blob: 0f8dc1b9716ed5c0ba13ececfc012ed59f8ba270 [file] [log] [blame]
/* readelf.c -- display contents of an ELF format file
Copyright (C) 1998-2024 Free Software Foundation, Inc.
Originally developed by Eric Youngdale <eric@andante.jic.com>
Modifications by Nick Clifton <nickc@redhat.com>
This file is part of GNU Binutils.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
/* The difference between readelf and objdump:
Both programs are capable of displaying the contents of ELF format files,
so why does the binutils project have two file dumpers ?
The reason is that objdump sees an ELF file through a BFD filter of the
world; if BFD has a bug where, say, it disagrees about a machine constant
in e_flags, then the odds are good that it will remain internally
consistent. The linker sees it the BFD way, objdump sees it the BFD way,
GAS sees it the BFD way. There was need for a tool to go find out what
the file actually says.
This is why the readelf program does not link against the BFD library - it
exists as an independent program to help verify the correct working of BFD.
There is also the case that readelf can provide more information about an
ELF file than is provided by objdump. In particular it can display DWARF
debugging information which (at the moment) objdump cannot. */
#include "sysdep.h"
#include <assert.h>
#include <time.h>
#include <zlib.h>
#ifdef HAVE_ZSTD
#include <zstd.h>
#endif
#include <wchar.h>
#if defined HAVE_MSGPACK
#include <msgpack.h>
#endif
/* Define BFD64 here, even if our default architecture is 32 bit ELF
as this will allow us to read in and parse 64bit and 32bit ELF files. */
#define BFD64
#include "bfd.h"
#include "bucomm.h"
#include "elfcomm.h"
#include "demanguse.h"
#include "dwarf.h"
#include "ctf-api.h"
#include "sframe-api.h"
#include "demangle.h"
#include "elf/common.h"
#include "elf/external.h"
#include "elf/internal.h"
/* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
we can obtain the H8 reloc numbers. We need these for the
get_reloc_size() function. We include h8.h again after defining
RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
#include "elf/h8.h"
#undef _ELF_H8_H
/* Undo the effects of #including reloc-macros.h. */
#undef START_RELOC_NUMBERS
#undef RELOC_NUMBER
#undef FAKE_RELOC
#undef EMPTY_RELOC
#undef END_RELOC_NUMBERS
#undef _RELOC_MACROS_H
/* The following headers use the elf/reloc-macros.h file to
automatically generate relocation recognition functions
such as elf_mips_reloc_type() */
#define RELOC_MACROS_GEN_FUNC
#include "elf/aarch64.h"
#include "elf/alpha.h"
#include "elf/amdgpu.h"
#include "elf/arc.h"
#include "elf/arm.h"
#include "elf/avr.h"
#include "elf/bfin.h"
#include "elf/cr16.h"
#include "elf/cris.h"
#include "elf/crx.h"
#include "elf/csky.h"
#include "elf/d10v.h"
#include "elf/d30v.h"
#include "elf/dlx.h"
#include "elf/bpf.h"
#include "elf/epiphany.h"
#include "elf/fr30.h"
#include "elf/frv.h"
#include "elf/ft32.h"
#include "elf/h8.h"
#include "elf/hppa.h"
#include "elf/i386.h"
#include "elf/i370.h"
#include "elf/i860.h"
#include "elf/i960.h"
#include "elf/ia64.h"
#include "elf/ip2k.h"
#include "elf/kvx.h"
#include "elf/lm32.h"
#include "elf/iq2000.h"
#include "elf/m32c.h"
#include "elf/m32r.h"
#include "elf/m68k.h"
#include "elf/m68hc11.h"
#include "elf/s12z.h"
#include "elf/mcore.h"
#include "elf/mep.h"
#include "elf/metag.h"
#include "elf/microblaze.h"
#include "elf/mips.h"
#include "elf/mmix.h"
#include "elf/mn10200.h"
#include "elf/mn10300.h"
#include "elf/moxie.h"
#include "elf/mt.h"
#include "elf/msp430.h"
#include "elf/nds32.h"
#include "elf/nfp.h"
#include "elf/nios2.h"
#include "elf/or1k.h"
#include "elf/pj.h"
#include "elf/ppc.h"
#include "elf/ppc64.h"
#include "elf/pru.h"
#include "elf/riscv.h"
#include "elf/rl78.h"
#include "elf/rx.h"
#include "elf/s390.h"
#include "elf/score.h"
#include "elf/sh.h"
#include "elf/sparc.h"
#include "elf/spu.h"
#include "elf/tic6x.h"
#include "elf/tilegx.h"
#include "elf/tilepro.h"
#include "elf/v850.h"
#include "elf/vax.h"
#include "elf/visium.h"
#include "elf/wasm32.h"
#include "elf/x86-64.h"
#include "elf/xgate.h"
#include "elf/xstormy16.h"
#include "elf/xtensa.h"
#include "elf/z80.h"
#include "elf/loongarch.h"
#include "elf/bpf.h"
#include "getopt.h"
#include "libiberty.h"
#include "safe-ctype.h"
#include "filenames.h"
#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
#endif
typedef struct elf_section_list
{
Elf_Internal_Shdr * hdr;
struct elf_section_list * next;
} elf_section_list;
/* Flag bits indicating particular types of dump. */
#define HEX_DUMP (1 << 0) /* The -x command line switch. */
#ifdef SUPPORT_DISASSEMBLY
#define DISASS_DUMP (1 << 1) /* The -i command line switch. */
#endif
#define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
#define STRING_DUMP (1 << 3) /* The -p command line switch. */
#define RELOC_DUMP (1 << 4) /* The -R command line switch. */
#define CTF_DUMP (1 << 5) /* The --ctf command line switch. */
#define SFRAME_DUMP (1 << 6) /* The --sframe command line switch. */
#define AUTO_DUMP (1 << 7) /* The -j command line switch. */
typedef unsigned char dump_type;
/* A linked list of the section names for which dumps were requested. */
struct dump_list_entry
{
char * name;
dump_type type;
struct dump_list_entry * next;
};
/* A dynamic array of flags indicating for which sections a dump
has been requested via command line switches. */
struct dump_data
{
dump_type * dump_sects;
unsigned int num_dump_sects;
};
static struct dump_data cmdline;
static struct dump_list_entry * dump_sects_byname;
char * program_name = "readelf";
static bool show_name = false;
static bool do_dynamic = false;
static bool do_syms = false;
static bool do_dyn_syms = false;
static bool do_lto_syms = false;
static bool do_reloc = false;
static bool do_sections = false;
static bool do_section_groups = false;
static bool do_section_details = false;
static bool do_segments = false;
static bool do_unwind = false;
static bool do_using_dynamic = false;
static bool do_header = false;
static bool do_dump = false;
static bool do_version = false;
static bool do_histogram = false;
static bool do_debugging = false;
static bool do_ctf = false;
static bool do_sframe = false;
static bool do_arch = false;
static bool do_notes = false;
static bool do_archive_index = false;
static bool check_all = false;
static bool is_32bit_elf = false;
static bool decompress_dumps = false;
static bool do_not_show_symbol_truncation = false;
static bool do_demangle = false; /* Pretty print C++ symbol names. */
static bool process_links = false;
static bool dump_any_debugging = false;
static bool extra_sym_info = false;
static int demangle_flags = DMGL_ANSI | DMGL_PARAMS;
static int sym_base = 0;
static char *dump_ctf_parent_name;
static char *dump_ctf_symtab_name;
static char *dump_ctf_strtab_name;
struct group_list
{
struct group_list * next;
unsigned int section_index;
};
struct group
{
struct group_list * root;
unsigned int group_index;
};
typedef struct filedata
{
const char * file_name;
bool is_separate;
FILE * handle;
uint64_t file_size;
Elf_Internal_Ehdr file_header;
uint64_t archive_file_offset;
uint64_t archive_file_size;
/* Everything below this point is cleared out by free_filedata. */
Elf_Internal_Shdr * section_headers;
Elf_Internal_Phdr * program_headers;
char * string_table;
uint64_t string_table_length;
uint64_t dynamic_addr;
uint64_t dynamic_size;
uint64_t dynamic_nent;
Elf_Internal_Dyn * dynamic_section;
Elf_Internal_Shdr * dynamic_strtab_section;
char * dynamic_strings;
uint64_t dynamic_strings_length;
Elf_Internal_Shdr * dynamic_symtab_section;
uint64_t num_dynamic_syms;
Elf_Internal_Sym * dynamic_symbols;
uint64_t version_info[16];
unsigned int dynamic_syminfo_nent;
Elf_Internal_Syminfo * dynamic_syminfo;
uint64_t dynamic_syminfo_offset;
uint64_t nbuckets;
uint64_t nchains;
uint64_t * buckets;
uint64_t * chains;
uint64_t ngnubuckets;
uint64_t ngnuchains;
uint64_t * gnubuckets;
uint64_t * gnuchains;
