| /* RISC-V-specific support for NN-bit ELF. |
| Copyright (C) 2011-2021 Free Software Foundation, Inc. |
| |
| Contributed by Andrew Waterman (andrew@sifive.com). |
| Based on TILE-Gx and MIPS targets. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; see the file COPYING3. If not, |
| see <http://www.gnu.org/licenses/>. */ |
| |
| /* This file handles RISC-V ELF targets. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libbfd.h" |
| #include "bfdlink.h" |
| #include "genlink.h" |
| #include "elf-bfd.h" |
| #include "elfxx-riscv.h" |
| #include "elf/riscv.h" |
| #include "opcode/riscv.h" |
| #include "objalloc.h" |
| |
| #include <limits.h> |
| #ifndef CHAR_BIT |
| #define CHAR_BIT 8 |
| #endif |
| |
| /* Internal relocations used exclusively by the relaxation pass. */ |
| #define R_RISCV_DELETE (R_RISCV_max + 1) |
| |
| #define ARCH_SIZE NN |
| |
| #define MINUS_ONE ((bfd_vma)0 - 1) |
| |
| #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3) |
| |
| #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES) |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1" |
| #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1" |
| |
| #define ELF_ARCH bfd_arch_riscv |
| #define ELF_TARGET_ID RISCV_ELF_DATA |
| #define ELF_MACHINE_CODE EM_RISCV |
| #define ELF_MAXPAGESIZE 0x1000 |
| #define ELF_COMMONPAGESIZE 0x1000 |
| |
| #define RISCV_ATTRIBUTES_SECTION_NAME ".riscv.attributes" |
| |
| /* RISC-V ELF linker hash entry. */ |
| |
| struct riscv_elf_link_hash_entry |
| { |
| struct elf_link_hash_entry elf; |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_IE 4 |
| #define GOT_TLS_LE 8 |
| char tls_type; |
| }; |
| |
| #define riscv_elf_hash_entry(ent) \ |
| ((struct riscv_elf_link_hash_entry *) (ent)) |
| |
| struct _bfd_riscv_elf_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* tls_type for each local got entry. */ |
| char *local_got_tls_type; |
| }; |
| |
| #define _bfd_riscv_elf_tdata(abfd) \ |
| ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any) |
| |
| #define _bfd_riscv_elf_local_got_tls_type(abfd) \ |
| (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type) |
| |
| #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \ |
| (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \ |
| : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx])) |
| |
| #define is_riscv_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == RISCV_ELF_DATA) |
| |
| static bool |
| elfNN_riscv_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, |
| sizeof (struct _bfd_riscv_elf_obj_tdata), |
| RISCV_ELF_DATA); |
| } |
| |
| #include "elf/common.h" |
| #include "elf/internal.h" |
| |
| struct riscv_elf_link_hash_table |
| { |
| struct elf_link_hash_table elf; |
| |
| /* Short-cuts to get to dynamic linker sections. */ |
| asection *sdyntdata; |
| |
| /* The max alignment of output sections. */ |
| bfd_vma max_alignment; |
| |
| /* Used by local STT_GNU_IFUNC symbols. */ |
| htab_t loc_hash_table; |
| void * loc_hash_memory; |
| |
| /* The index of the last unused .rel.iplt slot. */ |
| bfd_vma last_iplt_index; |
| |
| /* Re-run the relaxations from relax pass 0 if TRUE. */ |
| bool restart_relax; |
| |
| /* The data segment phase, don't relax the section |
| when it is exp_seg_relro_adjust. */ |
| int *data_segment_phase; |
| }; |
| |
| /* Instruction access functions. */ |
| #define riscv_get_insn(bits, ptr) \ |
| ((bits) == 16 ? bfd_getl16 (ptr) \ |
| : (bits) == 32 ? bfd_getl32 (ptr) \ |
| : (bits) == 64 ? bfd_getl64 (ptr) \ |
| : (abort (), (bfd_vma) - 1)) |
| #define riscv_put_insn(bits, val, ptr) \ |
| ((bits) == 16 ? bfd_putl16 (val, ptr) \ |
| : (bits) == 32 ? bfd_putl32 (val, ptr) \ |
| : (bits) == 64 ? bfd_putl64 (val, ptr) \ |
| : (abort (), (void) 0)) |
| |
| /* Get the RISC-V ELF linker hash table from a link_info structure. */ |
| #define riscv_elf_hash_table(p) \ |
| ((is_elf_hash_table ((p)->hash) \ |
| && elf_hash_table_id (elf_hash_table (p)) == RISCV_ELF_DATA) \ |
| ? (struct riscv_elf_link_hash_table *) (p)->hash : NULL) |
| |
| static bool |
| riscv_info_to_howto_rela (bfd *abfd, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info)); |
| return cache_ptr->howto != NULL; |
| } |
| |
| static void |
| riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) |
| { |
| const struct elf_backend_data *bed; |
| bfd_byte *loc; |
| |
| bed = get_elf_backend_data (abfd); |
| loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); |
| bed->s->swap_reloca_out (abfd, rel, loc); |
| } |
| |
| /* Return true if a relocation is modifying an instruction. */ |
| |
| static bool |
| riscv_is_insn_reloc (const reloc_howto_type *howto) |
| { |
| /* Heuristic: A multibyte destination with a nontrivial mask |
| is an instruction */ |
| return (howto->bitsize > 8 |
| && howto->dst_mask != 0 |
| && ~(howto->dst_mask | (howto->bitsize < sizeof(bfd_vma) * CHAR_BIT |
| ? (MINUS_ONE << howto->bitsize) : (bfd_vma)0)) != 0); |
| } |
| |
| /* PLT/GOT stuff. */ |
| #define PLT_HEADER_INSNS 8 |
| #define PLT_ENTRY_INSNS 4 |
| #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4) |
| #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4) |
| #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES |
| /* Reserve two entries of GOTPLT for ld.so, one is used for PLT resolver, |
| the other is used for link map. Other targets also reserve one more |
| entry used for runtime profile? */ |
| #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE) |
| |
| #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset) |
| |
| #if ARCH_SIZE == 32 |
| # define MATCH_LREG MATCH_LW |
| #else |
| # define MATCH_LREG MATCH_LD |
| #endif |
| |
| /* Generate a PLT header. */ |
| |
| static bool |
| riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr, |
| uint32_t *entry) |
| { |
| bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr); |
| bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr); |
| |
| /* RVE has no t3 register, so this won't work, and is not supported. */ |
| if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) |
| { |
| _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), |
| output_bfd); |
| return false; |
| } |
| |
| /* auipc t2, %hi(.got.plt) |
| sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12 |
| l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve |
| addi t1, t1, -(hdr size + 12) # shifted .got.plt offset |
| addi t0, t2, %lo(.got.plt) # &.got.plt |
| srli t1, t1, log2(16/PTRSIZE) # .got.plt offset |
| l[w|d] t0, PTRSIZE(t0) # link map |
| jr t3 */ |
| |
| entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high); |
| entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3); |
| entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low); |
| entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, (uint32_t) -(PLT_HEADER_SIZE + 12)); |
| entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low); |
| entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES); |
| entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES); |
| entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0); |
| |
| return true; |
| } |
| |
| /* Generate a PLT entry. */ |
| |
| static bool |
| riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr, |
| uint32_t *entry) |
| { |
| /* RVE has no t3 register, so this won't work, and is not supported. */ |
| if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) |
| { |
| _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), |
| output_bfd); |
| return false; |
| } |
| |
| /* auipc t3, %hi(.got.plt entry) |
| l[w|d] t3, %lo(.got.plt entry)(t3) |
| jalr t1, t3 |
| nop */ |
| |
| entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr)); |
| entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr)); |
| entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0); |
| entry[3] = RISCV_NOP; |
| |
| return true; |
| } |
| |
| /* Create an entry in an RISC-V ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = |
| bfd_hash_allocate (table, |
| sizeof (struct riscv_elf_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct riscv_elf_link_hash_entry *eh; |
| |
| eh = (struct riscv_elf_link_hash_entry *) entry; |
| eh->tls_type = GOT_UNKNOWN; |
| } |
| |
| return entry; |
| } |
| |
| /* Compute a hash of a local hash entry. We use elf_link_hash_entry |
| for local symbol so that we can handle local STT_GNU_IFUNC symbols |
| as global symbol. We reuse indx and dynstr_index for local symbol |
| hash since they aren't used by global symbols in this backend. */ |
| |
| static hashval_t |
| riscv_elf_local_htab_hash (const void *ptr) |
| { |
| struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) ptr; |
| return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); |
| } |
| |
| /* Compare local hash entries. */ |
| |
| static int |
| riscv_elf_local_htab_eq (const void *ptr1, const void *ptr2) |
| { |
| struct elf_link_hash_entry *h1 = (struct elf_link_hash_entry *) ptr1; |
| struct elf_link_hash_entry *h2 = (struct elf_link_hash_entry *) ptr2; |
| |
| return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; |
| } |
| |
| /* Find and/or create a hash entry for local symbol. */ |
| |
| static struct elf_link_hash_entry * |
| riscv_elf_get_local_sym_hash (struct riscv_elf_link_hash_table *htab, |
| bfd *abfd, const Elf_Internal_Rela *rel, |
| bool create) |
| { |
| struct riscv_elf_link_hash_entry eh, *ret; |
| asection *sec = abfd->sections; |
| hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, |
| ELFNN_R_SYM (rel->r_info)); |
| void **slot; |
| |
| eh.elf.indx = sec->id; |
| eh.elf.dynstr_index = ELFNN_R_SYM (rel->r_info); |
| slot = htab_find_slot_with_hash (htab->loc_hash_table, &eh, h, |
| create ? INSERT : NO_INSERT); |
| |
| if (!slot) |
| return NULL; |
| |
| if (*slot) |
| { |
| ret = (struct riscv_elf_link_hash_entry *) *slot; |
| return &ret->elf; |
| } |
| |
| ret = (struct riscv_elf_link_hash_entry *) |
| objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, |
| sizeof (struct riscv_elf_link_hash_entry)); |
| if (ret) |
| { |
