instruction where GDB register REGNUM is stored. */ |
| |
| static int xsave_avxh_offset[] = |
| { |
| 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */ |
| 576 + 1 * 16, |
| 576 + 2 * 16, |
| 576 + 3 * 16, |
| 576 + 4 * 16, |
| 576 + 5 * 16, |
| 576 + 6 * 16, |
| 576 + 7 * 16, |
| 576 + 8 * 16, |
| 576 + 9 * 16, |
| 576 + 10 * 16, |
| 576 + 11 * 16, |
| 576 + 12 * 16, |
| 576 + 13 * 16, |
| 576 + 14 * 16, |
| 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */ |
| }; |
| |
| #define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \ |
| (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)]) |
| |
| /* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in |
| the upper 128bit of ZMM register data structure used by the "xsave" |
| instruction where GDB register REGNUM is stored. */ |
| |
| static int xsave_ymm_avx512_offset[] = |
| { |
| /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */ |
| 1664 + 16 + 0 * 64, /* %ymm16 through... */ |
| 1664 + 16 + 1 * 64, |
| 1664 + 16 + 2 * 64, |
| 1664 + 16 + 3 * 64, |
| 1664 + 16 + 4 * 64, |
| 1664 + 16 + 5 * 64, |
| 1664 + 16 + 6 * 64, |
| 1664 + 16 + 7 * 64, |
| 1664 + 16 + 8 * 64, |
| 1664 + 16 + 9 * 64, |
| 1664 + 16 + 10 * 64, |
| 1664 + 16 + 11 * 64, |
| 1664 + 16 + 12 * 64, |
| 1664 + 16 + 13 * 64, |
| 1664 + 16 + 14 * 64, |
| 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */ |
| }; |
| |
| #define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \ |
| (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)]) |
| |
| static int xsave_xmm_avx512_offset[] = |
| { |
| 1664 + 0 * 64, /* %ymm16 through... */ |
| 1664 + 1 * 64, |
| 1664 + 2 * 64, |
| 1664 + 3 * 64, |
| 1664 + 4 * 64, |
| 1664 + 5 * 64, |
| 1664 + 6 * 64, |
| 1664 + 7 * 64, |
| 1664 + 8 * 64, |
| 1664 + 9 * 64, |
| 1664 + 10 * 64, |
| 1664 + 11 * 64, |
| 1664 + 12 * 64, |
| 1664 + 13 * 64, |
| 1664 + 14 * 64, |
| 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */ |
| }; |
| |
| #define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \ |
| (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)]) |
| |
| static int xsave_mpx_offset[] = { |
| 960 + 0 * 16, /* bnd0r...bnd3r registers. */ |
| 960 + 1 * 16, |
| 960 + 2 * 16, |
| 960 + 3 * 16, |
| 1024 + 0 * 8, /* bndcfg ... bndstatus. */ |
| 1024 + 1 * 8, |
| }; |
| |
| #define XSAVE_MPX_ADDR(tdep, xsave, regnum) \ |
| (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)]) |
| |
| /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location |
| of the AVX512 opmask register data structure used by the "xsave" |
| instruction where GDB register REGNUM is stored. */ |
| |
| static int xsave_avx512_k_offset[] = |
| { |
| 1088 + 0 * 8, /* %k0 through... */ |
| 1088 + 1 * 8, |
| 1088 + 2 * 8, |
| 1088 + 3 * 8, |
| 1088 + 4 * 8, |
| 1088 + 5 * 8, |
| 1088 + 6 * 8, |
| 1088 + 7 * 8 /* %k7 (64 bits each). */ |
| }; |
| |
| #define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \ |
| (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)]) |
| |
| /* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in |
| the upper 256bit of AVX512 ZMMH register data structure used by the "xsave" |
| instruction where GDB register REGNUM is stored. */ |
| |
| static int xsave_avx512_zmm_h_offset[] = |
| { |
| 1152 + 0 * 32, |
| 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */ |
| 1152 + 2 * 32, |
| 1152 + 3 * 32, |
| 1152 + 4 * 32, |
| 1152 + 5 * 32, |
| 1152 + 6 * 32, |
| 1152 + 7 * 32, |
| 1152 + 8 * 32, |
| 1152 + 9 * 32, |
| 1152 + 10 * 32, |
| 1152 + 11 * 32, |
| 1152 + 12 * 32, |
| 1152 + 13 * 32, |
| 1152 + 14 * 32, |
| 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */ |
| 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */ |
| 1664 + 32 + 1 * 64, |
| 1664 + 32 + 2 * 64, |
| 1664 + 32 + 3 * 64, |
| 1664 + 32 + 4 * 64, |
| 1664 + 32 + 5 * 64, |
| 1664 + 32 + 6 * 64, |
| 1664 + 32 + 7 * 64, |
| 1664 + 32 + 8 * 64, |
| 1664 + 32 + 9 * 64, |
| 1664 + 32 + 10 * 64, |
| 1664 + 32 + 11 * 64, |
| 1664 + 32 + 12 * 64, |
| 1664 + 32 + 13 * 64, |
| 1664 + 32 + 14 * 64, |
| 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */ |
| }; |
| |
| #define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \ |
| (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)]) |
| |
| /* At xsave_pkeys_offset[REGNUM] you find the offset to the location |
| of the PKRU register data structure used by the "xsave" |