uint64_t * mipsxlat;
uint64_t gnusymidx;
char * program_interpreter;
uint64_t dynamic_info[DT_RELRENT + 1];
uint64_t dynamic_info_DT_GNU_HASH;
uint64_t dynamic_info_DT_MIPS_XHASH;
elf_section_list * symtab_shndx_list;
size_t group_count;
struct group * section_groups;
struct group ** section_headers_groups;
/* A dynamic array of flags indicating for which sections a dump of
some kind has been requested. It is reset on a per-object file
basis and then initialised from the cmdline_dump_sects array,
the results of interpreting the -w switch, and the
dump_sects_byname list. */
struct dump_data dump;
} Filedata;
/* How to print a vma value. */
typedef enum print_mode
{
HEX,
HEX_5,
DEC,
DEC_5,
UNSIGNED,
UNSIGNED_5,
PREFIX_HEX,
PREFIX_HEX_5,
FULL_HEX,
LONG_HEX,
ZERO_HEX,
OCTAL,
OCTAL_5
}
print_mode;
typedef enum unicode_display_type
{
unicode_default = 0,
unicode_locale,
unicode_escape,
unicode_hex,
unicode_highlight,
unicode_invalid
} unicode_display_type;
static unicode_display_type unicode_display = unicode_default;
typedef enum
{
reltype_unknown,
reltype_rel,
reltype_rela,
reltype_relr
} relocation_type;
/* Versioned symbol info. */
enum versioned_symbol_info
{
symbol_undefined,
symbol_hidden,
symbol_public
};
static int
fseek64 (FILE *stream, int64_t offset, int whence)
{
#if defined (HAVE_FSEEKO64)
off64_t o = offset;
if (o != offset)
{
errno = EINVAL;
return -1;
}
return fseeko64 (stream, o, whence);
#elif defined (HAVE_FSEEKO)
off_t o = offset;
if (o != offset)
{
errno = EINVAL;
return -1;
}
return fseeko (stream, o, whence);
#else
long o = offset;
if (o != offset)
{
errno = EINVAL;
return -1;
}
return fseek (stream, o, whence);
#endif
}
static const char * get_symbol_version_string
(Filedata *, bool, const char *, size_t, unsigned,
Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
static bool process_notes_at
(Filedata *, Elf_Internal_Shdr *, uint64_t, uint64_t, uint64_t);
#define UNKNOWN -1
static inline const char *
section_name (const Filedata *filedata, const Elf_Internal_Shdr *hdr)
{
return filedata->string_table + hdr->sh_name;
}
static inline bool
section_name_valid (const Filedata *filedata, const Elf_Internal_Shdr *hdr)
{
return (filedata != NULL
&& hdr != NULL
&& filedata->string_table != NULL
&& hdr->sh_name < filedata->string_table_length);
}
/* Returns true if the given index is real/valid. Note: "real" here
means "references a real section in the section header" and not
"is a valid section index as per the ELF standard". */
static inline bool
section_index_real (const Filedata *filedata, unsigned int ndx)
{
return (filedata != NULL
&& filedata->section_headers != NULL
&& ndx < filedata->file_header.e_shnum
&& ndx > 0);
}
#define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
static inline bool
valid_symbol_name (const char *strtab, size_t strtab_size, uint64_t offset)
{
return strtab != NULL && offset < strtab_size;
}
static inline bool
valid_dynamic_name (const Filedata *filedata, uint64_t offset)
{
return valid_symbol_name (filedata->dynamic_strings,
filedata->dynamic_strings_length, offset);
}
/* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
already been called and verified that the string exists. */
static inline const char *
get_dynamic_name (const Filedata *filedata, size_t offset)
{
return filedata->dynamic_strings + offset;
}
#define REMOVE_ARCH_BITS(ADDR) \
do \
{ \
if (filedata->file_header.e_machine == EM_ARM) \
(ADDR) &= ~1; \
} \
while (0)
/* Get the correct GNU hash section name. */
#define GNU_HASH_SECTION_NAME(filedata) \
filedata->dynamic_info_DT_MIPS_XHASH ? ".MIPS.xhash" : ".gnu.hash"
/* Retrieve NMEMB structures, each SIZE bytes long from FILEDATA starting at
OFFSET + the offset of the current archive member, if we are examining an
archive. Put the retrieved data into VAR, if it is not NULL. Otherwise
allocate a buffer using malloc and fill that. In either case return the
pointer to the start of the retrieved data or NULL if something went wrong.
If something does go wrong and REASON is not NULL then emit an error
message using REASON as part of the context. */
static void *
get_data (void *var,
Filedata *filedata,
uint64_t offset,
uint64_t size,
uint64_t nmemb,
const char *reason)
{
void * mvar;
uint64_t amt = size * nmemb;
if (size == 0 || nmemb == 0)
return NULL;
/* If size_t is smaller than uint64_t, eg because you are building
on a 32-bit host, then make sure that when the sizes are cast to
size_t no information is lost. */
if ((size_t) size != size
|| (size_t) nmemb != nmemb
|| (size_t) amt != amt
|| amt / size != nmemb
|| (size_t) amt + 1 == 0)
{
if (reason)
error (_("Size overflow prevents reading %" PRIu64
" elements of size %" PRIu64 " for %s\n"),
nmemb, size, reason);
return NULL;
}
/* Be kind to memory checkers (eg valgrind, address sanitizer) by not
attempting to allocate memory when the read is bound to fail. */
if (filedata->archive_file_offset > filedata->file_size
|| offset > filedata->file_size - filedata->archive_file_offset
|| amt > filedata->file_size - filedata->archive_file_offset - offset)
{
if (reason)
error (_("Reading %" PRIu64 " bytes extends past end of file for %s\n"),
amt, reason);
return NULL;
}
if (fseek64 (filedata->handle, filedata->archive_file_offset + offset,
SEEK_SET))
{
if (reason)
error (_("Unable to seek to %#" PRIx64 " for %s\n"),
filedata->archive_file_offset + offset, reason);
return NULL;
}
mvar = var;
if (mvar == NULL)
{
/* + 1 so that we can '\0' terminate invalid string table sections. */
mvar = malloc ((size_t) amt + 1);
if (mvar == NULL)
{
if (reason)
error (_("Out of memory allocating %" PRIu64 " bytes for %s\n"),
amt, reason);
return NULL;
}
((char *) mvar)[amt] = '\0';
}
if (fread (mvar, (size_t) size, (size_t) nmemb, filedata->handle) != nmemb)
{
if (reason)
error (_("Unable to read in %" PRIu64 " bytes of %s\n"),
amt, reason);
if (mvar != var)
free (mvar);
return NULL;
}
return mvar;
}
/* Print a VMA value in the MODE specified.
Returns the number of characters displayed. */
static unsigned int
print_vma (uint64_t vma, print_mode mode)
{
unsigned int nc = 0;
switch (mode)
{
case FULL_HEX:
nc = printf ("0x");
/* Fall through. */
case LONG_HEX:
if (!is_32bit_elf)
return nc + printf ("%16.16" PRIx64, vma);
return nc + printf ("%8.8" PRIx64, vma);
case ZERO_HEX:
if (is_32bit_elf)
return printf ("%08" PRIx64, vma);
return printf ("%016" PRIx64, vma);
case DEC_5:
if (vma <= 99999)
return printf ("%5" PRId64, vma);
/* Fall through. */
case PREFIX_HEX:
nc = printf ("0x");
/* Fall through. */
case HEX:
return nc + printf ("%" PRIx64, vma);
case PREFIX_HEX_5:
nc = printf ("0x");
/* Fall through. */
case HEX_5:
return nc + printf ("%05" PRIx64, vma);
case DEC:
return printf ("%" PRId64, vma);
case UNSIGNED:
return printf ("%" PRIu64, vma);
case UNSIGNED_5:
return printf ("%5" PRIu64, vma);
case OCTAL:
return printf ("%" PRIo64, vma);
case OCTAL_5:
return printf ("%5" PRIo64, vma);
default:
/* FIXME: Report unrecognised mode ? */
return 0;
}
}
/* Display a symbol on stdout. Handles the display of control characters and
multibye characters (assuming the host environment supports them).
Display at most abs(WIDTH) characters, truncating as necessary,
unless do_wide or extra_sym_info is true.
If truncation will happen and do_not_show_symbol_truncation is FALSE then display
abs(WIDTH) - 5 characters followed by "[...]".
If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
padding as necessary.
Returns the number of emitted characters. */
static unsigned int
print_symbol_name (signed int width, const char * symbol)
{
bool extra_padding = false;
bool do_dots = false;
signed int num_printed = 0;
#ifdef HAVE_MBSTATE_T
mbstate_t state;
#endif
unsigned int width_remaining;
const void * alloced_symbol = NULL;
if (width < 0)
{
/* Keep the width positive. This helps the code below. */
width = - width;
extra_padding = true;
}
else if (width == 0)
return 0;
if (do_wide || extra_sym_info)
/* Set the remaining width to a very large value.
