blob: b60573002c8f3e44950d0b69b90fd06e72ba4967 [file] [log] [blame]
// output.h -- manage the output file for gold -*- C++ -*-
// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#ifndef GOLD_OUTPUT_H
#define GOLD_OUTPUT_H
#include <algorithm>
#include <list>
#include <vector>
#include "elfcpp.h"
#include "mapfile.h"
#include "layout.h"
#include "reloc-types.h"
namespace gold
{
class General_options;
class Object;
class Symbol;
class Output_merge_base;
class Output_section;
class Relocatable_relocs;
class Target;
template<int size, bool big_endian>
class Sized_target;
template<int size, bool big_endian>
class Sized_relobj;
template<int size, bool big_endian>
class Sized_relobj_file;
// This class represents the output file.
class Output_file
{
public:
Output_file(const char* name);
// Indicate that this is a temporary file which should not be
// output.
void
set_is_temporary()
{ this->is_temporary_ = true; }
// Try to open an existing file. Returns false if the file doesn't
// exist, has a size of 0 or can't be mmaped. This method is
// thread-unsafe. If BASE_NAME is not NULL, use the contents of
// that file as the base for incremental linking.
bool
open_base_file(const char* base_name, bool writable);
// Open the output file. FILE_SIZE is the final size of the file.
// If the file already exists, it is deleted/truncated. This method
// is thread-unsafe.
void
open(off_t file_size);
// Resize the output file. This method is thread-unsafe.
void
resize(off_t file_size);
// Close the output file (flushing all buffered data) and make sure
// there are no errors. This method is thread-unsafe.
void
close();
// Return the size of this file.
off_t
filesize()
{ return this->file_size_; }
// Return the name of this file.
const char*
filename()
{ return this->name_; }
// We currently always use mmap which makes the view handling quite
// simple. In the future we may support other approaches.
// Write data to the output file.
void
write(off_t offset, const void* data, size_t len)
{ memcpy(this->base_ + offset, data, len); }
// Get a buffer to use to write to the file, given the offset into
// the file and the size.
unsigned char*
get_output_view(off_t start, size_t size)
{
gold_assert(start >= 0
&& start + static_cast<off_t>(size) <= this->file_size_);
return this->base_ + start;
}
// VIEW must have been returned by get_output_view. Write the
// buffer to the file, passing in the offset and the size.
void
write_output_view(off_t, size_t, unsigned char*)
{ }
// Get a read/write buffer. This is used when we want to write part
// of the file, read it in, and write it again.
unsigned char*
get_input_output_view(off_t start, size_t size)
{ return this->get_output_view(start, size); }
// Write a read/write buffer back to the file.
void
write_input_output_view(off_t, size_t, unsigned char*)
{ }
// Get a read buffer. This is used when we just want to read part
// of the file back it in.
const unsigned char*
get_input_view(off_t start, size_t size)
{ return this->get_output_view(start, size); }
// Release a read bfufer.
void
free_input_view(off_t, size_t, const unsigned char*)
{ }
private:
// Map the file into memory or, if that fails, allocate anonymous
// memory.
void
map();
// Allocate anonymous memory for the file.
bool
map_anonymous();
// Map the file into memory.
bool
map_no_anonymous(bool);
// Unmap the file from memory (and flush to disk buffers).
void
unmap();
// File name.
const char* name_;
// File descriptor.
int o_;
// File size.
off_t file_size_;
// Base of file mapped into memory.
unsigned char* base_;
// True iff base_ points to a memory buffer rather than an output file.
bool map_is_anonymous_;
// True if base_ was allocated using new rather than mmap.
bool map_is_allocated_;
// True if this is a temporary file which should not be output.
bool is_temporary_;
};
// An abtract class for data which has to go into the output file.
class Output_data
{
public:
explicit Output_data()
: address_(0), data_size_(0), offset_(-1),
is_address_valid_(false), is_data_size_valid_(false),
is_offset_valid_(false), is_data_size_fixed_(false),
has_dynamic_reloc_(false)
{ }
virtual
~Output_data();
// Return the address. For allocated sections, this is only valid
// after Layout::finalize is finished.
uint64_t
address() const
{
gold_assert(this->is_address_valid_);
return this->address_;
}
// Return the size of the data. For allocated sections, this must
// be valid after Layout::finalize calls set_address, but need not
// be valid before then.
off_t
data_size() const
{
gold_assert(this->is_data_size_valid_);
return this->data_size_;
}
// Get the current data size.
off_t
current_data_size() const
{ return this->current_data_size_for_child(); }
// Return true if data size is fixed.
bool
is_data_size_fixed() const
{ return this->is_data_size_fixed_; }
// Return the file offset. This is only valid after
// Layout::finalize is finished. For some non-allocated sections,
// it may not be valid until near the end of the link.
off_t
offset() const
{
gold_assert(this->is_offset_valid_);
return this->offset_;
}
// Reset the address, file offset and data size. This essentially
// disables the sanity testing about duplicate and unknown settings.
void
reset_address_and_file_offset()
{
this->is_address_valid_ = false;
this->is_offset_valid_ = false;
if (!this->is_data_size_fixed_)
this->is_data_size_valid_ = false;
this->do_reset_address_and_file_offset();
}
// As above, but just for data size.
void
reset_data_size()
{
if (!this->is_data_size_fixed_)
this->is_data_size_valid_ = false;
}
// Return true if address and file offset already have reset values. In
// other words, calling reset_address_and_file_offset will not change them.
bool
address_and_file_offset_have_reset_values() const
{ return this->do_address_and_file_offset_have_reset_values(); }
// Return the required alignment.
uint64_t
addralign() const
{ return this->do_addralign(); }
// Return whether this has a load address.
bool
has_load_address() const
{ return this->do_has_load_address(); }
// Return the load address.
uint64_t
load_address() const
{ return this->do_load_address(); }
// Return whether this is an Output_section.
bool
is_section() const
{ return this->do_is_section(); }
// Return whether this is an Output_section of the specified type.
bool
is_section_type(elfcpp::Elf_Word stt) const
{ return this->do_is_section_type(stt); }
// Return whether this is an Output_section with the specified flag
// set.
bool
is_section_flag_set(elfcpp::Elf_Xword shf) const
{ return this->do_is_section_flag_set(shf); }
// Return the output section that this goes in, if there is one.
Output_section*
output_section()
{ return this->do_output_section(); }
const Output_section*
output_section() const
{ return this->do_output_section(); }
// Return the output section index, if there is an output section.
unsigned int
out_shndx() const
{ return this->do_out_shndx(); }
// Set the output section index, if this is an output section.
void
set_out_shndx(unsigned int shndx)
{ this->do_set_out_shndx(shndx); }
// Set the address and file offset of this data, and finalize the
// size of the data. This is called during Layout::finalize for
// allocated sections.
void
set_address_and_file_offset(uint64_t addr, off_t off)
{
this->set_address(addr);
this->set_file_offset(off);
this->finalize_data_size();
}
// Set the address.
void
set_address(uint64_t addr)
{
gold_assert(!this->is_address_valid_);
this->address_ = addr;
this->is_address_valid_ = true;
}
// Set the file offset.
void
set_file_offset(off_t off)
{
gold_assert(!this->is_offset_valid_);
this->offset_ = off;
this->is_offset_valid_ = true;
}
// Update the data size without finalizing it.
void
pre_finalize_data_size()
{
if (!this->is_data_size_valid_)
{
// Tell the child class to update the data size.
this->update_data_size();
}
}
// Finalize the data size.
void
finalize_data_size()
{
if (!this->is_data_size_valid_)
{
// Tell the child class to set the data size.
this->set_final_data_size();
gold_assert(this->is_data_size_valid_);
}
}
// Set the TLS offset. Called only for SHT_TLS sections.
void
set_tls_offset(uint64_t tls_base)
{ this->do_set_tls_offset(tls_base); }
// Return the TLS offset, relative to the base of the TLS segment.
// Valid only for SHT_TLS sections.
uint64_t
tls_offset() const
{ return this->do_tls_offset(); }
// Write the data to the output file. This is called after
// Layout::finalize is complete.
void
write(Output_file* file)
{ this->do_write(file); }
// This is called by Layout::finalize to note that the sizes of
// allocated sections must now be fixed.
static void
layout_complete()
{ Output_data::allocated_sizes_are_fixed = true; }
// Used to check that layout has been done.
static bool
is_layout_complete()
{ return Output_data::allocated_sizes_are_fixed; }
// Note that a dynamic reloc has been applied to this data.
void
add_dynamic_reloc()
{ this->has_dynamic_reloc_ = true; }
// Return whether a dynamic reloc has been applied.
bool
has_dynamic_reloc() const
{ return this->has_dynamic_reloc_; }
// Whether the address is valid.
bool
is_address_valid() const
{ return this->is_address_valid_; }
// Whether the file offset is valid.
bool
is_offset_valid() const
{ return this->is_offset_valid_; }
// Whether the data size is valid.
bool
is_data_size_valid() const
{ return this->is_data_size_valid_; }
// Print information to the map file.
void
print_to_mapfile(Mapfile* mapfile) const
{ return this->do_print_to_mapfile(mapfile); }
protected:
// Functions that child classes may or in some cases must implement.
