blob: c3ce2c16d8063ccc6f008e910adc1fe0ac9b983f [file] [log] [blame]
/* SPU specific support for 32-bit ELF
Copyright (C) 2006-2021 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
#include "sysdep.h"
#include "libiberty.h"
#include "bfd.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/spu.h"
#include "elf32-spu.h"
/* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
#define OCTETS_PER_BYTE(ABFD, SEC) 1
/* We use RELA style relocs. Don't define USE_REL. */
static bfd_reloc_status_type spu_elf_rel9 (bfd *, arelent *, asymbol *,
void *, asection *,
bfd *, char **);
/* Values of type 'enum elf_spu_reloc_type' are used to index this
array, so it must be declared in the order of that type. */
static reloc_howto_type elf_howto_table[] = {
HOWTO (R_SPU_NONE, 0, 3, 0, false, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_NONE",
false, 0, 0x00000000, false),
HOWTO (R_SPU_ADDR10, 4, 2, 10, false, 14, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR10",
false, 0, 0x00ffc000, false),
HOWTO (R_SPU_ADDR16, 2, 2, 16, false, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR16",
false, 0, 0x007fff80, false),
HOWTO (R_SPU_ADDR16_HI, 16, 2, 16, false, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR16_HI",
false, 0, 0x007fff80, false),
HOWTO (R_SPU_ADDR16_LO, 0, 2, 16, false, 7, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_ADDR16_LO",
false, 0, 0x007fff80, false),
HOWTO (R_SPU_ADDR18, 0, 2, 18, false, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR18",
false, 0, 0x01ffff80, false),
HOWTO (R_SPU_ADDR32, 0, 2, 32, false, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_ADDR32",
false, 0, 0xffffffff, false),
HOWTO (R_SPU_REL16, 2, 2, 16, true, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_REL16",
false, 0, 0x007fff80, true),
HOWTO (R_SPU_ADDR7, 0, 2, 7, false, 14, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_ADDR7",
false, 0, 0x001fc000, false),
HOWTO (R_SPU_REL9, 2, 2, 9, true, 0, complain_overflow_signed,
spu_elf_rel9, "SPU_REL9",
false, 0, 0x0180007f, true),
HOWTO (R_SPU_REL9I, 2, 2, 9, true, 0, complain_overflow_signed,
spu_elf_rel9, "SPU_REL9I",
false, 0, 0x0000c07f, true),
HOWTO (R_SPU_ADDR10I, 0, 2, 10, false, 14, complain_overflow_signed,
bfd_elf_generic_reloc, "SPU_ADDR10I",
false, 0, 0x00ffc000, false),
HOWTO (R_SPU_ADDR16I, 0, 2, 16, false, 7, complain_overflow_signed,
bfd_elf_generic_reloc, "SPU_ADDR16I",
false, 0, 0x007fff80, false),
HOWTO (R_SPU_REL32, 0, 2, 32, true, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_REL32",
false, 0, 0xffffffff, true),
HOWTO (R_SPU_ADDR16X, 0, 2, 16, false, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR16X",
false, 0, 0x007fff80, false),
HOWTO (R_SPU_PPU32, 0, 2, 32, false, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_PPU32",
false, 0, 0xffffffff, false),
HOWTO (R_SPU_PPU64, 0, 4, 64, false, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_PPU64",
false, 0, -1, false),
HOWTO (R_SPU_ADD_PIC, 0, 0, 0, false, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_ADD_PIC",
false, 0, 0x00000000, false),
};
static struct bfd_elf_special_section const spu_elf_special_sections[] = {
{ "._ea", 4, 0, SHT_PROGBITS, SHF_WRITE },
{ ".toe", 4, 0, SHT_NOBITS, SHF_ALLOC },
{ NULL, 0, 0, 0, 0 }
};
static enum elf_spu_reloc_type
spu_elf_bfd_to_reloc_type (bfd_reloc_code_real_type code)
{
switch (code)
{
default:
return (enum elf_spu_reloc_type) -1;
case BFD_RELOC_NONE:
return R_SPU_NONE;
case BFD_RELOC_SPU_IMM10W:
return R_SPU_ADDR10;
case BFD_RELOC_SPU_IMM16W:
return R_SPU_ADDR16;
case BFD_RELOC_SPU_LO16:
return R_SPU_ADDR16_LO;
case BFD_RELOC_SPU_HI16:
return R_SPU_ADDR16_HI;
case BFD_RELOC_SPU_IMM18:
return R_SPU_ADDR18;
case BFD_RELOC_SPU_PCREL16:
return R_SPU_REL16;
case BFD_RELOC_SPU_IMM7:
return R_SPU_ADDR7;
case BFD_RELOC_SPU_IMM8:
return R_SPU_NONE;
case BFD_RELOC_SPU_PCREL9a:
return R_SPU_REL9;
case BFD_RELOC_SPU_PCREL9b:
return R_SPU_REL9I;
case BFD_RELOC_SPU_IMM10:
return R_SPU_ADDR10I;
case BFD_RELOC_SPU_IMM16:
return R_SPU_ADDR16I;
case BFD_RELOC_32:
return R_SPU_ADDR32;
case BFD_RELOC_32_PCREL:
return R_SPU_REL32;
case BFD_RELOC_SPU_PPU32:
return R_SPU_PPU32;
case BFD_RELOC_SPU_PPU64:
return R_SPU_PPU64;
case BFD_RELOC_SPU_ADD_PIC:
return R_SPU_ADD_PIC;
}
}
static bool
spu_elf_info_to_howto (bfd *abfd,
arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
enum elf_spu_reloc_type r_type;
r_type = (enum elf_spu_reloc_type) ELF32_R_TYPE (dst->r_info);
/* PR 17512: file: 90c2a92e. */
if (r_type >= R_SPU_max)
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
abfd, r_type);
bfd_set_error (bfd_error_bad_value);
return false;
}
cache_ptr->howto = &elf_howto_table[(int) r_type];
return true;
}
static reloc_howto_type *
spu_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
enum elf_spu_reloc_type r_type = spu_elf_bfd_to_reloc_type (code);
if (r_type == (enum elf_spu_reloc_type) -1)
return NULL;
return elf_howto_table + r_type;
}
static reloc_howto_type *
spu_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
if (elf_howto_table[i].name != NULL
&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
return &elf_howto_table[i];
return NULL;
}
/* Apply R_SPU_REL9 and R_SPU_REL9I relocs. */
static bfd_reloc_status_type
spu_elf_rel9 (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
void *data, asection *input_section,
bfd *output_bfd, char **error_message)
{
bfd_size_type octets;
bfd_vma val;
long insn;
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
/* Get symbol value. */
val = 0;
if (!bfd_is_com_section (symbol->section))
val = symbol->value;
if (symbol->section->output_section)
val += symbol->section->output_section->vma;
val += reloc_entry->addend;
/* Make it pc-relative. */
val -= input_section->output_section->vma + input_section->output_offset;
val >>= 2;
if (val + 256 >= 512)
return bfd_reloc_overflow;
insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
/* Move two high bits of value to REL9I and REL9 position.