| instruction where GDB register REGNUM is stored. */ |
| |
| static int xsave_pkeys_offset[] = |
| { |
| 2688 + 0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by |
| instructions and applications). */ |
| }; |
| |
| #define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \ |
| (xsave + xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)]) |
| |
| |
| /* Extract from XSAVE a bitset of the features that are available on the |
| target, but which have not yet been enabled. */ |
| |
| ULONGEST |
| i387_xsave_get_clear_bv (struct gdbarch *gdbarch, const void *xsave) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| const gdb_byte *regs = (const gdb_byte *) xsave; |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| /* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */ |
| ULONGEST xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs), |
| 8, byte_order); |
| |
| /* Clear part in vector registers if its bit in xstat_bv is zero. */ |
| ULONGEST clear_bv = (~(xstate_bv)) & tdep->xcr0; |
| |
| return clear_bv; |
| } |
| |
| /* Similar to i387_supply_fxsave, but use XSAVE extended state. */ |
| |
| void |
| i387_supply_xsave (struct regcache *regcache, int regnum, |
| const void *xsave) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| const gdb_byte *regs = (const gdb_byte *) xsave; |
| int i; |
| /* In 64-bit mode the split between "low" and "high" ZMM registers is at |
| ZMM16. Outside of 64-bit mode there are no "high" ZMM registers at all. |
| Precalculate the number to be used for the split point, with the all |
| registers in the "low" portion outside of 64-bit mode. */ |
| unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep) |
| + std::min (tdep->num_zmm_regs, 16); |
| ULONGEST clear_bv; |
| static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 }; |
| enum |
| { |
| none = 0x0, |
| x87 = 0x1, |
| sse = 0x2, |
| avxh = 0x4, |
| mpx = 0x8, |
| avx512_k = 0x10, |
| avx512_zmm_h = 0x20, |
| avx512_ymmh_avx512 = 0x40, |
| avx512_xmm_avx512 = 0x80, |
| pkeys = 0x100, |
| all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h |
| | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys |
| } regclass; |
| |
| gdb_assert (regs != NULL); |
| gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); |
| gdb_assert (tdep->num_xmm_regs > 0); |
| |
| if (regnum == -1) |
| regclass = all; |
| else if (regnum >= I387_PKRU_REGNUM (tdep) |
| && regnum < I387_PKEYSEND_REGNUM (tdep)) |
| regclass = pkeys; |
| else if (regnum >= I387_ZMM0H_REGNUM (tdep) |
| && regnum < I387_ZMMENDH_REGNUM (tdep)) |
| regclass = avx512_zmm_h; |
| else if (regnum >= I387_K0_REGNUM (tdep) |
| && regnum < I387_KEND_REGNUM (tdep)) |
| regclass = avx512_k; |
| else if (regnum >= I387_YMM16H_REGNUM (tdep) |
| && regnum < I387_YMMH_AVX512_END_REGNUM (tdep)) |
| regclass = avx512_ymmh_avx512; |
| else if (regnum >= I387_XMM16_REGNUM (tdep) |
| && regnum < I387_XMM_AVX512_END_REGNUM (tdep)) |
| regclass = avx512_xmm_avx512; |
| else if (regnum >= I387_YMM0H_REGNUM (tdep) |
| && regnum < I387_YMMENDH_REGNUM (tdep)) |
| regclass = avxh; |
| else if (regnum >= I387_BND0R_REGNUM (tdep) |
| && regnum < I387_MPXEND_REGNUM (tdep)) |
| regclass = mpx; |
| else if (regnum >= I387_XMM0_REGNUM (tdep) |
| && regnum < I387_MXCSR_REGNUM (tdep)) |
| regclass = sse; |
| else if (regnum >= I387_ST0_REGNUM (tdep) |
| && regnum < I387_FCTRL_REGNUM (tdep)) |
| regclass = x87; |
| else |
| regclass = none; |
| |
| clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave); |
| |
| /* With the delayed xsave mechanism, in between the program |
| starting, and the program accessing the vector registers for the |
| first time, the register's values are invalid. The kernel |
| initializes register states to zero when they are set the first |
| time in a program. This means that from the user-space programs' |
| perspective, it's the same as if the registers have always been |
| zero from the start of the program. Therefore, the debugger |
| should provide the same illusion to the user. */ |
| |
| switch (regclass) |
| { |
| case none: |
| break; |
| |
| case pkeys: |
| if ((clear_bv & X86_XSTATE_PKRU)) |
| regcache->raw_supply (regnum, zero); |
| else |
| regcache->raw_supply (regnum, XSAVE_PKEYS_ADDR (tdep, regs, regnum)); |
| return; |
| |
| case avx512_zmm_h: |