This simplifies the code below. */
width_remaining = INT_MAX;
else
{
width_remaining = width;
if (! do_not_show_symbol_truncation
&& (int) strlen (symbol) > width)
{
width_remaining -= 5;
if ((int) width_remaining < 0)
width_remaining = 0;
do_dots = true;
}
}
#ifdef HAVE_MBSTATE_T
/* Initialise the multibyte conversion state. */
memset (& state, 0, sizeof (state));
#endif
if (do_demangle && *symbol)
{
const char * res = cplus_demangle (symbol, demangle_flags);
if (res != NULL)
alloced_symbol = symbol = res;
}
while (width_remaining)
{
size_t n;
const char c = *symbol++;
if (c == 0)
break;
if (ISPRINT (c))
{
putchar (c);
width_remaining --;
num_printed ++;
}
else if (ISCNTRL (c))
{
/* Do not print control characters directly as they can affect terminal
settings. Such characters usually appear in the names generated
by the assembler for local labels. */
if (width_remaining < 2)
break;
printf ("^%c", c + 0x40);
width_remaining -= 2;
num_printed += 2;
}
else if (c == 0x7f)
{
if (width_remaining < 5)
break;
printf ("<DEL>");
width_remaining -= 5;
num_printed += 5;
}
else if (unicode_display != unicode_locale
&& unicode_display != unicode_default)
{
/* Display unicode characters as something else. */
unsigned char bytes[4];
bool is_utf8;
unsigned int nbytes;
bytes[0] = c;
if (bytes[0] < 0xc0)
{
nbytes = 1;
is_utf8 = false;
}
else
{
bytes[1] = *symbol++;
if ((bytes[1] & 0xc0) != 0x80)
{
is_utf8 = false;
/* Do not consume this character. It may only
be the first byte in the sequence that was
corrupt. */
--symbol;
nbytes = 1;
}
else if ((bytes[0] & 0x20) == 0)
{
is_utf8 = true;
nbytes = 2;
}
else
{
bytes[2] = *symbol++;
if ((bytes[2] & 0xc0) != 0x80)
{
is_utf8 = false;
symbol -= 2;
nbytes = 1;
}
else if ((bytes[0] & 0x10) == 0)
{
is_utf8 = true;
nbytes = 3;
}
else
{
bytes[3] = *symbol++;
nbytes = 4;
if ((bytes[3] & 0xc0) != 0x80)
{
is_utf8 = false;
symbol -= 3;
nbytes = 1;
}
else
is_utf8 = true;
}
}
}
if (unicode_display == unicode_invalid)
is_utf8 = false;
if (unicode_display == unicode_hex || ! is_utf8)
{
unsigned int i;
if (width_remaining < (nbytes * 2) + 2)
break;
putchar (is_utf8 ? '<' : '{');
printf ("0x");
for (i = 0; i < nbytes; i++)
printf ("%02x", bytes[i]);
putchar (is_utf8 ? '>' : '}');
}
else
{
if (unicode_display == unicode_highlight && isatty (1))
printf ("\x1B[31;47m"); /* Red. */
switch (nbytes)
{
case 2:
if (width_remaining < 6)
break;
printf ("\\u%02x%02x",
(bytes[0] & 0x1c) >> 2,
((bytes[0] & 0x03) << 6) | (bytes[1] & 0x3f));
break;
case 3:
if (width_remaining < 6)
break;
printf ("\\u%02x%02x",
((bytes[0] & 0x0f) << 4) | ((bytes[1] & 0x3c) >> 2),
((bytes[1] & 0x03) << 6) | (bytes[2] & 0x3f));
break;
case 4:
if (width_remaining < 8)
break;
printf ("\\u%02x%02x%02x",
((bytes[0] & 0x07) << 6) | ((bytes[1] & 0x3c) >> 2),
((bytes[1] & 0x03) << 6) | ((bytes[2] & 0x3c) >> 2),
((bytes[2] & 0x03) << 6) | (bytes[3] & 0x3f));
break;
default:
/* URG. */
break;
}
if (unicode_display == unicode_highlight && isatty (1))
printf ("\033[0m"); /* Default colour. */
}
if (bytes[nbytes - 1] == 0)
break;
}
else
{
#ifdef HAVE_MBSTATE_T
wchar_t w;
#endif
/* Let printf do the hard work of displaying multibyte characters. */
printf ("%.1s", symbol - 1);
width_remaining --;
num_printed ++;
#ifdef HAVE_MBSTATE_T
/* Try to find out how many bytes made up the character that was
just printed. Advance the symbol pointer past the bytes that
were displayed. */
n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
#else
n = 1;
#endif
if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
symbol += (n - 1);
}
}
if (do_dots)
num_printed += printf ("[...]");
if (extra_padding && num_printed < width)
{
/* Fill in the remaining spaces. */
printf ("%-*s", width - num_printed, " ");
num_printed = width;
}
free ((void *) alloced_symbol);
return num_printed;
}
/* Returns a pointer to a static buffer containing a printable version of
the given section's name. Like print_symbol, except that it does not try
to print multibyte characters, it just interprets them as hex values. */
static const char *
printable_section_name (Filedata * filedata, const Elf_Internal_Shdr * sec)
{
#define NUM_SEC_NAME_BUFS 5
#define MAX_PRINT_SEC_NAME_LEN 256
static int sec_name_buf_index = 0;
/* We use a rotating array of static buffers, so that multiple successive calls
to printable_section_name() will still work. eg when used in a printf. */
static char sec_name_buf [NUM_SEC_NAME_BUFS][MAX_PRINT_SEC_NAME_LEN + 1];
const char * name;
char * buf;
char * buf_start;
char c;
unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
/* Validate the input parameters. */
if (filedata == NULL)
return _("<internal error>");
if (sec == NULL)
return _("<none>");
if (filedata->string_table == NULL)
return _("<no-strings>");
if (sec->sh_name >= filedata->string_table_length)
return _("<corrupt>");
/* Select a buffer to use. */
buf_start = buf = sec_name_buf[sec_name_buf_index];
if (++sec_name_buf_index >= NUM_SEC_NAME_BUFS)
sec_name_buf_index = 0;
name = section_name (filedata, sec);
while ((c = * name ++) != 0)
{
if (ISCNTRL (c))
{
if (remaining < 2)
break;
* buf ++ = '^';
* buf ++ = c + 0x40;
remaining -= 2;
}
else if (ISPRINT (c))
{
* buf ++ = c;
remaining -= 1;
}
else
{
static char hex[17] = "0123456789ABCDEF";
if (remaining < 4)
break;
* buf ++ = '<';
* buf ++ = hex[(c & 0xf0) >> 4];
* buf ++ = hex[c & 0x0f];
* buf ++ = '>';
remaining -= 4;
}
if (remaining == 0)
break;
}
* buf = 0;
return buf_start;
}
/* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
This OS has so many departures from the ELF standard that we test it at
many places. */
static inline bool
is_ia64_vms (Filedata * filedata)
{
return filedata->file_header.e_machine == EM_IA_64
&& filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
}
static const char *
printable_section_name_from_index (Filedata * filedata,
size_t ndx,
bool * is_special)
{
if (is_special != NULL)
* is_special = true;
switch (ndx)
{
case SHN_UNDEF: return "UND";
case SHN_ABS: return "ABS";
case SHN_COMMON: return "COM";
break;
}
if (filedata != NULL)
{
switch (filedata->file_header.e_machine)
{
case EM_MIPS:
if (ndx == SHN_MIPS_SCOMMON)
return "SCOMMON";
if (ndx == SHN_MIPS_SUNDEFINED)
return "SUNDEF";
break;
case EM_TI_C6000:
if (ndx == SHN_TIC6X_SCOMMON)
return "SCOM";
break;
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
if (ndx == SHN_X86_64_LCOMMON)
return "LARGE_COM";
break;
case EM_IA_64:
if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
&& ndx == SHN_IA_64_ANSI_COMMON)
return "ANSI_COM";
if (is_ia64_vms (filedata) && ndx == SHN_IA_64_VMS_SYMVEC)
return "VMS_SYMVEC";
break;
default:
break;
}
if (filedata->section_headers != NULL
&& ndx < filedata->file_header.e_shnum)
{
const char * res;
res = printable_section_name (filedata, filedata->section_headers + ndx);
if (is_special != NULL)
* is_special = (res[0] == '<');
return res;
}
}
static char name_buf[40];
unsigned int short_ndx = (unsigned int) (ndx & 0xffff);
if (ndx >= SHN_LOPROC && ndx <= SHN_HIPROC)
sprintf (name_buf, "PRC[0x%04x]", short_ndx);
else if (ndx >= SHN_LOOS && ndx <= SHN_HIOS)
sprintf (name_buf, "OS [0x%04x]", short_ndx);
else if (ndx >= SHN_LORESERVE)
sprintf (name_buf, "RSV[0x%04x]", short_ndx);
else if (filedata->file_header.e_shnum != 0
&& ndx >= filedata->file_header.e_shnum)
sprintf (name_buf, _("BAD[0x%lx]"), (long) ndx);
else
sprintf (name_buf, "<section 0x%lx>", (long) ndx);
return name_buf;
}
/* Return a pointer to section NAME, or NULL if no such section exists. */
static Elf_Internal_Shdr *
find_section (Filedata * filedata, const char * name)
{
unsigned int i;
if (filedata->section_headers == NULL)
return NULL;
for (i = 0; i < filedata->file_header.e_shnum; i++)
if (section_name_valid (filedata, filedata->section_headers + i)
&& streq (section_name (filedata, filedata->section_headers + i),
name))
return filedata->section_headers + i;
return NULL;