The mask will take care of selecting the right field. */
val = (val & 0x7f) | ((val & 0x180) << 7) | ((val & 0x180) << 16);
insn &= ~reloc_entry->howto->dst_mask;
insn |= val & reloc_entry->howto->dst_mask;
bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
return bfd_reloc_ok;
}
static bool
spu_elf_new_section_hook (bfd *abfd, asection *sec)
{
if (!sec->used_by_bfd)
{
struct _spu_elf_section_data *sdata;
sdata = bfd_zalloc (abfd, sizeof (*sdata));
if (sdata == NULL)
return false;
sec->used_by_bfd = sdata;
}
return _bfd_elf_new_section_hook (abfd, sec);
}
/* Set up overlay info for executables. */
static bool
spu_elf_object_p (bfd *abfd)
{
if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
{
unsigned int i, num_ovl, num_buf;
Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
Elf_Internal_Phdr *last_phdr = NULL;
for (num_buf = 0, num_ovl = 0, i = 0; i < ehdr->e_phnum; i++, phdr++)
if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_OVERLAY) != 0)
{
unsigned int j;
++num_ovl;
if (last_phdr == NULL
|| ((last_phdr->p_vaddr ^ phdr->p_vaddr) & 0x3ffff) != 0)
++num_buf;
last_phdr = phdr;
for (j = 1; j < elf_numsections (abfd); j++)
{
Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[j];
if (ELF_SECTION_SIZE (shdr, phdr) != 0
&& ELF_SECTION_IN_SEGMENT (shdr, phdr))
{
asection *sec = shdr->bfd_section;
spu_elf_section_data (sec)->u.o.ovl_index = num_ovl;
spu_elf_section_data (sec)->u.o.ovl_buf = num_buf;
}
}
}
}
return true;
}
/* Specially mark defined symbols named _EAR_* with BSF_KEEP so that
strip --strip-unneeded will not remove them. */
static void
spu_elf_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *sym)
{
if (sym->name != NULL
&& sym->section != bfd_abs_section_ptr
&& startswith (sym->name, "_EAR_"))
sym->flags |= BSF_KEEP;
}
/* SPU ELF linker hash table. */
struct spu_link_hash_table
{
struct elf_link_hash_table elf;
struct spu_elf_params *params;
/* Shortcuts to overlay sections. */
asection *ovtab;
asection *init;
asection *toe;
asection **ovl_sec;
/* Count of stubs in each overlay section. */
unsigned int *stub_count;
/* The stub section for each overlay section. */
asection **stub_sec;
struct elf_link_hash_entry *ovly_entry[2];
/* Number of overlay buffers. */
unsigned int num_buf;
/* Total number of overlays. */
unsigned int num_overlays;
/* For soft icache. */
unsigned int line_size_log2;
unsigned int num_lines_log2;
unsigned int fromelem_size_log2;
/* How much memory we have. */
unsigned int local_store;
/* Count of overlay stubs needed in non-overlay area. */
unsigned int non_ovly_stub;
/* Pointer to the fixup section */
asection *sfixup;
/* Set on error. */
unsigned int stub_err : 1;
};
/* Hijack the generic got fields for overlay stub accounting. */
struct got_entry
{
struct got_entry *next;
unsigned int ovl;
union {
bfd_vma addend;
bfd_vma br_addr;
};
bfd_vma stub_addr;
};
#define spu_hash_table(p) \
((is_elf_hash_table ((p)->hash) \
&& elf_hash_table_id (elf_hash_table (p)) == SPU_ELF_DATA) \
? (struct spu_link_hash_table *) (p)->hash : NULL)
struct call_info
{
struct function_info *fun;
struct call_info *next;
unsigned int count;
unsigned int max_depth;
unsigned int is_tail : 1;
unsigned int is_pasted : 1;
unsigned int broken_cycle : 1;
unsigned int priority : 13;
};
struct function_info
{
/* List of functions called. Also branches to hot/cold part of
function. */
struct call_info *call_list;
/* For hot/cold part of function, point to owner. */
struct function_info *start;
/* Symbol at start of function. */
union {
Elf_Internal_Sym *sym;
struct elf_link_hash_entry *h;
} u;
/* Function section. */
asection *sec;
asection *rodata;
/* Where last called from, and number of sections called from. */
asection *last_caller;
unsigned int call_count;
/* Address range of (this part of) function. */
bfd_vma lo, hi;
/* Offset where we found a store of lr, or -1 if none found. */
bfd_vma lr_store;
/* Offset where we found the stack adjustment insn. */
bfd_vma sp_adjust;
/* Stack usage. */
int stack;
/* Distance from root of call tree. Tail and hot/cold branches
count as one deeper. We aren't counting stack frames here. */
unsigned int depth;
/* Set if global symbol. */
unsigned int global : 1;
/* Set if known to be start of function (as distinct from a hunk
in hot/cold section. */
unsigned int is_func : 1;
/* Set if not a root node. */
unsigned int non_root : 1;
/* Flags used during call tree traversal. It's cheaper to replicate
the visit flags than have one which needs clearing after a traversal. */
unsigned int visit1 : 1;
unsigned int visit2 : 1;
unsigned int marking : 1;
unsigned int visit3 : 1;
unsigned int visit4 : 1;
unsigned int visit5 : 1;
unsigned int visit6 : 1;
unsigned int visit7 : 1;
};
struct spu_elf_stack_info
{
int num_fun;
int max_fun;
/* Variable size array describing functions, one per contiguous
address range belonging to a function. */
struct function_info fun[1];
};
static struct function_info *find_function (asection *, bfd_vma,
struct bfd_link_info *);
/* Create a spu ELF linker hash table. */
static struct bfd_link_hash_table *
spu_elf_link_hash_table_create (bfd *abfd)
{
struct spu_link_hash_table *htab;
htab = bfd_zmalloc (sizeof (*htab));
if (htab == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd,
_bfd_elf_link_hash_newfunc,
sizeof (struct elf_link_hash_entry),
SPU_ELF_DATA))
{
free (htab);
return NULL;
}
htab->elf.init_got_refcount.refcount = 0;
htab->elf.init_got_refcount.glist = NULL;
htab->elf.init_got_offset.offset = 0;
htab->elf.init_got_offset.glist = NULL;
return &htab->elf.root;
}
void
spu_elf_setup (struct bfd_link_info *info, struct spu_elf_params *params)
{
bfd_vma max_branch_log2;
struct spu_link_hash_table *htab = spu_hash_table (info);
htab->params = params;
htab->line_size_log2 = bfd_log2 (htab->params->line_size);
htab->num_lines_log2 = bfd_log2 (htab->params->num_lines);
/* For the software i-cache, we provide a "from" list whose size
is a power-of-two number of quadwords, big enough to hold one
byte per outgoing branch. Compute this number here. */
max_branch_log2 = bfd_log2 (htab->params->max_branch);
htab->fromelem_size_log2 = max_branch_log2 > 4 ? max_branch_log2 - 4 : 0;
}
/* Find the symbol for the given R_SYMNDX in IBFD and set *HP and *SYMP
to (hash, NULL) for global symbols, and (NULL, sym) for locals. Set
*SYMSECP to the symbol's section. *LOCSYMSP caches local syms. */
static bool
get_sym_h (struct elf_link_hash_entry **hp,
Elf_Internal_Sym **symp,
asection **symsecp,
Elf_Internal_Sym **locsymsp,
unsigned long r_symndx,
bfd *ibfd)
{
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
if (r_symndx >= symtab_hdr->sh_info)
{
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
struct elf_link_hash_entry *h;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (hp != NULL)
*hp = h;
if (symp != NULL)
*symp = NULL;
if (symsecp != NULL)
{
asection *symsec = NULL;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
symsec = h->root.u.def.section;
*symsecp = symsec;
}
}
else
{
Elf_Internal_Sym *sym;
Elf_Internal_Sym *locsyms = *locsymsp;
if (locsyms == NULL)
{
locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
if (locsyms == NULL)
locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
symtab_hdr->sh_info,
0, NULL, NULL, NULL);
if (locsyms == NULL)
return false;
*locsymsp = locsyms;
}
sym = locsyms + r_symndx;
if (hp != NULL)
*hp = NULL;
if (symp != NULL)
*symp = sym;
if (symsecp != NULL)
*symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
}
return true;
}
/* Create the note section if not already present. This is done early so
that the linker maps the sections to the right place in the output. */
bool
spu_elf_create_sections (struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
bfd *ibfd;
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
if (bfd_get_section_by_name (ibfd, SPU_PTNOTE_SPUNAME) != NULL)
break;
if (ibfd == NULL)
{
/* Make SPU_PTNOTE_SPUNAME section. */
asection *s;
size_t name_len;
size_t size;
bfd_byte *data;
flagword flags;
ibfd = info->input_bfds;
/* This should really be SEC_LINKER_CREATED, but then we'd need
to write out the section ourselves. */
flags = SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
s = bfd_make_section_anyway_with_flags (ibfd, SPU_PTNOTE_SPUNAME, flags);
if (s == NULL
|| !bfd_set_section_alignment (s, 4))
return false;
/* Because we didn't set SEC_LINKER_CREATED we need to set the
proper section type. */
elf_section_type (s) = SHT_NOTE;
name_len = strlen (bfd_get_filename (info->output_bfd)) + 1;
size = 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4);
size += (name_len + 3) & -4;
if (!bfd_set_section_size (s, size))
return false;
data = bfd_zalloc (ibfd, size);
if (data == NULL)
return false;
bfd_put_32 (ibfd, sizeof (SPU_PLUGIN_NAME), data + 0);
bfd_put_32 (ibfd, name_len, data + 4);
bfd_put_32 (ibfd, 1, data + 8);
memcpy (data + 12, SPU_PLUGIN_NAME, sizeof (SPU_PLUGIN_NAME));
memcpy (data + 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4),
bfd_get_filename (info->output_bfd), name_len);
s->contents = data;
}
if (htab->params->emit_fixups)
{
asection *s;
flagword flags;
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = ibfd;
ibfd = htab->elf.dynobj;
flags = (SEC_LOAD | SEC_ALLOC | SEC_READONLY | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
s = bfd_make_section_anyway_with_flags (ibfd, ".fixup", flags);
if (s == NULL || !bfd_set_section_alignment (s, 2))
return false;
htab->sfixup = s;
}
return true;
}
/* qsort predicate to sort sections by vma. */
static int
sort_sections (const void *a, const void *b)
{
const asection *const *s1 = a;
const asection *const *s2 = b;
bfd_signed_vma delta = (*s1)->vma - (*s2)->vma;
if (delta != 0)
return delta < 0 ? -1 : 1;
return (*s1)->index - (*s2)->index;
}
/* Identify overlays in the output bfd, and number them.
Returns 0 on error, 1 if no overlays, 2 if overlays. */
int
spu_elf_find_overlays (struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
asection **alloc_sec;
unsigned int i, n, ovl_index, num_buf;
asection *s;
bfd_vma ovl_end;
static const char *const entry_names[2][2] = {
{ "__ovly_load", "__icache_br_handler" },
{ "__ovly_return", "__icache_call_handler" }
};
if (info->output_bfd->section_count < 2)
return 1;
alloc_sec
= bfd_malloc (info->output_bfd->section_count * sizeof (*alloc_sec));
if (alloc_sec == NULL)
return 0;
/* Pick out all the alloced sections. */
for (n = 0, s = info->output_bfd->sections; s != NULL; s = s->next)
if ((s->flags & SEC_ALLOC) != 0
&& (s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != SEC_THREAD_LOCAL
&& s->size != 0)
alloc_sec[n++] = s;
if (n == 0)
{
free (alloc_sec);
return 1;
}
/* Sort them by vma. */
qsort (alloc_sec, n, sizeof (*alloc_sec), sort_sections);
ovl_end = alloc_sec[0]->vma + alloc_sec[0]->size;
if (htab->params->ovly_flavour == ovly_soft_icache)
{
unsigned int prev_buf = 0, set_id = 0;
/* Look for an overlapping vma to find the first overlay section. */
bfd_vma vma_start = 0;
for (i = 1; i < n; i++)
{
s = alloc_sec[i];
if (s->vma < ovl_end)
{
asection *s0 = alloc_sec[i - 1];
vma_start = s0->vma;
ovl_end = (s0->vma
+ ((bfd_vma) 1
<< (htab->num_lines_log2 + htab->line_size_log2)));
--i;
break;
}
else
ovl_end = s->vma + s->size;
}
/* Now find any sections within the cache area. */
for (ovl_index = 0, num_buf = 0; i < n; i++)
{
s = alloc_sec[i];
if (s->vma >= ovl_end)
break;
/* A section in an overlay area called .ovl.init is not
an overlay, in the sense that it might be loaded in
by the overlay manager, but rather the initial
section contents for the overlay buffer. */
if (!startswith (s->name, ".ovl.init"))
{
num_buf = ((s->vma - vma_start) >> htab->line_size_log2) + 1;
set_id = (num_buf == prev_buf)? set_id + 1 : 0;
prev_buf = num_buf;
if ((s->vma - vma_start) & (htab->params->line_size - 1))
{
info->callbacks->einfo (_("%X%P: overlay section %pA "
"does not start on a cache line\n"),
s);
bfd_set_error (bfd_error_bad_value);
return 0;
}
else if (s->size > htab->params->line_size)
{
info->callbacks->einfo (_("%X%P: overlay section %pA "
"is larger than a cache line\n"),
s);
bfd_set_error (bfd_error_bad_value);
return 0;
}
alloc_sec[ovl_index++] = s;
spu_elf_section_data (s)->u.o.ovl_index
= (set_id << htab->num_lines_log2) + num_buf;
spu_elf_section_data (s)->u.o.ovl_buf = num_buf;
}
}
/* Ensure there are no more overlay sections. */
for ( ; i < n; i++)
{
s = alloc_sec[i];
if (s->vma < ovl_end)
{
info->callbacks->einfo (_("%X%P: overlay section %pA "
"is not in cache area\n"),
alloc_sec[i-1]);
bfd_set_error (bfd_error_bad_value);
return 0;
}
else
ovl_end = s->vma + s->size;
}
}
else
{
/* Look for overlapping vmas. Any with overlap must be overlays.
