| /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger. |
| |
| Copyright (C) 1996-2021 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "arch-utils.h" |
| #include "dis-asm.h" |
| #include "gdbtypes.h" |
| #include "regcache.h" |
| #include "gdbcore.h" /* For write_memory_unsigned_integer. */ |
| #include "value.h" |
| #include "frame.h" |
| #include "frame-unwind.h" |
| #include "frame-base.h" |
| #include "symtab.h" |
| #include "dwarf2/frame.h" |
| #include "osabi.h" |
| #include "infcall.h" |
| #include "prologue-value.h" |
| #include "target.h" |
| |
| #include "mn10300-tdep.h" |
| |
| |
| /* The am33-2 has 64 registers. */ |
| #define MN10300_MAX_NUM_REGS 64 |
| |
| /* Big enough to hold the size of the largest register in bytes. */ |
| #define MN10300_MAX_REGISTER_SIZE 64 |
| |
| /* This structure holds the results of a prologue analysis. */ |
| struct mn10300_prologue |
| { |
| /* The architecture for which we generated this prologue info. */ |
| struct gdbarch *gdbarch; |
| |
| /* The offset from the frame base to the stack pointer --- always |
| zero or negative. |
| |
| Calling this a "size" is a bit misleading, but given that the |
| stack grows downwards, using offsets for everything keeps one |
| from going completely sign-crazy: you never change anything's |
| sign for an ADD instruction; always change the second operand's |
| sign for a SUB instruction; and everything takes care of |
| itself. */ |
| int frame_size; |
| |
| /* Non-zero if this function has initialized the frame pointer from |
| the stack pointer, zero otherwise. */ |
| int has_frame_ptr; |
| |
| /* If has_frame_ptr is non-zero, this is the offset from the frame |
| base to where the frame pointer points. This is always zero or |
| negative. */ |
| int frame_ptr_offset; |
| |
| /* The address of the first instruction at which the frame has been |
| set up and the arguments are where the debug info says they are |
| --- as best as we can tell. */ |
| CORE_ADDR prologue_end; |
| |
| /* reg_offset[R] is the offset from the CFA at which register R is |
| saved, or 1 if register R has not been saved. (Real values are |
| always zero or negative.) */ |
| int reg_offset[MN10300_MAX_NUM_REGS]; |
| }; |
| |
| |
| /* Compute the alignment required by a type. */ |
| |
| static int |
| mn10300_type_align (struct type *type) |
| { |
| int i, align = 1; |
| |
| switch (type->code ()) |
| { |
| case TYPE_CODE_INT: |
| case TYPE_CODE_ENUM: |
| case TYPE_CODE_SET: |
| case TYPE_CODE_RANGE: |
| case TYPE_CODE_CHAR: |
| case TYPE_CODE_BOOL: |
| case TYPE_CODE_FLT: |
| case TYPE_CODE_PTR: |
| case TYPE_CODE_REF: |
| case TYPE_CODE_RVALUE_REF: |
| return TYPE_LENGTH (type); |
| |
| case TYPE_CODE_COMPLEX: |
| return TYPE_LENGTH (type) / 2; |
| |
| case TYPE_CODE_STRUCT: |
| case TYPE_CODE_UNION: |
| for (i = 0; i < type->num_fields (); i++) |
| { |
| int falign = mn10300_type_align (type->field (i).type ()); |
| while (align < falign) |
| align <<= 1; |
| } |
| return align; |
| |
| case TYPE_CODE_ARRAY: |
| /* HACK! Structures containing arrays, even small ones, are not |
| eligible for returning in registers. */ |
| return 256; |
| |
| case TYPE_CODE_TYPEDEF: |
| return mn10300_type_align (check_typedef (type)); |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("bad switch")); |
| } |
| } |
| |
| /* Should call_function allocate stack space for a struct return? */ |
| static int |
| mn10300_use_struct_convention (struct type *type) |
| { |
| /* Structures bigger than a pair of words can't be returned in |
| registers. */ |
| if (TYPE_LENGTH (type) > 8) |
| return 1; |
| |
| switch (type->code ()) |
| { |
| case TYPE_CODE_STRUCT: |
| case TYPE_CODE_UNION: |
| /* Structures with a single field are handled as the field |
| itself. */ |
| if (type->num_fields () == 1) |
| return mn10300_use_struct_convention (type->field (0).type ()); |
| |
| /* Structures with word or double-word size are passed in memory, as |
| long as they require at least word alignment. */ |
| if (mn10300_type_align (type) >= 4) |
| return 0; |
| |
| return 1; |
| |
| /* Arrays are addressable, so they're never returned in |
| registers. This condition can only hold when the array is |
| the only field of a struct or union. */ |
| case TYPE_CODE_ARRAY: |
| return 1; |
| |
| case TYPE_CODE_TYPEDEF: |
| return mn10300_use_struct_convention (check_typedef (type)); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| static void |
| mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type, |
| struct regcache *regcache, const gdb_byte *valbuf) |
| { |
| int len = TYPE_LENGTH (type); |
| int reg, regsz; |
| |
| if (type->code () == TYPE_CODE_PTR) |
| reg = 4; |
| else |
| reg = 0; |
| |
| regsz = register_size (gdbarch, reg); |
| |
| if (len <= regsz) |
| regcache->raw_write_part (reg, 0, len, valbuf); |
| else if (len <= 2 * regsz) |
| { |
| regcache->raw_write (reg, valbuf); |
| gdb_assert (regsz == register_size (gdbarch, reg + 1)); |