| if ((clear_bv & (regnum < zmm_endlo_regnum ? X86_XSTATE_ZMM_H |
| : X86_XSTATE_ZMM))) |
| regcache->raw_supply (regnum, zero); |
| else |
| regcache->raw_supply (regnum, |
| XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum)); |
| return; |
| |
| case avx512_k: |
| if ((clear_bv & X86_XSTATE_K)) |
| regcache->raw_supply (regnum, zero); |
| else |
| regcache->raw_supply (regnum, XSAVE_AVX512_K_ADDR (tdep, regs, regnum)); |
| return; |
| |
| case avx512_ymmh_avx512: |
| if ((clear_bv & X86_XSTATE_ZMM)) |
| regcache->raw_supply (regnum, zero); |
| else |
| regcache->raw_supply (regnum, |
| XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum)); |
| return; |
| |
| case avx512_xmm_avx512: |
| if ((clear_bv & X86_XSTATE_ZMM)) |
| regcache->raw_supply (regnum, zero); |
| else |
| regcache->raw_supply (regnum, |
| XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum)); |
| return; |
| |
| case avxh: |
| if ((clear_bv & X86_XSTATE_AVX)) |
| regcache->raw_supply (regnum, zero); |
| else |
| regcache->raw_supply (regnum, XSAVE_AVXH_ADDR (tdep, regs, regnum)); |
| return; |
| |
| case mpx: |
| if ((clear_bv & X86_XSTATE_BNDREGS)) |
| regcache->raw_supply (regnum, zero); |
| else |
| regcache->raw_supply (regnum, XSAVE_MPX_ADDR (tdep, regs, regnum)); |
| return; |
| |
| case sse: |
| if ((clear_bv & X86_XSTATE_SSE)) |
| regcache->raw_supply (regnum, zero); |
| else |
| regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum)); |
| return; |
| |
| case x87: |
| if ((clear_bv & X86_XSTATE_X87)) |
| regcache->raw_supply (regnum, zero); |
| else |
| regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum)); |
| return; |
| |
| case all: |
| /* Handle PKEYS registers. */ |
| if ((tdep->xcr0 & X86_XSTATE_PKRU)) |
| { |
| if ((clear_bv & X86_XSTATE_PKRU)) |
| { |
| for (i = I387_PKRU_REGNUM (tdep); |
| i < I387_PKEYSEND_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, zero); |
| } |
| else |
| { |
| for (i = I387_PKRU_REGNUM (tdep); |
| i < I387_PKEYSEND_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, XSAVE_PKEYS_ADDR (tdep, regs, i)); |
| } |
| } |
| |
| /* Handle the upper halves of the low 8/16 ZMM registers. */ |
| if ((tdep->xcr0 & X86_XSTATE_ZMM_H)) |
| { |
| if ((clear_bv & X86_XSTATE_ZMM_H)) |
| { |
| for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++) |
| regcache->raw_supply (i, zero); |
| } |
| else |
| { |
| for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++) |
| regcache->raw_supply (i, |
| XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i)); |
| } |
| } |
| |
| /* Handle AVX512 OpMask registers. */ |
| if ((tdep->xcr0 & X86_XSTATE_K)) |
| { |
| if ((clear_bv & X86_XSTATE_K)) |
| { |
| for (i = I387_K0_REGNUM (tdep); |
| i < I387_KEND_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, zero); |
| } |
| else |
| { |
| for (i = I387_K0_REGNUM (tdep); |
| i < I387_KEND_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, XSAVE_AVX512_K_ADDR (tdep, regs, i)); |
| } |
| } |
| |
| /* Handle the upper 16 ZMM/YMM/XMM registers (if any). */ |
| if ((tdep->xcr0 & X86_XSTATE_ZMM)) |
| { |
| if ((clear_bv & X86_XSTATE_ZMM)) |
| { |
| for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++) |
| regcache->raw_supply (i, zero); |
| for (i = I387_YMM16H_REGNUM (tdep); |
| i < I387_YMMH_AVX512_END_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, zero); |
| for (i = I387_XMM16_REGNUM (tdep); |
| i < I387_XMM_AVX512_END_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, zero); |
| } |
| else |
| { |
| for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++) |
| regcache->raw_supply (i, |
| XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i)); |
| for (i = I387_YMM16H_REGNUM (tdep); |
| i < I387_YMMH_AVX512_END_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, XSAVE_YMM_AVX512_ADDR (tdep, regs, i)); |
| for (i = I387_XMM16_REGNUM (tdep); |
| i < I387_XMM_AVX512_END_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, XSAVE_XMM_AVX512_ADDR (tdep, regs, i)); |
| } |
| } |
| /* Handle the upper YMM registers. */ |
| if ((tdep->xcr0 & X86_XSTATE_AVX)) |
| { |
| if ((clear_bv & X86_XSTATE_AVX)) |
| { |
| for (i = I387_YMM0H_REGNUM (tdep); |
| i < I387_YMMENDH_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, zero); |
| } |
| else |
| { |
| for (i = I387_YMM0H_REGNUM (tdep); |
