| /* Semantics ops support for CGEN-based simulators. |
| Copyright (C) 1996-2021 Free Software Foundation, Inc. |
| Contributed by Cygnus Solutions. |
| |
| This file is part of the GNU Simulators. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. |
| |
| */ |
| |
| #ifndef CGEN_SEM_OPS_H |
| #define CGEN_SEM_OPS_H |
| |
| #include <assert.h> |
| |
| /* TODO: This should get moved into sim-inline.h. */ |
| #if defined (__GNUC__) && ! defined (SEMOPS_DEFINE_INLINE) |
| #define SEMOPS_DEFINE_INLINE |
| #define SEMOPS_INLINE EXTERN_INLINE |
| #else |
| #define SEMOPS_INLINE |
| #endif |
| |
| /* Semantic operations. |
| At one point this file was machine generated. Maybe it will be again. */ |
| |
| /* TODO: Lazy encoding/decoding of fp values. */ |
| |
| /* These don't really have a mode. */ |
| #define ANDIF(x, y) ((x) && (y)) |
| #define ORIF(x, y) ((x) || (y)) |
| |
| #define SUBBI(x, y) ((x) - (y)) |
| #define ANDBI(x, y) ((x) & (y)) |
| #define ORBI(x, y) ((x) | (y)) |
| #define XORBI(x, y) ((x) ^ (y)) |
| #define NEGBI(x) (- (x)) |
| #define NOTBI(x) (! (BI) (x)) |
| #define INVBI(x) (~ (x)) |
| #define EQBI(x, y) ((BI) (x) == (BI) (y)) |
| #define NEBI(x, y) ((BI) (x) != (BI) (y)) |
| #define LTBI(x, y) ((BI) (x) < (BI) (y)) |
| #define LEBI(x, y) ((BI) (x) <= (BI) (y)) |
| #define GTBI(x, y) ((BI) (x) > (BI) (y)) |
| #define GEBI(x, y) ((BI) (x) >= (BI) (y)) |
| #define LTUBI(x, y) ((BI) (x) < (BI) (y)) |
| #define LEUBI(x, y) ((BI) (x) <= (BI) (y)) |
| #define GTUBI(x, y) ((BI) (x) > (BI) (y)) |
| #define GEUBI(x, y) ((BI) (x) >= (BI) (y)) |
| |
| #define ADDQI(x, y) ((QI) ((UQI) (x) + (UQI) (y))) |
| #define SUBQI(x, y) ((QI) ((UQI) (x) - (UQI) (y))) |
| #define MULQI(x, y) ((QI) ((UQI) (x) * (UQI) (y))) |
| #define DIVQI(x, y) ((QI) (x) / (QI) (y)) |
| #define UDIVQI(x, y) ((UQI) (x) / (UQI) (y)) |
| #define MODQI(x, y) ((QI) (x) % (QI) (y)) |
| #define UMODQI(x, y) ((UQI) (x) % (UQI) (y)) |
| #define SRAQI(x, y) ((QI) (x) >> (y)) |
| #define SRLQI(x, y) ((UQI) (x) >> (y)) |
| #define SLLQI(x, y) ((UQI) (x) << (y)) |
| extern QI RORQI (QI, int); |
| extern QI ROLQI (QI, int); |
| #define ANDQI(x, y) ((x) & (y)) |
| #define ORQI(x, y) ((x) | (y)) |
| #define XORQI(x, y) ((x) ^ (y)) |
| #define NEGQI(x) ((QI) (- (UQI) (x))) |
| #define NOTQI(x) (! (QI) (x)) |
| #define INVQI(x) (~ (x)) |
| #define ABSQI(x) ((QI) ((QI) (x) < 0 ? -(UQI) (x) : (UQI) (x))) |
| #define EQQI(x, y) ((QI) (x) == (QI) (y)) |
| #define NEQI(x, y) ((QI) (x) != (QI) (y)) |
| #define LTQI(x, y) ((QI) (x) < (QI) (y)) |
| #define LEQI(x, y) ((QI) (x) <= (QI) (y)) |
| #define GTQI(x, y) ((QI) (x) > (QI) (y)) |
| #define GEQI(x, y) ((QI) (x) >= (QI) (y)) |
| #define LTUQI(x, y) ((UQI) (x) < (UQI) (y)) |