| memset (ret, 0, sizeof (*ret)); |
| ret->elf.indx = sec->id; |
| ret->elf.dynstr_index = ELFNN_R_SYM (rel->r_info); |
| ret->elf.dynindx = -1; |
| *slot = ret; |
| } |
| return &ret->elf; |
| } |
| |
| /* Destroy a RISC-V elf linker hash table. */ |
| |
| static void |
| riscv_elf_link_hash_table_free (bfd *obfd) |
| { |
| struct riscv_elf_link_hash_table *ret |
| = (struct riscv_elf_link_hash_table *) obfd->link.hash; |
| |
| if (ret->loc_hash_table) |
| htab_delete (ret->loc_hash_table); |
| if (ret->loc_hash_memory) |
| objalloc_free ((struct objalloc *) ret->loc_hash_memory); |
| |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| /* Create a RISC-V ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| riscv_elf_link_hash_table_create (bfd *abfd) |
| { |
| struct riscv_elf_link_hash_table *ret; |
| size_t amt = sizeof (struct riscv_elf_link_hash_table); |
| |
| ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, |
| sizeof (struct riscv_elf_link_hash_entry), |
| RISCV_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| ret->max_alignment = (bfd_vma) -1; |
| ret->restart_relax = false; |
| |
| /* Create hash table for local ifunc. */ |
| ret->loc_hash_table = htab_try_create (1024, |
| riscv_elf_local_htab_hash, |
| riscv_elf_local_htab_eq, |
| NULL); |
| ret->loc_hash_memory = objalloc_create (); |
| if (!ret->loc_hash_table || !ret->loc_hash_memory) |
| { |
| riscv_elf_link_hash_table_free (abfd); |
| return NULL; |
| } |
| ret->elf.root.hash_table_free = riscv_elf_link_hash_table_free; |
| |
| return &ret->elf.root; |
| } |
| |
| /* Create the .got section. */ |
| |
| static bool |
| riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
| { |
| flagword flags; |
| asection *s, *s_got; |
| struct elf_link_hash_entry *h; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* This function may be called more than once. */ |
| if (htab->sgot != NULL) |
| return true; |
| |
| flags = bed->dynamic_sec_flags; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->rela_plts_and_copies_p |
| ? ".rela.got" : ".rel.got"), |
| (bed->dynamic_sec_flags |
| | SEC_READONLY)); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return false; |
| htab->srelgot = s; |
| |
| s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return false; |
| htab->sgot = s; |
| |
| /* The first bit of the global offset table is the header. */ |
| s->size += bed->got_header_size; |
| |
| if (bed->want_got_plt) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return false; |
| htab->sgotplt = s; |
| |
| /* Reserve room for the header. */ |
| s->size += GOTPLT_HEADER_SIZE; |
| } |
| |
| if (bed->want_got_sym) |
| { |
| /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got |
| section. We don't do this in the linker script because we don't want |
| to define the symbol if we are not creating a global offset |
| table. */ |
| h = _bfd_elf_define_linkage_sym (abfd, info, s_got, |
| "_GLOBAL_OFFSET_TABLE_"); |
| elf_hash_table (info)->hgot = h; |
| if (h == NULL) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and |
| .rela.bss sections in DYNOBJ, and set up shortcuts to them in our |
| hash table. */ |
| |
| static bool |
| riscv_elf_create_dynamic_sections (bfd *dynobj, |
| struct bfd_link_info *info) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (!riscv_elf_create_got_section (dynobj, info)) |
| return false; |
| |
| if (!_bfd_elf_create_dynamic_sections (dynobj, info)) |
| return false; |
| |
| if (!bfd_link_pic (info)) |
| { |
| /* Technically, this section doesn't have contents. It is used as the |
| target of TLS copy relocs, to copy TLS data from shared libraries into |
| the executable. However, if we don't mark it as loadable, then it |
| matches the IS_TBSS test in ldlang.c, and there is no run-time address |
| space allocated for it even though it has SEC_ALLOC. That test is |
| correct for .tbss, but not correct for this section. There is also |
| a second problem that having a section with no contents can only work |
| if it comes after all sections with contents in the same segment, |
| but the linker script does not guarantee that. This is just mixed in |
| with other .tdata.* sections. We can fix both problems by lying and |
| saying that there are contents. This section is expected to be small |
| so this should not cause a significant extra program startup cost. */ |
| htab->sdyntdata = |
| bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn", |
| (SEC_ALLOC | SEC_THREAD_LOCAL |
| | SEC_LOAD | SEC_DATA |
| | SEC_HAS_CONTENTS |
| | SEC_LINKER_CREATED)); |
| } |
| |
| if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss |
| || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata))) |
| abort (); |
| |
| return true; |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| static void |
| riscv_elf_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct riscv_elf_link_hash_entry *edir, *eind; |
| |
| edir = (struct riscv_elf_link_hash_entry *) dir; |
| eind = (struct riscv_elf_link_hash_entry *) ind; |
| |
| if (ind->root.type == bfd_link_hash_indirect |
| && dir->got.refcount <= 0) |
| { |
| edir->tls_type = eind->tls_type; |
| eind->tls_type = GOT_UNKNOWN; |
| } |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| |
| static bool |
| riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h, |
| unsigned long symndx, char tls_type) |
| { |
| char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx); |
| |
| *new_tls_type |= tls_type; |
| if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL)) |
| { |
| (*_bfd_error_handler) |
| (_("%pB: `%s' accessed both as normal and thread local symbol"), |
| abfd, h ? h->root.root.string : "<local>"); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool |
| riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, long symndx) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| if (htab->elf.sgot == NULL) |
| { |
| if (!riscv_elf_create_got_section (htab->elf.dynobj, info)) |
| return false; |
| } |
| |
| if (h != NULL) |
| { |
| h->got.refcount += 1; |
| return true; |
| } |
| |
| /* This is a global offset table entry for a local symbol. */ |
| if (elf_local_got_refcounts (abfd) == NULL) |
| { |
| bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1); |
| if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size))) |
| return false; |
| _bfd_riscv_elf_local_got_tls_type (abfd) |
| = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info); |
| } |
| elf_local_got_refcounts (abfd) [symndx] += 1; |
| |
| return true; |
| } |
| |
| static bool |
| bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h) |
| { |
| reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); |
| |
| /* We propably can improve the information to tell users that they |
| should be recompile the code with -fPIC or -fPIE, just like what |
| x86 does. */ |
| (*_bfd_error_handler) |
| (_("%pB: relocation %s against `%s' can not be used when making a shared " |
| "object; recompile with -fPIC"), |
| abfd, r ? r->name : _("<unknown>"), |
| h != NULL ? h->root.root.string : "a local symbol"); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* Look through the relocs for a section during the first phase, and |
| allocate space in the global offset table or procedure linkage |
| table. */ |
| |
| static bool |
| riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, const Elf_Internal_Rela *relocs) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| asection *sreloc = NULL; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| htab = riscv_elf_hash_table (info); |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| |
| for (rel = relocs; rel < relocs + sec->reloc_count; rel++) |
| { |
| unsigned int r_type; |
| unsigned int r_symndx; |
| struct elf_link_hash_entry *h; |
| |
| r_symndx = ELFNN_R_SYM (rel->r_info); |
| r_type = ELFNN_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| (*_bfd_error_handler) (_("%pB: bad symbol index: %d"), |
| abfd, r_symndx); |
| return false; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return false; |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = riscv_elf_get_local_sym_hash (htab, abfd, rel, true); |
| if (h == NULL) |
| return false; |
| |
| /* Fake STT_GNU_IFUNC global symbol. */ |
| h->root.root.string = bfd_elf_sym_name (abfd, symtab_hdr, |
| isym, NULL); |
| h->type = STT_GNU_IFUNC; |
| h->def_regular = 1; |
| h->ref_regular = 1; |
| h->forced_local = 1; |
| h->root.type = bfd_link_hash_defined; |
| } |
| else |
| h = NULL; |
| } |
| else |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| if (h != NULL) |
| { |
| switch (r_type) |
| { |
| case R_RISCV_32: |
| case R_RISCV_64: |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| case R_RISCV_HI20: |
| case R_RISCV_GOT_HI20: |
| case R_RISCV_PCREL_HI20: |
| /* Create the ifunc sections, iplt and ipltgot, for static |
| executables. */ |
| if (h->type == STT_GNU_IFUNC |
| && !_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info)) |
| return false; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* It is referenced by a non-shared object. */ |
| h->ref_regular = 1; |
| } |
| |
| switch (r_type) |
| { |
| case R_RISCV_TLS_GD_HI20: |
| if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) |
| || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD)) |
| return false; |
| break; |
| |
| case R_RISCV_TLS_GOT_HI20: |
| if (bfd_link_pic (info)) |
| info->flags |= DF_STATIC_TLS; |
| if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) |
| || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE)) |
| return false; |
| break; |
| |
| case R_RISCV_GOT_HI20: |
| if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) |
| || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL)) |
| return false; |
| break; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| /* These symbol requires a procedure linkage table entry. |
| We actually build the entry in adjust_dynamic_symbol, |
| because these might be a case of linking PIC code without |
| linking in any dynamic objects, in which case we don't |