}
/* Return a pointer to a section containing ADDR, or NULL if no such
section exists. */
static Elf_Internal_Shdr *
find_section_by_address (Filedata * filedata, uint64_t addr)
{
unsigned int i;
if (filedata->section_headers == NULL)
return NULL;
for (i = 0; i < filedata->file_header.e_shnum; i++)
{
Elf_Internal_Shdr *sec = filedata->section_headers + i;
if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
return sec;
}
return NULL;
}
static Elf_Internal_Shdr *
find_section_by_type (Filedata * filedata, unsigned int type)
{
unsigned int i;
if (filedata->section_headers == NULL)
return NULL;
for (i = 0; i < filedata->file_header.e_shnum; i++)
{
Elf_Internal_Shdr *sec = filedata->section_headers + i;
if (sec->sh_type == type)
return sec;
}
return NULL;
}
static Elf_Internal_Shdr *
find_section_by_name (Filedata * filedata, const char * name)
{
unsigned int i;
if (filedata->section_headers == NULL || filedata->string_table_length == 0)
return NULL;
for (i = 0; i < filedata->file_header.e_shnum; i++)
{
Elf_Internal_Shdr *sec = filedata->section_headers + i;
if (sec->sh_name < filedata->string_table_length
&& streq (name, filedata->string_table + sec->sh_name))
return sec;
}
return NULL;
}
/* Return a pointer to section NAME, or NULL if no such section exists,
restricted to the list of sections given in SET. */
static Elf_Internal_Shdr *
find_section_in_set (Filedata * filedata, const char * name, unsigned int * set)
{
unsigned int i;
if (filedata->section_headers == NULL)
return NULL;
if (set != NULL)
{
while ((i = *set++) > 0)
{
/* See PR 21156 for a reproducer. */
if (i >= filedata->file_header.e_shnum)
continue; /* FIXME: Should we issue an error message ? */
if (section_name_valid (filedata, filedata->section_headers + i)
&& streq (section_name (filedata, filedata->section_headers + i),
name))
return filedata->section_headers + i;
}
}
return find_section (filedata, name);
}
/* Guess the relocation size commonly used by the specific machines. */
static bool
guess_is_rela (unsigned int e_machine)
{
switch (e_machine)
{
/* Targets that use REL relocations. */
case EM_386:
case EM_IAMCU:
case EM_960:
case EM_ARM:
case EM_D10V:
case EM_CYGNUS_D10V:
case EM_DLX:
case EM_MIPS:
case EM_MIPS_RS3_LE:
case EM_CYGNUS_M32R:
case EM_SCORE:
case EM_XGATE:
case EM_NFP:
case EM_BPF:
return false;
/* Targets that use RELA relocations. */
case EM_68K:
case EM_860:
case EM_AARCH64:
case EM_ADAPTEVA_EPIPHANY:
case EM_ALPHA:
case EM_ALTERA_NIOS2:
case EM_ARC:
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
case EM_ARC_COMPACT3:
case EM_ARC_COMPACT3_64:
case EM_AVR:
case EM_AVR_OLD:
case EM_BLACKFIN:
case EM_CR16:
case EM_CRIS:
case EM_CRX:
case EM_CSKY:
case EM_D30V:
case EM_CYGNUS_D30V:
case EM_FR30:
case EM_FT32:
case EM_CYGNUS_FR30:
case EM_CYGNUS_FRV:
case EM_H8S:
case EM_H8_300:
case EM_H8_300H:
case EM_IA_64:
case EM_IP2K:
case EM_IP2K_OLD:
case EM_IQ2000:
case EM_KVX:
case EM_LATTICEMICO32:
case EM_M32C_OLD:
case EM_M32C:
case EM_M32R:
case EM_MCORE:
case EM_CYGNUS_MEP:
case EM_METAG:
case EM_MMIX:
case EM_MN10200:
case EM_CYGNUS_MN10200:
case EM_MN10300:
case EM_CYGNUS_MN10300:
case EM_MOXIE:
case EM_MSP430:
case EM_MSP430_OLD:
case EM_MT:
case EM_NDS32:
case EM_NIOS32:
case EM_OR1K:
case EM_PPC64:
case EM_PPC:
case EM_TI_PRU:
case EM_RISCV:
case EM_RL78:
case EM_RX:
case EM_S390:
case EM_S390_OLD:
case EM_SH:
case EM_SPARC:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPU:
case EM_TI_C6000:
case EM_TILEGX:
case EM_TILEPRO:
case EM_V800:
case EM_V850:
case EM_CYGNUS_V850:
case EM_VAX:
case EM_VISIUM:
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
case EM_XSTORMY16:
case EM_XTENSA:
case EM_XTENSA_OLD:
case EM_MICROBLAZE:
case EM_MICROBLAZE_OLD:
case EM_WEBASSEMBLY:
return true;
case EM_68HC05:
case EM_68HC08:
case EM_68HC11:
case EM_68HC16:
case EM_FX66:
case EM_ME16:
case EM_MMA:
case EM_NCPU:
case EM_NDR1:
case EM_PCP:
case EM_ST100:
case EM_ST19:
case EM_ST7:
case EM_ST9PLUS:
case EM_STARCORE:
case EM_SVX:
case EM_TINYJ:
default:
warn (_("Don't know about relocations on this machine architecture\n"));
return false;
}
}
/* Load RELA type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
Returns TRUE upon success, FALSE otherwise. If successful then a
pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
and the number of relocs loaded is placed in *NRELASP. It is the caller's
responsibility to free the allocated buffer. */
static bool
slurp_rela_relocs (Filedata *filedata,
uint64_t rel_offset,
uint64_t rel_size,
Elf_Internal_Rela **relasp,
uint64_t *nrelasp)
{
Elf_Internal_Rela * relas;
uint64_t nrelas;
unsigned int i;
if (is_32bit_elf)
{
Elf32_External_Rela * erelas;
erelas = (Elf32_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
rel_size, _("32-bit relocation data"));
if (!erelas)
return false;
nrelas = rel_size / sizeof (Elf32_External_Rela);
relas = (Elf_Internal_Rela *) cmalloc (nrelas,
sizeof (Elf_Internal_Rela));
if (relas == NULL)
{
free (erelas);
error (_("out of memory parsing relocs\n"));
return false;
}
for (i = 0; i < nrelas; i++)
{
relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
relas[i].r_info = BYTE_GET (erelas[i].r_info);
relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
}
free (erelas);
}
else
{
Elf64_External_Rela * erelas;
erelas = (Elf64_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
rel_size, _("64-bit relocation data"));
if (!erelas)
return false;
nrelas = rel_size / sizeof (Elf64_External_Rela);
relas = (Elf_Internal_Rela *) cmalloc (nrelas,
sizeof (Elf_Internal_Rela));
if (relas == NULL)
{
free (erelas);
error (_("out of memory parsing relocs\n"));
return false;
}
for (i = 0; i < nrelas; i++)
{
relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
relas[i].r_info = BYTE_GET (erelas[i].r_info);
relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
if (filedata->file_header.e_machine == EM_MIPS
&& filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
{
/* In little-endian objects, r_info isn't really a
64-bit little-endian value: it has a 32-bit
little-endian symbol index followed by four
individual byte fields. Reorder INFO
accordingly. */
uint64_t inf = relas[i].r_info;
inf = (((inf & 0xffffffff) << 32)
| ((inf >> 56) & 0xff)
| ((inf >> 40) & 0xff00)
| ((inf >> 24) & 0xff0000)
| ((inf >> 8) & 0xff000000));
relas[i].r_info = inf;
}
}
free (erelas);
}
*relasp = relas;
*nrelasp = nrelas;
return true;
}
/* Load REL type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
Returns TRUE upon success, FALSE otherwise. If successful then a
pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
and the number of relocs loaded is placed in *NRELSP. It is the caller's
responsibility to free the allocated buffer. */
static bool
slurp_rel_relocs (Filedata *filedata,
uint64_t rel_offset,
uint64_t rel_size,
Elf_Internal_Rela **relsp,
uint64_t *nrelsp)
{
Elf_Internal_Rela * rels;
uint64_t nrels;
unsigned int i;
if (is_32bit_elf)
{
Elf32_External_Rel * erels;
erels = (Elf32_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
rel_size, _("32-bit relocation data"));
if (!erels)
return false;
nrels = rel_size / sizeof (Elf32_External_Rel);
rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
if (rels == NULL)
{
free (erels);
error (_("out of memory parsing relocs\n"));
return false;
}
for (i = 0; i < nrels; i++)
{
rels[i].r_offset = BYTE_GET (erels[i].r_offset);
rels[i].r_info = BYTE_GET (erels[i].r_info);
rels[i].r_addend = 0;
}
free (erels);
}
else
{
Elf64_External_Rel * erels;
erels = (Elf64_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
rel_size, _("64-bit relocation data"));
if (!erels)
return false;
nrels = rel_size / sizeof (Elf64_External_Rel);
rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
if (rels == NULL)
{
free (erels);
error (_("out of memory parsing relocs\n"));
return false;
}
for (i = 0; i < nrels; i++)
{