| regcache->raw_write_part (reg + 1, 0, len - regsz, valbuf + regsz); |
| } |
| else |
| internal_error (__FILE__, __LINE__, |
| _("Cannot store return value %d bytes long."), len); |
| } |
| |
| static void |
| mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type, |
| struct regcache *regcache, void *valbuf) |
| { |
| gdb_byte buf[MN10300_MAX_REGISTER_SIZE]; |
| int len = TYPE_LENGTH (type); |
| int reg, regsz; |
| |
| if (type->code () == TYPE_CODE_PTR) |
| reg = 4; |
| else |
| reg = 0; |
| |
| regsz = register_size (gdbarch, reg); |
| gdb_assert (regsz <= MN10300_MAX_REGISTER_SIZE); |
| if (len <= regsz) |
| { |
| regcache->raw_read (reg, buf); |
| memcpy (valbuf, buf, len); |
| } |
| else if (len <= 2 * regsz) |
| { |
| regcache->raw_read (reg, buf); |
| memcpy (valbuf, buf, regsz); |
| gdb_assert (regsz == register_size (gdbarch, reg + 1)); |
| regcache->raw_read (reg + 1, buf); |
| memcpy ((char *) valbuf + regsz, buf, len - regsz); |
| } |
| else |
| internal_error (__FILE__, __LINE__, |
| _("Cannot extract return value %d bytes long."), len); |
| } |
| |
| /* Determine, for architecture GDBARCH, how a return value of TYPE |
| should be returned. If it is supposed to be returned in registers, |
| and READBUF is non-zero, read the appropriate value from REGCACHE, |
| and copy it into READBUF. If WRITEBUF is non-zero, write the value |
| from WRITEBUF into REGCACHE. */ |
| |
| static enum return_value_convention |
| mn10300_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *type, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| if (mn10300_use_struct_convention (type)) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| |
| if (readbuf) |
| mn10300_extract_return_value (gdbarch, type, regcache, readbuf); |
| if (writebuf) |
| mn10300_store_return_value (gdbarch, type, regcache, writebuf); |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| static const char * |
| register_name (int reg, const char **regs, long sizeof_regs) |
| { |
| if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0])) |
| return NULL; |
| else |
| return regs[reg]; |
| } |
| |
| static const char * |
| mn10300_generic_register_name (struct gdbarch *gdbarch, int reg) |
| { |
| static const char *regs[] = |
| { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", |
| "sp", "pc", "mdr", "psw", "lir", "lar", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "fp" |
| }; |
| return register_name (reg, regs, sizeof regs); |
| } |
| |
| |
| static const char * |
| am33_register_name (struct gdbarch *gdbarch, int reg) |
| { |
| static const char *regs[] = |
| { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", |
| "sp", "pc", "mdr", "psw", "lir", "lar", "", |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", "" |
| }; |
| return register_name (reg, regs, sizeof regs); |
| } |
| |
| static const char * |
| am33_2_register_name (struct gdbarch *gdbarch, int reg) |
| { |
| static const char *regs[] = |
| { |
| "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", |
| "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0", |
| "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp", |
| "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "", |
| "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", |
| "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15", |
| "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23", |
| "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" |
| }; |
| return register_name (reg, regs, sizeof regs); |
| } |
| |
| static struct type * |
| mn10300_register_type (struct gdbarch *gdbarch, int reg) |
| { |
| return builtin_type (gdbarch)->builtin_int; |
| } |
| |
| /* The breakpoint instruction must be the same size as the smallest |
| instruction in the instruction set. |
| |
| The Matsushita mn10x00 processors have single byte instructions |
| so we need a single byte breakpoint. Matsushita hasn't defined |
| one, so we defined it ourselves. */ |
| constexpr gdb_byte mn10300_break_insn[] = {0xff}; |
| |
| typedef BP_MANIPULATION (mn10300_break_insn) mn10300_breakpoint; |
| |
| /* Model the semantics of pushing a register onto the stack. This |
| is a helper function for mn10300_analyze_prologue, below. */ |
| static void |
| push_reg (pv_t *regs, struct pv_area *stack, int regnum) |
| { |
| regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4); |
| stack->store (regs[E_SP_REGNUM], 4, regs[regnum]); |
| } |
| |
| /* Translate an "r" register number extracted from an instruction encoding |
| into a GDB register number. Adapted from a simulator function |
| of the same name; see am33.igen. */ |
| static int |
| translate_rreg (int rreg) |
| { |
| /* The higher register numbers actually correspond to the |
| basic machine's address and data registers. */ |
| if (rreg > 7 && rreg < 12) |
| return E_A0_REGNUM + rreg - 8; |
| else if (rreg > 11 && rreg < 16) |
| return E_D0_REGNUM + rreg - 12; |
| else |
| return E_E0_REGNUM + rreg; |
| } |
| |