Count them. Also count the number of overlay regions. */
for (ovl_index = 0, num_buf = 0, i = 1; i < n; i++)
{
s = alloc_sec[i];
if (s->vma < ovl_end)
{
asection *s0 = alloc_sec[i - 1];
if (spu_elf_section_data (s0)->u.o.ovl_index == 0)
{
++num_buf;
if (!startswith (s0->name, ".ovl.init"))
{
alloc_sec[ovl_index] = s0;
spu_elf_section_data (s0)->u.o.ovl_index = ++ovl_index;
spu_elf_section_data (s0)->u.o.ovl_buf = num_buf;
}
else
ovl_end = s->vma + s->size;
}
if (!startswith (s->name, ".ovl.init"))
{
alloc_sec[ovl_index] = s;
spu_elf_section_data (s)->u.o.ovl_index = ++ovl_index;
spu_elf_section_data (s)->u.o.ovl_buf = num_buf;
if (s0->vma != s->vma)
{
/* xgettext:c-format */
info->callbacks->einfo (_("%X%P: overlay sections %pA "
"and %pA do not start at the "
"same address\n"),
s0, s);
bfd_set_error (bfd_error_bad_value);
return 0;
}
if (ovl_end < s->vma + s->size)
ovl_end = s->vma + s->size;
}
}
else
ovl_end = s->vma + s->size;
}
}
htab->num_overlays = ovl_index;
htab->num_buf = num_buf;
htab->ovl_sec = alloc_sec;
if (ovl_index == 0)
return 1;
for (i = 0; i < 2; i++)
{
const char *name;
struct elf_link_hash_entry *h;
name = entry_names[i][htab->params->ovly_flavour];
h = elf_link_hash_lookup (&htab->elf, name, true, false, false);
if (h == NULL)
return 0;
if (h->root.type == bfd_link_hash_new)
{
h->root.type = bfd_link_hash_undefined;
h->ref_regular = 1;
h->ref_regular_nonweak = 1;
h->non_elf = 0;
}
htab->ovly_entry[i] = h;
}
return 2;
}
/* Non-zero to use bra in overlay stubs rather than br. */
#define BRA_STUBS 0
#define BRA 0x30000000
#define BRASL 0x31000000
#define BR 0x32000000
#define BRSL 0x33000000
#define NOP 0x40200000
#define LNOP 0x00200000
#define ILA 0x42000000
/* Return true for all relative and absolute branch instructions.
bra 00110000 0..
brasl 00110001 0..
br 00110010 0..
brsl 00110011 0..
brz 00100000 0..
brnz 00100001 0..
brhz 00100010 0..
brhnz 00100011 0.. */
static bool
is_branch (const unsigned char *insn)
{
return (insn[0] & 0xec) == 0x20 && (insn[1] & 0x80) == 0;
}
/* Return true for all indirect branch instructions.
bi 00110101 000
bisl 00110101 001
iret 00110101 010
bisled 00110101 011
biz 00100101 000
binz 00100101 001
bihz 00100101 010
bihnz 00100101 011 */
static bool
is_indirect_branch (const unsigned char *insn)
{
return (insn[0] & 0xef) == 0x25 && (insn[1] & 0x80) == 0;
}
/* Return true for branch hint instructions.
hbra 0001000..
hbrr 0001001.. */
static bool
is_hint (const unsigned char *insn)
{
return (insn[0] & 0xfc) == 0x10;
}
/* True if INPUT_SECTION might need overlay stubs. */
static bool
maybe_needs_stubs (asection *input_section)
{
/* No stubs for debug sections and suchlike. */
if ((input_section->flags & SEC_ALLOC) == 0)
return false;
/* No stubs for link-once sections that will be discarded. */
if (input_section->output_section == bfd_abs_section_ptr)
return false;
/* Don't create stubs for .eh_frame references. */
if (strcmp (input_section->name, ".eh_frame") == 0)
return false;
return true;
}
enum _stub_type
{
no_stub,
call_ovl_stub,
br000_ovl_stub,
br001_ovl_stub,
br010_ovl_stub,
br011_ovl_stub,
br100_ovl_stub,
br101_ovl_stub,
br110_ovl_stub,
br111_ovl_stub,
nonovl_stub,
stub_error
};
/* Return non-zero if this reloc symbol should go via an overlay stub.
Return 2 if the stub must be in non-overlay area. */
static enum _stub_type
needs_ovl_stub (struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym,
asection *sym_sec,
asection *input_section,
Elf_Internal_Rela *irela,
bfd_byte *contents,
struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
enum elf_spu_reloc_type r_type;
unsigned int sym_type;
bool branch, hint, call;
enum _stub_type ret = no_stub;
bfd_byte insn[4];
if (sym_sec == NULL
|| sym_sec->output_section == bfd_abs_section_ptr
|| spu_elf_section_data (sym_sec->output_section) == NULL)
return ret;
if (h != NULL)
{
/* Ensure no stubs for user supplied overlay manager syms. */
if (h == htab->ovly_entry[0] || h == htab->ovly_entry[1])
return ret;
/* setjmp always goes via an overlay stub, because then the return
and hence the longjmp goes via __ovly_return. That magically
makes setjmp/longjmp between overlays work. */
if (startswith (h->root.root.string, "setjmp")
&& (h->root.root.string[6] == '\0' || h->root.root.string[6] == '@'))
ret = call_ovl_stub;
}
if (h != NULL)
sym_type = h->type;
else
sym_type = ELF_ST_TYPE (sym->st_info);
r_type = ELF32_R_TYPE (irela->r_info);
branch = false;
hint = false;
call = false;
if (r_type == R_SPU_REL16 || r_type == R_SPU_ADDR16)
{
if (contents == NULL)
{
contents = insn;
if (!bfd_get_section_contents (input_section->owner,
input_section,
contents,
irela->r_offset, 4))
return stub_error;
}
else
contents += irela->r_offset;
branch = is_branch (contents);
hint = is_hint (contents);
if (branch || hint)
{
call = (contents[0] & 0xfd) == 0x31;
if (call
&& sym_type != STT_FUNC
&& contents != insn)
{
/* It's common for people to write assembly and forget
to give function symbols the right type. Handle
calls to such symbols, but warn so that (hopefully)
people will fix their code. We need the symbol
type to be correct to distinguish function pointer
initialisation from other pointer initialisations. */
const char *sym_name;
if (h != NULL)
sym_name = h->root.root.string;
else
{
Elf_Internal_Shdr *symtab_hdr;
symtab_hdr = &elf_tdata (input_section->owner)->symtab_hdr;
sym_name = bfd_elf_sym_name (input_section->owner,
symtab_hdr,
sym,
sym_sec);
}
_bfd_error_handler
/* xgettext:c-format */
(_("warning: call to non-function symbol %s defined in %pB"),
sym_name, sym_sec->owner);
}
}
}
if ((!branch && htab->params->ovly_flavour == ovly_soft_icache)
|| (sym_type != STT_FUNC
&& !(branch || hint)
&& (sym_sec->flags & SEC_CODE) == 0))
return no_stub;
/* Usually, symbols in non-overlay sections don't need stubs. */
if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index == 0
&& !htab->params->non_overlay_stubs)
return ret;
/* A reference from some other section to a symbol in an overlay
section needs a stub. */
if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index
!= spu_elf_section_data (input_section->output_section)->u.o.ovl_index)
{
unsigned int lrlive = 0;
if (branch)
lrlive = (contents[1] & 0x70) >> 4;
if (!lrlive && (call || sym_type == STT_FUNC))
ret = call_ovl_stub;
else
ret = br000_ovl_stub + lrlive;
}
/* If this insn isn't a branch then we are possibly taking the
address of a function and passing it out somehow. Soft-icache code
always generates inline code to do indirect branches. */
if (!(branch || hint)
&& sym_type == STT_FUNC
&& htab->params->ovly_flavour != ovly_soft_icache)
ret = nonovl_stub;
return ret;
}
static bool
count_stub (struct spu_link_hash_table *htab,
bfd *ibfd,
asection *isec,
enum _stub_type stub_type,
struct elf_link_hash_entry *h,
const Elf_Internal_Rela *irela)
{
unsigned int ovl = 0;
struct got_entry *g, **head;
bfd_vma addend;
/* If this instruction is a branch or call, we need a stub
for it. One stub per function per overlay.