// Write the data to the output file.
virtual void
do_write(Output_file*) = 0;
// Return the required alignment.
virtual uint64_t
do_addralign() const = 0;
// Return whether this has a load address.
virtual bool
do_has_load_address() const
{ return false; }
// Return the load address.
virtual uint64_t
do_load_address() const
{ gold_unreachable(); }
// Return whether this is an Output_section.
virtual bool
do_is_section() const
{ return false; }
// Return whether this is an Output_section of the specified type.
// This only needs to be implement by Output_section.
virtual bool
do_is_section_type(elfcpp::Elf_Word) const
{ return false; }
// Return whether this is an Output_section with the specific flag
// set. This only needs to be implemented by Output_section.
virtual bool
do_is_section_flag_set(elfcpp::Elf_Xword) const
{ return false; }
// Return the output section, if there is one.
virtual Output_section*
do_output_section()
{ return NULL; }
virtual const Output_section*
do_output_section() const
{ return NULL; }
// Return the output section index, if there is an output section.
virtual unsigned int
do_out_shndx() const
{ gold_unreachable(); }
// Set the output section index, if this is an output section.
virtual void
do_set_out_shndx(unsigned int)
{ gold_unreachable(); }
// This is a hook for derived classes to set the preliminary data size.
// This is called by pre_finalize_data_size, normally called during
// Layout::finalize, before the section address is set, and is used
// during an incremental update, when we need to know the size of a
// section before allocating space in the output file. For classes
// where the current data size is up to date, this default version of
// the method can be inherited.
virtual void
update_data_size()
{ }
// This is a hook for derived classes to set the data size. This is
// called by finalize_data_size, normally called during
// Layout::finalize, when the section address is set.
virtual void
set_final_data_size()
{ gold_unreachable(); }
// A hook for resetting the address and file offset.
virtual void
do_reset_address_and_file_offset()
{ }
// Return true if address and file offset already have reset values. In
// other words, calling reset_address_and_file_offset will not change them.
// A child class overriding do_reset_address_and_file_offset may need to
// also override this.
virtual bool
do_address_and_file_offset_have_reset_values() const
{ return !this->is_address_valid_ && !this->is_offset_valid_; }
// Set the TLS offset. Called only for SHT_TLS sections.
virtual void
do_set_tls_offset(uint64_t)
{ gold_unreachable(); }
// Return the TLS offset, relative to the base of the TLS segment.
// Valid only for SHT_TLS sections.
virtual uint64_t
do_tls_offset() const
{ gold_unreachable(); }
// Print to the map file. This only needs to be implemented by
// classes which may appear in a PT_LOAD segment.
virtual void
do_print_to_mapfile(Mapfile*) const
{ gold_unreachable(); }
// Functions that child classes may call.
// Reset the address. The Output_section class needs this when an
// SHF_ALLOC input section is added to an output section which was
// formerly not SHF_ALLOC.
void
mark_address_invalid()
{ this->is_address_valid_ = false; }
// Set the size of the data.
void
set_data_size(off_t data_size)
{
gold_assert(!this->is_data_size_valid_
&& !this->is_data_size_fixed_);
this->data_size_ = data_size;
this->is_data_size_valid_ = true;
}
// Fix the data size. Once it is fixed, it cannot be changed
// and the data size remains always valid.
void
fix_data_size()
{
gold_assert(this->is_data_size_valid_);
this->is_data_size_fixed_ = true;
}
// Get the current data size--this is for the convenience of
// sections which build up their size over time.
off_t
current_data_size_for_child() const
{ return this->data_size_; }
// Set the current data size--this is for the convenience of
// sections which build up their size over time.
void
set_current_data_size_for_child(off_t data_size)
{
gold_assert(!this->is_data_size_valid_);
this->data_size_ = data_size;
}
// Return default alignment for the target size.
static uint64_t
default_alignment();
// Return default alignment for a specified size--32 or 64.
static uint64_t
default_alignment_for_size(int size);
private:
Output_data(const Output_data&);
Output_data& operator=(const Output_data&);
// This is used for verification, to make sure that we don't try to
// change any sizes of allocated sections after we set the section
// addresses.
static bool allocated_sizes_are_fixed;
// Memory address in output file.
uint64_t address_;
// Size of data in output file.
off_t data_size_;
// File offset of contents in output file.
off_t offset_;
// Whether address_ is valid.
bool is_address_valid_ : 1;
// Whether data_size_ is valid.
bool is_data_size_valid_ : 1;
// Whether offset_ is valid.
bool is_offset_valid_ : 1;
// Whether data size is fixed.
bool is_data_size_fixed_ : 1;
// Whether any dynamic relocs have been applied to this section.
bool has_dynamic_reloc_ : 1;
};
// Output the section headers.
class Output_section_headers : public Output_data
{
public:
Output_section_headers(const Layout*,
const Layout::Segment_list*,
const Layout::Section_list*,
const Layout::Section_list*,
const Stringpool*,
const Output_section*);
protected:
// Write the data to the file.
void
do_write(Output_file*);
// Return the required alignment.
uint64_t
do_addralign() const
{ return Output_data::default_alignment(); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** section headers")); }
// Update the data size.
void
update_data_size()
{ this->set_data_size(this->do_size()); }
// Set final data size.
void
set_final_data_size()
{ this->set_data_size(this->do_size()); }
private:
// Write the data to the file with the right size and endianness.
template<int size, bool big_endian>
void
do_sized_write(Output_file*);
// Compute data size.
off_t
do_size() const;
const Layout* layout_;
const Layout::Segment_list* segment_list_;
const Layout::Section_list* section_list_;
const Layout::Section_list* unattached_section_list_;
const Stringpool* secnamepool_;
const Output_section* shstrtab_section_;
};
// Output the segment headers.
class Output_segment_headers : public Output_data
{
public:
Output_segment_headers(const Layout::Segment_list& segment_list);
protected:
// Write the data to the file.
void
do_write(Output_file*);
// Return the required alignment.
uint64_t
do_addralign() const
{ return Output_data::default_alignment(); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** segment headers")); }
// Set final data size.
void
set_final_data_size()
{ this->set_data_size(this->do_size()); }
private:
// Write the data to the file with the right size and endianness.
template<int size, bool big_endian>
void
do_sized_write(Output_file*);
// Compute the current size.
off_t
do_size() const;
const Layout::Segment_list& segment_list_;
};
// Output the ELF file header.
class Output_file_header : public Output_data
{
public:
Output_file_header(Target*,
const Symbol_table*,
const Output_segment_headers*);
// Add information about the section headers. We lay out the ELF
// file header before we create the section headers.
void set_section_info(const Output_section_headers*,
const Output_section* shstrtab);
protected:
// Write the data to the file.
void
do_write(Output_file*);
// Return the required alignment.
uint64_t
do_addralign() const
{ return Output_data::default_alignment(); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** file header")); }
// Set final data size.
void
set_final_data_size(void)
{ this->set_data_size(this->do_size()); }
private:
// Write the data to the file with the right size and endianness.
template<int size, bool big_endian>
void
do_sized_write(Output_file*);
// Return the value to use for the entry address.
template<int size>
typename elfcpp::Elf_types<size>::Elf_Addr
entry();
// Compute the current data size.
off_t
do_size() const;
Target* target_;
const Symbol_table* symtab_;
const Output_segment_headers* segment_header_;
const Output_section_headers* section_header_;
const Output_section* shstrtab_;
};
// Output sections are mainly comprised of input sections. However,
// there are cases where we have data to write out which is not in an
// input section. Output_section_data is used in such cases. This is
// an abstract base class.
class Output_section_data : public Output_data
{
public:
Output_section_data(off_t data_size, uint64_t addralign,
bool is_data_size_fixed)
: Output_data(), output_section_(NULL), addralign_(addralign)
{
this->set_data_size(data_size);
if (is_data_size_fixed)
this->fix_data_size();
}
Output_section_data(uint64_t addralign)
: Output_data(), output_section_(NULL), addralign_(addralign)
{ }
// Return the output section.