| /* Find saved registers in a 'struct pv_area'; we pass this to pv_area::scan. |
| |
| If VALUE is a saved register, ADDR says it was saved at a constant |
| offset from the frame base, and SIZE indicates that the whole |
| register was saved, record its offset in RESULT_UNTYPED. */ |
| static void |
| check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) |
| { |
| struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped; |
| |
| if (value.kind == pvk_register |
| && value.k == 0 |
| && pv_is_register (addr, E_SP_REGNUM) |
| && size == register_size (result->gdbarch, value.reg)) |
| result->reg_offset[value.reg] = addr.k; |
| } |
| |
| /* Analyze the prologue to determine where registers are saved, |
| the end of the prologue, etc. The result of this analysis is |
| returned in RESULT. See struct mn10300_prologue above for more |
| information. */ |
| static void |
| mn10300_analyze_prologue (struct gdbarch *gdbarch, |
| CORE_ADDR start_pc, CORE_ADDR limit_pc, |
| struct mn10300_prologue *result) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR pc; |
| int rn; |
| pv_t regs[MN10300_MAX_NUM_REGS]; |
| CORE_ADDR after_last_frame_setup_insn = start_pc; |
| int am33_mode = AM33_MODE (gdbarch); |
| |
| memset (result, 0, sizeof (*result)); |
| result->gdbarch = gdbarch; |
| |
| for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++) |
| { |
| regs[rn] = pv_register (rn, 0); |
| result->reg_offset[rn] = 1; |
| } |
| pv_area stack (E_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
| |
| /* The typical call instruction will have saved the return address on the |
| stack. Space for the return address has already been preallocated in |
| the caller's frame. It's possible, such as when using -mrelax with gcc |
| that other registers were saved as well. If this happens, we really |
| have no chance of deciphering the frame. DWARF info can save the day |
| when this happens. */ |
| stack.store (regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]); |
| |
| pc = start_pc; |
| while (pc < limit_pc) |
| { |
| int status; |
| gdb_byte instr[2]; |
| |
| /* Instructions can be as small as one byte; however, we usually |
| need at least two bytes to do the decoding, so fetch that many |
| to begin with. */ |
| status = target_read_memory (pc, instr, 2); |
| if (status != 0) |
| break; |
| |
| /* movm [regs], sp */ |
| if (instr[0] == 0xcf) |
| { |
| gdb_byte save_mask; |
| |
| save_mask = instr[1]; |
| |
| if ((save_mask & movm_exreg0_bit) && am33_mode) |
| { |
| push_reg (regs, &stack, E_E2_REGNUM); |
| push_reg (regs, &stack, E_E3_REGNUM); |
| } |
| if ((save_mask & movm_exreg1_bit) && am33_mode) |
| { |
| push_reg (regs, &stack, E_E4_REGNUM); |
| push_reg (regs, &stack, E_E5_REGNUM); |
| push_reg (regs, &stack, E_E6_REGNUM); |
| push_reg (regs, &stack, E_E7_REGNUM); |
| } |
| if ((save_mask & movm_exother_bit) && am33_mode) |
| { |
| push_reg (regs, &stack, E_E0_REGNUM); |
| push_reg (regs, &stack, E_E1_REGNUM); |
| push_reg (regs, &stack, E_MDRQ_REGNUM); |
| push_reg (regs, &stack, E_MCRH_REGNUM); |
| push_reg (regs, &stack, E_MCRL_REGNUM); |
| push_reg (regs, &stack, E_MCVF_REGNUM); |
| } |
| if (save_mask & movm_d2_bit) |
| push_reg (regs, &stack, E_D2_REGNUM); |
| if (save_mask & movm_d3_bit) |
| push_reg (regs, &stack, E_D3_REGNUM); |
| if (save_mask & movm_a2_bit) |
| push_reg (regs, &stack, E_A2_REGNUM); |
| if (save_mask & movm_a3_bit) |
| push_reg (regs, &stack, E_A3_REGNUM); |
| if (save_mask & movm_other_bit) |
| { |
| push_reg (regs, &stack, E_D0_REGNUM); |
| push_reg (regs, &stack, E_D1_REGNUM); |
| push_reg (regs, &stack, E_A0_REGNUM); |
| push_reg (regs, &stack, E_A1_REGNUM); |
| push_reg (regs, &stack, E_MDR_REGNUM); |
| push_reg (regs, &stack, E_LIR_REGNUM); |
| push_reg (regs, &stack, E_LAR_REGNUM); |
| /* The `other' bit leaves a blank area of four bytes at |
| the beginning of its block of saved registers, making |
| it 32 bytes long in total. */ |
| regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4); |
| } |
| |
| pc += 2; |
| after_last_frame_setup_insn = pc; |
| } |
| /* mov sp, aN */ |
| else if ((instr[0] & 0xfc) == 0x3c) |
| { |
| int aN = instr[0] & 0x03; |
| |
| regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM]; |
| |
| pc += 1; |
| if (aN == 3) |
| after_last_frame_setup_insn = pc; |
| } |
| /* mov aM, aN */ |
| else if ((instr[0] & 0xf0) == 0x90 |
| && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2)) |
| { |
| int aN = instr[0] & 0x03; |
| int aM = (instr[0] & 0x0c) >> 2; |
| |
| regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM]; |
| |
| pc += 1; |
| } |
| /* mov dM, dN */ |
| else if ((instr[0] & 0xf0) == 0x80 |
| && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2)) |
| { |
| int dN = instr[0] & 0x03; |
| int dM = (instr[0] & 0x0c) >> 2; |
| |
| regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM]; |
| |
| pc += 1; |
| } |
| /* mov aM, dN */ |
| else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0) |
| { |