| need to generate a procedure linkage table after all. */ |
| |
| /* If it is a local symbol, then we resolve it directly |
| without creating a PLT entry. */ |
| if (h == NULL) |
| continue; |
| |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| break; |
| |
| case R_RISCV_PCREL_HI20: |
| if (h != NULL |
| && h->type == STT_GNU_IFUNC) |
| { |
| h->non_got_ref = 1; |
| h->pointer_equality_needed = 1; |
| |
| /* We don't use the PCREL_HI20 in the data section, |
| so we always need the plt when it refers to |
| ifunc symbol. */ |
| h->plt.refcount += 1; |
| } |
| /* Fall through. */ |
| |
| case R_RISCV_JAL: |
| case R_RISCV_BRANCH: |
| case R_RISCV_RVC_BRANCH: |
| case R_RISCV_RVC_JUMP: |
| /* In shared libraries and pie, these relocs are known |
| to bind locally. */ |
| if (bfd_link_pic (info)) |
| break; |
| goto static_reloc; |
| |
| case R_RISCV_TPREL_HI20: |
| if (!bfd_link_executable (info)) |
| return bad_static_reloc (abfd, r_type, h); |
| if (h != NULL) |
| riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE); |
| goto static_reloc; |
| |
| case R_RISCV_HI20: |
| if (bfd_link_pic (info)) |
| return bad_static_reloc (abfd, r_type, h); |
| /* Fall through. */ |
| |
| case R_RISCV_COPY: |
| case R_RISCV_JUMP_SLOT: |
| case R_RISCV_RELATIVE: |
| case R_RISCV_64: |
| case R_RISCV_32: |
| /* Fall through. */ |
| |
| static_reloc: |
| |
| if (h != NULL |
| && (!bfd_link_pic (info) |
| || h->type == STT_GNU_IFUNC)) |
| { |
| /* This reloc might not bind locally. */ |
| h->non_got_ref = 1; |
| h->pointer_equality_needed = 1; |
| |
| if (!h->def_regular |
| || (sec->flags & (SEC_CODE | SEC_READONLY)) != 0) |
| { |
| /* We may need a .plt entry if the symbol is a function |
| defined in a shared lib or is a function referenced |
| from the code or read-only section. */ |
| h->plt.refcount += 1; |
| } |
| } |
| |
| /* If we are creating a shared library, and this is a reloc |
| against a global symbol, or a non PC relative reloc |
| against a local symbol, then we need to copy the reloc |
| into the shared library. However, if we are linking with |
| -Bsymbolic, we do not need to copy a reloc against a |
| global symbol which is defined in an object we are |
| including in the link (i.e., DEF_REGULAR is set). At |
| this point we have not seen all the input files, so it is |
| possible that DEF_REGULAR is not set now but will be set |
| later (it is never cleared). In case of a weak definition, |
| DEF_REGULAR may be cleared later by a strong definition in |
| a shared library. We account for that possibility below by |
| storing information in the relocs_copied field of the hash |
| table entry. A similar situation occurs when creating |
| shared libraries and symbol visibility changes render the |
| symbol local. |
| |
| If on the other hand, we are creating an executable, we |
| may need to keep relocations for symbols satisfied by a |
| dynamic library if we manage to avoid copy relocs for the |
| symbol. |
| |
| Generate dynamic pointer relocation against STT_GNU_IFUNC |
| symbol in the non-code section (R_RISCV_32/R_RISCV_64). */ |
| reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); |
| |
| if ((bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| && ((r != NULL && !r->pc_relative) |
| || (h != NULL |
| && (!info->symbolic |
| || h->root.type == bfd_link_hash_defweak |
| || !h->def_regular)))) |
| || (!bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && (h->root.type == bfd_link_hash_defweak |
| || !h->def_regular)) |
| || (!bfd_link_pic (info) |
| && h != NULL |
| && h->type == STT_GNU_IFUNC |
| && (sec->flags & SEC_CODE) == 0)) |
| { |
| struct elf_dyn_relocs *p; |
| struct elf_dyn_relocs **head; |
| |
| /* When creating a shared object, we must copy these |
| relocs into the output file. We create a reloc |
| section in dynobj and make room for the reloc. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES, |
| abfd, /*rela?*/ true); |
| |
| if (sreloc == NULL) |
| return false; |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (h != NULL) |
| head = &h->dyn_relocs; |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| |
| asection *s; |
| void *vpp; |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return false; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| vpp = &elf_section_data (s)->local_dynrel; |
| head = (struct elf_dyn_relocs **) vpp; |
| } |
| |
| p = *head; |
| if (p == NULL || p->sec != sec) |
| { |
| size_t amt = sizeof *p; |
| p = ((struct elf_dyn_relocs *) |
| bfd_alloc (htab->elf.dynobj, amt)); |
| if (p == NULL) |
| return false; |
| p->next = *head; |
| *head = p; |
| p->sec = sec; |
| p->count = 0; |
| p->pc_count = 0; |
| } |
| |
| p->count += 1; |
| p->pc_count += r == NULL ? 0 : r->pc_relative; |
| } |
| |
| break; |
| |
| case R_RISCV_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return false; |
| break; |
| |
| case R_RISCV_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| return false; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| static asection * |
| riscv_elf_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_GNU_VTINHERIT: |
| case R_RISCV_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bool |
| riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| struct riscv_elf_link_hash_entry * eh; |
| bfd *dynobj; |
| asection *s, *srel; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| dynobj = htab->elf.dynobj; |
| |
| /* Make sure we know what is going on here. */ |
| BFD_ASSERT (dynobj != NULL |
| && (h->needs_plt |
| || h->type == STT_GNU_IFUNC |
| || h->is_weakalias |
| || (h->def_dynamic |
| && h->ref_regular |
| && !h->def_regular))); |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later |
| (although we could actually do it here). */ |
| if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || (h->type != STT_GNU_IFUNC |
| && (SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)))) |
| { |
| /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an |
| input file, but the symbol was never referred to by a dynamic |
| object, or if all references were garbage collected. In such |
| a case, we don't actually need to build a PLT entry. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| return true; |
| } |
| else |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| h->root.u.def.section = def->root.u.def.section; |
| h->root.u.def.value = def->root.u.def.value; |
| return true; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (bfd_link_pic (info)) |
| return true; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return true; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc) |
| { |
| h->non_got_ref = 0; |
| return true; |
| } |
| |
| /* If we don't find any dynamic relocs in read-only sections, then |
| we'll be keeping the dynamic relocs and avoiding the copy reloc. */ |
| if (!_bfd_elf_readonly_dynrelocs (h)) |
| { |
| h->non_got_ref = 0; |
| return true; |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker |
| to copy the initial value out of the dynamic object and into the |
| runtime process image. We need to remember the offset into the |
| .rel.bss section we are going to use. */ |
| eh = (struct riscv_elf_link_hash_entry *) h; |
| if (eh->tls_type & ~GOT_NORMAL) |
| { |
| s = htab->sdyntdata; |
| srel = htab->elf.srelbss; |
| } |
| else if ((h->root.u.def.section->flags & SEC_READONLY) != 0) |
| { |
| s = htab->elf.sdynrelro; |
| srel = htab->elf.sreldynrelro; |
| } |
| else |
| { |
| s = htab->elf.sdynbss; |
| srel = htab->elf.srelbss; |
| } |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| srel->size += sizeof (ElfNN_External_Rela); |
| h->needs_copy = 1; |
| } |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bool |
| allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct riscv_elf_link_hash_table *htab; |
| struct elf_dyn_relocs *p; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return true; |
| |
| info = (struct bfd_link_info *) inf; |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| /* When we are generating pde, make sure gp symbol is output as a |
| dynamic symbol. Then ld.so can set the gp register earlier, before |
| resolving the ifunc. */ |
| if (!bfd_link_pic (info) |
| && htab->elf.dynamic_sections_created |
| && strcmp (h->root.root.string, RISCV_GP_SYMBOL) == 0 |
| && !bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| |
| /* Since STT_GNU_IFUNC symbols must go through PLT, we handle them |
| in the allocate_ifunc_dynrelocs and allocate_local_ifunc_dynrelocs, |
| if they are defined and referenced in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| return true; |
| else if (htab->elf.dynamic_sections_created |
| && h->plt.refcount > 0) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h)) |
| { |
| asection *s = htab->elf.splt; |
| |
| if (s->size == 0) |
| s->size = PLT_HEADER_SIZE; |
| |
| h->plt.offset = s->size; |
| |
| /* Make room for this entry. */ |
| s->size += PLT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .got.plt section. */ |
| htab->elf.sgotplt->size += GOT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .rela.plt section. */ |
| htab->elf.srelplt->size += sizeof (ElfNN_External_Rela); |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (! bfd_link_pic (info) |
| && !h->def_regular) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| if (h->got.refcount > 0) |
| { |
| asection *s; |
| bool dyn; |
| int tls_type = riscv_elf_hash_entry (h)->tls_type; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| s = htab->elf.sgot; |
| h->got.offset = s->size; |
| dyn = htab->elf.dynamic_sections_created; |
| if (tls_type & (GOT_TLS_GD | GOT_TLS_IE)) |
| { |
| /* TLS_GD needs two dynamic relocs and two GOT slots. */ |
| if (tls_type & GOT_TLS_GD) |
| { |
| s->size += 2 * RISCV_ELF_WORD_BYTES; |
| htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela); |
| } |
| |
| /* TLS_IE needs one dynamic reloc and one GOT slot. */ |
| if (tls_type & GOT_TLS_IE) |
| { |
| s->size += RISCV_ELF_WORD_BYTES; |
| htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); |