Output_section*
output_section()
{ return this->output_section_; }
const Output_section*
output_section() const
{ return this->output_section_; }
// Record the output section.
void
set_output_section(Output_section* os);
// Add an input section, for SHF_MERGE sections. This returns true
// if the section was handled.
bool
add_input_section(Relobj* object, unsigned int shndx)
{ return this->do_add_input_section(object, shndx); }
// Given an input OBJECT, an input section index SHNDX within that
// object, and an OFFSET relative to the start of that input
// section, return whether or not the corresponding offset within
// the output section is known. If this function returns true, it
// sets *POUTPUT to the output offset. The value -1 indicates that
// this input offset is being discarded.
bool
output_offset(const Relobj* object, unsigned int shndx,
section_offset_type offset,
section_offset_type* poutput) const
{ return this->do_output_offset(object, shndx, offset, poutput); }
// Write the contents to a buffer. This is used for sections which
// require postprocessing, such as compression.
void
write_to_buffer(unsigned char* buffer)
{ this->do_write_to_buffer(buffer); }
// Print merge stats to stderr. This should only be called for
// SHF_MERGE sections.
void
print_merge_stats(const char* section_name)
{ this->do_print_merge_stats(section_name); }
protected:
// The child class must implement do_write.
// The child class may implement specific adjustments to the output
// section.
virtual void
do_adjust_output_section(Output_section*)
{ }
// May be implemented by child class. Return true if the section
// was handled.
virtual bool
do_add_input_section(Relobj*, unsigned int)
{ gold_unreachable(); }
// The child class may implement output_offset.
virtual bool
do_output_offset(const Relobj*, unsigned int, section_offset_type,
section_offset_type*) const
{ return false; }
// The child class may implement write_to_buffer. Most child
// classes can not appear in a compressed section, and they do not
// implement this.
virtual void
do_write_to_buffer(unsigned char*)
{ gold_unreachable(); }
// Print merge statistics.
virtual void
do_print_merge_stats(const char*)
{ gold_unreachable(); }
// Return the required alignment.
uint64_t
do_addralign() const
{ return this->addralign_; }
// Return the output section.
Output_section*
do_output_section()
{ return this->output_section_; }
const Output_section*
do_output_section() const
{ return this->output_section_; }
// Return the section index of the output section.
unsigned int
do_out_shndx() const;
// Set the alignment.
void
set_addralign(uint64_t addralign);
private:
// The output section for this section.
Output_section* output_section_;
// The required alignment.
uint64_t addralign_;
};
// Some Output_section_data classes build up their data step by step,
// rather than all at once. This class provides an interface for
// them.
class Output_section_data_build : public Output_section_data
{
public:
Output_section_data_build(uint64_t addralign)
: Output_section_data(addralign)
{ }
Output_section_data_build(off_t data_size, uint64_t addralign)
: Output_section_data(data_size, addralign, false)
{ }
// Set the current data size.
void
set_current_data_size(off_t data_size)
{ this->set_current_data_size_for_child(data_size); }
protected:
// Set the final data size.
virtual void
set_final_data_size()
{ this->set_data_size(this->current_data_size_for_child()); }
};
// A simple case of Output_data in which we have constant data to
// output.
class Output_data_const : public Output_section_data
{
public:
Output_data_const(const std::string& data, uint64_t addralign)
: Output_section_data(data.size(), addralign, true), data_(data)
{ }
Output_data_const(const char* p, off_t len, uint64_t addralign)
: Output_section_data(len, addralign, true), data_(p, len)
{ }
Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
: Output_section_data(len, addralign, true),
data_(reinterpret_cast<const char*>(p), len)
{ }
protected:
// Write the data to the output file.
void
do_write(Output_file*);
// Write the data to a buffer.
void
do_write_to_buffer(unsigned char* buffer)
{ memcpy(buffer, this->data_.data(), this->data_.size()); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** fill")); }
private:
std::string data_;
};
// Another version of Output_data with constant data, in which the
// buffer is allocated by the caller.
class Output_data_const_buffer : public Output_section_data
{
public:
Output_data_const_buffer(const unsigned char* p, off_t len,
uint64_t addralign, const char* map_name)
: Output_section_data(len, addralign, true),
p_(p), map_name_(map_name)
{ }
protected:
// Write the data the output file.
void
do_write(Output_file*);
// Write the data to a buffer.
void
do_write_to_buffer(unsigned char* buffer)
{ memcpy(buffer, this->p_, this->data_size()); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(this->map_name_)); }
private:
// The data to output.
const unsigned char* p_;
// Name to use in a map file. Maps are a rarely used feature, but
// the space usage is minor as aren't very many of these objects.
const char* map_name_;
};
// A place holder for a fixed amount of data written out via some
// other mechanism.
class Output_data_fixed_space : public Output_section_data
{
public:
Output_data_fixed_space(off_t data_size, uint64_t addralign,
const char* map_name)
: Output_section_data(data_size, addralign, true),
map_name_(map_name)
{ }
protected:
// Write out the data--the actual data must be written out
// elsewhere.
void
do_write(Output_file*)
{ }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(this->map_name_)); }
private:
// Name to use in a map file. Maps are a rarely used feature, but
// the space usage is minor as aren't very many of these objects.
const char* map_name_;
};
// A place holder for variable sized data written out via some other
// mechanism.
class Output_data_space : public Output_section_data_build
{
public:
explicit Output_data_space(uint64_t addralign, const char* map_name)
: Output_section_data_build(addralign),
map_name_(map_name)
{ }
explicit Output_data_space(off_t data_size, uint64_t addralign,
const char* map_name)
: Output_section_data_build(data_size, addralign),
map_name_(map_name)
{ }
// Set the alignment.
void
set_space_alignment(uint64_t align)
{ this->set_addralign(align); }
protected:
// Write out the data--the actual data must be written out
// elsewhere.
void
do_write(Output_file*)
{ }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(this->map_name_)); }
private:
// Name to use in a map file. Maps are a rarely used feature, but
// the space usage is minor as aren't very many of these objects.
const char* map_name_;
};
// Fill fixed space with zeroes. This is just like
// Output_data_fixed_space, except that the map name is known.
class Output_data_zero_fill : public Output_section_data
{
public:
Output_data_zero_fill(off_t data_size, uint64_t addralign)
: Output_section_data(data_size, addralign, true)
{ }
protected:
// There is no data to write out.
void
do_write(Output_file*)
{ }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, "** zero fill"); }
};
// A string table which goes into an output section.
class Output_data_strtab : public Output_section_data
{
public:
Output_data_strtab(Stringpool* strtab)
: Output_section_data(1), strtab_(strtab)
{ }
protected:
// This is called to update the section size prior to assigning
// the address and file offset.
void
update_data_size()
{ this->set_final_data_size(); }
// This is called to set the address and file offset. Here we make
// sure that the Stringpool is finalized.
void
set_final_data_size();
// Write out the data.
void
do_write(Output_file*);
// Write the data to a buffer.
void
do_write_to_buffer(unsigned char* buffer)
{ this->strtab_->write_to_buffer(buffer, this->data_size()); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** string table")); }
private:
Stringpool* strtab_;
};
// This POD class is used to represent a single reloc in the output
// file. This could be a private class within Output_data_reloc, but
// the templatization is complex enough that I broke it out into a
// separate class. The class is templatized on either elfcpp::SHT_REL
// or elfcpp::SHT_RELA, and also on whether this is a dynamic
// relocation or an ordinary relocation.
// A relocation can be against a global symbol, a local symbol, a
// local section symbol, an output section, or the undefined symbol at
// index 0. We represent the latter by using a NULL global symbol.
template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_reloc;
template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
static const Address invalid_address = static_cast<Address>(0) - 1;
// An uninitialized entry. We need this because we want to put
// instances of this class into an STL container.
Output_reloc()
: local_sym_index_(INVALID_CODE)
{ }
// We have a bunch of different constructors. They come in pairs
// depending on how the address of the relocation is specified. It
// can either be an offset in an Output_data or an offset in an
// input section.
// A reloc against a global symbol.
Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
Address address, bool is_relative, bool is_symbolless,
bool use_plt_offset);
Output_reloc(Symbol* gsym, unsigned int type,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, bool is_relative,
bool is_symbolless, bool use_plt_offset);
// A reloc against a local symbol or local section symbol.
Output_reloc(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address, bool is_relative,
bool is_symbolless, bool is_section_symbol,
bool use_plt_offset);
Output_reloc(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
unsigned int shndx, Address address, bool is_relative,
bool is_symbolless, bool is_section_symbol,
bool use_plt_offset);
// A reloc against the STT_SECTION symbol of an output section.
Output_reloc(Output_section* os, unsigned int type, Output_data* od,
Address address, bool is_relative);
Output_reloc(Output_section* os, unsigned int type,
Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
Address address, bool is_relative);
// An absolute or relative relocation with no symbol.