| #define LEUQI(x, y) ((UQI) (x) <= (UQI) (y)) |
| #define GTUQI(x, y) ((UQI) (x) > (UQI) (y)) |
| #define GEUQI(x, y) ((UQI) (x) >= (UQI) (y)) |
| |
| #define ADDHI(x, y) ((HI) ((UHI) (x) + (UHI) (y))) |
| #define SUBHI(x, y) ((HI) ((UHI) (x) - (UHI) (y))) |
| #define MULHI(x, y) ((HI) ((UHI) (x) * (UHI) (y))) |
| #define DIVHI(x, y) ((HI) (x) / (HI) (y)) |
| #define UDIVHI(x, y) ((UHI) (x) / (UHI) (y)) |
| #define MODHI(x, y) ((HI) (x) % (HI) (y)) |
| #define UMODHI(x, y) ((UHI) (x) % (UHI) (y)) |
| #define SRAHI(x, y) ((HI) (x) >> (y)) |
| #define SRLHI(x, y) ((UHI) (x) >> (y)) |
| #define SLLHI(x, y) ((UHI) (x) << (y)) |
| extern HI RORHI (HI, int); |
| extern HI ROLHI (HI, int); |
| #define ANDHI(x, y) ((x) & (y)) |
| #define ORHI(x, y) ((x) | (y)) |
| #define XORHI(x, y) ((x) ^ (y)) |
| #define NEGHI(x) ((HI) (- (UHI) (x))) |
| #define NOTHI(x) (! (HI) (x)) |
| #define INVHI(x) (~ (x)) |
| #define ABSHI(x) ((HI) ((HI) (x) < 0 ? -(UHI) (x) : (UHI) (x))) |
| #define EQHI(x, y) ((HI) (x) == (HI) (y)) |
| #define NEHI(x, y) ((HI) (x) != (HI) (y)) |
| #define LTHI(x, y) ((HI) (x) < (HI) (y)) |
| #define LEHI(x, y) ((HI) (x) <= (HI) (y)) |
| #define GTHI(x, y) ((HI) (x) > (HI) (y)) |
| #define GEHI(x, y) ((HI) (x) >= (HI) (y)) |
| #define LTUHI(x, y) ((UHI) (x) < (UHI) (y)) |
| #define LEUHI(x, y) ((UHI) (x) <= (UHI) (y)) |
| #define GTUHI(x, y) ((UHI) (x) > (UHI) (y)) |
| #define GEUHI(x, y) ((UHI) (x) >= (UHI) (y)) |
| |
| #define ADDSI(x, y) ((SI) ((USI) (x) + (USI) (y))) |
| #define SUBSI(x, y) ((SI) ((USI) (x) - (USI) (y))) |
| #define MULSI(x, y) ((SI) ((USI) (x) * (USI) (y))) |
| #define DIVSI(x, y) ((SI) (x) / (SI) (y)) |
| #define UDIVSI(x, y) ((USI) (x) / (USI) (y)) |
| #define MODSI(x, y) ((SI) (x) % (SI) (y)) |
| #define UMODSI(x, y) ((USI) (x) % (USI) (y)) |
| #define SRASI(x, y) ((SI) (x) >> (y)) |
| #define SRLSI(x, y) ((USI) (x) >> (y)) |
| #define SLLSI(x, y) ((USI) (x) << (y)) |
| extern SI RORSI (SI, int); |
| extern SI ROLSI (SI, int); |
| #define ANDSI(x, y) ((x) & (y)) |
| #define ORSI(x, y) ((x) | (y)) |
| #define XORSI(x, y) ((x) ^ (y)) |
| #define NEGSI(x) ((SI) (- (USI) (x))) |
| #define NOTSI(x) (! (SI) (x)) |
| #define INVSI(x) (~ (x)) |
| #define ABSSI(x) ((SI) ((SI) (x) < 0 ? -(USI) (x) : (USI) (x))) |
| #define EQSI(x, y) ((SI) (x) == (SI) (y)) |
| #define NESI(x, y) ((SI) (x) != (SI) (y)) |
| #define LTSI(x, y) ((SI) (x) < (SI) (y)) |
| #define LESI(x, y) ((SI) (x) <= (SI) (y)) |
| #define GTSI(x, y) ((SI) (x) > (SI) (y)) |
| #define GESI(x, y) ((SI) (x) >= (SI) (y)) |
| #define LTUSI(x, y) ((USI) (x) < (USI) (y)) |
| #define LEUSI(x, y) ((USI) (x) <= (USI) (y)) |
| #define GTUSI(x, y) ((USI) (x) > (USI) (y)) |