| } |
| } |
| else |
| { |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) |
| && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); |
| } |
| } |
| else |
| h->got.offset = (bfd_vma) -1; |
| |
| if (h->dyn_relocs == NULL) |
| return true; |
| |
| /* In the shared -Bsymbolic case, discard space allocated for |
| dynamic pc-relative relocs against symbols which turn out to be |
| defined in regular objects. For the normal shared case, discard |
| space for pc-relative relocs that have become local due to symbol |
| visibility changes. */ |
| |
| if (bfd_link_pic (info)) |
| { |
| if (SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| /* Also discard relocs on undefined weak syms with non-default |
| visibility. */ |
| if (h->dyn_relocs != NULL |
| && h->root.type == bfd_link_hash_undefweak) |
| { |
| if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| h->dyn_relocs = NULL; |
| |
| /* Make sure undefined weak symbols are output as a dynamic |
| symbol in PIEs. */ |
| else if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| } |
| } |
| else |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. */ |
| |
| if (!h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || (htab->elf.dynamic_sections_created |
| && (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined)))) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| /* If that succeeded, we know we'll be keeping all the |
| relocs. */ |
| if (h->dynindx != -1) |
| goto keep; |
| } |
| |
| h->dyn_relocs = NULL; |
| |
| keep: ; |
| } |
| |
| /* Finally, allocate space. */ |
| for (p = h->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *sreloc = elf_section_data (p->sec)->sreloc; |
| sreloc->size += p->count * sizeof (ElfNN_External_Rela); |
| } |
| |
| return true; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| ifunc dynamic relocs. */ |
| |
| static bool |
| allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h, |
| void *inf) |
| { |
| struct bfd_link_info *info; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return true; |
| |
| if (h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| info = (struct bfd_link_info *) inf; |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it |
| here if it is defined and referenced in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, |
| &h->dyn_relocs, |
| PLT_ENTRY_SIZE, |
| PLT_HEADER_SIZE, |
| GOT_ENTRY_SIZE, |
| true); |
| return true; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| local ifunc dynamic relocs. */ |
| |
| static int |
| allocate_local_ifunc_dynrelocs (void **slot, void *inf) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) *slot; |
| |
| if (h->type != STT_GNU_IFUNC |
| || !h->def_regular |
| || !h->ref_regular |
| || !h->forced_local |
| || h->root.type != bfd_link_hash_defined) |
| abort (); |
| |
| return allocate_ifunc_dynrelocs (h, inf); |
| } |
| |
| static bool |
| riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| bfd *ibfd; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| dynobj = htab->elf.dynobj; |
| BFD_ASSERT (dynobj != NULL); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| BFD_ASSERT (s != NULL); |
| s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1; |
| s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER; |
| } |
| } |
| |
| /* Set up .got offsets for local syms, and space for local dynamic |
| relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| bfd_signed_vma *local_got; |
| bfd_signed_vma *end_local_got; |
| char *local_tls_type; |
| bfd_size_type locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| |
| if (! is_riscv_elf (ibfd)) |
| continue; |
| |
| for (s = ibfd->sections; s != NULL; s = s->next) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) |
| { |
| if (!bfd_is_abs_section (p->sec) |
| && bfd_is_abs_section (p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (p->count != 0) |
| { |
| srel = elf_section_data (p->sec)->sreloc; |
| srel->size += p->count * sizeof (ElfNN_External_Rela); |
| if ((p->sec->output_section->flags & SEC_READONLY) != 0) |
| info->flags |= DF_TEXTREL; |
| } |
| } |
| } |
| |
| local_got = elf_local_got_refcounts (ibfd); |
| if (!local_got) |
| continue; |
| |
| symtab_hdr = &elf_symtab_hdr (ibfd); |
| locsymcount = symtab_hdr->sh_info; |
| end_local_got = local_got + locsymcount; |
| local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd); |
| s = htab->elf.sgot; |
| srel = htab->elf.srelgot; |
| for (; local_got < end_local_got; ++local_got, ++local_tls_type) |
| { |
| if (*local_got > 0) |
| { |
| *local_got = s->size; |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (*local_tls_type & GOT_TLS_GD) |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (bfd_link_pic (info) |
| || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE))) |
| srel->size += sizeof (ElfNN_External_Rela); |
| } |
| else |
| *local_got = (bfd_vma) -1; |
| } |
| } |
| |
| /* Allocate .plt and .got entries and space dynamic relocs for |
| global symbols. */ |
| elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info); |
| |
| /* Allocate .plt and .got entries and space dynamic relocs for |
| global ifunc symbols. */ |
| elf_link_hash_traverse (&htab->elf, allocate_ifunc_dynrelocs, info); |
| |
| /* Allocate .plt and .got entries and space dynamic relocs for |
| local ifunc symbols. */ |
| htab_traverse (htab->loc_hash_table, allocate_local_ifunc_dynrelocs, info); |
| |
| /* Used to resolve the dynamic relocs overwite problems when |
| generating static executable. */ |
| if (htab->elf.irelplt) |
| htab->last_iplt_index = htab->elf.irelplt->reloc_count - 1; |
| |
| if (htab->elf.sgotplt) |
| { |
| struct elf_link_hash_entry *got; |
| got = elf_link_hash_lookup (elf_hash_table (info), |
| "_GLOBAL_OFFSET_TABLE_", |
| false, false, false); |
| |
| /* Don't allocate .got.plt section if there are no GOT nor PLT |
| entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */ |
| if ((got == NULL |
| || !got->ref_regular_nonweak) |
| && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE) |
| && (htab->elf.splt == NULL |
| || htab->elf.splt->size == 0) |
| && (htab->elf.sgot == NULL |
| || (htab->elf.sgot->size |
| == get_elf_backend_data (output_bfd)->got_header_size))) |
| htab->elf.sgotplt->size = 0; |
| } |
| |
| /* The check_relocs and adjust_dynamic_symbol entry points have |
| determined the sizes of the various dynamic sections. Allocate |
| memory for them. */ |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| if (s == htab->elf.splt |
| || s == htab->elf.sgot |
| || s == htab->elf.sgotplt |
| || s == htab->elf.iplt |
| || s == htab->elf.igotplt |
| || s == htab->elf.sdynbss |
| || s == htab->elf.sdynrelro |
| || s == htab->sdyntdata) |
| { |
| /* Strip this section if we don't need it; see the |
| comment below. */ |
| } |
| else if (startswith (s->name, ".rela")) |
| { |
| if (s->size != 0) |
| { |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| s->reloc_count = 0; |
| } |
| } |
| else |
| { |
| /* It's not one of our sections. */ |
| continue; |
| } |
| |
| if (s->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rela.bss and |
| .rela.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. Zero the memory |
| for the benefit of .rela.plt, which has 4 unused entries |
| at the beginning, and we don't want garbage. */ |
| s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| return false; |
| } |
| |
| return _bfd_elf_add_dynamic_tags (output_bfd, info, true); |
| } |
| |
| #define TP_OFFSET 0 |
| #define DTP_OFFSET 0x800 |
| |
| /* Return the relocation value for a TLS dtp-relative reloc. */ |
| |
| static bfd_vma |
| dtpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET; |
| } |
| |
| /* Return the relocation value for a static TLS tp-relative relocation. */ |
| |
| static bfd_vma |
| tpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET; |
| } |
| |
| /* Return the global pointer's value, or 0 if it is not in use. */ |
| |
| static bfd_vma |
| riscv_global_pointer_value (struct bfd_link_info *info) |
| { |
| struct bfd_link_hash_entry *h; |
| |
| h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, false, false, true); |
| if (h == NULL || h->type != bfd_link_hash_defined) |
| return 0; |
| |
| return h->u.def.value + sec_addr (h->u.def.section); |
| } |
| |
| /* Emplace a static relocation. */ |
| |
| static bfd_reloc_status_type |
| perform_relocation (const reloc_howto_type *howto, |
| const Elf_Internal_Rela *rel, |
| bfd_vma value, |
| asection *input_section, |
| bfd *input_bfd, |
| bfd_byte *contents) |
| { |
| if (howto->pc_relative) |
| value -= sec_addr (input_section) + rel->r_offset; |
| value += rel->r_addend; |
| |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_HI20: |
| case R_RISCV_TPREL_HI20: |
| case R_RISCV_PCREL_HI20: |
| case R_RISCV_GOT_HI20: |
| case R_RISCV_TLS_GOT_HI20: |
| case R_RISCV_TLS_GD_HI20: |
| if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) |
| return bfd_reloc_overflow; |
| value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)); |
| break; |
| |
| case R_RISCV_LO12_I: |
| case R_RISCV_GPREL_I: |
| case R_RISCV_TPREL_LO12_I: |
| case R_RISCV_TPREL_I: |
| case R_RISCV_PCREL_LO12_I: |
| value = ENCODE_ITYPE_IMM (value); |
| break; |
| |
| case R_RISCV_LO12_S: |
| case R_RISCV_GPREL_S: |
| case R_RISCV_TPREL_LO12_S: |
| case R_RISCV_TPREL_S: |
| case R_RISCV_PCREL_LO12_S: |
| value = ENCODE_STYPE_IMM (value); |
| break; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) |
| return bfd_reloc_overflow; |
| value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)) |
| | (ENCODE_ITYPE_IMM (value) << 32); |
| break; |
| |
| case R_RISCV_JAL: |
| if (!VALID_JTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_JTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_BRANCH: |
| if (!VALID_BTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_BTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_RVC_BRANCH: |
| if (!VALID_CBTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_CBTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_RVC_JUMP: |