Output_reloc(unsigned int type, Output_data* od, Address address,
bool is_relative);
Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, bool is_relative);
// A target specific relocation. The target will be called to get
// the symbol index, passing ARG. The type and offset will be set
// as for other relocation types.
Output_reloc(unsigned int type, void* arg, Output_data* od,
Address address);
Output_reloc(unsigned int type, void* arg,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address);
// Return the reloc type.
unsigned int
type() const
{ return this->type_; }
// Return whether this is a RELATIVE relocation.
bool
is_relative() const
{ return this->is_relative_; }
// Return whether this is a relocation which should not use
// a symbol, but which obtains its addend from a symbol.
bool
is_symbolless() const
{ return this->is_symbolless_; }
// Return whether this is against a local section symbol.
bool
is_local_section_symbol() const
{
return (this->local_sym_index_ != GSYM_CODE
&& this->local_sym_index_ != SECTION_CODE
&& this->local_sym_index_ != INVALID_CODE
&& this->local_sym_index_ != TARGET_CODE
&& this->is_section_symbol_);
}
// Return whether this is a target specific relocation.
bool
is_target_specific() const
{ return this->local_sym_index_ == TARGET_CODE; }
// Return the argument to pass to the target for a target specific
// relocation.
void*
target_arg() const
{
gold_assert(this->local_sym_index_ == TARGET_CODE);
return this->u1_.arg;
}
// For a local section symbol, return the offset of the input
// section within the output section. ADDEND is the addend being
// applied to the input section.
Address
local_section_offset(Addend addend) const;
// Get the value of the symbol referred to by a Rel relocation when
// we are adding the given ADDEND.
Address
symbol_value(Addend addend) const;
// If this relocation is against an input section, return the
// relocatable object containing the input section.
Sized_relobj<size, big_endian>*
get_relobj() const
{
if (this->shndx_ == INVALID_CODE)
return NULL;
return this->u2_.relobj;
}
// Write the reloc entry to an output view.
void
write(unsigned char* pov) const;
// Write the offset and info fields to Write_rel.
template<typename Write_rel>
void write_rel(Write_rel*) const;
// This is used when sorting dynamic relocs. Return -1 to sort this
// reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
int
compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
const;
// Return whether this reloc should be sorted before the argument
// when sorting dynamic relocs.
bool
sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
r2) const
{ return this->compare(r2) < 0; }
// Return the symbol index.
unsigned int
get_symbol_index() const;
// Return the output address.
Address
get_address() const;
private:
// Record that we need a dynamic symbol index.
void
set_needs_dynsym_index();
// Codes for local_sym_index_.
enum
{
// Global symbol.
GSYM_CODE = -1U,
// Output section.
SECTION_CODE = -2U,
// Target specific.
TARGET_CODE = -3U,
// Invalid uninitialized entry.
INVALID_CODE = -4U
};
union
{
// For a local symbol or local section symbol
// (this->local_sym_index_ >= 0), the object. We will never
// generate a relocation against a local symbol in a dynamic
// object; that doesn't make sense. And our callers will always
// be templatized, so we use Sized_relobj here.
Sized_relobj<size, big_endian>* relobj;
// For a global symbol (this->local_sym_index_ == GSYM_CODE, the
// symbol. If this is NULL, it indicates a relocation against the
// undefined 0 symbol.
Symbol* gsym;
// For a relocation against an output section
// (this->local_sym_index_ == SECTION_CODE), the output section.
Output_section* os;
// For a target specific relocation, an argument to pass to the
// target.
void* arg;
} u1_;
union
{
// If this->shndx_ is not INVALID CODE, the object which holds the
// input section being used to specify the reloc address.
Sized_relobj<size, big_endian>* relobj;
// If this->shndx_ is INVALID_CODE, the output data being used to
// specify the reloc address. This may be NULL if the reloc
// address is absolute.
Output_data* od;
} u2_;
// The address offset within the input section or the Output_data.
Address address_;
// This is GSYM_CODE for a global symbol, or SECTION_CODE for a
// relocation against an output section, or TARGET_CODE for a target
// specific relocation, or INVALID_CODE for an uninitialized value.
// Otherwise, for a local symbol (this->is_section_symbol_ is
// false), the local symbol index. For a local section symbol
// (this->is_section_symbol_ is true), the section index in the
// input file.
unsigned int local_sym_index_;
// The reloc type--a processor specific code.
unsigned int type_ : 28;
// True if the relocation is a RELATIVE relocation.
bool is_relative_ : 1;
// True if the relocation is one which should not use
// a symbol, but which obtains its addend from a symbol.
bool is_symbolless_ : 1;
// True if the relocation is against a section symbol.
bool is_section_symbol_ : 1;
// True if the addend should be the PLT offset.
// (Used only for RELA, but stored here for space.)
bool use_plt_offset_ : 1;
// If the reloc address is an input section in an object, the
// section index. This is INVALID_CODE if the reloc address is
// specified in some other way.
unsigned int shndx_;
};
// The SHT_RELA version of Output_reloc<>. This is just derived from
// the SHT_REL version of Output_reloc, but it adds an addend.
template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
// An uninitialized entry.
Output_reloc()
: rel_()
{ }
// A reloc against a global symbol.
Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
Address address, Addend addend, bool is_relative,
bool is_symbolless, bool use_plt_offset)
: rel_(gsym, type, od, address, is_relative, is_symbolless,
use_plt_offset),
addend_(addend)
{ }
Output_reloc(Symbol* gsym, unsigned int type,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend,
bool is_relative, bool is_symbolless, bool use_plt_offset)
: rel_(gsym, type, relobj, shndx, address, is_relative,
is_symbolless, use_plt_offset), addend_(addend)
{ }
// A reloc against a local symbol.
Output_reloc(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address,
Addend addend, bool is_relative,
bool is_symbolless, bool is_section_symbol,
bool use_plt_offset)
: rel_(relobj, local_sym_index, type, od, address, is_relative,
is_symbolless, is_section_symbol, use_plt_offset),
addend_(addend)
{ }
Output_reloc(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
unsigned int shndx, Address address,
Addend addend, bool is_relative,
bool is_symbolless, bool is_section_symbol,
bool use_plt_offset)
: rel_(relobj, local_sym_index, type, shndx, address, is_relative,
is_symbolless, is_section_symbol, use_plt_offset),
addend_(addend)
{ }
// A reloc against the STT_SECTION symbol of an output section.
Output_reloc(Output_section* os, unsigned int type, Output_data* od,
Address address, Addend addend, bool is_relative)
: rel_(os, type, od, address, is_relative), addend_(addend)
{ }
Output_reloc(Output_section* os, unsigned int type,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend,
bool is_relative)
: rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
{ }
// An absolute or relative relocation with no symbol.
Output_reloc(unsigned int type, Output_data* od, Address address,
Addend addend, bool is_relative)
: rel_(type, od, address, is_relative), addend_(addend)
{ }
Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend,
bool is_relative)
: rel_(type, relobj, shndx, address, is_relative), addend_(addend)
{ }
// A target specific relocation. The target will be called to get
// the symbol index and the addend, passing ARG. The type and
// offset will be set as for other relocation types.
Output_reloc(unsigned int type, void* arg, Output_data* od,
Address address, Addend addend)
: rel_(type, arg, od, address), addend_(addend)
{ }
Output_reloc(unsigned int type, void* arg,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
: rel_(type, arg, relobj, shndx, address), addend_(addend)
{ }
// Return whether this is a RELATIVE relocation.
bool
is_relative() const
{ return this->rel_.is_relative(); }
// Return whether this is a relocation which should not use
// a symbol, but which obtains its addend from a symbol.
bool
is_symbolless() const
{ return this->rel_.is_symbolless(); }
// If this relocation is against an input section, return the
// relocatable object containing the input section.
Sized_relobj<size, big_endian>*
get_relobj() const
{ return this->rel_.get_relobj(); }
// Write the reloc entry to an output view.
void
write(unsigned char* pov) const;
// Return whether this reloc should be sorted before the argument
// when sorting dynamic relocs.
bool
sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
r2) const
{
int i = this->rel_.compare(r2.rel_);
if (i < 0)
return true;
else if (i > 0)
return false;
else
return this->addend_ < r2.addend_;
}
private:
// The basic reloc.
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
// The addend.