If it isn't a branch, then we are taking the address of
this function so need a stub in the non-overlay area
for it. One stub per function. */
if (stub_type != nonovl_stub)
ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index;
if (h != NULL)
head = &h->got.glist;
else
{
if (elf_local_got_ents (ibfd) == NULL)
{
bfd_size_type amt = (elf_tdata (ibfd)->symtab_hdr.sh_info
* sizeof (*elf_local_got_ents (ibfd)));
elf_local_got_ents (ibfd) = bfd_zmalloc (amt);
if (elf_local_got_ents (ibfd) == NULL)
return false;
}
head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info);
}
if (htab->params->ovly_flavour == ovly_soft_icache)
{
htab->stub_count[ovl] += 1;
return true;
}
addend = 0;
if (irela != NULL)
addend = irela->r_addend;
if (ovl == 0)
{
struct got_entry *gnext;
for (g = *head; g != NULL; g = g->next)
if (g->addend == addend && g->ovl == 0)
break;
if (g == NULL)
{
/* Need a new non-overlay area stub. Zap other stubs. */
for (g = *head; g != NULL; g = gnext)
{
gnext = g->next;
if (g->addend == addend)
{
htab->stub_count[g->ovl] -= 1;
free (g);
}
}
}
}
else
{
for (g = *head; g != NULL; g = g->next)
if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
break;
}
if (g == NULL)
{
g = bfd_malloc (sizeof *g);
if (g == NULL)
return false;
g->ovl = ovl;
g->addend = addend;
g->stub_addr = (bfd_vma) -1;
g->next = *head;
*head = g;
htab->stub_count[ovl] += 1;
}
return true;
}
/* Support two sizes of overlay stubs, a slower more compact stub of two
instructions, and a faster stub of four instructions.
Soft-icache stubs are four or eight words. */
static unsigned int
ovl_stub_size (struct spu_elf_params *params)
{
return 16 << params->ovly_flavour >> params->compact_stub;
}
static unsigned int
ovl_stub_size_log2 (struct spu_elf_params *params)
{
return 4 + params->ovly_flavour - params->compact_stub;
}
/* Two instruction overlay stubs look like:
brsl $75,__ovly_load
.word target_ovl_and_address
ovl_and_address is a word with the overlay number in the top 14 bits
and local store address in the bottom 18 bits.
Four instruction overlay stubs look like:
ila $78,ovl_number
lnop
ila $79,target_address
br __ovly_load
Software icache stubs are:
.word target_index
.word target_ia;
.word lrlive_branchlocalstoreaddr;
brasl $75,__icache_br_handler
.quad xor_pattern
*/
static bool
build_stub (struct bfd_link_info *info,
bfd *ibfd,
asection *isec,
enum _stub_type stub_type,
struct elf_link_hash_entry *h,
const Elf_Internal_Rela *irela,
bfd_vma dest,
asection *dest_sec)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
unsigned int ovl, dest_ovl, set_id;
struct got_entry *g, **head;
asection *sec;
bfd_vma addend, from, to, br_dest, patt;
unsigned int lrlive;
ovl = 0;
if (stub_type != nonovl_stub)
ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index;
if (h != NULL)
head = &h->got.glist;
else
head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info);
addend = 0;
if (irela != NULL)
addend = irela->r_addend;
if (htab->params->ovly_flavour == ovly_soft_icache)
{
g = bfd_malloc (sizeof *g);
if (g == NULL)
return false;
g->ovl = ovl;
g->br_addr = 0;
if (irela != NULL)
g->br_addr = (irela->r_offset
+ isec->output_offset
+ isec->output_section->vma);
g->next = *head;
*head = g;
}
else
{
for (g = *head; g != NULL; g = g->next)
if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
break;
if (g == NULL)
abort ();
if (g->ovl == 0 && ovl != 0)
return true;
if (g->stub_addr != (bfd_vma) -1)
return true;
}
sec = htab->stub_sec[ovl];
dest += dest_sec->output_offset + dest_sec->output_section->vma;
from = sec->size + sec->output_offset + sec->output_section->vma;
g->stub_addr = from;
to = (htab->ovly_entry[0]->root.u.def.value
+ htab->ovly_entry[0]->root.u.def.section->output_offset
+ htab->ovly_entry[0]->root.u.def.section->output_section->vma);
if (((dest | to | from) & 3) != 0)
{
htab->stub_err = 1;
return false;
}
dest_ovl = spu_elf_section_data (dest_sec->output_section)->u.o.ovl_index;
if (htab->params->ovly_flavour == ovly_normal
&& !htab->params->compact_stub)
{
bfd_put_32 (sec->owner, ILA + ((dest_ovl << 7) & 0x01ffff80) + 78,
sec->contents + sec->size);
bfd_put_32 (sec->owner, LNOP,
sec->contents + sec->size + 4);
bfd_put_32 (sec->owner, ILA + ((dest << 7) & 0x01ffff80) + 79,
sec->contents + sec->size + 8);
if (!BRA_STUBS)
bfd_put_32 (sec->owner, BR + (((to - (from + 12)) << 5) & 0x007fff80),
sec->contents + sec->size + 12);
else
bfd_put_32 (sec->owner, BRA + ((to << 5) & 0x007fff80),
sec->contents + sec->size + 12);
}
else if (htab->params->ovly_flavour == ovly_normal
&& htab->params->compact_stub)
{
if (!BRA_STUBS)
bfd_put_32 (sec->owner, BRSL + (((to - from) << 5) & 0x007fff80) + 75,
sec->contents + sec->size);
else
bfd_put_32 (sec->owner, BRASL + ((to << 5) & 0x007fff80) + 75,
sec->contents + sec->size);
bfd_put_32 (sec->owner, (dest & 0x3ffff) | (dest_ovl << 18),
sec->contents + sec->size + 4);
}
else if (htab->params->ovly_flavour == ovly_soft_icache
&& htab->params->compact_stub)
{
lrlive = 0;
if (stub_type == nonovl_stub)
;
else if (stub_type == call_ovl_stub)
/* A brsl makes lr live and *(*sp+16) is live.
Tail calls have the same liveness. */
lrlive = 5;
else if (!htab->params->lrlive_analysis)
/* Assume stack frame and lr save. */
lrlive = 1;
else if (irela != NULL)
{
/* Analyse branch instructions. */
struct function_info *caller;
bfd_vma off;
caller = find_function (isec, irela->r_offset, info);
if (caller->start == NULL)
off = irela->r_offset;
else
{
struct function_info *found = NULL;
/* Find the earliest piece of this function that
has frame adjusting instructions. We might
see dynamic frame adjustment (eg. for alloca)
in some later piece, but functions using
alloca always set up a frame earlier. Frame
setup instructions are always in one piece. */
if (caller->lr_store != (bfd_vma) -1
|| caller->sp_adjust != (bfd_vma) -1)
found = caller;
while (caller->start != NULL)
{
caller = caller->start;
if (caller->lr_store != (bfd_vma) -1
|| caller->sp_adjust != (bfd_vma) -1)
found = caller;
}
if (found != NULL)
caller = found;
off = (bfd_vma) -1;
}
if (off > caller->sp_adjust)
{
if (off > caller->lr_store)
/* Only *(*sp+16) is live. */
lrlive = 1;
else
/* If no lr save, then we must be in a
leaf function with a frame.