| if (!VALID_CJTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_CJTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_RVC_LUI: |
| if (RISCV_CONST_HIGH_PART (value) == 0) |
| { |
| /* Linker relaxation can convert an address equal to or greater than |
| 0x800 to slightly below 0x800. C.LUI does not accept zero as a |
| valid immediate. We can fix this by converting it to a C.LI. */ |
| bfd_vma insn = riscv_get_insn (howto->bitsize, |
| contents + rel->r_offset); |
| insn = (insn & ~MATCH_C_LUI) | MATCH_C_LI; |
| riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset); |
| value = ENCODE_CITYPE_IMM (0); |
| } |
| else if (!VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value))) |
| return bfd_reloc_overflow; |
| else |
| value = ENCODE_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value)); |
| break; |
| |
| case R_RISCV_32: |
| case R_RISCV_64: |
| case R_RISCV_ADD8: |
| case R_RISCV_ADD16: |
| case R_RISCV_ADD32: |
| case R_RISCV_ADD64: |
| case R_RISCV_SUB6: |
| case R_RISCV_SUB8: |
| case R_RISCV_SUB16: |
| case R_RISCV_SUB32: |
| case R_RISCV_SUB64: |
| case R_RISCV_SET6: |
| case R_RISCV_SET8: |
| case R_RISCV_SET16: |
| case R_RISCV_SET32: |
| case R_RISCV_32_PCREL: |
| case R_RISCV_TLS_DTPREL32: |
| case R_RISCV_TLS_DTPREL64: |
| break; |
| |
| case R_RISCV_DELETE: |
| return bfd_reloc_ok; |
| |
| default: |
| return bfd_reloc_notsupported; |
| } |
| |
| bfd_vma word; |
| if (riscv_is_insn_reloc (howto)) |
| word = riscv_get_insn (howto->bitsize, contents + rel->r_offset); |
| else |
| word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); |
| word = (word & ~howto->dst_mask) | (value & howto->dst_mask); |
| if (riscv_is_insn_reloc (howto)) |
| riscv_put_insn (howto->bitsize, word, contents + rel->r_offset); |
| else |
| bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* Remember all PC-relative high-part relocs we've encountered to help us |
| later resolve the corresponding low-part relocs. */ |
| |
| typedef struct |
| { |
| /* PC value. */ |
| bfd_vma address; |
| /* Relocation value with addend. */ |
| bfd_vma value; |
| /* Original reloc type. */ |
| int type; |
| } riscv_pcrel_hi_reloc; |
| |
| typedef struct riscv_pcrel_lo_reloc |
| { |
| /* PC value of auipc. */ |
| bfd_vma address; |
| /* Internal relocation. */ |
| const Elf_Internal_Rela *reloc; |
| /* Record the following information helps to resolve the %pcrel |
| which cross different input section. For now we build a hash |
| for pcrel at the start of riscv_elf_relocate_section, and then |
| free the hash at the end. But riscv_elf_relocate_section only |
| handles an input section at a time, so that means we can only |
| resolve the %pcrel_hi and %pcrel_lo which are in the same input |
| section. Otherwise, we will report dangerous relocation errors |
| for those %pcrel which are not in the same input section. */ |
| asection *input_section; |
| struct bfd_link_info *info; |
| reloc_howto_type *howto; |
| bfd_byte *contents; |
| /* The next riscv_pcrel_lo_reloc. */ |
| struct riscv_pcrel_lo_reloc *next; |
| } riscv_pcrel_lo_reloc; |
| |
| typedef struct |
| { |
| /* Hash table for riscv_pcrel_hi_reloc. */ |
| htab_t hi_relocs; |
| /* Linked list for riscv_pcrel_lo_reloc. */ |
| riscv_pcrel_lo_reloc *lo_relocs; |
| } riscv_pcrel_relocs; |
| |
| static hashval_t |
| riscv_pcrel_reloc_hash (const void *entry) |
| { |
| const riscv_pcrel_hi_reloc *e = entry; |
| return (hashval_t)(e->address >> 2); |
| } |
| |
| static int |
| riscv_pcrel_reloc_eq (const void *entry1, const void *entry2) |
| { |
| const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2; |
| return e1->address == e2->address; |
| } |
| |
| static bool |
| riscv_init_pcrel_relocs (riscv_pcrel_relocs *p) |
| { |
| p->lo_relocs = NULL; |
| p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash, |
| riscv_pcrel_reloc_eq, free); |
| return p->hi_relocs != NULL; |
| } |
| |
| static void |
| riscv_free_pcrel_relocs (riscv_pcrel_relocs *p) |
| { |
| riscv_pcrel_lo_reloc *cur = p->lo_relocs; |
| |
| while (cur != NULL) |
| { |
| riscv_pcrel_lo_reloc *next = cur->next; |
| free (cur); |
| cur = next; |
| } |
| |
| htab_delete (p->hi_relocs); |
| } |
| |
| static bool |
| riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel, |
| struct bfd_link_info *info, |
| bfd_vma pc, |
| bfd_vma addr, |
| bfd_byte *contents, |
| const reloc_howto_type *howto) |
| { |
| /* We may need to reference low addreses in PC-relative modes even when the |
| PC is far away from these addresses. For example, undefweak references |
| need to produce the address 0 when linked. As 0 is far from the arbitrary |
| addresses that we can link PC-relative programs at, the linker can't |
| actually relocate references to those symbols. In order to allow these |
| programs to work we simply convert the PC-relative auipc sequences to |
| 0-relative lui sequences. */ |
| if (bfd_link_pic (info)) |
| return false; |
| |
| /* If it's possible to reference the symbol using auipc we do so, as that's |
| more in the spirit of the PC-relative relocations we're processing. */ |
| bfd_vma offset = addr - pc; |
| if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset))) |
| return false; |
| |
| /* If it's impossible to reference this with a LUI-based offset then don't |
| bother to convert it at all so users still see the PC-relative relocation |
| in the truncation message. */ |
| if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr))) |
| return false; |
| |
| rel->r_info = ELFNN_R_INFO (addr, R_RISCV_HI20); |
| |
| bfd_vma insn = riscv_get_insn (howto->bitsize, contents + rel->r_offset); |
| insn = (insn & ~MASK_AUIPC) | MATCH_LUI; |
| riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset); |
| return true; |
| } |
| |
| static bool |
| riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, |
| bfd_vma addr, |
| bfd_vma value, |
| int type, |
| bool absolute) |
| { |
| bfd_vma offset = absolute ? value : value - addr; |
| riscv_pcrel_hi_reloc entry = {addr, offset, type}; |
| riscv_pcrel_hi_reloc **slot = |
| (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT); |
| |
| BFD_ASSERT (*slot == NULL); |
| *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc)); |
| if (*slot == NULL) |
| return false; |
| **slot = entry; |
| return true; |
| } |
| |
| static bool |
| riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p, |
| bfd_vma addr, |
| const Elf_Internal_Rela *reloc, |
| asection *input_section, |
| struct bfd_link_info *info, |
| reloc_howto_type *howto, |
| bfd_byte *contents) |
| { |
| riscv_pcrel_lo_reloc *entry; |
| entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc)); |
| if (entry == NULL) |
| return false; |
| *entry = (riscv_pcrel_lo_reloc) {addr, reloc, input_section, info, |
| howto, contents, p->lo_relocs}; |
| p->lo_relocs = entry; |
| return true; |
| } |
| |
| static bool |
| riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p) |
| { |
| riscv_pcrel_lo_reloc *r; |
| |
| for (r = p->lo_relocs; r != NULL; r = r->next) |
| { |
| bfd *input_bfd = r->input_section->owner; |
| |
| riscv_pcrel_hi_reloc search = {r->address, 0, 0}; |
| riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search); |
| /* There may be a risk if the %pcrel_lo with addend refers to |
| an IFUNC symbol. The %pcrel_hi has been relocated to plt, |
| so the corresponding %pcrel_lo with addend looks wrong. */ |
| char *string = NULL; |
| if (entry == NULL) |
| string = _("%pcrel_lo missing matching %pcrel_hi"); |
| else if (entry->type == R_RISCV_GOT_HI20 |
| && r->reloc->r_addend != 0) |
| string = _("%pcrel_lo with addend isn't allowed for R_RISCV_GOT_HI20"); |
| else if (RISCV_CONST_HIGH_PART (entry->value) |
| != RISCV_CONST_HIGH_PART (entry->value + r->reloc->r_addend)) |
| { |
| /* Check the overflow when adding reloc addend. */ |
| if (asprintf (&string, |
| _("%%pcrel_lo overflow with an addend, the " |
| "value of %%pcrel_hi is 0x%" PRIx64 " without " |
| "any addend, but may be 0x%" PRIx64 " after " |
| "adding the %%pcrel_lo addend"), |
| (int64_t) RISCV_CONST_HIGH_PART (entry->value), |
| (int64_t) RISCV_CONST_HIGH_PART |
| (entry->value + r->reloc->r_addend)) == -1) |
| string = _("%pcrel_lo overflow with an addend"); |
| } |
| |
| if (string != NULL) |
| { |
| (*r->info->callbacks->reloc_dangerous) |
| (r->info, string, input_bfd, r->input_section, r->reloc->r_offset); |
| return true; |
| } |
| |
| perform_relocation (r->howto, r->reloc, entry->value, r->input_section, |
| input_bfd, r->contents); |
| } |
| |
| return true; |
| } |
| |
| /* Relocate a RISC-V ELF section. |
| |
| The RELOCATE_SECTION function is called by the new ELF backend linker |
| to handle the relocations for a section. |
| |
| The relocs are always passed as Rela structures. |
| |
| This function is responsible for adjusting the section contents as |
| necessary, and (if generating a relocatable output file) adjusting |
| the reloc addend as necessary. |
| |
| This function does not have to worry about setting the reloc |
| address or the reloc symbol index. |
| |
| LOCAL_SYMS is a pointer to the swapped in local symbols. |
| |
| LOCAL_SECTIONS is an array giving the section in the input file |
| corresponding to the st_shndx field of each local symbol. |
| |
| The global hash table entry for the global symbols can be found |
| via elf_sym_hashes (input_bfd). |
| |
| When generating relocatable output, this function must handle |
| STB_LOCAL/STT_SECTION symbols specially. The output symbol is |
| going to be the section symbol corresponding to the output |
| section, which means that the addend must be adjusted |
| accordingly. */ |
| |
| static int |
| riscv_elf_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *relend; |
| riscv_pcrel_relocs pcrel_relocs; |
| bool ret = false; |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd); |
| struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); |
| bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd); |
| bool absolute; |