Addend addend_;
};
// Output_data_reloc_generic is a non-template base class for
// Output_data_reloc_base. This gives the generic code a way to hold
// a pointer to a reloc section.
class Output_data_reloc_generic : public Output_section_data_build
{
public:
Output_data_reloc_generic(int size, bool sort_relocs)
: Output_section_data_build(Output_data::default_alignment_for_size(size)),
relative_reloc_count_(0), sort_relocs_(sort_relocs)
{ }
// Return the number of relative relocs in this section.
size_t
relative_reloc_count() const
{ return this->relative_reloc_count_; }
// Whether we should sort the relocs.
bool
sort_relocs() const
{ return this->sort_relocs_; }
// Add a reloc of type TYPE against the global symbol GSYM. The
// relocation applies to the data at offset ADDRESS within OD.
virtual void
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
uint64_t address, uint64_t addend) = 0;
// Add a reloc of type TYPE against the global symbol GSYM. The
// relocation applies to data at offset ADDRESS within section SHNDX
// of object file RELOBJ. OD is the associated output section.
virtual void
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
Relobj* relobj, unsigned int shndx, uint64_t address,
uint64_t addend) = 0;
// Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
// in RELOBJ. The relocation applies to the data at offset ADDRESS
// within OD.
virtual void
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
unsigned int type, Output_data* od, uint64_t address,
uint64_t addend) = 0;
// Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
// in RELOBJ. The relocation applies to the data at offset ADDRESS
// within section SHNDX of RELOBJ. OD is the associated output
// section.
virtual void
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
unsigned int type, Output_data* od, unsigned int shndx,
uint64_t address, uint64_t addend) = 0;
// Add a reloc of type TYPE against the STT_SECTION symbol of the
// output section OS. The relocation applies to the data at offset
// ADDRESS within OD.
virtual void
add_output_section_generic(Output_section *os, unsigned int type,
Output_data* od, uint64_t address,
uint64_t addend) = 0;
// Add a reloc of type TYPE against the STT_SECTION symbol of the
// output section OS. The relocation applies to the data at offset
// ADDRESS within section SHNDX of RELOBJ. OD is the associated
// output section.
virtual void
add_output_section_generic(Output_section* os, unsigned int type,
Output_data* od, Relobj* relobj,
unsigned int shndx, uint64_t address,
uint64_t addend) = 0;
protected:
// Note that we've added another relative reloc.
void
bump_relative_reloc_count()
{ ++this->relative_reloc_count_; }
private:
// The number of relative relocs added to this section. This is to
// support DT_RELCOUNT.
size_t relative_reloc_count_;
// Whether to sort the relocations when writing them out, to make
// the dynamic linker more efficient.
bool sort_relocs_;
};
// Output_data_reloc is used to manage a section containing relocs.
// SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
// indicates whether this is a dynamic relocation or a normal
// relocation. Output_data_reloc_base is a base class.
// Output_data_reloc is the real class, which we specialize based on
// the reloc type.
template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc_base : public Output_data_reloc_generic
{
public:
typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
typedef typename Output_reloc_type::Address Address;
static const int reloc_size =
Reloc_types<sh_type, size, big_endian>::reloc_size;
// Construct the section.
Output_data_reloc_base(bool sort_relocs)
: Output_data_reloc_generic(size, sort_relocs)
{ }
protected:
// Write out the data.
void
do_write(Output_file*);
// Generic implementation of do_write, allowing a customized
// class for writing the output relocation (e.g., for MIPS-64).
template<class Output_reloc_writer>
void
do_write_generic(Output_file* of)
{
const off_t off = this->offset();
const off_t oview_size = this->data_size();
unsigned char* const oview = of->get_output_view(off, oview_size);
if (this->sort_relocs())
{
gold_assert(dynamic);
std::sort(this->relocs_.begin(), this->relocs_.end(),
Sort_relocs_comparison());
}
unsigned char* pov = oview;
for (typename Relocs::const_iterator p = this->relocs_.begin();
p != this->relocs_.end();
++p)
{
Output_reloc_writer::write(p, pov);
pov += reloc_size;
}
gold_assert(pov - oview == oview_size);
of->write_output_view(off, oview_size, oview);
// We no longer need the relocation entries.
this->relocs_.clear();
}
// Set the entry size and the link.
void
do_adjust_output_section(Output_section* os);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{
mapfile->print_output_data(this,
(dynamic
? _("** dynamic relocs")
: _("** relocs")));
}
// Add a relocation entry.
void
add(Output_data* od, const Output_reloc_type& reloc)
{
this->relocs_.push_back(reloc);
this->set_current_data_size(this->relocs_.size() * reloc_size);
if (dynamic)
od->add_dynamic_reloc();
if (reloc.is_relative())
this->bump_relative_reloc_count();
Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
if (relobj != NULL)
relobj->add_dyn_reloc(this->relocs_.size() - 1);
}
private:
typedef std::vector<Output_reloc_type> Relocs;
// The class used to sort the relocations.
struct Sort_relocs_comparison
{
bool
operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
{ return r1.sort_before(r2); }
};
// The relocations in this section.
Relocs relocs_;
};
// The class which callers actually create.
template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc;
// The SHT_REL version of Output_data_reloc.
template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
: public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
{
private:
typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
big_endian> Base;
public:
typedef typename Base::Output_reloc_type Output_reloc_type;
typedef typename Output_reloc_type::Address Address;
Output_data_reloc(bool sr)
: Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
{ }
// Add a reloc against a global symbol.
void
add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
{
this->add(od, Output_reloc_type(gsym, type, od, address,
false, false, false));
}
void
add_global(Symbol* gsym, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
false, false, false));
}
void
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
uint64_t address, uint64_t addend)
{
gold_assert(addend == 0);
this->add(od, Output_reloc_type(gsym, type, od,
convert_types<Address, uint64_t>(address),
false, false, false));
}
void
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
Relobj* relobj, unsigned int shndx, uint64_t address,
uint64_t addend)
{
gold_assert(addend == 0);
Sized_relobj<size, big_endian>* sized_relobj =
static_cast<Sized_relobj<size, big_endian>*>(relobj);
this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
convert_types<Address, uint64_t>(address),
false, false, false));
}
// Add a RELATIVE reloc against a global symbol. The final relocation
// will not reference the symbol.
void
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
Address address)
{
this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
false));
}
void
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
true, true, false));
}
// Add a global relocation which does not use a symbol for the relocation,
// but which gets its addend from a symbol.
void
add_symbolless_global_addend(Symbol* gsym, unsigned int type,
Output_data* od, Address address)
{
this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
false));
}
void
add_symbolless_global_addend(Symbol* gsym, unsigned int type,
Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
false, true, false));
}
// Add a reloc against a local symbol.
void
add_local(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
address, false, false, false, false));
}
void
add_local(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, false, false, false, false));
}
void
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
unsigned int type, Output_data* od, uint64_t address,
uint64_t addend)
{
gold_assert(addend == 0);
Sized_relobj<size, big_endian>* sized_relobj =
static_cast<Sized_relobj<size, big_endian> *>(relobj);
this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
convert_types<Address, uint64_t>(address),
false, false, false, false));
}
void
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
unsigned int type, Output_data* od, unsigned int shndx,
uint64_t address, uint64_t addend)
{
gold_assert(addend == 0);
Sized_relobj<size, big_endian>* sized_relobj =
static_cast<Sized_relobj<size, big_endian>*>(relobj);
this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
convert_types<Address, uint64_t>(address),
false, false, false, false));
}
// Add a RELATIVE reloc against a local symbol.
void
add_local_relative(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
address, true, true, false, false));
}
void
add_local_relative(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, true, true, false, false));
}
void
add_local_relative(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx, Address address,
bool use_plt_offset)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, true, true, false,
use_plt_offset));
}
// Add a local relocation which does not use a symbol for the relocation,
// but which gets its addend from a symbol.
void
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
address, false, true, false, false));
}
void
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx,
Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, false, true, false, false));
}
// Add a reloc against a local section symbol. This will be
// converted into a reloc against the STT_SECTION symbol of the
// output section.
void
add_local_section(Sized_relobj<size, big_endian>* relobj,
unsigned int input_shndx, unsigned int type,
Output_data* od, Address address)
{
this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
address, false, false, true, false));
}
void
add_local_section(Sized_relobj<size, big_endian>* relobj,
unsigned int input_shndx, unsigned int type,
Output_data* od, unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
address, false, false, true, false));
}
// A reloc against the STT_SECTION symbol of an output section.