rels[i].r_offset = BYTE_GET (erels[i].r_offset);
rels[i].r_info = BYTE_GET (erels[i].r_info);
rels[i].r_addend = 0;
if (filedata->file_header.e_machine == EM_MIPS
&& filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
{
/* In little-endian objects, r_info isn't really a
64-bit little-endian value: it has a 32-bit
little-endian symbol index followed by four
individual byte fields. Reorder INFO
accordingly. */
uint64_t inf = rels[i].r_info;
inf = (((inf & 0xffffffff) << 32)
| ((inf >> 56) & 0xff)
| ((inf >> 40) & 0xff00)
| ((inf >> 24) & 0xff0000)
| ((inf >> 8) & 0xff000000));
rels[i].r_info = inf;
}
}
free (erels);
}
*relsp = rels;
*nrelsp = nrels;
return true;
}
/* Returns the reloc type extracted from the reloc info field. */
static unsigned int
get_reloc_type (Filedata * filedata, uint64_t reloc_info)
{
if (is_32bit_elf)
return ELF32_R_TYPE (reloc_info);
switch (filedata->file_header.e_machine)
{
case EM_MIPS:
/* Note: We assume that reloc_info has already been adjusted for us. */
return ELF64_MIPS_R_TYPE (reloc_info);
case EM_SPARCV9:
return ELF64_R_TYPE_ID (reloc_info);
default:
return ELF64_R_TYPE (reloc_info);
}
}
/* Return the symbol index extracted from the reloc info field. */
static uint64_t
get_reloc_symindex (uint64_t reloc_info)
{
return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
}
static inline bool
uses_msp430x_relocs (Filedata * filedata)
{
return
filedata->file_header.e_machine == EM_MSP430 /* Paranoia. */
/* GCC uses osabi == ELFOSBI_STANDALONE. */
&& (((filedata->file_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
/* TI compiler uses ELFOSABI_NONE. */
|| (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
}
static const char *
get_symbol_at (Filedata * filedata,
Elf_Internal_Sym * symtab,
uint64_t nsyms,
char * strtab,
uint64_t where,
uint64_t * offset_return)
{
Elf_Internal_Sym * beg = symtab;
Elf_Internal_Sym * end = symtab + nsyms;
Elf_Internal_Sym * best = NULL;
uint64_t dist = 0x100000;
/* FIXME: Since this function is likely to be called repeatedly with
slightly increasing addresses each time, we could speed things up by
caching the last returned value and starting our search from there. */
while (beg < end)
{
Elf_Internal_Sym * sym;
uint64_t value;
sym = beg + (end - beg) / 2;
value = sym->st_value;
if (where >= value
&& where - value < dist)
{
best = sym;
dist = where - value;
if (dist == 0)
break;
}
if (where < value)
end = sym;
else
beg = sym + 1;
}
const char *name;
/* If there is a section start closer than the found symbol then
use that for symbolizing the address. */
Elf_Internal_Shdr *sec = find_section_by_address (filedata, where);
if (sec != NULL
&& where - sec->sh_addr < dist
&& section_name_valid (filedata, sec))
{
name = section_name (filedata, sec);
dist = where - sec->sh_addr;
}
else if (best != NULL)
name = strtab + best->st_name;
else
return NULL;
if (offset_return != NULL)
* offset_return = dist;
return name;
}
static void
print_relr_addr_and_sym (Filedata * filedata,
Elf_Internal_Sym * symtab,
uint64_t nsyms,
char * strtab,
uint64_t where)
{
const char * symname = NULL;
uint64_t offset = 0;
print_vma (where, ZERO_HEX);
printf (" ");
symname = get_symbol_at (filedata, symtab, nsyms, strtab, where, & offset);
if (symname == NULL)
printf ("<no sym>");
else if (offset == 0)
print_symbol_name (38, symname);
else
{
print_symbol_name (28, symname);
printf (" + ");
print_vma (offset, PREFIX_HEX);
}
}
/* See bfd_is_aarch64_special_symbol_name. */
static bool
is_aarch64_special_symbol_name (const char *name)
{
if (!name || name[0] != '$')
return false;
if (name[1] == 'x' || name[1] == 'd')
/* Map. */;
else if (name[1] == 'm' || name[1] == 'f' || name[1] == 'p')
/* Tag. */;
else
return false;
return name[2] == 0 || name[2] == '.';
}
static bool
is_special_symbol_name (Filedata * filedata, const char * s)
{
switch (filedata->file_header.e_machine)
{
case EM_AARCH64:
return is_aarch64_special_symbol_name (s);
default:
return false;
}
}
/* Allows selecting the best symbol from a set for displaying addresses.
BEST is the current best or NULL if there are no good symbols yet.
SYM is the next symbol to consider, if it is better than BEST then
return SYM else return BEST. */
static Elf_Internal_Sym *
select_display_sym (Filedata * filedata,
char * strtab,
uint64_t strtablen,
Elf_Internal_Sym * best,
Elf_Internal_Sym * sym)
{
/* Ignore empty or invalid syms. */
if (sym->st_name == 0)
return best;
if (sym->st_name >= strtablen)
return best;
/* Ignore undefined or TLS syms. */
if (sym->st_shndx == SHN_UNDEF)
return best;
if (ELF_ST_TYPE (sym->st_info) == STT_TLS)
return best;
char *s = strtab + sym->st_name;
/* Don't display special symbols. */
if (is_special_symbol_name (filedata, s))
return best;
/* Here SYM is good for display. */
if (best == NULL)
return sym;
char *sbest = strtab + best->st_name;
/* Prefer non-local symbols. */
if (ELF_ST_BIND (sym->st_info) == STB_LOCAL
&& ELF_ST_BIND (best->st_info) != STB_LOCAL)
return best;
if (ELF_ST_BIND (sym->st_info) != STB_LOCAL
&& ELF_ST_BIND (best->st_info) == STB_LOCAL)
return sym;
/* Select based on lexicographic order. */
return strcmp (s, sbest) < 0 ? sym : best;
}
/* Filter the sorted SYMTAB symbol array in-place to select at most one
symbol for an address and drop symbols that are not good to display.
Returns the new array length. */
static uint64_t
filter_display_syms (Filedata * filedata,
Elf_Internal_Sym * symtab,
uint64_t nsyms,
char * strtab,
uint64_t strtablen)
{
Elf_Internal_Sym *r = symtab;
Elf_Internal_Sym *w = symtab;
Elf_Internal_Sym *best = NULL;
Elf_Internal_Sym *end = symtab + nsyms;
while (r < end)
{
/* Select the best symbol for an address. */
while (r < end
&& (best == NULL || best->st_value == r->st_value))
{
best = select_display_sym (filedata, strtab, strtablen, best, r);
r++;
}
if (best != NULL)
{
*w = *best;
w++;
best = NULL;
}
}
return w - symtab;
}
static /* signed */ int
symcmp (const void *p, const void *q)
{
Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
}
static uint64_t
count_relr_relocations (Filedata * filedata,
Elf_Internal_Shdr * section)
{
uint64_t * relrs;
uint64_t nentries;
uint64_t i;
uint64_t count;
int entsize;
if (section == NULL
|| section->sh_type != SHT_RELR
|| section->sh_size == 0)
return 0;
entsize = section->sh_entsize;
if (entsize == 0)
entsize = is_32bit_elf
? sizeof (Elf32_External_Relr) : sizeof (Elf64_External_Relr);
else if (entsize != sizeof (Elf32_External_Relr)
&& entsize != sizeof (Elf64_External_Relr))
return 0;
nentries = section->sh_size / entsize;
if (nentries == 0)
return 0;
/* FIXME: This call to get_data duplicates one that follows in
dump_relr_relocations(). They could be combined into just
one call. */
relrs = get_data (NULL, filedata, section->sh_offset, 1,
section->sh_size, _("RELR relocation data"));
if (relrs == NULL)
return 0;
for (count = i = 0; i < nentries; i++)
{
uint64_t entry;
if (entsize == sizeof (Elf32_External_Relr))
entry = BYTE_GET (((Elf32_External_Relr *)relrs)[i].r_data);
else
entry = BYTE_GET (((Elf64_External_Relr *)relrs)[i].r_data);
if ((entry & 1) == 0)
{
++ count;
}
else
{
if (entry == 1)
continue;
for (; entry >>= 1;)
if ((entry & 1) == 1)
++ count;
}
}
free (relrs);
return count;
}
static bool
dump_relr_relocations (Filedata * filedata,
Elf_Internal_Shdr * section,
Elf_Internal_Sym * symtab,
uint64_t nsyms,
char * strtab,
uint64_t strtablen)
{
uint64_t * relrs;
uint64_t nentries, i;
uint64_t relr_size = section->sh_size;
int relr_entsize = section->sh_entsize;
uint64_t relr_offset = section->sh_offset;
uint64_t where = 0;
int num_bits_in_entry;
if (relr_entsize == 0)
relr_entsize = is_32bit_elf
? sizeof (Elf32_External_Relr) : sizeof (Elf64_External_Relr);
nentries = relr_size / relr_entsize;
if (nentries == 0)
return true;
if (relr_entsize == sizeof (Elf32_External_Relr))
num_bits_in_entry = 31;
else if (relr_entsize == sizeof (Elf64_External_Relr))