lr is still live. */
lrlive = 4;
}
else if (off > caller->lr_store)
{
/* Between lr save and stack adjust. */
lrlive = 3;
/* This should never happen since prologues won't
be split here. */
BFD_ASSERT (0);
}
else
/* On entry to function. */
lrlive = 5;
if (stub_type != br000_ovl_stub
&& lrlive != stub_type - br000_ovl_stub)
/* xgettext:c-format */
info->callbacks->einfo (_("%pA:0x%v lrlive .brinfo (%u) differs "
"from analysis (%u)\n"),
isec, irela->r_offset, lrlive,
stub_type - br000_ovl_stub);
}
/* If given lrlive info via .brinfo, use it. */
if (stub_type > br000_ovl_stub)
lrlive = stub_type - br000_ovl_stub;
if (ovl == 0)
to = (htab->ovly_entry[1]->root.u.def.value
+ htab->ovly_entry[1]->root.u.def.section->output_offset
+ htab->ovly_entry[1]->root.u.def.section->output_section->vma);
/* The branch that uses this stub goes to stub_addr + 4. We'll
set up an xor pattern that can be used by the icache manager
to modify this branch to go directly to its destination. */
g->stub_addr += 4;
br_dest = g->stub_addr;
if (irela == NULL)
{
/* Except in the case of _SPUEAR_ stubs, the branch in
question is the one in the stub itself. */
BFD_ASSERT (stub_type == nonovl_stub);
g->br_addr = g->stub_addr;
br_dest = to;
}
set_id = ((dest_ovl - 1) >> htab->num_lines_log2) + 1;
bfd_put_32 (sec->owner, (set_id << 18) | (dest & 0x3ffff),
sec->contents + sec->size);
bfd_put_32 (sec->owner, BRASL + ((to << 5) & 0x007fff80) + 75,
sec->contents + sec->size + 4);
bfd_put_32 (sec->owner, (lrlive << 29) | (g->br_addr & 0x3ffff),
sec->contents + sec->size + 8);
patt = dest ^ br_dest;
if (irela != NULL && ELF32_R_TYPE (irela->r_info) == R_SPU_REL16)
patt = (dest - g->br_addr) ^ (br_dest - g->br_addr);
bfd_put_32 (sec->owner, (patt << 5) & 0x007fff80,
sec->contents + sec->size + 12);
if (ovl == 0)
/* Extra space for linked list entries. */
sec->size += 16;
}
else
abort ();
sec->size += ovl_stub_size (htab->params);
if (htab->params->emit_stub_syms)
{
size_t len;
char *name;
int add;
len = 8 + sizeof (".ovl_call.") - 1;
if (h != NULL)
len += strlen (h->root.root.string);
else
len += 8 + 1 + 8;
add = 0;
if (irela != NULL)
add = (int) irela->r_addend & 0xffffffff;
if (add != 0)
len += 1 + 8;
name = bfd_malloc (len + 1);
if (name == NULL)
return false;
sprintf (name, "%08x.ovl_call.", g->ovl);
if (h != NULL)
strcpy (name + 8 + sizeof (".ovl_call.") - 1, h->root.root.string);
else
sprintf (name + 8 + sizeof (".ovl_call.") - 1, "%x:%x",
dest_sec->id & 0xffffffff,
(int) ELF32_R_SYM (irela->r_info) & 0xffffffff);
if (add != 0)
sprintf (name + len - 9, "+%x", add);
h = elf_link_hash_lookup (&htab->elf, name, true, true, false);
free (name);
if (h == NULL)
return false;
if (h->root.type == bfd_link_hash_new)
{
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = sec;
h->size = ovl_stub_size (htab->params);
h->root.u.def.value = sec->size - h->size;
h->type = STT_FUNC;
h->ref_regular = 1;
h->def_regular = 1;
h->ref_regular_nonweak = 1;
h->forced_local = 1;
h->non_elf = 0;
}
}
return true;
}
/* Called via elf_link_hash_traverse to allocate stubs for any _SPUEAR_
symbols. */
static bool
allocate_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
{
/* Symbols starting with _SPUEAR_ need a stub because they may be
invoked by the PPU. */
struct bfd_link_info *info = inf;
struct spu_link_hash_table *htab = spu_hash_table (info);
asection *sym_sec;
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->def_regular
&& startswith (h->root.root.string, "_SPUEAR_")
&& (sym_sec = h->root.u.def.section) != NULL
&& sym_sec->output_section != bfd_abs_section_ptr
&& spu_elf_section_data (sym_sec->output_section) != NULL
&& (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0
|| htab->params->non_overlay_stubs))
{
return count_stub (htab, NULL, NULL, nonovl_stub, h, NULL);
}
return true;
}
static bool
build_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
{
/* Symbols starting with _SPUEAR_ need a stub because they may be
invoked by the PPU. */
struct bfd_link_info *info = inf;
struct spu_link_hash_table *htab = spu_hash_table (info);
asection *sym_sec;
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->def_regular
&& startswith (h->root.root.string, "_SPUEAR_")
&& (sym_sec = h->root.u.def.section) != NULL
&& sym_sec->output_section != bfd_abs_section_ptr
&& spu_elf_section_data (sym_sec->output_section) != NULL
&& (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0
|| htab->params->non_overlay_stubs))
{
return build_stub (info, NULL, NULL, nonovl_stub, h, NULL,
h->root.u.def.value, sym_sec);
}
return true;
}
/* Size or build stubs. */
static bool
process_stubs (struct bfd_link_info *info, bool build)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
bfd *ibfd;
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
extern const bfd_target spu_elf32_vec;
Elf_Internal_Shdr *symtab_hdr;
asection *isec;
Elf_Internal_Sym *local_syms = NULL;
if (ibfd->xvec != &spu_elf32_vec)
continue;
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
/* Walk over each section attached to the input bfd. */
for (isec = ibfd->sections; isec != NULL; isec = isec->next)
{
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
/* If there aren't any relocs, then there's nothing more to do. */
if ((isec->flags & SEC_RELOC) == 0
|| isec->reloc_count == 0)
continue;
if (!maybe_needs_stubs (isec))
continue;
/* Get the relocs. */
internal_relocs = _bfd_elf_link_read_relocs (ibfd, isec, NULL, NULL,
info->keep_memory);
if (internal_relocs == NULL)
goto error_ret_free_local;
/* Now examine each relocation. */
irela = internal_relocs;
irelaend = irela + isec->reloc_count;
for (; irela < irelaend; irela++)
{
enum elf_spu_reloc_type r_type;
unsigned int r_indx;
asection *sym_sec;
Elf_Internal_Sym *sym;
struct elf_link_hash_entry *h;
enum _stub_type stub_type;
r_type = ELF32_R_TYPE (irela->r_info);
r_indx = ELF32_R_SYM (irela->r_info);
if (r_type >= R_SPU_max)
{
bfd_set_error (bfd_error_bad_value);
error_ret_free_internal:
if (elf_section_data (isec)->relocs != internal_relocs)
free (internal_relocs);
error_ret_free_local:
if (symtab_hdr->contents != (unsigned char *) local_syms)
free (local_syms);
return false;
}
/* Determine the reloc target section. */
if (!get_sym_h (&h, &sym, &sym_sec, &local_syms, r_indx, ibfd))
goto error_ret_free_internal;
stub_type = needs_ovl_stub (h, sym, sym_sec, isec, irela,
NULL, info);
if (stub_type == no_stub)
continue;
else if (stub_type == stub_error)
goto error_ret_free_internal;
if (htab->stub_count == NULL)
{
bfd_size_type amt;
amt = (htab->num_overlays + 1) * sizeof (*htab->stub_count);
htab->stub_count = bfd_zmalloc (amt);
if (htab->stub_count == NULL)
goto error_ret_free_internal;
}
if (!build)
{
if (!count_stub (htab, ibfd, isec, stub_type, h, irela))
goto error_ret_free_internal;
}
else
{
bfd_vma dest;
if (h != NULL)
dest = h->root.u.def.value;
else
dest = sym->st_value;
dest += irela->r_addend;
if (!build_stub (info, ibfd, isec, stub_type, h, irela,
dest, sym_sec))
goto error_ret_free_internal;
}
}
/* We're done with the internal relocs, free them. */
if (elf_section_data (isec)->relocs != internal_relocs)
free (internal_relocs);
}
if (local_syms != NULL
&& symtab_hdr->contents != (unsigned char *) local_syms)
{
if (!info->keep_memory)
free (local_syms);
else
symtab_hdr->contents = (unsigned char *) local_syms;
}
}
return true;
}
/* Allocate space for overlay call and return stubs.
Return 0 on error, 1 if no overlays, 2 otherwise. */
int
spu_elf_size_stubs (struct bfd_link_info *info)
{
struct spu_link_hash_table *htab;
bfd *ibfd;
bfd_size_type amt;
flagword flags;
unsigned int i;
asection *stub;
if (!process_stubs (info, false))
return 0;
htab = spu_hash_table (info);
elf_link_hash_traverse (&htab->elf, allocate_spuear_stubs, info);
if (htab->stub_err)
return 0;
ibfd = info->input_bfds;
if (htab->stub_count != NULL)
{
amt = (htab->num_overlays + 1) * sizeof (*htab->stub_sec);
htab->stub_sec = bfd_zmalloc (amt);
if (htab->stub_sec == NULL)
return 0;
flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
| SEC_HAS_CONTENTS | SEC_IN_MEMORY);
stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
htab->stub_sec[0] = stub;
if (stub == NULL
|| !bfd_set_section_alignment (stub,
ovl_stub_size_log2 (htab->params)))
return 0;
stub->size = htab->stub_count[0] * ovl_stub_size (htab->params);
if (htab->params->ovly_flavour == ovly_soft_icache)
/* Extra space for linked list entries. */
stub->size += htab->stub_count[0] * 16;
for (i = 0; i < htab->num_overlays; ++i)
{
asection *osec = htab->ovl_sec[i];
unsigned int ovl = spu_elf_section_data (osec)->u.o.ovl_index;
stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
htab->stub_sec[ovl] = stub;
if (stub == NULL
|| !bfd_set_section_alignment (stub,
ovl_stub_size_log2 (htab->params)))
return 0;
stub->size = htab->stub_count[ovl] * ovl_stub_size (htab->params);
}
}
if (htab->params->ovly_flavour == ovly_soft_icache)
{
/* Space for icache manager tables.
a) Tag array, one quadword per cache line.
b) Rewrite "to" list, one quadword per cache line.
c) Rewrite "from" list, one byte per outgoing branch (rounded up to
a power-of-two number of full quadwords) per cache line. */
flags = SEC_ALLOC;
htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags);
if (htab->ovtab == NULL
|| !bfd_set_section_alignment (htab->ovtab, 4))
return 0;
htab->ovtab->size = (16 + 16 + (16 << htab->fromelem_size_log2))
<< htab->num_lines_log2;
flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
htab->init = bfd_make_section_anyway_with_flags (ibfd, ".ovini", flags);
if (htab->init == NULL
|| !bfd_set_section_alignment (htab->init, 4))
return 0;
htab->init->size = 16;
}
else if (htab->stub_count == NULL)
return 1;
else
{
/* htab->ovtab consists of two arrays.
. struct {
. u32 vma;
. u32 size;
. u32 file_off;
. u32 buf;
. } _ovly_table[];
.