// OS is the Output_section that the relocation refers to; OD is
// the Output_data object being relocated.
void
add_output_section(Output_section* os, unsigned int type,
Output_data* od, Address address)
{ this->add(od, Output_reloc_type(os, type, od, address, false)); }
void
add_output_section(Output_section* os, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{ this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
void
add_output_section_generic(Output_section* os, unsigned int type,
Output_data* od, uint64_t address,
uint64_t addend)
{
gold_assert(addend == 0);
this->add(od, Output_reloc_type(os, type, od,
convert_types<Address, uint64_t>(address),
false));
}
void
add_output_section_generic(Output_section* os, unsigned int type,
Output_data* od, Relobj* relobj,
unsigned int shndx, uint64_t address,
uint64_t addend)
{
gold_assert(addend == 0);
Sized_relobj<size, big_endian>* sized_relobj =
static_cast<Sized_relobj<size, big_endian>*>(relobj);
this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
convert_types<Address, uint64_t>(address),
false));
}
// As above, but the reloc TYPE is relative
void
add_output_section_relative(Output_section* os, unsigned int type,
Output_data* od, Address address)
{ this->add(od, Output_reloc_type(os, type, od, address, true)); }
void
add_output_section_relative(Output_section* os, unsigned int type,
Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{ this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
// Add an absolute relocation.
void
add_absolute(unsigned int type, Output_data* od, Address address)
{ this->add(od, Output_reloc_type(type, od, address, false)); }
void
add_absolute(unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{ this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
// Add a relative relocation
void
add_relative(unsigned int type, Output_data* od, Address address)
{ this->add(od, Output_reloc_type(type, od, address, true)); }
void
add_relative(unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{ this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
// Add a target specific relocation. A target which calls this must
// define the reloc_symbol_index and reloc_addend virtual functions.
void
add_target_specific(unsigned int type, void* arg, Output_data* od,
Address address)
{ this->add(od, Output_reloc_type(type, arg, od, address)); }
void
add_target_specific(unsigned int type, void* arg, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{ this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
};
// The SHT_RELA version of Output_data_reloc.
template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
: public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
private:
typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
big_endian> Base;
public:
typedef typename Base::Output_reloc_type Output_reloc_type;
typedef typename Output_reloc_type::Address Address;
typedef typename Output_reloc_type::Addend Addend;
Output_data_reloc(bool sr)
: Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
{ }
// Add a reloc against a global symbol.
void
add_global(Symbol* gsym, unsigned int type, Output_data* od,
Address address, Addend addend)
{
this->add(od, Output_reloc_type(gsym, type, od, address, addend,
false, false, false));
}
void
add_global(Symbol* gsym, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address,
Addend addend)
{
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
addend, false, false, false));
}
void
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
uint64_t address, uint64_t addend)
{
this->add(od, Output_reloc_type(gsym, type, od,
convert_types<Address, uint64_t>(address),
convert_types<Addend, uint64_t>(addend),
false, false, false));
}
void
add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
Relobj* relobj, unsigned int shndx, uint64_t address,
uint64_t addend)
{
Sized_relobj<size, big_endian>* sized_relobj =
static_cast<Sized_relobj<size, big_endian>*>(relobj);
this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
convert_types<Address, uint64_t>(address),
convert_types<Addend, uint64_t>(addend),
false, false, false));
}
// Add a RELATIVE reloc against a global symbol. The final output
// relocation will not reference the symbol, but we must keep the symbol
// information long enough to set the addend of the relocation correctly
// when it is written.
void
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
Address address, Addend addend, bool use_plt_offset)
{
this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
true, use_plt_offset));
}
void
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend,
bool use_plt_offset)
{
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
addend, true, true, use_plt_offset));
}
// Add a global relocation which does not use a symbol for the relocation,
// but which gets its addend from a symbol.
void
add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
Address address, Addend addend)
{
this->add(od, Output_reloc_type(gsym, type, od, address, addend,
false, true, false));
}
void
add_symbolless_global_addend(Symbol* gsym, unsigned int type,
Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address,
Addend addend)
{
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
addend, false, true, false));
}
// Add a reloc against a local symbol.
void
add_local(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address, Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
addend, false, false, false, false));
}
void
add_local(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx, Address address,
Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, addend, false, false, false,
false));
}
void
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
unsigned int type, Output_data* od, uint64_t address,
uint64_t addend)
{
Sized_relobj<size, big_endian>* sized_relobj =
static_cast<Sized_relobj<size, big_endian> *>(relobj);
this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
convert_types<Address, uint64_t>(address),
convert_types<Addend, uint64_t>(addend),
false, false, false, false));
}
void
add_local_generic(Relobj* relobj, unsigned int local_sym_index,
unsigned int type, Output_data* od, unsigned int shndx,
uint64_t address, uint64_t addend)
{
Sized_relobj<size, big_endian>* sized_relobj =
static_cast<Sized_relobj<size, big_endian>*>(relobj);
this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
convert_types<Address, uint64_t>(address),
convert_types<Addend, uint64_t>(addend),
false, false, false, false));
}
// Add a RELATIVE reloc against a local symbol.
void
add_local_relative(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address, Addend addend,
bool use_plt_offset)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
addend, true, true, false,
use_plt_offset));
}
void
add_local_relative(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx, Address address,
Addend addend, bool use_plt_offset)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, addend, true, true, false,
use_plt_offset));
}
// Add a local relocation which does not use a symbol for the relocation,
// but which gets it's addend from a symbol.
void
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address, Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
addend, false, true, false, false));
}
void
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx,
Address address, Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, addend, false, true, false,
false));
}
// Add a reloc against a local section symbol. This will be
// converted into a reloc against the STT_SECTION symbol of the
// output section.
void
add_local_section(Sized_relobj<size, big_endian>* relobj,
unsigned int input_shndx, unsigned int type,
Output_data* od, Address address, Addend addend)
{
this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
addend, false, false, true, false));
}
void
add_local_section(Sized_relobj<size, big_endian>* relobj,
unsigned int input_shndx, unsigned int type,
Output_data* od, unsigned int shndx, Address address,
Addend addend)
{
this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
address, addend, false, false, true,
false));
}
// A reloc against the STT_SECTION symbol of an output section.
void
add_output_section(Output_section* os, unsigned int type, Output_data* od,
Address address, Addend addend)
{ this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
void
add_output_section(Output_section* os, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
{
this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
addend, false));
}
void
add_output_section_generic(Output_section* os, unsigned int type,
Output_data* od, uint64_t address,
uint64_t addend)
{
this->add(od, Output_reloc_type(os, type, od,
convert_types<Address, uint64_t>(address),
convert_types<Addend, uint64_t>(addend),
false));
}
void
add_output_section_generic(Output_section* os, unsigned int type,
Output_data* od, Relobj* relobj,
unsigned int shndx, uint64_t address,
uint64_t addend)
{
Sized_relobj<size, big_endian>* sized_relobj =
static_cast<Sized_relobj<size, big_endian>*>(relobj);
this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
convert_types<Address, uint64_t>(address),
convert_types<Addend, uint64_t>(addend),
false));
}
// As above, but the reloc TYPE is relative
void
add_output_section_relative(Output_section* os, unsigned int type,
Output_data* od, Address address, Addend addend)
{ this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
void
add_output_section_relative(Output_section* os, unsigned int type,
Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address,
Addend addend)
{
this->add(od, Output_reloc_type(os, type, relobj, shndx,
address, addend, true));
}
// Add an absolute relocation.
void
add_absolute(unsigned int type, Output_data* od, Address address,
Addend addend)
{ this->add(od, Output_reloc_type(type, od, address, addend, false)); }
void
add_absolute(unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
{
this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
false));
}
// Add a relative relocation
void
add_relative(unsigned int type, Output_data* od, Address address,
Addend addend)
{ this->add(od, Output_reloc_type(type, od, address, addend, true)); }
void
add_relative(unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
{
this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
true));
}
// Add a target specific relocation. A target which calls this must
// define the reloc_symbol_index and reloc_addend virtual functions.
void
add_target_specific(unsigned int type, void* arg, Output_data* od,
Address address, Addend addend)
{ this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
void
add_target_specific(unsigned int type, void* arg, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
{
this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
addend));
}
};
// Output_relocatable_relocs represents a relocation section in a
// relocatable link. The actual data is written out in the target
// hook relocate_relocs. This just saves space for it.
template<int sh_type, int size, bool big_endian>
class Output_relocatable_relocs : public Output_section_data
{
public:
Output_relocatable_relocs(Relocatable_relocs* rr)
: Output_section_data(Output_data::default_alignment_for_size(size)),
rr_(rr)
{ }
void
set_final_data_size();
// Write out the data. There is nothing to do here.
void
do_write(Output_file*)
{ }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** relocs")); }
private:
// The relocs associated with this input section.
Relocatable_relocs* rr_;
};
// Handle a GROUP section.
template<int size, bool big_endian>
class Output_data_group : public Output_section_data
{
public:
// The constructor clears *INPUT_SHNDXES.
Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
section_size_type entry_count,
elfcpp::Elf_Word flags,
std::vector<unsigned int>* input_shndxes);
void
do_write(Output_file*);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** group")); }
// Set final data size.
void
set_final_data_size()
{ this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
private:
// The input object.