| i < I387_YMMENDH_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, XSAVE_AVXH_ADDR (tdep, regs, i)); |
| } |
| } |
| |
| /* Handle the MPX registers. */ |
| if ((tdep->xcr0 & X86_XSTATE_BNDREGS)) |
| { |
| if (clear_bv & X86_XSTATE_BNDREGS) |
| { |
| for (i = I387_BND0R_REGNUM (tdep); |
| i < I387_BNDCFGU_REGNUM (tdep); i++) |
| regcache->raw_supply (i, zero); |
| } |
| else |
| { |
| for (i = I387_BND0R_REGNUM (tdep); |
| i < I387_BNDCFGU_REGNUM (tdep); i++) |
| regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i)); |
| } |
| } |
| |
| /* Handle the MPX registers. */ |
| if ((tdep->xcr0 & X86_XSTATE_BNDCFG)) |
| { |
| if (clear_bv & X86_XSTATE_BNDCFG) |
| { |
| for (i = I387_BNDCFGU_REGNUM (tdep); |
| i < I387_MPXEND_REGNUM (tdep); i++) |
| regcache->raw_supply (i, zero); |
| } |
| else |
| { |
| for (i = I387_BNDCFGU_REGNUM (tdep); |
| i < I387_MPXEND_REGNUM (tdep); i++) |
| regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i)); |
| } |
| } |
| |
| /* Handle the XMM registers. */ |
| if ((tdep->xcr0 & X86_XSTATE_SSE)) |
| { |
| if ((clear_bv & X86_XSTATE_SSE)) |
| { |
| for (i = I387_XMM0_REGNUM (tdep); |
| i < I387_MXCSR_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, zero); |
| } |
| else |
| { |
| for (i = I387_XMM0_REGNUM (tdep); |
| i < I387_MXCSR_REGNUM (tdep); i++) |
| regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); |
| } |
| } |
| |
| /* Handle the x87 registers. */ |
| if ((tdep->xcr0 & X86_XSTATE_X87)) |
| { |
| if ((clear_bv & X86_XSTATE_X87)) |
| { |
| for (i = I387_ST0_REGNUM (tdep); |
| i < I387_FCTRL_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, zero); |
| } |
| else |
| { |
| for (i = I387_ST0_REGNUM (tdep); |
| i < I387_FCTRL_REGNUM (tdep); |
| i++) |
| regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); |
| } |
| } |
| break; |
| } |
| |
| /* Only handle x87 control registers. */ |
| for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) |
| if (regnum == -1 || regnum == i) |
| { |
| if (clear_bv & X86_XSTATE_X87) |
| { |
| if (i == I387_FCTRL_REGNUM (tdep)) |
| { |
| gdb_byte buf[4]; |
| |
| store_unsigned_integer (buf, 4, byte_order, |
| I387_FCTRL_INIT_VAL); |
| regcache->raw_supply (i, buf); |
| } |
| else if (i == I387_FTAG_REGNUM (tdep)) |
| { |
| gdb_byte buf[4]; |
| |
| store_unsigned_integer (buf, 4, byte_order, 0xffff); |
| regcache->raw_supply (i, buf); |
| } |
| else |
| regcache->raw_supply (i, zero); |
| } |
| /* Most of the FPU control registers occupy only 16 bits in |
| the xsave extended state. Give those a special treatment. */ |
| else if (i != I387_FIOFF_REGNUM (tdep) |
| && i != I387_FOOFF_REGNUM (tdep)) |
| { |
| gdb_byte val[4]; |
| |
| memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2); |
| val[2] = val[3] = 0; |
| if (i == I387_FOP_REGNUM (tdep)) |
| val[1] &= ((1 << 3) - 1); |
| else if (i == I387_FTAG_REGNUM (tdep)) |
| { |
| /* The fxsave area contains a simplified version of |
| the tag word. We have to look at the actual 80-bit |
| FP data to recreate the traditional i387 tag word. */ |
| |
| unsigned long ftag = 0; |
| int fpreg; |
| int top; |
| |
| top = ((FXSAVE_ADDR (tdep, regs, |
| I387_FSTAT_REGNUM (tdep)))[1] >> 3); |
| top &= 0x7; |
| |
| for (fpreg = 7; fpreg >= 0; fpreg--) |
| { |
| int tag; |
| |
| if (val[0] & (1 << fpreg)) |
| { |
| int thisreg = (fpreg + 8 - top) % 8 |
| + I387_ST0_REGNUM (tdep); |
| tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg)); |
| } |
| else |
| tag = 3; /* Empty */ |
| |
| ftag |= tag << (2 * fpreg); |
| } |
| val[0] = ftag & 0xff; |
| val[1] = (ftag >> 8) & 0xff; |
| } |
| regcache->raw_supply (i, val); |
| } |
| else |
| regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); |
| } |
| |
| if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) |
| { |
| /* The MXCSR register is placed into the xsave buffer if either the |
| AVX or SSE features are enabled. */ |
| if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) |
| == (X86_XSTATE_AVX | X86_XSTATE_SSE)) |
| { |
| gdb_byte buf[4]; |
| |
| store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL); |
| regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf); |
| } |
| else |
| regcache->raw_supply (I387_MXCSR_REGNUM (tdep), |
| FXSAVE_MXCSR_ADDR (regs)); |
| } |
| } |
| |
| /* Similar to i387_collect_fxsave, but use XSAVE extended state. */ |
| |
| void |
| i387_collect_xsave (const struct regcache *regcache, int regnum, |