| |
| if (!riscv_init_pcrel_relocs (&pcrel_relocs)) |
| return false; |
| |
| relend = relocs + input_section->reloc_count; |
| for (rel = relocs; rel < relend; rel++) |
| { |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| bfd_vma relocation; |
| bfd_reloc_status_type r = bfd_reloc_ok; |
| const char *name = NULL; |
| bfd_vma off, ie_off; |
| bool unresolved_reloc, is_ie = false; |
| bfd_vma pc = sec_addr (input_section) + rel->r_offset; |
| int r_type = ELFNN_R_TYPE (rel->r_info), tls_type; |
| reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type); |
| const char *msg = NULL; |
| char *msg_buf = NULL; |
| bool resolved_to_zero; |
| |
| if (howto == NULL |
| || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY) |
| continue; |
| |
| /* This is a final link. */ |
| r_symndx = ELFNN_R_SYM (rel->r_info); |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| unresolved_reloc = false; |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| |
| /* Relocate against local STT_GNU_IFUNC symbol. */ |
| if (!bfd_link_relocatable (info) |
| && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) |
| { |
| h = riscv_elf_get_local_sym_hash (htab, input_bfd, rel, false); |
| if (h == NULL) |
| abort (); |
| |
| /* Set STT_GNU_IFUNC symbol value. */ |
| h->root.u.def.value = sym->st_value; |
| h->root.u.def.section = sec; |
| } |
| } |
| else |
| { |
| bool warned, ignored; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| h, sec, relocation, |
| unresolved_reloc, warned, ignored); |
| if (warned) |
| { |
| /* To avoid generating warning messages about truncated |
| relocations, set the relocation's address to be the same as |
| the start of this section. */ |
| if (input_section->output_section != NULL) |
| relocation = input_section->output_section->vma; |
| else |
| relocation = 0; |
| } |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| continue; |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle |
| it here if it is defined in a non-shared object. */ |
| if (h != NULL |
| && h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| { |
| asection *plt, *base_got; |
| |
| if ((input_section->flags & SEC_ALLOC) == 0) |
| { |
| /* If this is a SHT_NOTE section without SHF_ALLOC, treat |
| STT_GNU_IFUNC symbol as STT_FUNC. */ |
| if (elf_section_type (input_section) == SHT_NOTE) |
| goto skip_ifunc; |
| |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING |
| sections because such sections are not SEC_ALLOC and |
| thus ld.so will not process them. */ |
| if ((input_section->flags & SEC_DEBUGGING) != 0) |
| continue; |
| |
| abort (); |
| } |
| else if (h->plt.offset == (bfd_vma) -1 |
| /* The following relocation may not need the .plt entries |
| when all references to a STT_GNU_IFUNC symbols are done |
| via GOT or static function pointers. */ |
| && r_type != R_RISCV_32 |
| && r_type != R_RISCV_64 |
| && r_type != R_RISCV_HI20 |
| && r_type != R_RISCV_GOT_HI20 |
| && r_type != R_RISCV_LO12_I |
| && r_type != R_RISCV_LO12_S) |
| goto bad_ifunc_reloc; |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; |
| relocation = plt->output_section->vma |
| + plt->output_offset |
| + h->plt.offset; |
| |
| switch (r_type) |
| { |
| case R_RISCV_32: |
| case R_RISCV_64: |
| if (rel->r_addend != 0) |
| { |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL); |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' has non-zero addend: %" PRId64), |
| input_bfd, howto->name, name, (int64_t) rel->r_addend); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* Generate dynamic relocation only when there is a non-GOT |
| reference in a shared object or there is no PLT. */ |
| if ((bfd_link_pic (info) && h->non_got_ref) |
| || h->plt.offset == (bfd_vma) -1) |
| { |
| Elf_Internal_Rela outrel; |
| asection *sreloc; |
| |
| /* Need a dynamic relocation to get the real function |
| address. */ |
| outrel.r_offset = _bfd_elf_section_offset (output_bfd, |
| info, |
| input_section, |
| rel->r_offset); |
| if (outrel.r_offset == (bfd_vma) -1 |
| || outrel.r_offset == (bfd_vma) -2) |
| abort (); |
| |
| outrel.r_offset += input_section->output_section->vma |
| + input_section->output_offset; |
| |
| if (h->dynindx == -1 |
| || h->forced_local |
| || bfd_link_executable (info)) |
| { |
| info->callbacks->minfo |
| (_("Local IFUNC function `%s' in %pB\n"), |
| h->root.root.string, |
| h->root.u.def.section->owner); |
| |
| /* This symbol is resolved locally. */ |
| outrel.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE); |
| outrel.r_addend = h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset; |
| } |
| else |
| { |
| outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); |
| outrel.r_addend = 0; |
| } |
| |
| /* Dynamic relocations are stored in |
| 1. .rela.ifunc section in PIC object. |
| 2. .rela.got section in dynamic executable. |
| 3. .rela.iplt section in static executable. */ |
| if (bfd_link_pic (info)) |
| sreloc = htab->elf.irelifunc; |
| else if (htab->elf.splt != NULL) |
| sreloc = htab->elf.srelgot; |
| else |
| sreloc = htab->elf.irelplt; |
| |
| riscv_elf_append_rela (output_bfd, sreloc, &outrel); |
| |
| /* If this reloc is against an external symbol, we |
| do not want to fiddle with the addend. Otherwise, |
| we need to include the symbol value so that it |
| becomes an addend for the dynamic reloc. For an |
| internal symbol, we have updated addend. */ |
| continue; |
| } |
| goto do_relocation; |
| |
| case R_RISCV_GOT_HI20: |
| base_got = htab->elf.sgot; |
| off = h->got.offset; |
| |
| if (base_got == NULL) |
| abort (); |
| |
| if (off == (bfd_vma) -1) |
| { |
| bfd_vma plt_idx; |
| |
| /* We can't use h->got.offset here to save state, or |
| even just remember the offset, as finish_dynamic_symbol |
| would use that as offset into .got. */ |
| |
| if (htab->elf.splt != NULL) |
| { |
| plt_idx = (h->plt.offset - PLT_HEADER_SIZE) |
| / PLT_ENTRY_SIZE; |
| off = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE); |
| base_got = htab->elf.sgotplt; |
| } |
| else |
| { |
| plt_idx = h->plt.offset / PLT_ENTRY_SIZE; |
| off = plt_idx * GOT_ENTRY_SIZE; |
| base_got = htab->elf.igotplt; |
| } |
| |
| if (h->dynindx == -1 |
| || h->forced_local |
| || info->symbolic) |
| { |
| /* This references the local definition. We must |
| initialize this entry in the global offset table. |
| Since the offset must always be a multiple of 8, |
| we use the least significant bit to record |
| whether we have initialized it already. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_NN (output_bfd, relocation, |
| base_got->contents + off); |
| /* Note that this is harmless for the case, |
| as -1 | 1 still is -1. */ |
| h->got.offset |= 1; |
| } |
| } |
| } |
| |
| relocation = base_got->output_section->vma |
| + base_got->output_offset + off; |
| |
| if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, r_type, |
| false)) |
| r = bfd_reloc_overflow; |
| goto do_relocation; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| case R_RISCV_HI20: |
| case R_RISCV_LO12_I: |
| case R_RISCV_LO12_S: |
| goto do_relocation; |
| |
| case R_RISCV_PCREL_HI20: |
| if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, r_type, |
| false)) |
| r = bfd_reloc_overflow; |
| goto do_relocation; |
| |
| default: |
| bad_ifunc_reloc: |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| /* The entry of local ifunc is fake in global hash table, |
| we should find the name by the original local symbol. */ |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL); |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' isn't supported"), input_bfd, |
| howto->name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| |
| skip_ifunc: |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| { |
| name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
| if (name == NULL || *name == '\0') |
| name = bfd_section_name (sec); |
| } |
| |
| resolved_to_zero = (h != NULL |
| && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); |
| |
| switch (r_type) |
| { |
| case R_RISCV_NONE: |
| case R_RISCV_RELAX: |
| case R_RISCV_TPREL_ADD: |
| case R_RISCV_COPY: |
| case R_RISCV_JUMP_SLOT: |
| case R_RISCV_RELATIVE: |
| /* These require nothing of us at all. */ |
| continue; |
| |
| case R_RISCV_HI20: |
| case R_RISCV_BRANCH: |
| case R_RISCV_RVC_BRANCH: |
| case R_RISCV_RVC_LUI: |
| case R_RISCV_LO12_I: |
| case R_RISCV_LO12_S: |
| case R_RISCV_SET6: |
| case R_RISCV_SET8: |
| case R_RISCV_SET16: |
| case R_RISCV_SET32: |
| case R_RISCV_32_PCREL: |
| case R_RISCV_DELETE: |
| /* These require no special handling beyond perform_relocation. */ |
| break; |
| |
| case R_RISCV_GOT_HI20: |
| if (h != NULL) |
| { |
| bool dyn, pic; |
| |
| off = h->got.offset; |
| BFD_ASSERT (off != (bfd_vma) -1); |
| dyn = elf_hash_table (info)->dynamic_sections_created; |
| pic = bfd_link_pic (info); |
| |
| if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) |
| || (pic && SYMBOL_REFERENCES_LOCAL (info, h))) |
| { |
| /* This is actually a static link, or it is a |
| -Bsymbolic link and the symbol is defined |
| locally, or the symbol was forced to be local |
| because of a version file. We must initialize |
| this entry in the global offset table. Since the |
| offset must always be a multiple of the word size, |
| we use the least significant bit to record whether |
| we have initialized it already. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_NN (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| h->got.offset |= 1; |
| } |
| } |
| else |
| unresolved_reloc = false; |
| } |
| else |
| { |
| BFD_ASSERT (local_got_offsets != NULL |
| && local_got_offsets[r_symndx] != (bfd_vma) -1); |
| |
| off = local_got_offsets[r_symndx]; |
| |
| /* The offset must always be a multiple of the word size. |
| So, we can use the least significant bit to record |
| whether we have already processed this entry. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| if (bfd_link_pic (info)) |
| { |
| asection *s; |
| Elf_Internal_Rela outrel; |
| |