| #define GEUSI(x, y) ((USI) (x) >= (USI) (y)) |
| |
| #ifdef DI_FN_SUPPORT |
| extern DI ADDDI (DI, DI); |
| extern DI SUBDI (DI, DI); |
| extern DI MULDI (DI, DI); |
| extern DI DIVDI (DI, DI); |
| extern DI UDIVDI (DI, DI); |
| extern DI MODDI (DI, DI); |
| extern DI UMODDI (DI, DI); |
| extern DI SRADI (DI, int); |
| extern UDI SRLDI (UDI, int); |
| extern UDI SLLDI (UDI, int); |
| extern DI RORDI (DI, int); |
| extern DI ROLDI (DI, int); |
| extern DI ANDDI (DI, DI); |
| extern DI ORDI (DI, DI); |
| extern DI XORDI (DI, DI); |
| extern DI NEGDI (DI); |
| extern int NOTDI (DI); |
| extern DI INVDI (DI); |
| extern int EQDI (DI, DI); |
| extern int NEDI (DI, DI); |
| extern int LTDI (DI, DI); |
| extern int LEDI (DI, DI); |
| extern int GTDI (DI, DI); |
| extern int GEDI (DI, DI); |
| extern int LTUDI (UDI, UDI); |
| extern int LEUDI (UDI, UDI); |
| extern int GTUDI (UDI, UDI); |
| extern int GEUDI (UDI, UDI); |
| #else /* ! DI_FN_SUPPORT */ |
| #define ADDDI(x, y) ((DI) ((UDI) (x) + (UDI) (y))) |
| #define SUBDI(x, y) ((DI) ((UDI) (x) - (UDI) (y))) |
| #define MULDI(x, y) ((DI) ((UDI) (x) * (UDI) (y))) |
| #define DIVDI(x, y) ((DI) (x) / (DI) (y)) |
| #define UDIVDI(x, y) ((UDI) (x) / (UDI) (y)) |
| #define MODDI(x, y) ((DI) (x) % (DI) (y)) |
| #define UMODDI(x, y) ((UDI) (x) % (UDI) (y)) |
| #define SRADI(x, y) ((DI) (x) >> (y)) |
| #define SRLDI(x, y) ((UDI) (x) >> (y)) |
| #define SLLDI(x, y) ((UDI) (x) << (y)) |
| extern DI RORDI (DI, int); |
| extern DI ROLDI (DI, int); |
| #define ANDDI(x, y) ((x) & (y)) |
| #define ORDI(x, y) ((x) | (y)) |
| #define XORDI(x, y) ((x) ^ (y)) |
| #define NEGDI(x) ((DI) (- (UDI) (x))) |
| #define NOTDI(x) (! (DI) (x)) |
| #define INVDI(x) (~ (x)) |
| #define ABSDI(x) ((DI) ((DI) (x) < 0 ? -(UDI) (x) : (UDI) (x))) |
| #define EQDI(x, y) ((DI) (x) == (DI) (y)) |
| #define NEDI(x, y) ((DI) (x) != (DI) (y)) |
| #define LTDI(x, y) ((DI) (x) < (DI) (y)) |
| #define LEDI(x, y) ((DI) (x) <= (DI) (y)) |
| #define GTDI(x, y) ((DI) (x) > (DI) (y)) |
| #define GEDI(x, y) ((DI) (x) >= (DI) (y)) |
| #define LTUDI(x, y) ((UDI) (x) < (UDI) (y)) |
| #define LEUDI(x, y) ((UDI) (x) <= (UDI) (y)) |
| #define GTUDI(x, y) ((UDI) (x) > (UDI) (y)) |
| #define GEUDI(x, y) ((UDI) (x) >= (UDI) (y)) |
| #endif /* DI_FN_SUPPORT */ |
| |
| #define EXTBIQI(x) ((QI) (BI) (x)) |
| #define EXTBIHI(x) ((HI) (BI) (x)) |
| #define EXTBISI(x) ((SI) (BI) (x)) |
| #if defined (DI_FN_SUPPORT) |
| extern DI EXTBIDI (BI); |
| #else |
| #define EXTBIDI(x) ((DI) (BI) (x)) |
| #endif |
| #define EXTQIHI(x) ((HI) (QI) (x)) |
| #define EXTQISI(x) ((SI) (QI) (x)) |
| #if defined (DI_FN_SUPPORT) |
| extern DI EXTQIDI (QI); |
| #else |
| #define EXTQIDI(x) ((DI) (QI) (x)) |