| void *xsave, int gcore) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| gdb_byte *p, *regs = (gdb_byte *) xsave; |
| gdb_byte raw[I386_MAX_REGISTER_SIZE]; |
| ULONGEST initial_xstate_bv, clear_bv, xstate_bv = 0; |
| unsigned int i; |
| /* See the comment in i387_supply_xsave(). */ |
| unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep) |
| + std::min (tdep->num_zmm_regs, 16); |
| enum |
| { |
| x87_ctrl_or_mxcsr = 0x1, |
| x87 = 0x2, |
| sse = 0x4, |
| avxh = 0x8, |
| mpx = 0x10, |
| avx512_k = 0x20, |
| avx512_zmm_h = 0x40, |
| avx512_ymmh_avx512 = 0x80, |
| avx512_xmm_avx512 = 0x100, |
| pkeys = 0x200, |
| all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h |
| | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys |
| } regclass; |
| |
| gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); |
| gdb_assert (tdep->num_xmm_regs > 0); |
| |
| if (regnum == -1) |
| regclass = all; |
| else if (regnum >= I387_PKRU_REGNUM (tdep) |
| && regnum < I387_PKEYSEND_REGNUM (tdep)) |
| regclass = pkeys; |
| else if (regnum >= I387_ZMM0H_REGNUM (tdep) |
| && regnum < I387_ZMMENDH_REGNUM (tdep)) |
| regclass = avx512_zmm_h; |
| else if (regnum >= I387_K0_REGNUM (tdep) |
| && regnum < I387_KEND_REGNUM (tdep)) |
| regclass = avx512_k; |
| else if (regnum >= I387_YMM16H_REGNUM (tdep) |
| && regnum < I387_YMMH_AVX512_END_REGNUM (tdep)) |
| regclass = avx512_ymmh_avx512; |
| else if (regnum >= I387_XMM16_REGNUM (tdep) |
| && regnum < I387_XMM_AVX512_END_REGNUM (tdep)) |
| regclass = avx512_xmm_avx512; |
| else if (regnum >= I387_YMM0H_REGNUM (tdep) |
| && regnum < I387_YMMENDH_REGNUM (tdep)) |
| regclass = avxh; |
| else if (regnum >= I387_BND0R_REGNUM (tdep) |
| && regnum < I387_MPXEND_REGNUM (tdep)) |
| regclass = mpx; |
| else if (regnum >= I387_XMM0_REGNUM (tdep) |
| && regnum < I387_MXCSR_REGNUM (tdep)) |
| regclass = sse; |
| else if (regnum >= I387_ST0_REGNUM (tdep) |
| && regnum < I387_FCTRL_REGNUM (tdep)) |
| regclass = x87; |
| else if ((regnum >= I387_FCTRL_REGNUM (tdep) |
| && regnum < I387_XMM0_REGNUM (tdep)) |
| || regnum == I387_MXCSR_REGNUM (tdep)) |
| regclass = x87_ctrl_or_mxcsr; |
| else |
| internal_error (__FILE__, __LINE__, _("invalid i387 regnum %d"), regnum); |
| |
| if (gcore) |
| { |
| /* Clear XSAVE extended state. */ |
| memset (regs, 0, X86_XSTATE_SIZE (tdep->xcr0)); |
| |
| /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */ |
| if (tdep->xsave_xcr0_offset != -1) |
| memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8); |
| memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8); |
| } |
| |
| /* The supported bits in `xstat_bv' are 8 bytes. */ |
| initial_xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs), |
| 8, byte_order); |
| clear_bv = (~(initial_xstate_bv)) & tdep->xcr0; |
| |
| /* The XSAVE buffer was filled lazily by the kernel. Only those |
| features that are enabled were written into the buffer, disabled |
| features left the buffer uninitialised. In order to identify if any |
| registers have changed we will be comparing the register cache |
| version to the version in the XSAVE buffer, it is important then that |
| at this point we initialise to the default values any features in |
| XSAVE that are not yet initialised. |
| |
| This could be made more efficient, we know which features (from |
| REGNUM) we will be potentially updating, and could limit ourselves to |
| only clearing that feature. However, the extra complexity does not |
| seem justified at this point. */ |
| if (clear_bv) |
| { |
| if ((clear_bv & X86_XSTATE_PKRU)) |
| for (i = I387_PKRU_REGNUM (tdep); |
| i < I387_PKEYSEND_REGNUM (tdep); i++) |
| memset (XSAVE_PKEYS_ADDR (tdep, regs, i), 0, 4); |
| |
| if ((clear_bv & X86_XSTATE_BNDREGS)) |
| for (i = I387_BND0R_REGNUM (tdep); |
| i < I387_BNDCFGU_REGNUM (tdep); i++) |
| memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 16); |
| |
| if ((clear_bv & X86_XSTATE_BNDCFG)) |
| for (i = I387_BNDCFGU_REGNUM (tdep); |
| i < I387_MPXEND_REGNUM (tdep); i++) |
| memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 8); |
| |
| if ((clear_bv & X86_XSTATE_ZMM_H)) |
| for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++) |
| memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32); |
| |
| if ((clear_bv & X86_XSTATE_K)) |
| for (i = I387_K0_REGNUM (tdep); |