. struct {
. u32 mapped;
. } _ovly_buf_table[];
. */
flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags);
if (htab->ovtab == NULL
|| !bfd_set_section_alignment (htab->ovtab, 4))
return 0;
htab->ovtab->size = htab->num_overlays * 16 + 16 + htab->num_buf * 4;
}
htab->toe = bfd_make_section_anyway_with_flags (ibfd, ".toe", SEC_ALLOC);
if (htab->toe == NULL
|| !bfd_set_section_alignment (htab->toe, 4))
return 0;
htab->toe->size = 16;
return 2;
}
/* Called from ld to place overlay manager data sections. This is done
after the overlay manager itself is loaded, mainly so that the
linker's htab->init section is placed after any other .ovl.init
sections. */
void
spu_elf_place_overlay_data (struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
unsigned int i;
if (htab->stub_sec != NULL)
{
(*htab->params->place_spu_section) (htab->stub_sec[0], NULL, ".text");
for (i = 0; i < htab->num_overlays; ++i)
{
asection *osec = htab->ovl_sec[i];
unsigned int ovl = spu_elf_section_data (osec)->u.o.ovl_index;
(*htab->params->place_spu_section) (htab->stub_sec[ovl], osec, NULL);
}
}
if (htab->params->ovly_flavour == ovly_soft_icache)
(*htab->params->place_spu_section) (htab->init, NULL, ".ovl.init");
if (htab->ovtab != NULL)
{
const char *ovout = ".data";
if (htab->params->ovly_flavour == ovly_soft_icache)
ovout = ".bss";
(*htab->params->place_spu_section) (htab->ovtab, NULL, ovout);
}
if (htab->toe != NULL)
(*htab->params->place_spu_section) (htab->toe, NULL, ".toe");
}
/* Functions to handle embedded spu_ovl.o object. */
static void *
ovl_mgr_open (struct bfd *nbfd ATTRIBUTE_UNUSED, void *stream)
{
return stream;
}
static file_ptr
ovl_mgr_pread (struct bfd *abfd ATTRIBUTE_UNUSED,
void *stream,
void *buf,
file_ptr nbytes,
file_ptr offset)
{
struct _ovl_stream *os;
size_t count;
size_t max;
os = (struct _ovl_stream *) stream;
max = (const char *) os->end - (const char *) os->start;
if ((ufile_ptr) offset >= max)
return 0;
count = nbytes;
if (count > max - offset)
count = max - offset;
memcpy (buf, (const char *) os->start + offset, count);
return count;
}
static int
ovl_mgr_stat (struct bfd *abfd ATTRIBUTE_UNUSED,
void *stream,
struct stat *sb)
{
struct _ovl_stream *os = (struct _ovl_stream *) stream;
memset (sb, 0, sizeof (*sb));
sb->st_size = (const char *) os->end - (const char *) os->start;
return 0;
}
bool
spu_elf_open_builtin_lib (bfd **ovl_bfd, const struct _ovl_stream *stream)
{
*ovl_bfd = bfd_openr_iovec ("builtin ovl_mgr",
"elf32-spu",
ovl_mgr_open,
(void *) stream,
ovl_mgr_pread,
NULL,
ovl_mgr_stat);
return *ovl_bfd != NULL;
}
static unsigned int
overlay_index (asection *sec)
{
if (sec == NULL
|| sec->output_section == bfd_abs_section_ptr)
return 0;
return spu_elf_section_data (sec->output_section)->u.o.ovl_index;
}
/* Define an STT_OBJECT symbol. */
static struct elf_link_hash_entry *
define_ovtab_symbol (struct spu_link_hash_table *htab, const char *name)
{
struct elf_link_hash_entry *h;
h = elf_link_hash_lookup (&htab->elf, name, true, false, false);
if (h == NULL)
return NULL;
if (h->root.type != bfd_link_hash_defined
|| !h->def_regular)
{
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = htab->ovtab;
h->type = STT_OBJECT;
h->ref_regular = 1;
h->def_regular = 1;
h->ref_regular_nonweak = 1;
h->non_elf = 0;
}
else if (h->root.u.def.section->owner != NULL)
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB is not allowed to define %s"),
h->root.u.def.section->owner,
h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
else
{
_bfd_error_handler (_("you are not allowed to define %s in a script"),
h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
return h;
}
/* Fill in all stubs and the overlay tables. */
static bool
spu_elf_build_stubs (struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
struct elf_link_hash_entry *h;
bfd_byte *p;
asection *s;
bfd *obfd;
unsigned int i;
if (htab->num_overlays != 0)
{
for (i = 0; i < 2; i++)
{
h = htab->ovly_entry[i];
if (h != NULL
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->def_regular)
{
s = h->root.u.def.section->output_section;
if (spu_elf_section_data (s)->u.o.ovl_index)
{
_bfd_error_handler (_("%s in overlay section"),
h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return false;
}
}
}
}
if (htab->stub_sec != NULL)
{
for (i = 0; i <= htab->num_overlays; i++)
if (htab->stub_sec[i]->size != 0)
{
htab->stub_sec[i]->contents = bfd_zalloc (htab->stub_sec[i]->owner,
htab->stub_sec[i]->size);
if (htab->stub_sec[i]->contents == NULL)
return false;
htab->stub_sec[i]->rawsize = htab->stub_sec[i]->size;
htab->stub_sec[i]->size = 0;
}
/* Fill in all the stubs. */
process_stubs (info, true);
if (!htab->stub_err)
elf_link_hash_traverse (&htab->elf, build_spuear_stubs, info);
if (htab->stub_err)
{
_bfd_error_handler (_("overlay stub relocation overflow"));
bfd_set_error (bfd_error_bad_value);
return false;
}
for (i = 0; i <= htab->num_overlays; i++)
{
if (htab->stub_sec[i]->size != htab->stub_sec[i]->rawsize)
{
_bfd_error_handler (_("stubs don't match calculated size"));
bfd_set_error (bfd_error_bad_value);
return false;
}
htab->stub_sec[i]->rawsize = 0;
}
}
if (htab->ovtab == NULL || htab->ovtab->size == 0)
return true;
htab->ovtab->contents = bfd_zalloc (htab->ovtab->owner, htab->ovtab->size);
if (htab->ovtab->contents == NULL)
return false;
p = htab->ovtab->contents;
if (htab->params->ovly_flavour == ovly_soft_icache)
{
bfd_vma off;
h = define_ovtab_symbol (htab, "__icache_tag_array");
if (h == NULL)
return false;
h->root.u.def.value = 0;
h->size = 16 << htab->num_lines_log2;
off = h->size;
h = define_ovtab_symbol (htab, "__icache_tag_array_size");
if (h == NULL)
return false;
h->root.u.def.value = 16 << htab->num_lines_log2;
h->root.u.def.section = bfd_abs_section_ptr;
h = define_ovtab_symbol (htab, "__icache_rewrite_to");
if (h == NULL)
return false;
h->root.u.def.value = off;
h->size = 16 << htab->num_lines_log2;
off += h->size;
h = define_ovtab_symbol (htab, "__icache_rewrite_to_size");
if (h == NULL)
return false;
h->root.u.def.value = 16 << htab->num_lines_log2;
h->root.u.def.section = bfd_abs_section_ptr;
h = define_ovtab_symbol (htab, "__icache_rewrite_from");
if (h == NULL)
return false;
h->root.u.def.value = off;
h->size = 16 << (htab->fromelem_size_log2 + htab->num_lines_log2);
off += h->size;
h = define_ovtab_symbol (htab, "__icache_rewrite_from_size");
if (h == NULL)
return false;
h->root.u.def.value = 16 << (htab->fromelem_size_log2
+ htab->num_lines_log2);
h->root.u.def.section = bfd_abs_section_ptr;
h = define_ovtab_symbol (htab, "__icache_log2_fromelemsize");
if (h == NULL)
return false;
h->root.u.def.value = htab->fromelem_size_log2;
h->root.u.def.section = bfd_abs_section_ptr;
h = define_ovtab_symbol (htab, "__icache_base");
if (h == NULL)
return false;
h->root.u.def.value = htab->ovl_sec[0]->vma;
h->root.u.def.section = bfd_abs_section_ptr;
h->size = htab->num_buf << htab->line_size_log2;
h = define_ovtab_symbol (htab, "__icache_linesize");
if (h == NULL)
return false;
h->root.u.def.value = 1 << htab->line_size_log2;
h->root.u.def.section = bfd_abs_section_ptr;
h = define_ovtab_symbol (htab, "__icache_log2_linesize");
if (h == NULL)
return false;
h->root.u.def.value = htab->line_size_log2;
h->root.u.def.section = bfd_abs_section_ptr;
h = define_ovtab_symbol (htab, "__icache_neg_log2_linesize");
if (h == NULL)
return false;
h->root.u.def.value = -htab->line_size_log2;
h->root.u.def.section = bfd_abs_section_ptr;
h = define_ovtab_symbol (htab, "__icache_cachesize");
if (h == NULL)
return false;
h->root.u.def.value = 1 << (htab->num_lines_log2 + htab->line_size_log2);
h->root.u.def.section = bfd_abs_section_ptr;
h = define_ovtab_symbol (htab, "__icache_log2_cachesize");
if (h == NULL)
return false;
h->root.u.def.value = htab->num_lines_log2 + htab->line_size_log2;
h->root.u.def.section = bfd_abs_section_ptr;
h = define_ovtab_symbol (htab, "__icache_neg_log2_cachesize");
if (h == NULL)
return false;
h->root.u.def.value = -(htab->num_lines_log2 + htab->line_size_log2);
h->root.u.def.section = bfd_abs_section_ptr;
if (htab->init != NULL && htab->init->size != 0)
{
htab->init->contents = bfd_zalloc (htab->init->owner,
htab->init->size);
if (htab->init->contents == NULL)
return false;
h = define_ovtab_symbol (htab, "__icache_fileoff");
if (h == NULL)
return false;
h->root.u.def.value = 0;
h->root.u.def.section = htab->init;
h->size = 8;
}
}
else
{
/* Write out _ovly_table. */
/* set low bit of .size to mark non-overlay area as present. */
p[7] = 1;
obfd = htab->ovtab->output_section->owner;
for (s = obfd->sections; s != NULL; s = s->next)
{
unsigned int ovl_index = spu_elf_section_data (s)->u.o.ovl_index;
if (ovl_index != 0)
{
unsigned long off = ovl_index * 16;
unsigned int ovl_buf = spu_elf_section_data (s)->u.o.ovl_buf;
bfd_put_32 (htab->ovtab->owner, s->vma, p + off);
bfd_put_32 (htab->ovtab->owner, (s->size + 15) & -16,
p + off + 4);
/* file_off written later in spu_elf_modify_headers. */
bfd_put_32 (htab->ovtab->owner, ovl_buf, p + off + 12);
}
}
h = define_ovtab_symbol (htab, "_ovly_table");
if (h == NULL)
return false;
h->root.u.def.value = 16;
h->size = htab->num_overlays * 16;
h = define_ovtab_symbol (htab, "_ovly_table_end");
if (h == NULL)
return false;
h->root.u.def.value = htab->num_overlays * 16 + 16;
h->size = 0;
h = define_ovtab_symbol (htab, "_ovly_buf_table");
if (h == NULL)
return false;
h->root.u.def.value = htab->num_overlays * 16 + 16;
h->size = htab->num_buf * 4;
h = define_ovtab_symbol (htab, "_ovly_buf_table_end");
if (h == NULL)
return false;
h->root.u.def.value = htab->num_overlays * 16 + 16 + htab->num_buf * 4;
h->size = 0;
}
h = define_ovtab_symbol (htab, "_EAR_");
if (h == NULL)
return false;
h->root.u.def.section = htab->toe;
h->root.u.def.value = 0;
h->size = 16;
return true;
}
/* Check that all loadable section VMAs lie in the range
LO .. HI inclusive, and stash some parameters for --auto-overlay. */
asection *
spu_elf_check_vma (struct bfd_link_info *info)
{
struct elf_segment_map *m;
unsigned int i;
struct spu_link_hash_table *htab = spu_hash_table (info);
bfd *abfd = info->output_bfd;
bfd_vma hi = htab->params->local_store_hi;
bfd_vma lo = htab->params->local_store_lo;
htab->local_store = hi + 1 - lo;
for (m = elf_seg_map (abfd); m != NULL; m = m->next)
if (m->p_type == PT_LOAD)
for (i = 0; i < m->count; i++)
if (m->sections[i]->size != 0
&& (m->sections[i]->vma < lo
|| m->sections[i]->vma > hi
|| m->sections[i]->vma + m->sections[i]->size - 1 > hi))
return m->sections[i];
return NULL;
}
/* OFFSET in SEC (presumably) is the beginning of a function prologue.