| #endif |
| #define EXTHIHI(x) ((HI) (HI) (x)) |
| #define EXTHISI(x) ((SI) (HI) (x)) |
| #define EXTSISI(x) ((SI) (SI) (x)) |
| #if defined (DI_FN_SUPPORT) |
| extern DI EXTHIDI (HI); |
| #else |
| #define EXTHIDI(x) ((DI) (HI) (x)) |
| #endif |
| #if defined (DI_FN_SUPPORT) |
| extern DI EXTSIDI (SI); |
| #else |
| #define EXTSIDI(x) ((DI) (SI) (x)) |
| #endif |
| |
| #define ZEXTBIQI(x) ((QI) (BI) (x)) |
| #define ZEXTBIHI(x) ((HI) (BI) (x)) |
| #define ZEXTBISI(x) ((SI) (BI) (x)) |
| #if defined (DI_FN_SUPPORT) |
| extern DI ZEXTBIDI (BI); |
| #else |
| #define ZEXTBIDI(x) ((DI) (BI) (x)) |
| #endif |
| #define ZEXTQIHI(x) ((HI) (UQI) (x)) |
| #define ZEXTQISI(x) ((SI) (UQI) (x)) |
| #if defined (DI_FN_SUPPORT) |
| extern DI ZEXTQIDI (QI); |
| #else |
| #define ZEXTQIDI(x) ((DI) (UQI) (x)) |
| #endif |
| #define ZEXTHISI(x) ((SI) (UHI) (x)) |
| #define ZEXTHIHI(x) ((HI) (UHI) (x)) |
| #define ZEXTSISI(x) ((SI) (USI) (x)) |
| #if defined (DI_FN_SUPPORT) |
| extern DI ZEXTHIDI (HI); |
| #else |
| #define ZEXTHIDI(x) ((DI) (UHI) (x)) |
| #endif |
| #if defined (DI_FN_SUPPORT) |
| extern DI ZEXTSIDI (SI); |
| #else |
| #define ZEXTSIDI(x) ((DI) (USI) (x)) |
| #endif |
| |
| #define TRUNCQIBI(x) ((BI) (QI) (x)) |
| #define TRUNCHIBI(x) ((BI) (HI) (x)) |
| #define TRUNCHIQI(x) ((QI) (HI) (x)) |
| #define TRUNCSIBI(x) ((BI) (SI) (x)) |
| #define TRUNCSIQI(x) ((QI) (SI) (x)) |
| #define TRUNCSIHI(x) ((HI) (SI) (x)) |
| #define TRUNCSISI(x) ((SI) (SI) (x)) |
| #if defined (DI_FN_SUPPORT) |
| extern BI TRUNCDIBI (DI); |
| #else |
| #define TRUNCDIBI(x) ((BI) (DI) (x)) |
| #endif |
| #if defined (DI_FN_SUPPORT) |
| extern QI TRUNCDIQI (DI); |
| #else |
| #define TRUNCDIQI(x) ((QI) (DI) (x)) |
| #endif |
| #if defined (DI_FN_SUPPORT) |
| extern HI TRUNCDIHI (DI); |
| #else |
| #define TRUNCDIHI(x) ((HI) (DI) (x)) |
| #endif |
| #if defined (DI_FN_SUPPORT) |
| extern SI TRUNCDISI (DI); |
| #else |
| #define TRUNCDISI(x) ((SI) (DI) (x)) |
| #endif |
| |
| /* Composing/decomposing the various types. |
| Word ordering is endian-independent. Words are specified most to least |
| significant and word number 0 is the most significant word. |
| ??? May also wish an endian-dependent version. Later. */ |
| |
| QI SUBWORDSIQI (SI, int); |
| HI SUBWORDSIHI (SI, int); |
| SI SUBWORDSFSI (SF); |
| SF SUBWORDSISF (SI); |
| DI SUBWORDDFDI (DF); |
| DF SUBWORDDIDF (DI); |
| QI SUBWORDDIQI (DI, int); |
| HI SUBWORDDIHI (DI, int); |
| SI SUBWORDDISI (DI, int); |
| SI SUBWORDDFSI (DF, int); |
| SI SUBWORDXFSI (XF, int); |
| SI SUBWORDTFSI (TF, int); |
| |
| UQI SUBWORDSIUQI (SI, int); |
| UQI SUBWORDDIUQI (DI, int); |
| |
| DI JOINSIDI (SI, SI); |
| DF JOINSIDF (SI, SI); |