| i < I387_KEND_REGNUM (tdep); i++) |
| memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8); |
| |
| if ((clear_bv & X86_XSTATE_ZMM)) |
| { |
| for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++) |
| memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32); |
| for (i = I387_YMM16H_REGNUM (tdep); |
| i < I387_YMMH_AVX512_END_REGNUM (tdep); i++) |
| memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16); |
| for (i = I387_XMM16_REGNUM (tdep); |
| i < I387_XMM_AVX512_END_REGNUM (tdep); i++) |
| memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16); |
| } |
| |
| if ((clear_bv & X86_XSTATE_AVX)) |
| for (i = I387_YMM0H_REGNUM (tdep); |
| i < I387_YMMENDH_REGNUM (tdep); i++) |
| memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16); |
| |
| if ((clear_bv & X86_XSTATE_SSE)) |
| for (i = I387_XMM0_REGNUM (tdep); |
| i < I387_MXCSR_REGNUM (tdep); i++) |
| memset (FXSAVE_ADDR (tdep, regs, i), 0, 16); |
| |
| /* The mxcsr register is written into the xsave buffer if either AVX |
| or SSE is enabled, so only clear it if both of those features |
| require clearing. */ |
| if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) |
| == (X86_XSTATE_AVX | X86_XSTATE_SSE)) |
| store_unsigned_integer (FXSAVE_MXCSR_ADDR (regs), 2, byte_order, |
| I387_MXCSR_INIT_VAL); |
| |
| if ((clear_bv & X86_XSTATE_X87)) |
| { |
| for (i = I387_ST0_REGNUM (tdep); |
| i < I387_FCTRL_REGNUM (tdep); i++) |
| memset (FXSAVE_ADDR (tdep, regs, i), 0, 10); |
| |
| for (i = I387_FCTRL_REGNUM (tdep); |
| i < I387_XMM0_REGNUM (tdep); i++) |
| { |
| if (i == I387_FCTRL_REGNUM (tdep)) |
| store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2, |
| byte_order, I387_FCTRL_INIT_VAL); |
| else |
| memset (FXSAVE_ADDR (tdep, regs, i), 0, |
| regcache_register_size (regcache, i)); |
| } |
| } |
| } |
| |
| if (regclass == all) |
| { |
| /* Check if any PKEYS registers are changed. */ |
| if ((tdep->xcr0 & X86_XSTATE_PKRU)) |
| for (i = I387_PKRU_REGNUM (tdep); |
| i < I387_PKEYSEND_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = XSAVE_PKEYS_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 4) != 0) |
| { |
| xstate_bv |= X86_XSTATE_PKRU; |
| memcpy (p, raw, 4); |
| } |
| } |
| |
| /* Check if any ZMMH registers are changed. */ |
| if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM))) |
| for (i = I387_ZMM0H_REGNUM (tdep); |
| i < I387_ZMMENDH_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 32) != 0) |
| { |
| xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM); |
| memcpy (p, raw, 32); |
| } |
| } |
| |
| /* Check if any K registers are changed. */ |
| if ((tdep->xcr0 & X86_XSTATE_K)) |
| for (i = I387_K0_REGNUM (tdep); |
| i < I387_KEND_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = XSAVE_AVX512_K_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 8) != 0) |
| { |
| xstate_bv |= X86_XSTATE_K; |
| memcpy (p, raw, 8); |
| } |
| } |
| |
| /* Check if any XMM or upper YMM registers are changed. */ |
| if ((tdep->xcr0 & X86_XSTATE_ZMM)) |
| { |
| for (i = I387_YMM16H_REGNUM (tdep); |
| i < I387_YMMH_AVX512_END_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 16) != 0) |
| { |
| xstate_bv |= X86_XSTATE_ZMM; |
| memcpy (p, raw, 16); |
| } |
| } |
| for (i = I387_XMM16_REGNUM (tdep); |
| i < I387_XMM_AVX512_END_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 16) != 0) |
| { |
| xstate_bv |= X86_XSTATE_ZMM; |
| memcpy (p, raw, 16); |
| } |
| } |
| } |
| |
| /* Check if any upper MPX registers are changed. */ |
| if ((tdep->xcr0 & X86_XSTATE_BNDREGS)) |
| for (i = I387_BND0R_REGNUM (tdep); |
| i < I387_BNDCFGU_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = XSAVE_MPX_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 16)) |
| { |
| xstate_bv |= X86_XSTATE_BNDREGS; |
| memcpy (p, raw, 16); |
| } |
| } |
| |
| /* Check if any upper MPX registers are changed. */ |
| if ((tdep->xcr0 & X86_XSTATE_BNDCFG)) |
| for (i = I387_BNDCFGU_REGNUM (tdep); |
| i < I387_MPXEND_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = XSAVE_MPX_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 8)) |
| { |
| xstate_bv |= X86_XSTATE_BNDCFG; |
| memcpy (p, raw, 8); |
| } |
| } |
| |
| /* Check if any upper YMM registers are changed. */ |
| if ((tdep->xcr0 & X86_XSTATE_AVX)) |
| for (i = I387_YMM0H_REGNUM (tdep); |