| int dN = instr[1] & 0x03; |
| int aM = (instr[1] & 0x0c) >> 2; |
| |
| regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM]; |
| |
| pc += 2; |
| } |
| /* mov dM, aN */ |
| else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0) |
| { |
| int aN = instr[1] & 0x03; |
| int dM = (instr[1] & 0x0c) >> 2; |
| |
| regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM]; |
| |
| pc += 2; |
| } |
| /* add imm8, SP */ |
| else if (instr[0] == 0xf8 && instr[1] == 0xfe) |
| { |
| gdb_byte buf[1]; |
| LONGEST imm8; |
| |
| |
| status = target_read_memory (pc + 2, buf, 1); |
| if (status != 0) |
| break; |
| |
| imm8 = extract_signed_integer (buf, 1, byte_order); |
| regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8); |
| |
| pc += 3; |
| /* Stack pointer adjustments are frame related. */ |
| after_last_frame_setup_insn = pc; |
| } |
| /* add imm16, SP */ |
| else if (instr[0] == 0xfa && instr[1] == 0xfe) |
| { |
| gdb_byte buf[2]; |
| LONGEST imm16; |
| |
| status = target_read_memory (pc + 2, buf, 2); |
| if (status != 0) |
| break; |
| |
| imm16 = extract_signed_integer (buf, 2, byte_order); |
| regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16); |
| |
| pc += 4; |
| /* Stack pointer adjustments are frame related. */ |
| after_last_frame_setup_insn = pc; |
| } |
| /* add imm32, SP */ |
| else if (instr[0] == 0xfc && instr[1] == 0xfe) |
| { |
| gdb_byte buf[4]; |
| LONGEST imm32; |
| |
| status = target_read_memory (pc + 2, buf, 4); |
| if (status != 0) |
| break; |
| |
| |
| imm32 = extract_signed_integer (buf, 4, byte_order); |
| regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32); |
| |
| pc += 6; |
| /* Stack pointer adjustments are frame related. */ |
| after_last_frame_setup_insn = pc; |
| } |
| /* add imm8, aN */ |
| else if ((instr[0] & 0xfc) == 0x20) |
| { |
| int aN; |
| LONGEST imm8; |
| |
| aN = instr[0] & 0x03; |
| imm8 = extract_signed_integer (&instr[1], 1, byte_order); |
| |
| regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], |
| imm8); |
| |
| pc += 2; |
| } |
| /* add imm16, aN */ |
| else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0) |
| { |
| int aN; |
| LONGEST imm16; |
| gdb_byte buf[2]; |
| |
| aN = instr[1] & 0x03; |
| |
| status = target_read_memory (pc + 2, buf, 2); |
| if (status != 0) |
| break; |
| |
| |
| imm16 = extract_signed_integer (buf, 2, byte_order); |
| |
| regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], |
| imm16); |
| |
| pc += 4; |
| } |
| /* add imm32, aN */ |
| else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0) |
| { |
| int aN; |
| LONGEST imm32; |
| gdb_byte buf[4]; |
| |
| aN = instr[1] & 0x03; |
| |
| status = target_read_memory (pc + 2, buf, 4); |
| if (status != 0) |
| break; |
| |
| imm32 = extract_signed_integer (buf, 2, byte_order); |
| |
| regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], |
| imm32); |
| pc += 6; |
| } |
| /* fmov fsM, (rN) */ |
| else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30) |
| { |
| int fsM, sM, Y, rN; |
| gdb_byte buf[1]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 1); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| rN = buf[0] & 0x0f; |
| fsM = (Y << 4) | sM; |
| |
| stack.store (regs[translate_rreg (rN)], 4, |
| regs[E_FS0_REGNUM + fsM]); |
| |
| pc += 3; |
| } |
| /* fmov fsM, (sp) */ |
| else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34) |
| { |
| int fsM, sM, Y; |
| gdb_byte buf[1]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 1); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| fsM = (Y << 4) | sM; |
| |
| stack.store (regs[E_SP_REGNUM], 4, |
| regs[E_FS0_REGNUM + fsM]); |
| |
| pc += 3; |
| } |
| /* fmov fsM, (rN, rI) */ |
| else if (instr[0] == 0xfb && instr[1] == 0x37) |
| { |
| int fsM, sM, Z, rN, rI; |
| gdb_byte buf[2]; |
| |
| |
| status = target_read_memory (pc + 2, buf, 2); |
| if (status != 0) |
| break; |
| |
| rI = (buf[0] & 0xf0) >> 4; |
| rN = buf[0] & 0x0f; |
| sM = (buf[1] & 0xf0) >> 4; |
| Z = (buf[1] & 0x02) >> 1; |
| fsM = (Z << 4) | sM; |
| |
| stack.store (pv_add (regs[translate_rreg (rN)], |
| regs[translate_rreg (rI)]), |
| 4, regs[E_FS0_REGNUM + fsM]); |
| |
| pc += 4; |
| } |
| /* fmov fsM, (d8, rN) */ |
| else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30) |
| { |
| int fsM, sM, Y, rN; |
| LONGEST d8; |
| gdb_byte buf[2]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 2); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| rN = buf[0] & 0x0f; |
| fsM = (Y << 4) | sM; |
| d8 = extract_signed_integer (&buf[1], 1, byte_order); |
| |
| stack.store (pv_add_constant (regs[translate_rreg (rN)], d8), |
| 4, regs[E_FS0_REGNUM + fsM]); |
| |
| pc += 4; |
| } |
| /* fmov fsM, (d24, rN) */ |
| else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30) |
| { |
| int fsM, sM, Y, rN; |
| LONGEST d24; |
| gdb_byte buf[4]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 4); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| rN = buf[0] & 0x0f; |
| fsM = (Y << 4) | sM; |