| /* We need to generate a R_RISCV_RELATIVE reloc |
| for the dynamic linker. */ |
| s = htab->elf.srelgot; |
| BFD_ASSERT (s != NULL); |
| |
| outrel.r_offset = sec_addr (htab->elf.sgot) + off; |
| outrel.r_info = |
| ELFNN_R_INFO (0, R_RISCV_RELATIVE); |
| outrel.r_addend = relocation; |
| relocation = 0; |
| riscv_elf_append_rela (output_bfd, s, &outrel); |
| } |
| |
| bfd_put_NN (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| local_got_offsets[r_symndx] |= 1; |
| } |
| } |
| |
| if (rel->r_addend != 0) |
| { |
| msg = _("The addend isn't allowed for R_RISCV_GOT_HI20"); |
| r = bfd_reloc_dangerous; |
| } |
| else |
| { |
| /* Address of got entry. */ |
| relocation = sec_addr (htab->elf.sgot) + off; |
| absolute = riscv_zero_pcrel_hi_reloc (rel, info, pc, |
| relocation, contents, |
| howto); |
| /* Update howto if relocation is changed. */ |
| howto = riscv_elf_rtype_to_howto (input_bfd, |
| ELFNN_R_TYPE (rel->r_info)); |
| if (howto == NULL) |
| r = bfd_reloc_notsupported; |
| else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, r_type, |
| absolute)) |
| r = bfd_reloc_overflow; |
| } |
| break; |
| |
| case R_RISCV_ADD8: |
| case R_RISCV_ADD16: |
| case R_RISCV_ADD32: |
| case R_RISCV_ADD64: |
| { |
| bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, |
| contents + rel->r_offset); |
| relocation = old_value + relocation; |
| } |
| break; |
| |
| case R_RISCV_SUB6: |
| case R_RISCV_SUB8: |
| case R_RISCV_SUB16: |
| case R_RISCV_SUB32: |
| case R_RISCV_SUB64: |
| { |
| bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, |
| contents + rel->r_offset); |
| relocation = old_value - relocation; |
| } |
| break; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| /* Handle a call to an undefined weak function. This won't be |
| relaxed, so we have to handle it here. */ |
| if (h != NULL && h->root.type == bfd_link_hash_undefweak |
| && (!bfd_link_pic (info) || h->plt.offset == MINUS_ONE)) |
| { |
| /* We can use x0 as the base register. */ |
| bfd_vma insn = bfd_getl32 (contents + rel->r_offset + 4); |
| insn &= ~(OP_MASK_RS1 << OP_SH_RS1); |
| bfd_putl32 (insn, contents + rel->r_offset + 4); |
| /* Set the relocation value so that we get 0 after the pc |
| relative adjustment. */ |
| relocation = sec_addr (input_section) + rel->r_offset; |
| } |
| /* Fall through. */ |
| |
| case R_RISCV_JAL: |
| case R_RISCV_RVC_JUMP: |
| /* This line has to match the check in _bfd_riscv_relax_section. */ |
| if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE) |
| { |
| /* Refer to the PLT entry. */ |
| relocation = sec_addr (htab->elf.splt) + h->plt.offset; |
| unresolved_reloc = false; |
| } |
| break; |
| |
| case R_RISCV_TPREL_HI20: |
| relocation = tpoff (info, relocation); |
| break; |
| |
| case R_RISCV_TPREL_LO12_I: |
| case R_RISCV_TPREL_LO12_S: |
| relocation = tpoff (info, relocation); |
| break; |
| |
| case R_RISCV_TPREL_I: |
| case R_RISCV_TPREL_S: |
| relocation = tpoff (info, relocation); |
| if (VALID_ITYPE_IMM (relocation + rel->r_addend)) |
| { |
| /* We can use tp as the base register. */ |
| bfd_vma insn = bfd_getl32 (contents + rel->r_offset); |
| insn &= ~(OP_MASK_RS1 << OP_SH_RS1); |
| insn |= X_TP << OP_SH_RS1; |
| bfd_putl32 (insn, contents + rel->r_offset); |
| } |
| else |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_GPREL_I: |
| case R_RISCV_GPREL_S: |
| { |
| bfd_vma gp = riscv_global_pointer_value (info); |
| bool x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend); |
| if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp)) |
| { |
| /* We can use x0 or gp as the base register. */ |
| bfd_vma insn = bfd_getl32 (contents + rel->r_offset); |
| insn &= ~(OP_MASK_RS1 << OP_SH_RS1); |
| if (!x0_base) |
| { |
| rel->r_addend -= gp; |
| insn |= X_GP << OP_SH_RS1; |
| } |
| bfd_putl32 (insn, contents + rel->r_offset); |
| } |
| else |
| r = bfd_reloc_overflow; |
| break; |
| } |
| |
| case R_RISCV_PCREL_HI20: |
| absolute = riscv_zero_pcrel_hi_reloc (rel, info, pc, relocation, |
| contents, howto); |
| /* Update howto if relocation is changed. */ |
| howto = riscv_elf_rtype_to_howto (input_bfd, |
| ELFNN_R_TYPE (rel->r_info)); |
| if (howto == NULL) |
| r = bfd_reloc_notsupported; |
| else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation + rel->r_addend, |
| r_type, absolute)) |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_PCREL_LO12_I: |
| case R_RISCV_PCREL_LO12_S: |
| /* We don't allow section symbols plus addends as the auipc address, |
| because then riscv_relax_delete_bytes would have to search through |
| all relocs to update these addends. This is also ambiguous, as |
| we do allow offsets to be added to the target address, which are |
| not to be used to find the auipc address. */ |
| if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION)) |
| || (h != NULL && h->type == STT_SECTION)) |
| && rel->r_addend) |
| { |
| msg = _("%pcrel_lo section symbol with an addend"); |
| r = bfd_reloc_dangerous; |
| break; |
| } |
| |
| if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, relocation, rel, |
| input_section, info, howto, |
| contents)) |
| continue; |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_TLS_DTPREL32: |
| case R_RISCV_TLS_DTPREL64: |
| relocation = dtpoff (info, relocation); |
| break; |
| |
| case R_RISCV_32: |
| case R_RISCV_64: |
| if ((input_section->flags & SEC_ALLOC) == 0) |
| break; |
| |
| if ((bfd_link_pic (info) |
| && (h == NULL |
| || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| && !resolved_to_zero) |
| || h->root.type != bfd_link_hash_undefweak) |
| && (!howto->pc_relative |
| || !SYMBOL_CALLS_LOCAL (info, h))) |
| || (!bfd_link_pic (info) |
| && h != NULL |
| && h->dynindx != -1 |
| && !h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined))) |
| { |
| Elf_Internal_Rela outrel; |
| asection *sreloc; |
| bool skip_static_relocation, skip_dynamic_relocation; |
| |
| /* When generating a shared object, these relocations |
| are copied into the output file to be resolved at run |
| time. */ |
| |
| outrel.r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset); |
| skip_static_relocation = outrel.r_offset != (bfd_vma) -2; |
| skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2; |
| outrel.r_offset += sec_addr (input_section); |
| |
| if (skip_dynamic_relocation) |
| memset (&outrel, 0, sizeof outrel); |
| else if (h != NULL && h->dynindx != -1 |
| && !(bfd_link_pic (info) |
| && SYMBOLIC_BIND (info, h) |
| && h->def_regular)) |
| { |
| outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); |
| outrel.r_addend = rel->r_addend; |
| } |
| else |
| { |
| outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); |
| outrel.r_addend = relocation + rel->r_addend; |
| } |
| |
| sreloc = elf_section_data (input_section)->sreloc; |
| riscv_elf_append_rela (output_bfd, sreloc, &outrel); |
| if (skip_static_relocation) |
| continue; |
| } |
| break; |
| |
| case R_RISCV_TLS_GOT_HI20: |
| is_ie = true; |
| /* Fall through. */ |
| |
| case R_RISCV_TLS_GD_HI20: |
| if (h != NULL) |
| { |
| off = h->got.offset; |
| h->got.offset |= 1; |
| } |
| else |
| { |
| off = local_got_offsets[r_symndx]; |
| local_got_offsets[r_symndx] |= 1; |
| } |
| |
| tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx); |
| BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD)); |
| /* If this symbol is referenced by both GD and IE TLS, the IE |
| reference's GOT slot follows the GD reference's slots. */ |
| ie_off = 0; |
| if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE)) |
| ie_off = 2 * GOT_ENTRY_SIZE; |
| |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| Elf_Internal_Rela outrel; |
| int indx = 0; |
| bool need_relocs = false; |
| |
| if (htab->elf.srelgot == NULL) |
| abort (); |
| |
| if (h != NULL) |
| { |
| bool dyn, pic; |
| dyn = htab->elf.dynamic_sections_created; |
| pic = bfd_link_pic (info); |
| |
| if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) |
| && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h))) |
| indx = h->dynindx; |
| } |
| |
| /* The GOT entries have not been initialized yet. Do it |
| now, and emit any relocations. */ |
| if ((bfd_link_pic (info) || indx != 0) |
| && (h == NULL |
| || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak)) |
| need_relocs = true; |
| |
| if (tls_type & GOT_TLS_GD) |
| { |
| if (need_relocs) |
| { |
| outrel.r_offset = sec_addr (htab->elf.sgot) + off; |
| outrel.r_addend = 0; |
| outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN); |
| bfd_put_NN (output_bfd, 0, |
| htab->elf.sgot->contents + off); |
| riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); |
| if (indx == 0) |
| { |
| BFD_ASSERT (! unresolved_reloc); |
| bfd_put_NN (output_bfd, |
| dtpoff (info, relocation), |
| (htab->elf.sgot->contents |
| + off + RISCV_ELF_WORD_BYTES)); |
| } |
| else |
| { |
| bfd_put_NN (output_bfd, 0, |
| (htab->elf.sgot->contents |
| + off + RISCV_ELF_WORD_BYTES)); |
| outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN); |
| outrel.r_offset += RISCV_ELF_WORD_BYTES; |
| riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); |
| } |
| } |
| else |
| { |
| /* If we are not emitting relocations for a |
| general dynamic reference, then we must be in a |
| static link or an executable link with the |
| symbol binding locally. Mark it as belonging |
| to module 1, the executable. */ |
| bfd_put_NN (output_bfd, 1, |
| htab->elf.sgot->contents + off); |
| bfd_put_NN (output_bfd, |
| dtpoff (info, relocation), |
| (htab->elf.sgot->contents |
| + off + RISCV_ELF_WORD_BYTES)); |
| } |
| } |
| |
| if (tls_type & GOT_TLS_IE) |
| { |
| if (need_relocs) |
| { |
| bfd_put_NN (output_bfd, 0, |
| htab->elf.sgot->contents + off + ie_off); |
| outrel.r_offset = sec_addr (htab->elf.sgot) |
| + off + ie_off; |
| outrel.r_addend = 0; |
| if (indx == 0) |
| outrel.r_addend = tpoff (info, relocation); |
| outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN); |
| riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); |
| } |
| else |
| { |
| bfd_put_NN (output_bfd, tpoff (info, relocation), |