Search for stack adjusting insns, and return the sp delta.
If a store of lr is found save the instruction offset to *LR_STORE.
If a stack adjusting instruction is found, save that offset to
*SP_ADJUST. */
static int
find_function_stack_adjust (asection *sec,
bfd_vma offset,
bfd_vma *lr_store,
bfd_vma *sp_adjust)
{
int32_t reg[128];
memset (reg, 0, sizeof (reg));
for ( ; offset + 4 <= sec->size; offset += 4)
{
unsigned char buf[4];
int rt, ra;
uint32_t imm;
/* Assume no relocs on stack adjusing insns. */
if (!bfd_get_section_contents (sec->owner, sec, buf, offset, 4))
break;
rt = buf[3] & 0x7f;
ra = ((buf[2] & 0x3f) << 1) | (buf[3] >> 7);
if (buf[0] == 0x24 /* stqd */)
{
if (rt == 0 /* lr */ && ra == 1 /* sp */)
*lr_store = offset;
continue;
}
/* Partly decoded immediate field. */
imm = (buf[1] << 9) | (buf[2] << 1) | (buf[3] >> 7);
if (buf[0] == 0x1c /* ai */)
{
imm >>= 7;
imm = (imm ^ 0x200) - 0x200;
reg[rt] = reg[ra] + imm;
if (rt == 1 /* sp */)
{
if (reg[rt] > 0)
break;
*sp_adjust = offset;
return reg[rt];
}
}
else if (buf[0] == 0x18 && (buf[1] & 0xe0) == 0 /* a */)
{
int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6);
reg[rt] = reg[ra] + reg[rb];
if (rt == 1)
{
if (reg[rt] > 0)
break;
*sp_adjust = offset;
return reg[rt];
}
}
else if (buf[0] == 0x08 && (buf[1] & 0xe0) == 0 /* sf */)
{
int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6);
reg[rt] = reg[rb] - reg[ra];
if (rt == 1)
{
if (reg[rt] > 0)
break;
*sp_adjust = offset;
return reg[rt];
}
}
else if ((buf[0] & 0xfc) == 0x40 /* il, ilh, ilhu, ila */)
{
if (buf[0] >= 0x42 /* ila */)
imm |= (buf[0] & 1) << 17;
else
{
imm &= 0xffff;
if (buf[0] == 0x40 /* il */)
{
if ((buf[1] & 0x80) == 0)
continue;
imm = (imm ^ 0x8000) - 0x8000;
}
else if ((buf[1] & 0x80) == 0 /* ilhu */)
imm <<= 16;
}
reg[rt] = imm;
continue;
}
else if (buf[0] == 0x60 && (buf[1] & 0x80) != 0 /* iohl */)
{
reg[rt] |= imm & 0xffff;
continue;
}
else if (buf[0] == 0x04 /* ori */)
{
imm >>= 7;
imm = (imm ^ 0x200) - 0x200;
reg[rt] = reg[ra] | imm;
continue;
}
else if (buf[0] == 0x32 && (buf[1] & 0x80) != 0 /* fsmbi */)
{
reg[rt] = ( ((imm & 0x8000) ? 0xff000000 : 0)
| ((imm & 0x4000) ? 0x00ff0000 : 0)
| ((imm & 0x2000) ? 0x0000ff00 : 0)
| ((imm & 0x1000) ? 0x000000ff : 0));
continue;
}
else if (buf[0] == 0x16 /* andbi */)
{
imm >>= 7;
imm &= 0xff;
imm |= imm << 8;
imm |= imm << 16;
reg[rt] = reg[ra] & imm;
continue;
}
else if (buf[0] == 0x33 && imm == 1 /* brsl .+4 */)
{
/* Used in pic reg load. Say rt is trashed. Won't be used
in stack adjust, but we need to continue past this branch. */
reg[rt] = 0;
continue;
}
else if (is_branch (buf) || is_indirect_branch (buf))
/* If we hit a branch then we must be out of the prologue. */
break;
}
return 0;
}
/* qsort predicate to sort symbols by section and value. */
static Elf_Internal_Sym *sort_syms_syms;
static asection **sort_syms_psecs;
static int
sort_syms (const void *a, const void *b)
{
Elf_Internal_Sym *const *s1 = a;
Elf_Internal_Sym *const *s2 = b;
asection *sec1,*sec2;
bfd_signed_vma delta;
sec1 = sort_syms_psecs[*s1 - sort_syms_syms];
sec2 = sort_syms_psecs[*s2 - sort_syms_syms];
if (sec1 != sec2)
return sec1->index - sec2->index;
delta = (*s1)->st_value - (*s2)->st_value;
if (delta != 0)
return delta < 0 ? -1 : 1;
delta = (*s2)->st_size - (*s1)->st_size;
if (delta != 0)
return delta < 0 ? -1 : 1;
return *s1 < *s2 ? -1 : 1;
}
/* Allocate a struct spu_elf_stack_info with MAX_FUN struct function_info
entries for section SEC. */
static struct spu_elf_stack_info *
alloc_stack_info (asection *sec, int max_fun)
{
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
bfd_size_type amt;
amt = sizeof (struct spu_elf_stack_info);
amt += (max_fun - 1) * sizeof (struct function_info);
sec_data->u.i.stack_info = bfd_zmalloc (amt);
if (sec_data->u.i.stack_info != NULL)
sec_data->u.i.stack_info->max_fun = max_fun;
return sec_data->u.i.stack_info;
}
/* Add a new struct function_info describing a (part of a) function
starting at SYM_H. Keep the array sorted by address. */
static struct function_info *
maybe_insert_function (asection *sec,
void *sym_h,
bool global,
bool is_func)
{
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
int i;
bfd_vma off, size;
if (sinfo == NULL)
{
sinfo = alloc_stack_info (sec, 20);
if (sinfo == NULL)
return NULL;
}
if (!global)
{
Elf_Internal_Sym *sym = sym_h;
off = sym->st_value;
size = sym->st_size;
}
else
{
struct elf_link_hash_entry *h = sym_h;
off = h->root.u.def.value;
size = h->size;
}
for (i = sinfo->num_fun; --i >= 0; )
if (sinfo->fun[i].lo <= off)
break;
if (i >= 0)
{
/* Don't add another entry for an alias, but do update some
info. */
if (sinfo->fun[i].lo == off)
{
/* Prefer globals over local syms. */
if (global && !sinfo->fun[i].global)
{
sinfo->fun[i].global = true;
sinfo->fun[i].u.h = sym_h;
}
if (is_func)
sinfo->fun[i].is_func = true;
return &sinfo->fun[i];
}
/* Ignore a zero-size symbol inside an existing function. */
else if (sinfo->fun[i].hi > off && size == 0)
return &sinfo->fun[i];
}
if (sinfo->num_fun >= sinfo->max_fun)
{
bfd_size_type amt = sizeof (struct spu_elf_stack_info);
bfd_size_type old = amt;
old += (sinfo->max_fun - 1) * sizeof (struct function_info);
sinfo->max_fun += 20 + (sinfo->max_fun >> 1);
amt += (sinfo->max_fun - 1) * sizeof (struct function_info);
sinfo = bfd_realloc (sinfo, amt);
if (sinfo == NULL)
return NULL;
memset ((char *) sinfo + old, 0, amt - old);
sec_data->u.i.stack_info = sinfo;
}
if (++i < sinfo->num_fun)
memmove (&sinfo->fun[i + 1], &sinfo->fun[i],
(sinfo->num_fun - i) * sizeof (sinfo->fun[i]));
sinfo->fun[i].is_func = is_func;
sinfo->fun[i].global = global;
sinfo->fun[i].sec = sec;
if (global)
sinfo->fun[i].u.h = sym_h;
else
sinfo->fun[i].u.sym = sym_h;
sinfo->fun[i].lo = off;
sinfo->fun[i].hi = off + size;
sinfo->fun[i].lr_store = -1;
sinfo->fun[i].sp_adjust = -1;
sinfo->fun[i].stack = -find_function_stack_adjust (sec, off,
&sinfo->fun[i].lr_store,
&sinfo->fun[i].sp_adjust);
sinfo->num_fun += 1;
return &sinfo->fun[i];
}
/* Return the name of FUN. */
static const char *
func_name (struct function_info *fun)
{
asection *sec;
bfd *ibfd;
Elf_Internal_Shdr *symtab_hdr;
while (fun->start != NULL)
fun = fun->start;
if (fun->global)
return fun->u.h->root.root.string;
sec = fun->sec;
if (fun->u.sym->st_name == 0)
{
size_t len = strlen (sec->name);
char *name = bfd_malloc (len + 10);
if (name == NULL)
return "(null)";
sprintf (name, "%s+%lx", sec->name,
(unsigned long) fun->u.sym->st_value & 0xffffffff);
return name;
}
ibfd = sec->owner;
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
return bfd_elf_sym_name (ibfd, symtab_hdr, fun->u.sym, sec);
}
/* Read the instruction at OFF in SEC. Return true iff the instruction
is a nop, lnop, or stop 0 (all zero insn). */
static bool
is_nop (asection *sec, bfd_vma off)
{
unsigned char insn[4];
if (off + 4 > sec->size
|| !bfd_get_section_contents (sec->owner, sec, insn, off, 4))
return false;
if ((insn[0] & 0xbf) == 0 && (insn[1] & 0xe0) == 0x20)
return true;
if (insn[0] == 0 && insn[1] == 0 && insn[2] == 0 && insn[3] == 0)
return true;
return false;
}
/* Extend the range of FUN to cover nop padding up to LIMIT.