| d24 = extract_signed_integer (&buf[1], 3, byte_order); |
| |
| stack.store (pv_add_constant (regs[translate_rreg (rN)], d24), |
| 4, regs[E_FS0_REGNUM + fsM]); |
| |
| pc += 6; |
| } |
| /* fmov fsM, (d32, rN) */ |
| else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30) |
| { |
| int fsM, sM, Y, rN; |
| LONGEST d32; |
| gdb_byte buf[5]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 5); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| rN = buf[0] & 0x0f; |
| fsM = (Y << 4) | sM; |
| d32 = extract_signed_integer (&buf[1], 4, byte_order); |
| |
| stack.store (pv_add_constant (regs[translate_rreg (rN)], d32), |
| 4, regs[E_FS0_REGNUM + fsM]); |
| |
| pc += 7; |
| } |
| /* fmov fsM, (d8, SP) */ |
| else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34) |
| { |
| int fsM, sM, Y; |
| LONGEST d8; |
| gdb_byte buf[2]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 2); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| fsM = (Y << 4) | sM; |
| d8 = extract_signed_integer (&buf[1], 1, byte_order); |
| |
| stack.store (pv_add_constant (regs[E_SP_REGNUM], d8), |
| 4, regs[E_FS0_REGNUM + fsM]); |
| |
| pc += 4; |
| } |
| /* fmov fsM, (d24, SP) */ |
| else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34) |
| { |
| int fsM, sM, Y; |
| LONGEST d24; |
| gdb_byte buf[4]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 4); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| fsM = (Y << 4) | sM; |
| d24 = extract_signed_integer (&buf[1], 3, byte_order); |
| |
| stack.store (pv_add_constant (regs[E_SP_REGNUM], d24), |
| 4, regs[E_FS0_REGNUM + fsM]); |
| |
| pc += 6; |
| } |
| /* fmov fsM, (d32, SP) */ |
| else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34) |
| { |
| int fsM, sM, Y; |
| LONGEST d32; |
| gdb_byte buf[5]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 5); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| fsM = (Y << 4) | sM; |
| d32 = extract_signed_integer (&buf[1], 4, byte_order); |
| |
| stack.store (pv_add_constant (regs[E_SP_REGNUM], d32), |
| 4, regs[E_FS0_REGNUM + fsM]); |
| |
| pc += 7; |
| } |
| /* fmov fsM, (rN+) */ |
| else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31) |
| { |
| int fsM, sM, Y, rN, rN_regnum; |
| gdb_byte buf[1]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 1); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| rN = buf[0] & 0x0f; |
| fsM = (Y << 4) | sM; |
| |
| rN_regnum = translate_rreg (rN); |
| |
| stack.store (regs[rN_regnum], 4, |
| regs[E_FS0_REGNUM + fsM]); |
| regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4); |
| |
| pc += 3; |
| } |
| /* fmov fsM, (rN+, imm8) */ |
| else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31) |
| { |
| int fsM, sM, Y, rN, rN_regnum; |
| LONGEST imm8; |
| gdb_byte buf[2]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 2); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| rN = buf[0] & 0x0f; |
| fsM = (Y << 4) | sM; |
| imm8 = extract_signed_integer (&buf[1], 1, byte_order); |
| |
| rN_regnum = translate_rreg (rN); |
| |
| stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); |
| regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8); |
| |
| pc += 4; |
| } |
| /* fmov fsM, (rN+, imm24) */ |
| else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31) |
| { |
| int fsM, sM, Y, rN, rN_regnum; |
| LONGEST imm24; |
| gdb_byte buf[4]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 4); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| rN = buf[0] & 0x0f; |
| fsM = (Y << 4) | sM; |
| imm24 = extract_signed_integer (&buf[1], 3, byte_order); |
| |
| rN_regnum = translate_rreg (rN); |
| |
| stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); |
| regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24); |
| |
| pc += 6; |
| } |
| /* fmov fsM, (rN+, imm32) */ |
| else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31) |
| { |
| int fsM, sM, Y, rN, rN_regnum; |
| LONGEST imm32; |
| gdb_byte buf[5]; |
| |
| Y = (instr[1] & 0x02) >> 1; |
| |
| status = target_read_memory (pc + 2, buf, 5); |
| if (status != 0) |
| break; |
| |
| sM = (buf[0] & 0xf0) >> 4; |
| rN = buf[0] & 0x0f; |
| fsM = (Y << 4) | sM; |
| imm32 = extract_signed_integer (&buf[1], 4, byte_order); |
| |
| rN_regnum = translate_rreg (rN); |
| |
| stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); |
| regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32); |
| |
| pc += 7; |
| } |
| /* mov imm8, aN */ |
| else if ((instr[0] & 0xf0) == 0x90) |
| { |
| int aN = instr[0] & 0x03; |
| LONGEST imm8; |
| |
| imm8 = extract_signed_integer (&instr[1], 1, byte_order); |
| |
| regs[E_A0_REGNUM + aN] = pv_constant (imm8); |
| pc += 2; |
| } |
| /* mov imm16, aN */ |
| else if ((instr[0] & 0xfc) == 0x24) |
| { |
| int aN = instr[0] & 0x03; |
| gdb_byte buf[2]; |
| LONGEST imm16; |
| |
| status = target_read_memory (pc + 1, buf, 2); |
| if (status != 0) |
| break; |
| |
| imm16 = extract_signed_integer (buf, 2, byte_order); |