| i < I387_YMMENDH_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = XSAVE_AVXH_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 16)) |
| { |
| xstate_bv |= X86_XSTATE_AVX; |
| memcpy (p, raw, 16); |
| } |
| } |
| |
| /* Check if any SSE registers are changed. */ |
| if ((tdep->xcr0 & X86_XSTATE_SSE)) |
| for (i = I387_XMM0_REGNUM (tdep); |
| i < I387_MXCSR_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = FXSAVE_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 16)) |
| { |
| xstate_bv |= X86_XSTATE_SSE; |
| memcpy (p, raw, 16); |
| } |
| } |
| |
| if ((tdep->xcr0 & X86_XSTATE_AVX) || (tdep->xcr0 & X86_XSTATE_SSE)) |
| { |
| i = I387_MXCSR_REGNUM (tdep); |
| regcache->raw_collect (i, raw); |
| p = FXSAVE_MXCSR_ADDR (regs); |
| if (memcmp (raw, p, 4)) |
| { |
| /* Now, we need to mark one of either SSE of AVX as enabled. |
| We could pick either. What we do is check to see if one |
| of the features is already enabled, if it is then we leave |
| it at that, otherwise we pick SSE. */ |
| if ((xstate_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0) |
| xstate_bv |= X86_XSTATE_SSE; |
| memcpy (p, raw, 4); |
| } |
| } |
| |
| /* Check if any X87 registers are changed. Only the non-control |
| registers are handled here, the control registers are all handled |
| later on in this function. */ |
| if ((tdep->xcr0 & X86_XSTATE_X87)) |
| for (i = I387_ST0_REGNUM (tdep); |
| i < I387_FCTRL_REGNUM (tdep); i++) |
| { |
| regcache->raw_collect (i, raw); |
| p = FXSAVE_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, 10)) |
| { |
| xstate_bv |= X86_XSTATE_X87; |
| memcpy (p, raw, 10); |
| } |
| } |
| } |
| else |
| { |
| /* Check if REGNUM is changed. */ |
| regcache->raw_collect (regnum, raw); |
| |
| switch (regclass) |
| { |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("invalid i387 regclass")); |
| |
| case pkeys: |
| /* This is a PKEYS register. */ |
| p = XSAVE_PKEYS_ADDR (tdep, regs, regnum); |
| if (memcmp (raw, p, 4) != 0) |
| { |
| xstate_bv |= X86_XSTATE_PKRU; |
| memcpy (p, raw, 4); |
| } |
| break; |
| |
| case avx512_zmm_h: |
| /* This is a ZMM register. */ |
| p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum); |
| if (memcmp (raw, p, 32) != 0) |
| { |
| xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM); |
| memcpy (p, raw, 32); |
| } |
| break; |
| case avx512_k: |
| /* This is a AVX512 mask register. */ |
| p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum); |
| if (memcmp (raw, p, 8) != 0) |
| { |
| xstate_bv |= X86_XSTATE_K; |
| memcpy (p, raw, 8); |
| } |
| break; |
| |
| case avx512_ymmh_avx512: |
| /* This is an upper YMM16-31 register. */ |
| p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum); |
| if (memcmp (raw, p, 16) != 0) |
| { |
| xstate_bv |= X86_XSTATE_ZMM; |
| memcpy (p, raw, 16); |
| } |
| break; |
| |
| case avx512_xmm_avx512: |
| /* This is an upper XMM16-31 register. */ |
| p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum); |
| if (memcmp (raw, p, 16) != 0) |
| { |
| xstate_bv |= X86_XSTATE_ZMM; |
| memcpy (p, raw, 16); |
| } |
| break; |
| |
| case avxh: |
| /* This is an upper YMM register. */ |
| p = XSAVE_AVXH_ADDR (tdep, regs, regnum); |
| if (memcmp (raw, p, 16)) |
| { |
| xstate_bv |= X86_XSTATE_AVX; |
| memcpy (p, raw, 16); |
| } |
| break; |
| |
| case mpx: |
| if (regnum < I387_BNDCFGU_REGNUM (tdep)) |
| { |
| regcache->raw_collect (regnum, raw); |
| p = XSAVE_MPX_ADDR (tdep, regs, regnum); |
| if (memcmp (raw, p, 16)) |
| { |
| xstate_bv |= X86_XSTATE_BNDREGS; |
| memcpy (p, raw, 16); |
| } |
| } |
| else |
| { |
| p = XSAVE_MPX_ADDR (tdep, regs, regnum); |
| xstate_bv |= X86_XSTATE_BNDCFG; |
| memcpy (p, raw, 8); |
| } |
| break; |
| |
| case sse: |
| /* This is an SSE register. */ |
| p = FXSAVE_ADDR (tdep, regs, regnum); |
| if (memcmp (raw, p, 16)) |
| { |
| xstate_bv |= X86_XSTATE_SSE; |
| memcpy (p, raw, 16); |
| } |
| break; |
| |
| case x87: |
| /* This is an x87 register. */ |
| p = FXSAVE_ADDR (tdep, regs, regnum); |
| if (memcmp (raw, p, 10)) |
| { |
| xstate_bv |= X86_XSTATE_X87; |
| memcpy (p, raw, 10); |
| } |
| break; |
| |
| case x87_ctrl_or_mxcsr: |
| /* We only handle MXCSR here. All other x87 control registers |
| are handled separately below. */ |
| if (regnum == I387_MXCSR_REGNUM (tdep)) |
| { |
| p = FXSAVE_MXCSR_ADDR (regs); |
| if (memcmp (raw, p, 2)) |
| { |