num_bits_in_entry = 63;
else
{
warn (_("Unexpected entsize for RELR section\n"));
return false;
}
relrs = get_data (NULL, filedata, relr_offset, 1, relr_size, _("RELR relocation data"));
if (relrs == NULL)
return false;
/* Paranoia. */
if (strtab == NULL)
strtablen = 0;
if (symtab == NULL)
nsyms = 0;
if (symtab != NULL)
{
/* Symbol tables are not sorted on address, but we want a quick lookup
for the symbol associated with each address computed below, so sort
the table then filter out unwanted entries. FIXME: This assumes that
the symbol table will not be used later on for some other purpose. */
qsort (symtab, nsyms, sizeof (Elf_Internal_Sym), symcmp);
nsyms = filter_display_syms (filedata, symtab, nsyms, strtab, strtablen);
}
if (relr_entsize == sizeof (Elf32_External_Relr))
printf (_ ("Index: Entry Address Symbolic Address\n"));
else
printf (_ ("Index: Entry Address Symbolic Address\n"));
for (i = 0; i < nentries; i++)
{
uint64_t entry;
if (relr_entsize == sizeof (Elf32_External_Relr))
entry = BYTE_GET (((Elf32_External_Relr *)relrs)[i].r_data);
else
entry = BYTE_GET (((Elf64_External_Relr *)relrs)[i].r_data);
/* We assume that there will never be more than 9999 entries. */
printf (_("%04u: "), (unsigned int) i);
print_vma (entry, ZERO_HEX);
printf (" ");
if ((entry & 1) == 0)
{
where = entry;
print_relr_addr_and_sym (filedata, symtab, nsyms, strtab, where);
printf ("\n");
where += relr_entsize;
}
else
{
bool first = true;
int j;
/* The least significant bit is ignored. */
if (entry == 1)
/* This can actually happen when the linker is allowed to shrink
RELR sections. For more details see: https://reviews.llvm.org/D67164. */
continue;
else if (i == 0)
warn (_("Unusual RELR bitmap - no previous entry to set the base address\n"));
for (j = 0; entry >>= 1; j++)
if ((entry & 1) == 1)
{
uint64_t addr = where + (j * relr_entsize);
if (first)
{
print_relr_addr_and_sym (filedata, symtab, nsyms, strtab, addr);
first = false;
}
else
{
printf (_("\n%*s "), relr_entsize == 4 ? 15 : 23, " ");
print_relr_addr_and_sym (filedata, symtab, nsyms, strtab, addr);
}
}
printf ("\n");
where += num_bits_in_entry * relr_entsize;
}
}
free (relrs);
return true;
}
/* Display the contents of the relocation data found at the specified
offset. */
static bool
dump_relocations (Filedata * filedata,
uint64_t rel_offset,
uint64_t rel_size,
Elf_Internal_Sym * symtab,
uint64_t nsyms,
char * strtab,
uint64_t strtablen,
relocation_type rel_type,
bool is_dynsym)
{
size_t i;
Elf_Internal_Rela * rels;
bool res = true;
if (rel_type == reltype_unknown)
rel_type = guess_is_rela (filedata->file_header.e_machine) ? reltype_rela : reltype_rel;
if (rel_type == reltype_rela)
{
if (!slurp_rela_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
return false;
}
else if (rel_type == reltype_rel)
{
if (!slurp_rel_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
return false;
}
else if (rel_type == reltype_relr)
{
/* This should have been handled by display_relocations(). */
return false;
}
if (is_32bit_elf)
{
if (rel_type == reltype_rela)
{
if (do_wide)
printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
else
printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
}
else
{
if (do_wide)
printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
else
printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
}
}
else
{
if (rel_type == reltype_rela)
{
if (do_wide)
printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
else
printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
}
else
{
if (do_wide)
printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
else
printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
}
}
for (i = 0; i < rel_size; i++)
{
const char * rtype;
uint64_t offset;
uint64_t inf;
uint64_t symtab_index;
uint64_t type;
offset = rels[i].r_offset;
inf = rels[i].r_info;
type = get_reloc_type (filedata, inf);
symtab_index = get_reloc_symindex (inf);
if (is_32bit_elf)
{
printf ("%8.8lx %8.8lx ",
(unsigned long) offset & 0xffffffff,
(unsigned long) inf & 0xffffffff);
}
else
{
printf (do_wide
? "%16.16" PRIx64 " %16.16" PRIx64 " "
: "%12.12" PRIx64 " %12.12" PRIx64 " ",
offset, inf);
}
switch (filedata->file_header.e_machine)
{
default:
rtype = NULL;
break;
case EM_AARCH64:
rtype = elf_aarch64_reloc_type (type);
break;
case EM_M32R:
case EM_CYGNUS_M32R:
rtype = elf_m32r_reloc_type (type);
break;
case EM_386:
case EM_IAMCU:
rtype = elf_i386_reloc_type (type);
break;
case EM_68HC11:
case EM_68HC12:
rtype = elf_m68hc11_reloc_type (type);
break;
case EM_S12Z:
rtype = elf_s12z_reloc_type (type);
break;
case EM_68K:
rtype = elf_m68k_reloc_type (type);
break;
case EM_960:
rtype = elf_i960_reloc_type (type);
break;
case EM_AVR:
case EM_AVR_OLD:
rtype = elf_avr_reloc_type (type);
break;
case EM_OLD_SPARCV9:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
rtype = elf_sparc_reloc_type (type);
break;
case EM_SPU:
rtype = elf_spu_reloc_type (type);
break;
case EM_V800:
rtype = v800_reloc_type (type);
break;
case EM_V850:
case EM_CYGNUS_V850:
rtype = v850_reloc_type (type);
break;
case EM_D10V:
case EM_CYGNUS_D10V:
rtype = elf_d10v_reloc_type (type);
break;
case EM_D30V:
case EM_CYGNUS_D30V:
rtype = elf_d30v_reloc_type (type);
break;
case EM_DLX:
rtype = elf_dlx_reloc_type (type);
break;
case EM_SH:
rtype = elf_sh_reloc_type (type);
break;
case EM_MN10300:
case EM_CYGNUS_MN10300:
rtype = elf_mn10300_reloc_type (type);
break;
case EM_MN10200:
case EM_CYGNUS_MN10200:
rtype = elf_mn10200_reloc_type (type);
break;
case EM_FR30:
case EM_CYGNUS_FR30:
rtype = elf_fr30_reloc_type (type);
break;
case EM_CYGNUS_FRV:
rtype = elf_frv_reloc_type (type);
break;
case EM_CSKY:
rtype = elf_csky_reloc_type (type);
break;
case EM_FT32:
rtype = elf_ft32_reloc_type (type);
break;
case EM_MCORE:
rtype = elf_mcore_reloc_type (type);
break;
case EM_MMIX:
rtype = elf_mmix_reloc_type (type);
break;
case EM_MOXIE:
rtype = elf_moxie_reloc_type (type);
break;
case EM_MSP430:
if (uses_msp430x_relocs (filedata))
{
rtype = elf_msp430x_reloc_type (type);
break;
}
/* Fall through. */
case EM_MSP430_OLD:
rtype = elf_msp430_reloc_type (type);
break;
case EM_NDS32:
rtype = elf_nds32_reloc_type (type);
break;
case EM_PPC:
rtype = elf_ppc_reloc_type (type);
break;
case EM_PPC64:
rtype = elf_ppc64_reloc_type (type);
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
rtype = elf_mips_reloc_type (type);
break;
case EM_RISCV:
rtype = elf_riscv_reloc_type (type);
break;
case EM_ALPHA:
rtype = elf_alpha_reloc_type (type);
break;
case EM_ARM:
rtype = elf_arm_reloc_type (type);
break;
case EM_ARC:
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
case EM_ARC_COMPACT3:
case EM_ARC_COMPACT3_64:
rtype = elf_arc_reloc_type (type);
break;
case EM_PARISC:
rtype = elf_hppa_reloc_type (type);
break;
case EM_H8_300:
case EM_H8_300H:
case EM_H8S:
rtype = elf_h8_reloc_type (type);
break;
case EM_OR1K:
rtype = elf_or1k_reloc_type (type);
break;
case EM_PJ:
case EM_PJ_OLD:
rtype = elf_pj_reloc_type (type);
break;
case EM_IA_64:
rtype = elf_ia64_reloc_type (type);
break;
case EM_KVX:
rtype = elf_kvx_reloc_type (type);
break;
case EM_CRIS:
rtype = elf_cris_reloc_type (type);
break;
case EM_860:
rtype = elf_i860_reloc_type (type);
break;
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
rtype = elf_x86_64_reloc_type (type);
break;
case EM_S370:
rtype = i370_reloc_type (type);
break;
case EM_S390_OLD:
case EM_S390:
rtype = elf_s390_reloc_type (type);
break;
case EM_SCORE:
rtype = elf_score_reloc_type (type);
break;
case EM_XSTORMY16:
rtype = elf_xstormy16_reloc_type (type);
break;
case EM_CRX:
rtype = elf_crx_reloc_type (type);
break;
case EM_VAX:
rtype = elf_vax_reloc_type (type);
break;
case EM_VISIUM:
rtype = elf_visium_reloc_type (type);
break;
case EM_BPF:
rtype = elf_bpf_reloc_type (type);
break;
case EM_ADAPTEVA_EPIPHANY:
rtype = elf_epiphany_reloc_type (type);
break;