| htab->elf.sgot->contents + off + ie_off); |
| } |
| } |
| } |
| |
| BFD_ASSERT (off < (bfd_vma) -2); |
| relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0); |
| if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, r_type, |
| false)) |
| r = bfd_reloc_overflow; |
| unresolved_reloc = false; |
| break; |
| |
| default: |
| r = bfd_reloc_notsupported; |
| } |
| |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING sections |
| because such sections are not SEC_ALLOC and thus ld.so will |
| not process them. */ |
| if (unresolved_reloc |
| && !((input_section->flags & SEC_DEBUGGING) != 0 |
| && h->def_dynamic) |
| && _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset) != (bfd_vma) -1) |
| { |
| switch (r_type) |
| { |
| case R_RISCV_JAL: |
| case R_RISCV_RVC_JUMP: |
| if (asprintf (&msg_buf, |
| _("%%X%%P: relocation %s against `%s' can " |
| "not be used when making a shared object; " |
| "recompile with -fPIC\n"), |
| howto->name, |
| h->root.root.string) == -1) |
| msg_buf = NULL; |
| break; |
| |
| default: |
| if (asprintf (&msg_buf, |
| _("%%X%%P: unresolvable %s relocation against " |
| "symbol `%s'\n"), |
| howto->name, |
| h->root.root.string) == -1) |
| msg_buf = NULL; |
| break; |
| } |
| |
| msg = msg_buf; |
| r = bfd_reloc_notsupported; |
| } |
| |
| do_relocation: |
| if (r == bfd_reloc_ok) |
| r = perform_relocation (howto, rel, relocation, input_section, |
| input_bfd, contents); |
| |
| /* We should have already detected the error and set message before. |
| If the error message isn't set since the linker runs out of memory |
| or we don't set it before, then we should set the default message |
| with the "internal error" string here. */ |
| switch (r) |
| { |
| case bfd_reloc_ok: |
| continue; |
| |
| case bfd_reloc_overflow: |
| info->callbacks->reloc_overflow |
| (info, (h ? &h->root : NULL), name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| case bfd_reloc_undefined: |
| info->callbacks->undefined_symbol |
| (info, name, input_bfd, input_section, rel->r_offset, |
| true); |
| break; |
| |
| case bfd_reloc_outofrange: |
| if (msg == NULL) |
| msg = _("%X%P: internal error: out of range error\n"); |
| break; |
| |
| case bfd_reloc_notsupported: |
| if (msg == NULL) |
| msg = _("%X%P: internal error: unsupported relocation error\n"); |
| break; |
| |
| case bfd_reloc_dangerous: |
| /* The error message should already be set. */ |
| if (msg == NULL) |
| msg = _("dangerous relocation error"); |
| info->callbacks->reloc_dangerous |
| (info, msg, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| default: |
| msg = _("%X%P: internal error: unknown error\n"); |
| break; |
| } |
| |
| /* Do not report error message for the dangerous relocation again. */ |
| if (msg && r != bfd_reloc_dangerous) |
| info->callbacks->einfo (msg); |
| |
| /* Free the unused `msg_buf`. */ |
| free (msg_buf); |
| |
| /* We already reported the error via a callback, so don't try to report |
| it again by returning false. That leads to spurious errors. */ |
| ret = true; |
| goto out; |
| } |
| |
| ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs); |
| out: |
| riscv_free_pcrel_relocs (&pcrel_relocs); |
| return ret; |
| } |
| |
| /* Finish up dynamic symbol handling. We set the contents of various |
| dynamic sections here. */ |
| |
| static bool |
| riscv_elf_finish_dynamic_symbol (bfd *output_bfd, |
| struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
| |
| if (h->plt.offset != (bfd_vma) -1) |
| { |
| /* We've decided to create a PLT entry for this symbol. */ |
| bfd_byte *loc; |
| bfd_vma i, header_address, plt_idx, got_offset, got_address; |
| uint32_t plt_entry[PLT_ENTRY_INSNS]; |
| Elf_Internal_Rela rela; |
| asection *plt, *gotplt, *relplt; |
| |
| /* When building a static executable, use .iplt, .igot.plt and |
| .rela.iplt sections for STT_GNU_IFUNC symbols. */ |
| if (htab->elf.splt != NULL) |
| { |
| plt = htab->elf.splt; |
| gotplt = htab->elf.sgotplt; |
| relplt = htab->elf.srelplt; |
| } |
| else |
| { |
| plt = htab->elf.iplt; |
| gotplt = htab->elf.igotplt; |
| relplt = htab->elf.irelplt; |
| } |
| |
| /* This symbol has an entry in the procedure linkage table. Set |
| it up. */ |
| if ((h->dynindx == -1 |
| && !((h->forced_local || bfd_link_executable (info)) |
| && h->def_regular |
| && h->type == STT_GNU_IFUNC)) |
| || plt == NULL |
| || gotplt == NULL |
| || relplt == NULL) |
| return false; |
| |
| /* Calculate the address of the PLT header. */ |
| header_address = sec_addr (plt); |
| |
| /* Calculate the index of the entry and the offset of .got.plt entry. |
| For static executables, we don't reserve anything. */ |
| if (plt == htab->elf.splt) |
| { |
| plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; |
| got_offset = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE); |
| } |
| else |
| { |
| plt_idx = h->plt.offset / PLT_ENTRY_SIZE; |
| got_offset = plt_idx * GOT_ENTRY_SIZE; |
| } |
| |
| /* Calculate the address of the .got.plt entry. */ |
| got_address = sec_addr (gotplt) + got_offset; |
| |
| /* Find out where the .plt entry should go. */ |
| loc = plt->contents + h->plt.offset; |
| |
| /* Fill in the PLT entry itself. */ |
| if (! riscv_make_plt_entry (output_bfd, got_address, |
| header_address + h->plt.offset, |
| plt_entry)) |
| return false; |
| |
| for (i = 0; i < PLT_ENTRY_INSNS; i++) |
| bfd_putl32 (plt_entry[i], loc + 4*i); |
| |
| /* Fill in the initial value of the .got.plt entry. */ |
| loc = gotplt->contents + (got_address - sec_addr (gotplt)); |
| bfd_put_NN (output_bfd, sec_addr (plt), loc); |
| |
| rela.r_offset = got_address; |
| |
| if (h->dynindx == -1 |
| || ((bfd_link_executable (info) |
| || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
| && h->def_regular |
| && h->type == STT_GNU_IFUNC)) |
| { |
| info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"), |
| h->root.root.string, |
| h->root.u.def.section->owner); |
| |
| /* If an STT_GNU_IFUNC symbol is locally defined, generate |
| R_RISCV_IRELATIVE instead of R_RISCV_JUMP_SLOT. */ |
| asection *sec = h->root.u.def.section; |
| rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE); |
| rela.r_addend = h->root.u.def.value |
| + sec->output_section->vma |
| + sec->output_offset; |
| } |
| else |
| { |
| /* Fill in the entry in the .rela.plt section. */ |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT); |
| rela.r_addend = 0; |
| } |
| |
| loc = relplt->contents + plt_idx * sizeof (ElfNN_External_Rela); |
| bed->s->swap_reloca_out (output_bfd, &rela, loc); |
| |
| if (!h->def_regular) |
| { |
| /* Mark the symbol as undefined, rather than as defined in |
| the .plt section. Leave the value alone. */ |
| sym->st_shndx = SHN_UNDEF; |
| /* If the symbol is weak, we do need to clear the value. |
| Otherwise, the PLT entry would provide a definition for |
| the symbol even if the symbol wasn't defined anywhere, |
| and so the symbol would never be NULL. */ |
| if (!h->ref_regular_nonweak) |
| sym->st_value = 0; |
| } |
| } |
| |
| if (h->got.offset != (bfd_vma) -1 |
| && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) |
| && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| { |
| asection *sgot; |
| asection *srela; |
| Elf_Internal_Rela rela; |
| bool use_elf_append_rela = true; |
| |
| /* This symbol has an entry in the GOT. Set it up. */ |
| |
| sgot = htab->elf.sgot; |
| srela = htab->elf.srelgot; |
| BFD_ASSERT (sgot != NULL && srela != NULL); |
| |
| rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1); |
| |
| /* Handle the ifunc symbol in GOT entry. */ |
| if (h->def_regular |
| && h->type == STT_GNU_IFUNC) |
| { |
| if (h->plt.offset == (bfd_vma) -1) |
| { |
| /* STT_GNU_IFUNC is referenced without PLT. */ |
| |
| if (htab->elf.splt == NULL) |
| { |
| /* Use .rela.iplt section to store .got relocations |
| in static executable. */ |
| srela = htab->elf.irelplt; |
| |
| /* Do not use riscv_elf_append_rela to add dynamic |
| relocs. */ |
| use_elf_append_rela = false; |
| } |
| |
| if (SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"), |
| h->root.root.string, |
| h->root.u.def.section->owner); |
| |
| rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE); |
| rela.r_addend = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| else |
| { |
| /* Generate R_RISCV_NN. */ |
| BFD_ASSERT ((h->got.offset & 1) == 0); |
| BFD_ASSERT (h->dynindx != -1); |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); |
| rela.r_addend = 0; |
| } |
| } |
| else if (bfd_link_pic (info)) |
| { |
| /* Generate R_RISCV_NN. */ |
| BFD_ASSERT ((h->got.offset & 1) == 0); |
| BFD_ASSERT (h->dynindx != -1); |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); |
| rela.r_addend = 0; |
| } |
| else |
| { |
| asection *plt; |
| |
| if (!h->pointer_equality_needed) |
| abort (); |
| |
| /* For non-shared object, we can't use .got.plt, which |
| contains the real function address if we need pointer |
| equality. We load the GOT entry with the PLT entry. */ |
| plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; |
| bfd_put_NN (output_bfd, (plt->output_section->vma |
| + plt->output_offset |
| + h->plt.offset), |
| htab->elf.sgot->contents |
| + (h->got.offset & ~(bfd_vma) 1)); |
| return true; |
| } |
| } |
| else if (bfd_link_pic (info) |
| && SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| /* If this is a local symbol reference, we just want to emit |
| a RELATIVE reloc. This can happen if it is a -Bsymbolic link, |
| or a pie link, or the symbol was forced to be local because |
| of a version file. The entry in the global offset table will |
| already have been initialized in the relocate_section function. */ |
| BFD_ASSERT ((h->got.offset & 1) != 0); |
| asection *sec = h->root.u.def.section; |
| rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); |
| rela.r_addend = (h->root.u.def.value |
| + sec->output_section->vma |
| + sec->output_offset); |
| } |
| else |
| { |
| BFD_ASSERT ((h->got.offset & 1) == 0); |
| BFD_ASSERT (h->dynindx != -1); |
| rela.r_info = ELFNN_R_INFO |