Return TRUE iff some instruction other than a NOP was found. */
static bool
insns_at_end (struct function_info *fun, bfd_vma limit)
{
bfd_vma off = (fun->hi + 3) & -4;
while (off < limit && is_nop (fun->sec, off))
off += 4;
if (off < limit)
{
fun->hi = off;
return true;
}
fun->hi = limit;
return false;
}
/* Check and fix overlapping function ranges. Return TRUE iff there
are gaps in the current info we have about functions in SEC. */
static bool
check_function_ranges (asection *sec, struct bfd_link_info *info)
{
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
int i;
bool gaps = false;
if (sinfo == NULL)
return false;
for (i = 1; i < sinfo->num_fun; i++)
if (sinfo->fun[i - 1].hi > sinfo->fun[i].lo)
{
/* Fix overlapping symbols. */
const char *f1 = func_name (&sinfo->fun[i - 1]);
const char *f2 = func_name (&sinfo->fun[i]);
/* xgettext:c-format */
info->callbacks->einfo (_("warning: %s overlaps %s\n"), f1, f2);
sinfo->fun[i - 1].hi = sinfo->fun[i].lo;
}
else if (insns_at_end (&sinfo->fun[i - 1], sinfo->fun[i].lo))
gaps = true;
if (sinfo->num_fun == 0)
gaps = true;
else
{
if (sinfo->fun[0].lo != 0)
gaps = true;
if (sinfo->fun[sinfo->num_fun - 1].hi > sec->size)
{
const char *f1 = func_name (&sinfo->fun[sinfo->num_fun - 1]);
info->callbacks->einfo (_("warning: %s exceeds section size\n"), f1);
sinfo->fun[sinfo->num_fun - 1].hi = sec->size;
}
else if (insns_at_end (&sinfo->fun[sinfo->num_fun - 1], sec->size))
gaps = true;
}
return gaps;
}
/* Search current function info for a function that contains address
OFFSET in section SEC. */
static struct function_info *
find_function (asection *sec, bfd_vma offset, struct bfd_link_info *info)
{
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
int lo, hi, mid;
lo = 0;
hi = sinfo->num_fun;
while (lo < hi)
{
mid = (lo + hi) / 2;
if (offset < sinfo->fun[mid].lo)
hi = mid;
else if (offset >= sinfo->fun[mid].hi)
lo = mid + 1;
else
return &sinfo->fun[mid];
}
/* xgettext:c-format */
info->callbacks->einfo (_("%pA:0x%v not found in function table\n"),
sec, offset);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
/* Add CALLEE to CALLER call list if not already present. Return TRUE
if CALLEE was new. If this function return FALSE, CALLEE should
be freed. */
static bool
insert_callee (struct function_info *caller, struct call_info *callee)
{
struct call_info **pp, *p;
for (pp = &caller->call_list; (p = *pp) != NULL; pp = &p->next)
if (p->fun == callee->fun)
{
/* Tail calls use less stack than normal calls. Retain entry
for normal call over one for tail call. */
p->is_tail &= callee->is_tail;
if (!p->is_tail)
{
p->fun->start = NULL;
p->fun->is_func = true;
}
p->count += callee->count;
/* Reorder list so most recent call is first. */
*pp = p->next;
p->next = caller->call_list;
caller->call_list = p;
return false;
}
callee->next = caller->call_list;
caller->call_list = callee;
return true;
}
/* Copy CALL and insert the copy into CALLER. */
static bool
copy_callee (struct function_info *caller, const struct call_info *call)
{
struct call_info *callee;
callee = bfd_malloc (sizeof (*callee));
if (callee == NULL)
return false;
*callee = *call;
if (!insert_callee (caller, callee))
free (callee);
return true;
}
/* We're only interested in code sections. Testing SEC_IN_MEMORY excludes
overlay stub sections. */
static bool
interesting_section (asection *s)
{
return (s->output_section != bfd_abs_section_ptr
&& ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_IN_MEMORY))
== (SEC_ALLOC | SEC_LOAD | SEC_CODE))
&& s->size != 0);
}
/* Rummage through the relocs for SEC, looking for function calls.
If CALL_TREE is true, fill in call graph. If CALL_TREE is false,
mark destination symbols on calls as being functions. Also
look at branches, which may be tail calls or go to hot/cold
section part of same function. */
static bool
mark_functions_via_relocs (asection *sec,
struct bfd_link_info *info,
int call_tree)
{
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
Elf_Internal_Shdr *symtab_hdr;
void *psyms;
unsigned int priority = 0;
static bool warned;
if (!interesting_section (sec)
|| sec->reloc_count == 0)
return true;
internal_relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL,
info->keep_memory);
if (internal_relocs == NULL)
return false;
symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr;
psyms = &symtab_hdr->contents;
irela = internal_relocs;
irelaend = irela + sec->reloc_count;
for (; irela < irelaend; irela++)
{
enum elf_spu_reloc_type r_type;
unsigned int r_indx;
asection *sym_sec;
Elf_Internal_Sym *sym;
struct elf_link_hash_entry *h;
bfd_vma val;
bool nonbranch, is_call;
struct function_info *caller;
struct call_info *callee;
r_type = ELF32_R_TYPE (irela->r_info);
nonbranch = r_type != R_SPU_REL16 && r_type != R_SPU_ADDR16;
r_indx = ELF32_R_SYM (irela->r_info);
if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, sec->owner))
return false;
if (sym_sec == NULL
|| sym_sec->output_section == bfd_abs_section_ptr)
continue;
is_call = false;
if (!nonbranch)
{
unsigned char insn[4];
if (!bfd_get_section_contents (sec->owner, sec, insn,
irela->r_offset, 4))
return false;
if (is_branch (insn))
{
is_call = (insn[0] & 0xfd) == 0x31;
priority = insn[1] & 0x0f;
priority <<= 8;
priority |= insn[2];
priority <<= 8;
priority |= insn[3];
priority >>= 7;
if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE))
!= (SEC_ALLOC | SEC_LOAD | SEC_CODE))
{
if (!warned)
info->callbacks->einfo
/* xgettext:c-format */
(_("%pB(%pA+0x%v): call to non-code section"
" %pB(%pA), analysis incomplete\n"),
sec->owner, sec, irela->r_offset,
sym_sec->owner, sym_sec);
warned = true;
continue;
}
}
else
{
nonbranch = true;
if (is_hint (insn))
continue;
}
}
if (nonbranch)
{
/* For --auto-overlay, count possible stubs we need for
function pointer references. */
unsigned int sym_type;
if (h)
sym_type = h->type;
else
sym_type = ELF_ST_TYPE (sym->st_info);
if (sym_type == STT_FUNC)
{
if (call_tree && spu_hash_table (info)->params->auto_overlay)
spu_hash_table (info)->non_ovly_stub += 1;
/* If the symbol type is STT_FUNC then this must be a
function pointer initialisation. */
continue;
}
/* Ignore data references. */
if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE))
!= (SEC_ALLOC | SEC_LOAD | SEC_CODE))
continue;
/* Otherwise we probably have a jump table reloc for
a switch statement or some other reference to a
code label. */
}
if (h)
val = h->root.u.def.value;
else
val = sym->st_value;
val += irela->r_addend;
if (!call_tree)
{
struct function_info *fun;
if (irela->r_addend != 0)
{
Elf_Internal_Sym *fake = bfd_zmalloc (sizeof (*fake));
if (fake == NULL)
return false;
fake->st_value = val;
fake->st_shndx
= _bfd_elf_section_from_bfd_section (sym_sec->owner, sym_sec);
sym = fake;
}
if (sym)
fun = maybe_insert_function (sym_sec, sym, false, is_call);
else
fun = maybe_insert_function (sym_sec, h, true, is_call);
if (fun == NULL)
return false;
if (irela->r_addend != 0
&& fun->u.sym != sym)
free (sym);
continue;
}
caller = find_function (sec, irela->r_offset, info);
if (caller == NULL)
return false;
callee = bfd_malloc (sizeof *callee);
if (callee == NULL)
return false;
callee->fun = find_function (sym_sec, val, info);
if (callee->fun == NULL)
return false;
callee->is_tail = !is_call;
callee->is_pasted = false;
callee->broken_cycle = false;
callee->priority = priority;
callee->count = nonbranch? 0 : 1;
if (callee->fun->last_caller != sec)
{