| regs[E_A0_REGNUM + aN] = pv_constant (imm16); |
| pc += 3; |
| } |
| /* mov imm32, aN */ |
| else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc)) |
| { |
| int aN = instr[1] & 0x03; |
| gdb_byte buf[4]; |
| LONGEST imm32; |
| |
| status = target_read_memory (pc + 2, buf, 4); |
| if (status != 0) |
| break; |
| |
| imm32 = extract_signed_integer (buf, 4, byte_order); |
| regs[E_A0_REGNUM + aN] = pv_constant (imm32); |
| pc += 6; |
| } |
| /* mov imm8, dN */ |
| else if ((instr[0] & 0xf0) == 0x80) |
| { |
| int dN = instr[0] & 0x03; |
| LONGEST imm8; |
| |
| imm8 = extract_signed_integer (&instr[1], 1, byte_order); |
| |
| regs[E_D0_REGNUM + dN] = pv_constant (imm8); |
| pc += 2; |
| } |
| /* mov imm16, dN */ |
| else if ((instr[0] & 0xfc) == 0x2c) |
| { |
| int dN = instr[0] & 0x03; |
| gdb_byte buf[2]; |
| LONGEST imm16; |
| |
| status = target_read_memory (pc + 1, buf, 2); |
| if (status != 0) |
| break; |
| |
| imm16 = extract_signed_integer (buf, 2, byte_order); |
| regs[E_D0_REGNUM + dN] = pv_constant (imm16); |
| pc += 3; |
| } |
| /* mov imm32, dN */ |
| else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc)) |
| { |
| int dN = instr[1] & 0x03; |
| gdb_byte buf[4]; |
| LONGEST imm32; |
| |
| status = target_read_memory (pc + 2, buf, 4); |
| if (status != 0) |
| break; |
| |
| imm32 = extract_signed_integer (buf, 4, byte_order); |
| regs[E_D0_REGNUM + dN] = pv_constant (imm32); |
| pc += 6; |
| } |
| else |
| { |
| /* We've hit some instruction that we don't recognize. Hopefully, |
| we have enough to do prologue analysis. */ |
| break; |
| } |
| } |
| |
| /* Is the frame size (offset, really) a known constant? */ |
| if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM)) |
| result->frame_size = regs[E_SP_REGNUM].k; |
| |
| /* Was the frame pointer initialized? */ |
| if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM)) |
| { |
| result->has_frame_ptr = 1; |
| result->frame_ptr_offset = regs[E_A3_REGNUM].k; |
| } |
| |
| /* Record where all the registers were saved. */ |
| stack.scan (check_for_saved, (void *) result); |
| |
| result->prologue_end = after_last_frame_setup_insn; |
| } |
| |
| /* Function: skip_prologue |
| Return the address of the first inst past the prologue of the function. */ |
| |
| static CORE_ADDR |
| mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| const char *name; |
| CORE_ADDR func_addr, func_end; |
| struct mn10300_prologue p; |
| |
| /* Try to find the extent of the function that contains PC. */ |
| if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) |
| return pc; |
| |
| mn10300_analyze_prologue (gdbarch, pc, func_end, &p); |
| return p.prologue_end; |
| } |
| |
| /* Wrapper for mn10300_analyze_prologue: find the function start; |
| use the current frame PC as the limit, then |
| invoke mn10300_analyze_prologue and return its result. */ |
| static struct mn10300_prologue * |
| mn10300_analyze_frame_prologue (struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| if (!*this_prologue_cache) |
| { |
| CORE_ADDR func_start, stop_addr; |
| |
| *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue); |
| |
| func_start = get_frame_func (this_frame); |
| stop_addr = get_frame_pc (this_frame); |
| |
| /* If we couldn't find any function containing the PC, then |
| just initialize the prologue cache, but don't do anything. */ |
| if (!func_start) |
| stop_addr = func_start; |
| |
| mn10300_analyze_prologue (get_frame_arch (this_frame), |
| func_start, stop_addr, |
| ((struct mn10300_prologue *) |
| *this_prologue_cache)); |
| } |
| |
| return (struct mn10300_prologue *) *this_prologue_cache; |
| } |
| |
| /* Given the next frame and a prologue cache, return this frame's |
| base. */ |
| static CORE_ADDR |
| mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache) |
| { |
| struct mn10300_prologue *p |
| = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache); |
| |
| /* In functions that use alloca, the distance between the stack |
| pointer and the frame base varies dynamically, so we can't use |
| the SP plus static information like prologue analysis to find the |
| frame base. However, such functions must have a frame pointer, |
| to be able to restore the SP on exit. So whenever we do have a |
| frame pointer, use that to find the base. */ |
| if (p->has_frame_ptr) |
| { |
| CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM); |
| return fp - p->frame_ptr_offset; |
| } |
| else |
| { |
| CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM); |
| return sp - p->frame_size; |
| } |
| } |
| |
| static void |
| mn10300_frame_this_id (struct frame_info *this_frame, |
| void **this_prologue_cache, |
| struct frame_id *this_id) |
| { |
| *this_id = frame_id_build (mn10300_frame_base (this_frame, |
| this_prologue_cache), |
| get_frame_func (this_frame)); |
| |
| } |
| |
| static struct value * |
| mn10300_frame_prev_register (struct frame_info *this_frame, |
| void **this_prologue_cache, int regnum) |
| { |
| struct mn10300_prologue *p |
| = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache); |
| CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache); |
| |
| if (regnum == E_SP_REGNUM) |
| return frame_unwind_got_constant (this_frame, regnum, frame_base); |
| |
| /* If prologue analysis says we saved this register somewhere, |
| return a description of the stack slot holding it. */ |
| if (p->reg_offset[regnum] != 1) |
| return frame_unwind_got_memory (this_frame, regnum, |
| frame_base + p->reg_offset[regnum]); |
| |
| /* Otherwise, presume we haven't changed the value of this |
| register, and get it from the next frame. */ |
| return frame_unwind_got_register (this_frame, regnum, regnum); |
| } |
| |
| static const struct frame_unwind mn10300_frame_unwind = { |
| "mn10300 prologue", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| mn10300_frame_this_id, |
| mn10300_frame_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| static void |
| mn10300_frame_unwind_init (struct gdbarch *gdbarch) |
| { |
| dwarf2_append_unwinders (gdbarch); |
| frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind); |
| } |
| |
| /* Function: push_dummy_call |
| * |
| * Set up machine state for a target call, including |
| * function arguments, stack, return address, etc. |
| * |
| */ |
| |
| static CORE_ADDR |
| mn10300_push_dummy_call (struct gdbarch *gdbarch, |
| struct value *target_func, |
| struct regcache *regcache, |
| CORE_ADDR bp_addr, |
| int nargs, struct value **args, |
| CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| const int push_size = register_size (gdbarch, E_PC_REGNUM); |
| int regs_used; |
| int len, arg_len; |
| int stack_offset = 0; |
| int argnum; |
| const gdb_byte *val; |
| gdb_byte valbuf[MN10300_MAX_REGISTER_SIZE]; |
| |
| /* This should be a nop, but align the stack just in case something |
| went wrong. Stacks are four byte aligned on the mn10300. */ |
| sp &= ~3; |
| |
| /* Now make space on the stack for the args. |
| |
| XXX This doesn't appear to handle pass-by-invisible reference |
| arguments. */ |
| regs_used = (return_method == return_method_struct) ? 1 : 0; |
| for (len = 0, argnum = 0; argnum < nargs; argnum++) |
| { |
| arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3; |
| while (regs_used < 2 && arg_len > 0) |
| { |
| regs_used++; |
| arg_len -= push_size; |
| } |
| len += arg_len; |
| } |
| |
| /* Allocate stack space. */ |
| sp -= len; |
| |
| if (return_method == return_method_struct) |
| { |
| regs_used = 1; |
| regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr); |
| } |
| else |
| regs_used = 0; |
| |
| /* Push all arguments onto the stack. */ |
| for (argnum = 0; argnum < nargs; argnum++) |
| { |
| /* FIXME what about structs? Unions? */ |
| if (value_type (*args)->code () == TYPE_CODE_STRUCT |
| && TYPE_LENGTH (value_type (*args)) > 8) |
| { |
| /* Change to pointer-to-type. */ |
| arg_len = push_size; |
| gdb_assert (push_size <= MN10300_MAX_REGISTER_SIZE); |
| store_unsigned_integer (valbuf, push_size, byte_order, |
| value_address (*args)); |
| val = &valbuf[0]; |
| } |
| else |
| { |
| arg_len = TYPE_LENGTH (value_type (*args)); |
| val = value_contents (*args); |
| } |
| |
| while (regs_used < 2 && arg_len > 0) |
| { |
| regcache_cooked_write_unsigned (regcache, regs_used, |
| extract_unsigned_integer (val, push_size, byte_order)); |
| val += push_size; |
| arg_len -= push_size; |
| regs_used++; |
| } |
| |
| while (arg_len > 0) |
| { |
| write_memory (sp + stack_offset, val, push_size); |
| arg_len -= push_size; |
| val += push_size; |
| stack_offset += push_size; |
| } |
| |
| args++; |
| } |
| |
| /* Make space for the flushback area. */ |
| sp -= 8; |
| |
| /* Push the return address that contains the magic breakpoint. */ |
| sp -= 4; |
| write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr); |
| |
| /* The CPU also writes the return address always into the |
| MDR register on "call". */ |
| regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr); |
| |
| /* Update $sp. */ |
| regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); |
| |
| /* On the mn10300, it's possible to move some of the stack adjustment |
| and saving of the caller-save registers out of the prologue and |
| into the call sites. (When using gcc, this optimization can |
| occur when using the -mrelax switch.) If this occurs, the dwarf2 |
| info will reflect this fact. We can test to see if this is the |
| case by creating a new frame using the current stack pointer and |
| the address of the function that we're about to call. We then |
| unwind SP and see if it's different than the SP of our newly |
| created frame. If the SP values are the same, the caller is not |
| expected to allocate any additional stack. On the other hand, if |
| the SP values are different, the difference determines the |
| additional stack that must be allocated. |
| |
| Note that we don't update the return value though because that's |
| the value of the stack just after pushing the arguments, but prior |