Sized_relobj_file<size, big_endian>* relobj_;
// The group flag word.
elfcpp::Elf_Word flags_;
// The section indexes of the input sections in this group.
std::vector<unsigned int> input_shndxes_;
};
// Output_data_got is used to manage a GOT. Each entry in the GOT is
// for one symbol--either a global symbol or a local symbol in an
// object. The target specific code adds entries to the GOT as
// needed. The GOT_SIZE template parameter is the size in bits of a
// GOT entry, typically 32 or 64.
class Output_data_got_base : public Output_section_data_build
{
public:
Output_data_got_base(uint64_t align)
: Output_section_data_build(align)
{ }
Output_data_got_base(off_t data_size, uint64_t align)
: Output_section_data_build(data_size, align)
{ }
// Reserve the slot at index I in the GOT.
void
reserve_slot(unsigned int i)
{ this->do_reserve_slot(i); }
protected:
// Reserve the slot at index I in the GOT.
virtual void
do_reserve_slot(unsigned int i) = 0;
};
template<int got_size, bool big_endian>
class Output_data_got : public Output_data_got_base
{
public:
typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
Output_data_got()
: Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
entries_(), free_list_()
{ }
Output_data_got(off_t data_size)
: Output_data_got_base(data_size,
Output_data::default_alignment_for_size(got_size)),
entries_(), free_list_()
{
// For an incremental update, we have an existing GOT section.
// Initialize the list of entries and the free list.
this->entries_.resize(data_size / (got_size / 8));
this->free_list_.init(data_size, false);
}
// Add an entry for a global symbol GSYM plus ADDEND to the GOT.
// Return true if this is a new GOT entry, false if the symbol plus
// addend was already in the GOT.
bool
add_global(Symbol* gsym, unsigned int got_type, uint64_t addend = 0);
// Like add_global, but use the PLT offset of the global symbol if
// it has one.
bool
add_global_plt(Symbol* gsym, unsigned int got_type, uint64_t addend = 0);
// Like add_global, but for a TLS symbol where the value will be
// offset using Target::tls_offset_for_global.
bool
add_global_tls(Symbol* gsym, unsigned int got_type, uint64_t addend = 0)
{ return this->add_global_plt(gsym, got_type, addend); }
// Add an entry for a global symbol GSYM plus ADDEND to the GOT, and
// add a dynamic relocation of type R_TYPE for the GOT entry.
void
add_global_with_rel(Symbol* gsym, unsigned int got_type,
Output_data_reloc_generic* rel_dyn, unsigned int r_type,
uint64_t addend = 0);
// Add a pair of entries for a global symbol GSYM plus ADDEND to the
// GOT, and add dynamic relocations of type R_TYPE_1 and R_TYPE_2,
// respectively.
void
add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
Output_data_reloc_generic* rel_dyn,
unsigned int r_type_1, unsigned int r_type_2,
uint64_t addend = 0);
// Add an entry for a local symbol plus ADDEND to the GOT. This returns
// true if this is a new GOT entry, false if the symbol already has a GOT
// entry.
bool
add_local(Relobj* object, unsigned int sym_index, unsigned int got_type,
uint64_t addend = 0);
// Like add_local, but use the PLT offset of the local symbol if it
// has one.
bool
add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type,
uint64_t addend = 0);
// Like add_local, but for a TLS symbol where the value will be
// offset using Target::tls_offset_for_local.
bool
add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type,
uint64_t addend = 0)
{ return this->add_local_plt(object, sym_index, got_type, addend); }
// Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
// relocation of type R_TYPE for the GOT entry.
void
add_local_with_rel(Relobj* object, unsigned int sym_index,
unsigned int got_type, Output_data_reloc_generic* rel_dyn,
unsigned int r_type, uint64_t addend = 0);
// Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
// a dynamic relocation of type R_TYPE using the section symbol of
// the output section to which input section SHNDX maps, on the first.
// The first got entry will have a value of zero, the second the
// value of the local symbol.
void
add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
unsigned int shndx, unsigned int got_type,
Output_data_reloc_generic* rel_dyn,
unsigned int r_type, uint64_t addend = 0);
// Add a pair of entries for a local symbol plus ADDEND to the GOT,
// and add a dynamic relocation of type R_TYPE using STN_UNDEF on
// the first. The first got entry will have a value of zero, the
// second the value of the local symbol plus ADDEND offset by
// Target::tls_offset_for_local.
void
add_local_tls_pair(Relobj* object, unsigned int sym_index,
unsigned int got_type,
Output_data_reloc_generic* rel_dyn,
unsigned int r_type, uint64_t addend = 0);
// Add a constant to the GOT. This returns the offset of the new
// entry from the start of the GOT.
unsigned int
add_constant(Valtype constant)
{ return this->add_got_entry(Got_entry(constant)); }
// Add a pair of constants to the GOT. This returns the offset of
// the new entry from the start of the GOT.
unsigned int
add_constant_pair(Valtype c1, Valtype c2)
{ return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
// Replace GOT entry I with a new constant.
void
replace_constant(unsigned int i, Valtype constant)
{
this->replace_got_entry(i, Got_entry(constant));
}
// Reserve a slot in the GOT for a local symbol plus ADDEND.
void
reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
unsigned int got_type, uint64_t addend = 0);
// Reserve a slot in the GOT for a global symbol plus ADDEND.
void
reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type,
uint64_t addend = 0);
protected:
// Write out the GOT table.
void
do_write(Output_file*);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** GOT")); }
// Reserve the slot at index I in the GOT.
virtual void
do_reserve_slot(unsigned int i)
{ this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
// Return the number of words in the GOT.
unsigned int
num_entries () const
{ return this->entries_.size(); }
// Return the offset into the GOT of GOT entry I.
unsigned int
got_offset(unsigned int i) const
{ return i * (got_size / 8); }
private:
// This POD class holds a single GOT entry.
class Got_entry
{
public:
// Create a zero entry.
Got_entry()
: local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false),
addend_(0)
{ this->u_.constant = 0; }
// Create a global symbol entry.
Got_entry(Symbol* gsym, bool use_plt_or_tls_offset, uint64_t addend)
: local_sym_index_(GSYM_CODE),
use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
{ this->u_.gsym = gsym; }
// Create a local symbol entry.
Got_entry(Relobj* object, unsigned int local_sym_index,
bool use_plt_or_tls_offset, uint64_t addend)
: local_sym_index_(local_sym_index),
use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
{
gold_assert(local_sym_index != GSYM_CODE
&& local_sym_index != CONSTANT_CODE
&& local_sym_index != RESERVED_CODE
&& local_sym_index == this->local_sym_index_);
this->u_.object = object;
}
// Create a constant entry. The constant is a host value--it will
// be swapped, if necessary, when it is written out.
explicit Got_entry(Valtype constant)
: local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
{ this->u_.constant = constant; }
// Write the GOT entry to an output view.
void
write(Output_data_got_base* got, unsigned int got_indx,
unsigned char* pov) const;
private:
enum
{
GSYM_CODE = 0x7fffffff,
CONSTANT_CODE = 0x7ffffffe,
RESERVED_CODE = 0x7ffffffd
};
union
{
// For a local symbol, the object.
Relobj* object;
// For a global symbol, the symbol.
Symbol* gsym;
// For a constant, the constant.
Valtype constant;
} u_;
// For a local symbol, the local symbol index. This is GSYM_CODE
// for a global symbol, or CONSTANT_CODE for a constant.
unsigned int local_sym_index_ : 31;
// Whether to use the PLT offset of the symbol if it has one.
// For TLS symbols, whether to offset the symbol value.
bool use_plt_or_tls_offset_ : 1;
// The addend.
uint64_t addend_;
};
typedef std::vector<Got_entry> Got_entries;
// Create a new GOT entry and return its offset.
unsigned int
add_got_entry(Got_entry got_entry);
// Create a pair of new GOT entries and return the offset of the first.
unsigned int
add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
// Replace GOT entry I with a new value.
void
replace_got_entry(unsigned int i, Got_entry got_entry);
// Return the offset into the GOT of the last entry added.
unsigned int
last_got_offset() const
{ return this->got_offset(this->num_entries() - 1); }
// Set the size of the section.
void
set_got_size()
{ this->set_current_data_size(this->got_offset(this->num_entries())); }
// The list of GOT entries.
Got_entries entries_;
// List of available regions within the section, for incremental
// update links.