case EM_IP2K:
case EM_IP2K_OLD:
rtype = elf_ip2k_reloc_type (type);
break;
case EM_IQ2000:
rtype = elf_iq2000_reloc_type (type);
break;
case EM_XTENSA_OLD:
case EM_XTENSA:
rtype = elf_xtensa_reloc_type (type);
break;
case EM_LATTICEMICO32:
rtype = elf_lm32_reloc_type (type);
break;
case EM_M32C_OLD:
case EM_M32C:
rtype = elf_m32c_reloc_type (type);
break;
case EM_MT:
rtype = elf_mt_reloc_type (type);
break;
case EM_BLACKFIN:
rtype = elf_bfin_reloc_type (type);
break;
case EM_CYGNUS_MEP:
rtype = elf_mep_reloc_type (type);
break;
case EM_CR16:
rtype = elf_cr16_reloc_type (type);
break;
case EM_MICROBLAZE:
case EM_MICROBLAZE_OLD:
rtype = elf_microblaze_reloc_type (type);
break;
case EM_RL78:
rtype = elf_rl78_reloc_type (type);
break;
case EM_RX:
rtype = elf_rx_reloc_type (type);
break;
case EM_METAG:
rtype = elf_metag_reloc_type (type);
break;
case EM_TI_C6000:
rtype = elf_tic6x_reloc_type (type);
break;
case EM_TILEGX:
rtype = elf_tilegx_reloc_type (type);
break;
case EM_TILEPRO:
rtype = elf_tilepro_reloc_type (type);
break;
case EM_WEBASSEMBLY:
rtype = elf_wasm32_reloc_type (type);
break;
case EM_XGATE:
rtype = elf_xgate_reloc_type (type);
break;
case EM_ALTERA_NIOS2:
rtype = elf_nios2_reloc_type (type);
break;
case EM_TI_PRU:
rtype = elf_pru_reloc_type (type);
break;
case EM_NFP:
if (EF_NFP_MACH (filedata->file_header.e_flags) == E_NFP_MACH_3200)
rtype = elf_nfp3200_reloc_type (type);
else
rtype = elf_nfp_reloc_type (type);
break;
case EM_Z80:
rtype = elf_z80_reloc_type (type);
break;
case EM_LOONGARCH:
rtype = elf_loongarch_reloc_type (type);
break;
case EM_AMDGPU:
rtype = elf_amdgpu_reloc_type (type);
break;
}
if (rtype == NULL)
printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
else
printf (do_wide ? "%-22s" : "%-17.17s", rtype);
if (filedata->file_header.e_machine == EM_ALPHA
&& rtype != NULL
&& streq (rtype, "R_ALPHA_LITUSE")
&& rel_type == reltype_rela)
{
switch (rels[i].r_addend)
{
case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
default: rtype = NULL;
}
if (rtype)
printf (" (%s)", rtype);
else
{
putchar (' ');
printf (_("<unknown addend: %" PRIx64 ">"),
rels[i].r_addend);
res = false;
}
}
else if (symtab_index)
{
if (symtab == NULL || symtab_index >= nsyms)
{
error (_(" bad symbol index: %08lx in reloc\n"),
(unsigned long) symtab_index);
res = false;
}
else
{
Elf_Internal_Sym * psym;
const char * version_string;
enum versioned_symbol_info sym_info;
unsigned short vna_other;
psym = symtab + symtab_index;
version_string
= get_symbol_version_string (filedata, is_dynsym,
strtab, strtablen,
symtab_index,
psym,
&sym_info,
&vna_other);
printf (" ");
if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
{
const char * name;
unsigned int len;
unsigned int width = is_32bit_elf ? 8 : 14;
/* Relocations against GNU_IFUNC symbols do not use the value
of the symbol as the address to relocate against. Instead
they invoke the function named by the symbol and use its
result as the address for relocation.
To indicate this to the user, do not display the value of
the symbol in the "Symbols's Value" field. Instead show
its name followed by () as a hint that the symbol is
invoked. */
if (strtab == NULL
|| psym->st_name == 0
|| psym->st_name >= strtablen)
name = "??";
else
name = strtab + psym->st_name;
len = print_symbol_name (width, name);
if (version_string)
printf (sym_info == symbol_public ? "@@%s" : "@%s",
version_string);
printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
}
else
{
print_vma (psym->st_value, LONG_HEX);
printf (is_32bit_elf ? " " : " ");
}
if (psym->st_name == 0)
{
const char * sec_name = "<null>";
if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
sec_name = printable_section_name_from_index
(filedata, psym->st_shndx, NULL);
print_symbol_name (22, sec_name);
}
else if (strtab == NULL)
printf (_("<string table index: %3ld>"), psym->st_name);
else if (psym->st_name >= strtablen)
{
error (_("<corrupt string table index: %3ld>\n"),
psym->st_name);
res = false;
}
else
{
print_symbol_name (22, strtab + psym->st_name);
if (version_string)
printf (sym_info == symbol_public ? "@@%s" : "@%s",
version_string);
}
if (rel_type == reltype_rela)
{
uint64_t off = rels[i].r_addend;
if ((int64_t) off < 0)
printf (" - %" PRIx64, -off);
else
printf (" + %" PRIx64, off);
}
}
}
else if (rel_type == reltype_rela)
{
uint64_t off = rels[i].r_addend;
printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
if ((int64_t) off < 0)
printf ("-%" PRIx64, -off);
else
printf ("%" PRIx64, off);
}
if (filedata->file_header.e_machine == EM_SPARCV9
&& rtype != NULL
&& streq (rtype, "R_SPARC_OLO10"))
printf (" + %" PRIx64, ELF64_R_TYPE_DATA (inf));
putchar ('\n');
if (! is_32bit_elf && filedata->file_header.e_machine == EM_MIPS)
{
uint64_t type2 = ELF64_MIPS_R_TYPE2 (inf);
uint64_t type3 = ELF64_MIPS_R_TYPE3 (inf);
const char * rtype2 = elf_mips_reloc_type (type2);
const char * rtype3 = elf_mips_reloc_type (type3);
printf (" Type2: ");
if (rtype2 == NULL)
printf (_("unrecognized: %-7lx"),
(unsigned long) type2 & 0xffffffff);
else
printf ("%-17.17s", rtype2);
printf ("\n Type3: ");
if (rtype3 == NULL)
printf (_("unrecognized: %-7lx"),
(unsigned long) type3 & 0xffffffff);
else
printf ("%-17.17s", rtype3);
putchar ('\n');
}
}
free (rels);
return res;
}
static const char *
get_aarch64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_AARCH64_BTI_PLT: return "AARCH64_BTI_PLT";
case DT_AARCH64_PAC_PLT: return "AARCH64_PAC_PLT";
case DT_AARCH64_VARIANT_PCS: return "AARCH64_VARIANT_PCS";
default:
return NULL;
}
}
static const char *
get_mips_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
case DT_MIPS_IVERSION: return "MIPS_IVERSION";
case DT_MIPS_FLAGS: return "MIPS_FLAGS";
case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
case DT_MIPS_MSYM: return "MIPS_MSYM";
case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
case DT_MIPS_RWPLT: return "MIPS_RWPLT";
case DT_MIPS_XHASH: return "MIPS_XHASH";
default:
return NULL;
}
}
static const char *
get_sparc64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_SPARC_REGISTER: return "SPARC_REGISTER";
default:
return NULL;
}
}
static const char *
get_ppc_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_PPC_GOT: return "PPC_GOT";
case DT_PPC_OPT: return "PPC_OPT";
default:
return NULL;
}
}
static const char *
get_ppc64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_PPC64_GLINK: return "PPC64_GLINK";
case DT_PPC64_OPD: return "PPC64_OPD";
case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
case DT_PPC64_OPT: return "PPC64_OPT";
default:
return NULL;
}
}
static const char *
get_parisc_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
case DT_HP_UX10_INIT: return "HP_UX10_INIT";
case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
case DT_HP_PREINIT: return "HP_PREINIT";
case DT_HP_PREINITSZ: return "HP_PREINITSZ";
case DT_HP_NEEDED: return "HP_NEEDED";
case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
case DT_HP_CHECKSUM: return "HP_CHECKSUM";
case DT_HP_GST_SIZE: return "HP_GST_SIZE";
case DT_HP_GST_VERSION: return "HP_GST_VERSION";
case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
case DT_HP_FILTERED: return "HP_FILTERED";
case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
case DT_PLT: return "PLT";
case DT_PLT_SIZE: return "PLT_SIZE";
case DT_DLT: return "DLT";
case DT_DLT_SIZE: return "DLT_SIZE";
default:
return NULL;
}
}
static const char *
get_ia64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
default:
return NULL;
}
}
static const char *
get_solaris_section_type (unsigned long type)
{
switch (type)
{
case 0x6fffffee: return "SUNW_ancillary";
case 0x6fffffef: return "SUNW_capchain";
case 0x6ffffff0: return "SUNW_capinfo";
case 0x6ffffff1: return "SUNW_symsort";
case 0x6ffffff2: return "SUNW_tlssort";
case 0x6ffffff3: return "SUNW_LDYNSYM";
case 0x6ffffff4: return "SUNW_dof";
case 0x6ffffff5: return "SUNW_cap";