| to performing the call. This value is needed in order to |
| construct the frame ID of the dummy call. */ |
| { |
| CORE_ADDR func_addr = find_function_addr (target_func, NULL); |
| CORE_ADDR unwound_sp |
| = gdbarch_unwind_sp (gdbarch, create_new_frame (sp, func_addr)); |
| if (sp != unwound_sp) |
| regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, |
| sp - (unwound_sp - sp)); |
| } |
| |
| return sp; |
| } |
| |
| /* If DWARF2 is a register number appearing in Dwarf2 debug info, then |
| mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB |
| register number. Why don't Dwarf2 and GDB use the same numbering? |
| Who knows? But since people have object files lying around with |
| the existing Dwarf2 numbering, and other people have written stubs |
| to work with the existing GDB, neither of them can change. So we |
| just have to cope. */ |
| static int |
| mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2) |
| { |
| /* This table is supposed to be shaped like the gdbarch_register_name |
| initializer in gcc/config/mn10300/mn10300.h. Registers which |
| appear in GCC's numbering, but have no counterpart in GDB's |
| world, are marked with a -1. */ |
| static int dwarf2_to_gdb[] = { |
| E_D0_REGNUM, E_D1_REGNUM, E_D2_REGNUM, E_D3_REGNUM, |
| E_A0_REGNUM, E_A1_REGNUM, E_A2_REGNUM, E_A3_REGNUM, |
| -1, E_SP_REGNUM, |
| |
| E_E0_REGNUM, E_E1_REGNUM, E_E2_REGNUM, E_E3_REGNUM, |
| E_E4_REGNUM, E_E5_REGNUM, E_E6_REGNUM, E_E7_REGNUM, |
| |
| E_FS0_REGNUM + 0, E_FS0_REGNUM + 1, E_FS0_REGNUM + 2, E_FS0_REGNUM + 3, |
| E_FS0_REGNUM + 4, E_FS0_REGNUM + 5, E_FS0_REGNUM + 6, E_FS0_REGNUM + 7, |
| |
| E_FS0_REGNUM + 8, E_FS0_REGNUM + 9, E_FS0_REGNUM + 10, E_FS0_REGNUM + 11, |
| E_FS0_REGNUM + 12, E_FS0_REGNUM + 13, E_FS0_REGNUM + 14, E_FS0_REGNUM + 15, |
| |
| E_FS0_REGNUM + 16, E_FS0_REGNUM + 17, E_FS0_REGNUM + 18, E_FS0_REGNUM + 19, |
| E_FS0_REGNUM + 20, E_FS0_REGNUM + 21, E_FS0_REGNUM + 22, E_FS0_REGNUM + 23, |
| |
| E_FS0_REGNUM + 24, E_FS0_REGNUM + 25, E_FS0_REGNUM + 26, E_FS0_REGNUM + 27, |
| E_FS0_REGNUM + 28, E_FS0_REGNUM + 29, E_FS0_REGNUM + 30, E_FS0_REGNUM + 31, |
| |
| E_MDR_REGNUM, E_PSW_REGNUM, E_PC_REGNUM |
| }; |
| |
| if (dwarf2 < 0 |
| || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb)) |
| return -1; |
| |
| return dwarf2_to_gdb[dwarf2]; |
| } |
| |
| static struct gdbarch * |
| mn10300_gdbarch_init (struct gdbarch_info info, |
| struct gdbarch_list *arches) |
| { |
| struct gdbarch *gdbarch; |
| struct gdbarch_tdep *tdep; |
| int num_regs; |
| |
| arches = gdbarch_list_lookup_by_info (arches, &info); |
| if (arches != NULL) |
| return arches->gdbarch; |
| |
| tdep = XCNEW (struct gdbarch_tdep); |
| gdbarch = gdbarch_alloc (&info, tdep); |
| |
| switch (info.bfd_arch_info->mach) |
| { |
| case 0: |
| case bfd_mach_mn10300: |
| set_gdbarch_register_name (gdbarch, mn10300_generic_register_name); |
| tdep->am33_mode = 0; |
| num_regs = 32; |
| break; |
| case bfd_mach_am33: |
| set_gdbarch_register_name (gdbarch, am33_register_name); |
| tdep->am33_mode = 1; |
| num_regs = 32; |
| break; |
| case bfd_mach_am33_2: |
| set_gdbarch_register_name (gdbarch, am33_2_register_name); |
| tdep->am33_mode = 2; |
| num_regs = 64; |
| set_gdbarch_fp0_regnum (gdbarch, 32); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("mn10300_gdbarch_init: Unknown mn10300 variant")); |
| break; |
| } |
| |
| /* By default, chars are unsigned. */ |
| set_gdbarch_char_signed (gdbarch, 0); |
| |
| /* Registers. */ |
| set_gdbarch_num_regs (gdbarch, num_regs); |
| set_gdbarch_register_type (gdbarch, mn10300_register_type); |
| set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue); |
| set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); |
| set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); |
| set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum); |
| |
| /* Stack unwinding. */ |
| set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| /* Breakpoints. */ |
| set_gdbarch_breakpoint_kind_from_pc (gdbarch, |
| mn10300_breakpoint::kind_from_pc); |
| set_gdbarch_sw_breakpoint_from_kind (gdbarch, |
| mn10300_breakpoint::bp_from_kind); |
| /* decr_pc_after_break? */ |
| |
| /* Stage 2 */ |
| set_gdbarch_return_value (gdbarch, mn10300_return_value); |
| |
| /* Stage 3 -- get target calls working. */ |
| set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call); |
| /* set_gdbarch_return_value (store, extract) */ |
| |
| |
| mn10300_frame_unwind_init (gdbarch); |
| |
| /* Hook in ABI-specific overrides, if they have been registered. */ |
| gdbarch_init_osabi (info, gdbarch); |
| |
| return gdbarch; |
| } |
| |
| /* Dump out the mn10300 specific architecture information. */ |
| |
| static void |
| mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n", |
| tdep->am33_mode); |
| } |
| |
| void _initialize_mn10300_tdep (); |
| void |
| _initialize_mn10300_tdep () |
| { |
| gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep); |
| } |
| |