| XF JOINSIXF (SI, SI, SI); |
| TF JOINSITF (SI, SI, SI, SI); |
| |
| #ifdef SEMOPS_DEFINE_INLINE |
| |
| SEMOPS_INLINE SF |
| SUBWORDSISF (SI in) |
| { |
| union { SI in; SF out; } x; |
| x.in = in; |
| return x.out; |
| } |
| |
| SEMOPS_INLINE DF |
| SUBWORDDIDF (DI in) |
| { |
| union { DI in; DF out; } x; |
| x.in = in; |
| return x.out; |
| } |
| |
| SEMOPS_INLINE QI |
| SUBWORDSIQI (SI in, int byte) |
| { |
| assert (byte >= 0 && byte <= 3); |
| return (UQI) (in >> (8 * (3 - byte))) & 0xFF; |
| } |
| |
| SEMOPS_INLINE UQI |
| SUBWORDSIUQI (SI in, int byte) |
| { |
| assert (byte >= 0 && byte <= 3); |
| return (UQI) (in >> (8 * (3 - byte))) & 0xFF; |
| } |
| |
| SEMOPS_INLINE QI |
| SUBWORDDIQI (DI in, int byte) |
| { |
| assert (byte >= 0 && byte <= 7); |
| return (UQI) (in >> (8 * (7 - byte))) & 0xFF; |
| } |
| |
| SEMOPS_INLINE HI |
| SUBWORDDIHI (DI in, int word) |
| { |
| assert (word >= 0 && word <= 3); |
| return (UHI) (in >> (16 * (3 - word))) & 0xFFFF; |
| } |
| |
| SEMOPS_INLINE HI |
| SUBWORDSIHI (SI in, int word) |
| { |
| if (word == 0) |
| return (USI) in >> 16; |
| else |
| return in; |
| } |
| |
| SEMOPS_INLINE SI |
| SUBWORDSFSI (SF in) |
| { |
| union { SF in; SI out; } x; |
| x.in = in; |
| return x.out; |
| } |
| |
| SEMOPS_INLINE DI |
| SUBWORDDFDI (DF in) |
| { |
| union { DF in; DI out; } x; |
| x.in = in; |
| return x.out; |
| } |
| |
| SEMOPS_INLINE UQI |
| SUBWORDDIUQI (DI in, int byte) |
| { |
| assert (byte >= 0 && byte <= 7); |
| return (UQI) (in >> (8 * (7 - byte))); |
| } |
| |
| SEMOPS_INLINE SI |
| SUBWORDDISI (DI in, int word) |
| { |
| if (word == 0) |
| return (UDI) in >> 32; |
| else |
| return in; |
| } |
| |
| SEMOPS_INLINE SI |
| SUBWORDDFSI (DF in, int word) |
| { |
| /* Note: typedef UDI DF; */ |
| if (word == 0) |
| return (UDI) in >> 32; |
| else |
| return in; |
| } |
| |
| SEMOPS_INLINE SI |
| SUBWORDXFSI (XF in, int word) |
| { |
| /* Note: typedef struct { SI parts[3]; } XF; */ |
| union { XF in; SI out[3]; } x; |
| x.in = in; |
| if (HOST_BYTE_ORDER == BFD_ENDIAN_BIG) |
| return x.out[word]; |
| else |
| return x.out[2 - word]; |
| } |
| |
| SEMOPS_INLINE SI |
| SUBWORDTFSI (TF in, int word) |
| { |
| /* Note: typedef struct { SI parts[4]; } TF; */ |
| union { TF in; SI out[4]; } x; |
| x.in = in; |
| if (HOST_BYTE_ORDER == BFD_ENDIAN_BIG) |
| return x.out[word]; |
| else |
| return x.out[3 - word]; |
| } |
| |
| SEMOPS_INLINE DI |
| JOINSIDI (SI x0, SI x1) |
| { |
| return MAKEDI (x0, x1); |
| } |
| |
| SEMOPS_INLINE DF |
| JOINSIDF (SI x0, SI x1) |
| { |
| union { SI in[2]; DF out; } x; |
| if (HOST_BYTE_ORDER == BFD_ENDIAN_BIG) |
| x.in[0] = x0, x.in[1] = x1; |
| else |
| x.in[1] = x0, x.in[0] = x1; |
| return x.out; |