| /* We're only setting MXCSR, so check the initial state |
| to see if either of AVX or SSE are already enabled. |
| If they are then we'll attribute this changed MXCSR to |
| that feature. If neither feature is enabled, then |
| we'll attribute this change to the SSE feature. */ |
| xstate_bv |= (initial_xstate_bv |
| & (X86_XSTATE_AVX | X86_XSTATE_SSE)); |
| if ((xstate_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) == 0) |
| xstate_bv |= X86_XSTATE_SSE; |
| memcpy (p, raw, 2); |
| } |
| } |
| } |
| } |
| |
| /* Only handle x87 control registers. */ |
| for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) |
| if (regnum == -1 || regnum == i) |
| { |
| /* Most of the FPU control registers occupy only 16 bits in |
| the xsave extended state. Give those a special treatment. */ |
| if (i != I387_FIOFF_REGNUM (tdep) |
| && i != I387_FOOFF_REGNUM (tdep)) |
| { |
| gdb_byte buf[4]; |
| |
| regcache->raw_collect (i, buf); |
| |
| if (i == I387_FOP_REGNUM (tdep)) |
| { |
| /* The opcode occupies only 11 bits. Make sure we |
| don't touch the other bits. */ |
| buf[1] &= ((1 << 3) - 1); |
| buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); |
| } |
| else if (i == I387_FTAG_REGNUM (tdep)) |
| { |
| /* Converting back is much easier. */ |
| |
| unsigned short ftag; |
| int fpreg; |
| |
| ftag = (buf[1] << 8) | buf[0]; |
| buf[0] = 0; |
| buf[1] = 0; |
| |
| for (fpreg = 7; fpreg >= 0; fpreg--) |
| { |
| int tag = (ftag >> (fpreg * 2)) & 3; |
| |
| if (tag != 3) |
| buf[0] |= (1 << fpreg); |
| } |
| } |
| p = FXSAVE_ADDR (tdep, regs, i); |
| if (memcmp (p, buf, 2)) |
| { |
| xstate_bv |= X86_XSTATE_X87; |
| memcpy (p, buf, 2); |
| } |
| } |
| else |
| { |
| int regsize; |
| |
| regcache->raw_collect (i, raw); |
| regsize = regcache_register_size (regcache, i); |
| p = FXSAVE_ADDR (tdep, regs, i); |
| if (memcmp (raw, p, regsize)) |
| { |
| xstate_bv |= X86_XSTATE_X87; |
| memcpy (p, raw, regsize); |
| } |
| } |
| } |
| |
| /* Update the corresponding bits in `xstate_bv' if any |
| registers are changed. */ |
| if (xstate_bv) |
| { |
| /* The supported bits in `xstat_bv' are 8 bytes. */ |
| initial_xstate_bv |= xstate_bv; |
| store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs), |
| 8, byte_order, |
| initial_xstate_bv); |
| } |
| } |
| |
| /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in |
| *RAW. */ |
| |
| static int |
| i387_tag (const gdb_byte *raw) |
| { |
| int integer; |
| unsigned int exponent; |
| unsigned long fraction[2]; |
| |
| integer = raw[7] & 0x80; |
| exponent = (((raw[9] & 0x7f) << 8) | raw[8]); |
| fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); |
| fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) |
| | (raw[5] << 8) | raw[4]); |
| |
| if (exponent == 0x7fff) |
| { |
| /* Special. */ |
| return (2); |
| } |
| else if (exponent == 0x0000) |
| { |
| if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer) |
| { |
| /* Zero. */ |
| return (1); |
| } |
| else |
| { |
| /* Special. */ |
| return (2); |
| } |
| } |
| else |
| { |
| if (integer) |
| { |
| /* Valid. */ |
| return (0); |
| } |
| else |
| { |
| /* Special. */ |
| return (2); |
| } |
| } |
| } |
| |
| /* Prepare the FPU stack in REGCACHE for a function return. */ |
| |
| void |
| i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| ULONGEST fstat; |
| |
| /* Set the top of the floating-point register stack to 7. The |
| actual value doesn't really matter, but 7 is what a normal |
| function return would end up with if the program started out with |
| a freshly initialized FPU. */ |
| regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat); |
| fstat |= (7 << 11); |
| regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat); |
| |
| /* Mark %st(1) through %st(7) as empty. Since we set the top of the |
| floating-point register stack to 7, the appropriate value for the |
| tag word is 0x3fff. */ |
| regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff); |
| |
| } |
| |
| /* See i387-tdep.h. */ |
| |
| void |
| i387_reset_bnd_regs (struct gdbarch *gdbarch, struct regcache *regcache) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| if (I387_BND0R_REGNUM (tdep) > 0) |
| { |
| gdb_byte bnd_buf[16]; |
| |
| memset (bnd_buf, 0, 16); |
| for (int i = 0; i < I387_NUM_BND_REGS; i++) |
| regcache->raw_write (I387_BND0R_REGNUM (tdep) + i, bnd_buf); |
| } |
| } |