case 0x6ffffff6: return "SUNW_SIGNATURE";
case 0x6ffffff7: return "SUNW_ANNOTATE";
case 0x6ffffff8: return "SUNW_DEBUGSTR";
case 0x6ffffff9: return "SUNW_DEBUG";
case 0x6ffffffa: return "SUNW_move";
case 0x6ffffffb: return "SUNW_COMDAT";
case 0x6ffffffc: return "SUNW_syminfo";
case 0x6ffffffd: return "SUNW_verdef";
case 0x6ffffffe: return "SUNW_verneed";
case 0x6fffffff: return "SUNW_versym";
case 0x70000000: return "SPARC_GOTDATA";
default: return NULL;
}
}
static const char *
get_alpha_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
default: return NULL;
}
}
static const char *
get_score_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
default: return NULL;
}
}
static const char *
get_tic6x_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
default: return NULL;
}
}
static const char *
get_nios2_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_NIOS2_GP: return "NIOS2_GP";
default: return NULL;
}
}
static const char *
get_solaris_dynamic_type (unsigned long type)
{
switch (type)
{
case 0x6000000d: return "SUNW_AUXILIARY";
case 0x6000000e: return "SUNW_RTLDINF";
case 0x6000000f: return "SUNW_FILTER";
case 0x60000010: return "SUNW_CAP";
case 0x60000011: return "SUNW_SYMTAB";
case 0x60000012: return "SUNW_SYMSZ";
case 0x60000013: return "SUNW_SORTENT";
case 0x60000014: return "SUNW_SYMSORT";
case 0x60000015: return "SUNW_SYMSORTSZ";
case 0x60000016: return "SUNW_TLSSORT";
case 0x60000017: return "SUNW_TLSSORTSZ";
case 0x60000018: return "SUNW_CAPINFO";
case 0x60000019: return "SUNW_STRPAD";
case 0x6000001a: return "SUNW_CAPCHAIN";
case 0x6000001b: return "SUNW_LDMACH";
case 0x6000001d: return "SUNW_CAPCHAINENT";
case 0x6000001f: return "SUNW_CAPCHAINSZ";
case 0x60000021: return "SUNW_PARENT";
case 0x60000023: return "SUNW_ASLR";
case 0x60000025: return "SUNW_RELAX";
case 0x60000029: return "SUNW_NXHEAP";
case 0x6000002b: return "SUNW_NXSTACK";
case 0x70000001: return "SPARC_REGISTER";
case 0x7ffffffd: return "AUXILIARY";
case 0x7ffffffe: return "USED";
case 0x7fffffff: return "FILTER";
default: return NULL;
}
}
static const char *
get_riscv_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_RISCV_VARIANT_CC: return "RISCV_VARIANT_CC";
default:
return NULL;
}
}
static const char *
get_x86_64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_X86_64_PLT:
return "DT_X86_64_PLT";
case DT_X86_64_PLTSZ:
return "DT_X86_64_PLTSZ";
case DT_X86_64_PLTENT:
return "DT_X86_64_PLTENT";
default:
return NULL;
}
}
static const char *
get_dynamic_type (Filedata * filedata, unsigned long type)
{
static char buff[64];
switch (type)
{
case DT_NULL: return "NULL";
case DT_NEEDED: return "NEEDED";
case DT_PLTRELSZ: return "PLTRELSZ";
case DT_PLTGOT: return "PLTGOT";
case DT_HASH: return "HASH";
case DT_STRTAB: return "STRTAB";
case DT_SYMTAB: return "SYMTAB";
case DT_RELA: return "RELA";
case DT_RELASZ: return "RELASZ";
case DT_RELAENT: return "RELAENT";
case DT_STRSZ: return "STRSZ";
case DT_SYMENT: return "SYMENT";
case DT_INIT: return "INIT";
case DT_FINI: return "FINI";
case DT_SONAME: return "SONAME";
case DT_RPATH: return "RPATH";
case DT_SYMBOLIC: return "SYMBOLIC";
case DT_REL: return "REL";
case DT_RELSZ: return "RELSZ";
case DT_RELENT: return "RELENT";
case DT_RELR: return "RELR";
case DT_RELRSZ: return "RELRSZ";
case DT_RELRENT: return "RELRENT";
case DT_PLTREL: return "PLTREL";
case DT_DEBUG: return "DEBUG";
case DT_TEXTREL: return "TEXTREL";
case DT_JMPREL: return "JMPREL";
case DT_BIND_NOW: return "BIND_NOW";
case DT_INIT_ARRAY: return "INIT_ARRAY";
case DT_FINI_ARRAY: return "FINI_ARRAY";
case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
case DT_RUNPATH: return "RUNPATH";
case DT_FLAGS: return "FLAGS";
case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
case DT_CHECKSUM: return "CHECKSUM";
case DT_PLTPADSZ: return "PLTPADSZ";
case DT_MOVEENT: return "MOVEENT";
case DT_MOVESZ: return "MOVESZ";
case DT_FEATURE: return "FEATURE";
case DT_POSFLAG_1: return "POSFLAG_1";
case DT_SYMINSZ: return "SYMINSZ";
case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
case DT_ADDRRNGLO: return "ADDRRNGLO";
case DT_CONFIG: return "CONFIG";
case DT_DEPAUDIT: return "DEPAUDIT";
case DT_AUDIT: return "AUDIT";
case DT_PLTPAD: return "PLTPAD";
case DT_MOVETAB: return "MOVETAB";
case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
case DT_VERSYM: return "VERSYM";
case DT_TLSDESC_GOT: return "TLSDESC_GOT";
case DT_TLSDESC_PLT: return "TLSDESC_PLT";
case DT_RELACOUNT: return "RELACOUNT";
case DT_RELCOUNT: return "RELCOUNT";
case DT_FLAGS_1: return "FLAGS_1";
case DT_VERDEF: return "VERDEF";
case DT_VERDEFNUM: return "VERDEFNUM";
case DT_VERNEED: return "VERNEED";
case DT_VERNEEDNUM: return "VERNEEDNUM";
case DT_AUXILIARY: return "AUXILIARY";
case DT_USED: return "USED";
case DT_FILTER: return "FILTER";
case DT_GNU_PRELINKED: return "GNU_PRELINKED";
case DT_GNU_CONFLICT: return "GNU_CONFLICT";
case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
case DT_GNU_LIBLIST: return "GNU_LIBLIST";
case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
case DT_GNU_HASH: return "GNU_HASH";
case DT_GNU_FLAGS_1: return "GNU_FLAGS_1";
default:
if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
{
const char * result;
switch (filedata->file_header.e_machine)
{
case EM_AARCH64:
result = get_aarch64_dynamic_type (type);
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
result = get_mips_dynamic_type (type);
break;
case EM_SPARCV9:
result = get_sparc64_dynamic_type (type);
break;
case EM_PPC:
result = get_ppc_dynamic_type (type);
break;
case EM_PPC64:
result = get_ppc64_dynamic_type (type);
break;
case EM_IA_64:
result = get_ia64_dynamic_type (type);
break;
case EM_ALPHA:
result = get_alpha_dynamic_type (type);
break;
case EM_SCORE:
result = get_score_dynamic_type (type);
break;
case EM_TI_C6000:
result = get_tic6x_dynamic_type (type);
break;
case EM_ALTERA_NIOS2:
result = get_nios2_dynamic_type (type);
break;
case EM_RISCV:
result = get_riscv_dynamic_type (type);
break;
case EM_X86_64:
result = get_x86_64_dynamic_type (type);
break;
default:
if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
result = get_solaris_dynamic_type (type);
else
result = NULL;
break;
}
if (result != NULL)
return result;
snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
}
else if (((type >= DT_LOOS) && (type <= DT_HIOS))
|| (filedata->file_header.e_machine == EM_PARISC
&& (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
{
const char * result;
switch (filedata->file_header.e_machine)
{
case EM_PARISC:
result = get_parisc_dynamic_type (type);
break;
case EM_IA_64:
result = get_ia64_dynamic_type (type);
break;
default:
if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
result = get_solaris_dynamic_type (type);
else
result = NULL;
break;
}
if (result != NULL)
return result;
snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
type);
}
else
snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
return buff;
}
}
static bool get_program_headers (Filedata *);
static bool get_dynamic_section (Filedata *);
static void
locate_dynamic_section (Filedata *filedata)
{
uint64_t dynamic_addr = 0;
uint64_t dynamic_size = 0;
if (filedata->file_header.e_phnum != 0
&& get_program_headers (filedata))
{
Elf_Internal_Phdr *segment;
unsigned int i;
for (i = 0, segment = filedata->program_headers;
i < filedata->file_header.e_phnum;
i++, segment++)
{
if (segment->p_type == PT_DYNAMIC)
{
dynamic_addr = segment->p_offset;
dynamic_size = segment->p_filesz;
if (filedata->section_headers != NULL)
{
Elf_Internal_Shdr *sec;
sec = find_section (filedata, ".dynamic");
if (sec != NULL)
{
if (sec->sh_size == 0
|| sec->sh_type == SHT_NOBITS)
{
dynamic_addr = 0;
dynamic_size = 0;
}
else
{
dynamic_addr = sec->sh_offset;
dynamic_size = sec->sh_size;
}
}
}
if (dynamic_addr > filedata->file_size
|| (dynamic_size > filedata->file_size - dynamic_addr