| } |
| |
| SEMOPS_INLINE XF |
| JOINSIXF (SI x0, SI x1, SI x2) |
| { |
| union { SI in[3]; XF out; } x; |
| if (HOST_BYTE_ORDER == BFD_ENDIAN_BIG) |
| x.in[0] = x0, x.in[1] = x1, x.in[2] = x2; |
| else |
| x.in[2] = x0, x.in[1] = x1, x.in[0] = x2; |
| return x.out; |
| } |
| |
| SEMOPS_INLINE TF |
| JOINSITF (SI x0, SI x1, SI x2, SI x3) |
| { |
| union { SI in[4]; TF out; } x; |
| if (HOST_BYTE_ORDER == BFD_ENDIAN_BIG) |
| x.in[0] = x0, x.in[1] = x1, x.in[2] = x2, x.in[3] = x3; |
| else |
| x.in[3] = x0, x.in[2] = x1, x.in[1] = x2, x.in[0] = x3; |
| return x.out; |
| } |
| |
| #endif /* SUBWORD,JOIN */ |
| |
| /* Semantic support utilities. */ |
| |
| SI ADDCSI (SI, SI, BI); |
| BI ADDCFSI (SI, SI, BI); |
| BI ADDOFSI (SI, SI, BI); |
| SI SUBCSI (SI, SI, BI); |
| BI SUBCFSI (SI, SI, BI); |
| BI SUBOFSI (SI, SI, BI); |
| HI ADDCHI (HI, HI, BI); |
| BI ADDCFHI (HI, HI, BI); |
| BI ADDOFHI (HI, HI, BI); |
| HI SUBCHI (HI, HI, BI); |
| BI SUBCFHI (HI, HI, BI); |
| BI SUBOFHI (HI, HI, BI); |
| QI ADDCQI (QI, QI, BI); |
| BI ADDCFQI (QI, QI, BI); |
| BI ADDOFQI (QI, QI, BI); |
| QI SUBCQI (QI, QI, BI); |
| BI SUBCFQI (QI, QI, BI); |
| BI SUBOFQI (QI, QI, BI); |
| BI MUL1OFSI (USI a, USI b); |
| BI MUL2OFSI (SI a, SI b); |
| BI ADDCFDI (DI a, DI b, BI c); |
| BI ADDOFDI (DI a, DI b, BI c); |
| BI SUBCFDI (DI a, DI b, BI c); |
| BI SUBOFDI (DI a, DI b, BI c); |
| |
| #ifdef SEMOPS_DEFINE_INLINE |
| |
| SEMOPS_INLINE SI |
| ADDCSI (SI a, SI b, BI c) |
| { |
| SI res = ADDSI (a, ADDSI (b, c)); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| ADDCFSI (SI a, SI b, BI c) |
| { |
| SI tmp = ADDSI (a, ADDSI (b, c)); |
| BI res = ((USI) tmp < (USI) a) || (c && tmp == a); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| ADDOFSI (SI a, SI b, BI c) |
| { |
| SI tmp = ADDSI (a, ADDSI (b, c)); |
| BI res = (((a < 0) == (b < 0)) |
| && ((a < 0) != (tmp < 0))); |
| return res; |
| } |
| |
| SEMOPS_INLINE SI |
| SUBCSI (SI a, SI b, BI c) |
| { |
| SI res = SUBSI (a, ADDSI (b, c)); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| SUBCFSI (SI a, SI b, BI c) |
| { |
| BI res = ((USI) a < (USI) b) || (c && a == b); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| SUBOFSI (SI a, SI b, BI c) |
| { |
| SI tmp = SUBSI (a, ADDSI (b, c)); |
| BI res = (((a < 0) != (b < 0)) |
| && ((a < 0) != (tmp < 0))); |
| return res; |
| } |
| |
| SEMOPS_INLINE HI |
| ADDCHI (HI a, HI b, BI c) |
| { |
| HI res = ADDHI (a, ADDHI (b, c)); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| ADDCFHI (HI a, HI b, BI c) |
| { |
| HI tmp = ADDHI (a, ADDHI (b, c)); |
| BI res = ((UHI) tmp < (UHI) a) || (c && tmp == a); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| ADDOFHI (HI a, HI b, BI c) |