Free_list free_list_;
};
// Output_data_dynamic is used to hold the data in SHT_DYNAMIC
// section.
class Output_data_dynamic : public Output_section_data
{
public:
Output_data_dynamic(Stringpool* pool)
: Output_section_data(Output_data::default_alignment()),
entries_(), pool_(pool)
{ }
// Add a new dynamic entry with a fixed numeric value.
void
add_constant(elfcpp::DT tag, unsigned int val)
{ this->add_entry(Dynamic_entry(tag, val)); }
// Add a new dynamic entry with the address of output data.
void
add_section_address(elfcpp::DT tag, const Output_data* od)
{ this->add_entry(Dynamic_entry(tag, od, false)); }
// Add a new dynamic entry with the address of output data
// plus a constant offset.
void
add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
unsigned int offset)
{ this->add_entry(Dynamic_entry(tag, od, offset)); }
// Add a new dynamic entry with the size of output data.
void
add_section_size(elfcpp::DT tag, const Output_data* od)
{ this->add_entry(Dynamic_entry(tag, od, true)); }
// Add a new dynamic entry with the total size of two output datas.
void
add_section_size(elfcpp::DT tag, const Output_data* od,
const Output_data* od2)
{ this->add_entry(Dynamic_entry(tag, od, od2)); }
// Add a new dynamic entry with the address of a symbol.
void
add_symbol(elfcpp::DT tag, const Symbol* sym)
{ this->add_entry(Dynamic_entry(tag, sym)); }
// Add a new dynamic entry with a string.
void
add_string(elfcpp::DT tag, const char* str)
{ this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
void
add_string(elfcpp::DT tag, const std::string& str)
{ this->add_string(tag, str.c_str()); }
// Add a new dynamic entry with custom value.
void
add_custom(elfcpp::DT tag)
{ this->add_entry(Dynamic_entry(tag)); }
// Get a dynamic entry offset.
unsigned int
get_entry_offset(elfcpp::DT tag) const;
protected:
// Adjust the output section to set the entry size.
void
do_adjust_output_section(Output_section*);
// Set the final data size.
void
set_final_data_size();
// Write out the dynamic entries.
void
do_write(Output_file*);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** dynamic")); }
private:
// This POD class holds a single dynamic entry.
class Dynamic_entry
{
public:
// Create an entry with a fixed numeric value.
Dynamic_entry(elfcpp::DT tag, unsigned int val)
: tag_(tag), offset_(DYNAMIC_NUMBER)
{ this->u_.val = val; }
// Create an entry with the size or address of a section.
Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
: tag_(tag),
offset_(section_size
? DYNAMIC_SECTION_SIZE
: DYNAMIC_SECTION_ADDRESS)
{
this->u_.od = od;
this->od2 = NULL;
}
// Create an entry with the size of two sections.
Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
: tag_(tag),
offset_(DYNAMIC_SECTION_SIZE)
{
this->u_.od = od;
this->od2 = od2;
}
// Create an entry with the address of a section plus a constant offset.
Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
: tag_(tag),
offset_(offset)
{ this->u_.od = od; }
// Create an entry with the address of a symbol.
Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
: tag_(tag), offset_(DYNAMIC_SYMBOL)
{ this->u_.sym = sym; }
// Create an entry with a string.
Dynamic_entry(elfcpp::DT tag, const char* str)
: tag_(tag), offset_(DYNAMIC_STRING)
{ this->u_.str = str; }
// Create an entry with a custom value.
Dynamic_entry(elfcpp::DT tag)
: tag_(tag), offset_(DYNAMIC_CUSTOM)
{ }
// Return the tag of this entry.
elfcpp::DT
tag() const
{ return this->tag_; }
// Write the dynamic entry to an output view.
template<int size, bool big_endian>
void
write(unsigned char* pov, const Stringpool*) const;
private:
// Classification is encoded in the OFFSET field.
enum Classification
{
// Section address.
DYNAMIC_SECTION_ADDRESS = 0,
// Number.
DYNAMIC_NUMBER = -1U,
// Section size.
DYNAMIC_SECTION_SIZE = -2U,
// Symbol address.
DYNAMIC_SYMBOL = -3U,
// String.
DYNAMIC_STRING = -4U,
// Custom value.
DYNAMIC_CUSTOM = -5U
// Any other value indicates a section address plus OFFSET.
};
union
{
// For DYNAMIC_NUMBER.
unsigned int val;
// For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
const Output_data* od;
// For DYNAMIC_SYMBOL.
const Symbol* sym;
// For DYNAMIC_STRING.
const char* str;
} u_;
// For DYNAMIC_SYMBOL with two sections.
const Output_data* od2;
// The dynamic tag.
elfcpp::DT tag_;
// The type of entry (Classification) or offset within a section.
unsigned int offset_;
};
// Add an entry to the list.
void
add_entry(const Dynamic_entry& entry)
{ this->entries_.push_back(entry); }
// Sized version of write function.
template<int size, bool big_endian>
void
sized_write(Output_file* of);
// The type of the list of entries.
typedef std::vector<Dynamic_entry> Dynamic_entries;
// The entries.
Dynamic_entries entries_;
// The pool used for strings.
Stringpool* pool_;
};
// Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
// which may be required if the object file has more than
// SHN_LORESERVE sections.
class Output_symtab_xindex : public Output_section_data
{
public:
Output_symtab_xindex(size_t symcount)
: Output_section_data(symcount * 4, 4, true),
entries_()
{ }
// Add an entry: symbol number SYMNDX has section SHNDX.
void
add(unsigned int symndx, unsigned int shndx)
{ this->entries_.push_back(std::make_pair(symndx, shndx)); }
protected:
void
do_write(Output_file*);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** symtab xindex")); }
private:
template<bool big_endian>
void
endian_do_write(unsigned char*);
// It is likely that most symbols will not require entries. Rather
// than keep a vector for all symbols, we keep pairs of symbol index
// and section index.
typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
// The entries we need.
Xindex_entries entries_;
};
// A relaxed input section.
class Output_relaxed_input_section : public Output_section_data_build
{
public:
// We would like to call relobj->section_addralign(shndx) to get the
// alignment but we do not want the constructor to fail. So callers
// are repsonsible for ensuring that.
Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
uint64_t addralign)
: Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
{ }
// Return the Relobj of this relaxed input section.
Relobj*
relobj() const
{ return this->relobj_; }
// Return the section index of this relaxed input section.
unsigned int
shndx() const
{ return this->shndx_; }
protected:
void
set_relobj(Relobj* relobj)
{ this->relobj_ = relobj; }
void
set_shndx(unsigned int shndx)
{ this->shndx_ = shndx; }
private:
Relobj* relobj_;
unsigned int shndx_;
};
// This class describes properties of merge data sections. It is used
// as a key type for maps.
class Merge_section_properties
{
public:
Merge_section_properties(bool is_string, uint64_t entsize,
uint64_t addralign)
: is_string_(is_string), entsize_(entsize), addralign_(addralign)
{ }
// Whether this equals to another Merge_section_properties MSP.
bool
eq(const Merge_section_properties& msp) const
{
return ((this->is_string_ == msp.is_string_)
&& (this->entsize_ == msp.entsize_)
&& (this->addralign_ == msp.addralign_));
}
// Compute a hash value for this using 64-bit FNV-1a hash.
size_t
hash_value() const
{
uint64_t h = 14695981039346656037ULL; // FNV offset basis.
uint64_t prime = 1099511628211ULL;
h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
return h;
}
// Functors for associative containers.
struct equal_to
{
bool
operator()(const Merge_section_properties& msp1,
const Merge_section_properties& msp2) const
{ return msp1.eq(msp2); }
};
struct hash
{
size_t
operator()(const Merge_section_properties& msp) const
{ return msp.hash_value(); }
};
private:
// Whether this merge data section is for strings.
bool is_string_;
// Entsize of this merge data section.
uint64_t entsize_;
// Address alignment.
uint64_t addralign_;
};
// This class is used to speed up look up of special input sections in an
// Output_section.
class Output_section_lookup_maps
{
public:
Output_section_lookup_maps()
: is_valid_(true), merge_sections_by_properties_(),
relaxed_input_sections_by_id_()
{ }
// Whether the maps are valid.
bool
is_valid() const
{ return this->is_valid_; }
// Invalidate the maps.
void
invalidate()
{ this->is_valid_ = false; }
// Clear the maps.
void
clear()
{
this->merge_sections_by_properties_.clear();
this->relaxed_input_sections_by_id_.clear();
// A cleared map is valid.
this->is_valid_ = true;
}
// Find a merge section by merge section properties. Return NULL if none
// is found.
Output_merge_base*
find_merge_section(const Merge_section_properties& msp) const
{
gold_assert(this->is_valid_);
Merge_sections_by_properties::const_iterator p =
this->merge_sections_by_properties_.find(msp);
return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
}
// Add a merge section pointed by POMB with properties MSP.
void
add_merge_section(const Merge_section_properties& msp,
Output_merge_base