| { |
| HI tmp = ADDHI (a, ADDHI (b, c)); |
| BI res = (((a < 0) == (b < 0)) |
| && ((a < 0) != (tmp < 0))); |
| return res; |
| } |
| |
| SEMOPS_INLINE HI |
| SUBCHI (HI a, HI b, BI c) |
| { |
| HI res = SUBHI (a, ADDHI (b, c)); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| SUBCFHI (HI a, HI b, BI c) |
| { |
| BI res = ((UHI) a < (UHI) b) || (c && a == b); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| SUBOFHI (HI a, HI b, BI c) |
| { |
| HI tmp = SUBHI (a, ADDHI (b, c)); |
| BI res = (((a < 0) != (b < 0)) |
| && ((a < 0) != (tmp < 0))); |
| return res; |
| } |
| |
| SEMOPS_INLINE QI |
| ADDCQI (QI a, QI b, BI c) |
| { |
| QI res = ADDQI (a, ADDQI (b, c)); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| ADDCFQI (QI a, QI b, BI c) |
| { |
| QI tmp = ADDQI (a, ADDQI (b, c)); |
| BI res = ((UQI) tmp < (UQI) a) || (c && tmp == a); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| ADDOFQI (QI a, QI b, BI c) |
| { |
| QI tmp = ADDQI (a, ADDQI (b, c)); |
| BI res = (((a < 0) == (b < 0)) |
| && ((a < 0) != (tmp < 0))); |
| return res; |
| } |
| |
| SEMOPS_INLINE QI |
| SUBCQI (QI a, QI b, BI c) |
| { |
| QI res = SUBQI (a, ADDQI (b, c)); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| SUBCFQI (QI a, QI b, BI c) |
| { |
| BI res = ((UQI) a < (UQI) b) || (c && a == b); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| SUBOFQI (QI a, QI b, BI c) |
| { |
| QI tmp = SUBQI (a, ADDQI (b, c)); |
| BI res = (((a < 0) != (b < 0)) |
| && ((a < 0) != (tmp < 0))); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| MUL2OFSI (SI a, SI b) |
| { |
| DI tmp = MULDI (EXTSIDI (a), EXTSIDI (b)); |
| BI res = tmp < -0x80000000LL || tmp > 0x7fffffffLL; |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| MUL1OFSI (USI a, USI b) |
| { |
| UDI tmp = MULDI (ZEXTSIDI (a), ZEXTSIDI (b)); |
| BI res = (tmp > 0xFFFFFFFFULL); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| ADDCFDI (DI a, DI b, BI c) |
| { |
| DI tmp = ADDDI (a, ADDDI (b, c)); |
| BI res = ((UDI) tmp < (UDI) a) || (c && tmp == a); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| ADDOFDI (DI a, DI b, BI c) |
| { |
| DI tmp = ADDDI (a, ADDDI (b, c)); |
| BI res = (((a < 0) == (b < 0)) |
| && ((a < 0) != (tmp < 0))); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| SUBCFDI (DI a, DI b, BI c) |
| { |
| BI res = ((UDI) a < (UDI) b) || (c && a == b); |
| return res; |
| } |
| |
| SEMOPS_INLINE BI |
| SUBOFDI (DI a, DI b, BI c) |
| { |
| DI tmp = SUBDI (a, ADDSI (b, c)); |
| BI res = (((a < 0) != (b < 0)) |
| && ((a < 0) != (tmp < 0))); |
| return res; |
| } |
| |
| #endif |
| |
| extern void cgen_rtx_error (SIM_CPU *, const char *); |
| |
| #endif /* CGEN_SEM_OPS_H */ |