| /* YACC parser for Ada expressions, for GDB. |
| Copyright (C) 1986-2024 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| /* Parse an Ada expression from text in a string, |
| and return the result as a struct expression pointer. |
| That structure contains arithmetic operations in reverse polish, |
| with constants represented by operations that are followed by special data. |
| See expression.h for the details of the format. |
| What is important here is that it can be built up sequentially |
| during the process of parsing; the lower levels of the tree always |
| come first in the result. |
| |
| malloc's and realloc's in this file are transformed to |
| xmalloc and xrealloc respectively by the same sed command in the |
| makefile that remaps any other malloc/realloc inserted by the parser |
| generator. Doing this with #defines and trying to control the interaction |
| with include files (<malloc.h> and <stdlib.h> for example) just became |
| too messy, particularly when such includes can be inserted at random |
| times by the parser generator. */ |
| |
| %{ |
| |
| #include <ctype.h> |
| #include <unordered_map> |
| #include "expression.h" |
| #include "value.h" |
| #include "parser-defs.h" |
| #include "language.h" |
| #include "ada-lang.h" |
| #include "frame.h" |
| #include "block.h" |
| #include "ada-exp.h" |
| |
| #define parse_type(ps) builtin_type (ps->gdbarch ()) |
| |
| /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, |
| etc). */ |
| #define GDB_YY_REMAP_PREFIX ada_ |
| #include "yy-remap.h" |
| |
| struct name_info { |
| struct symbol *sym; |
| struct minimal_symbol *msym; |
| const struct block *block; |
| struct stoken stoken; |
| }; |
| |
| /* The state of the parser, used internally when we are parsing the |
| expression. */ |
| |
| static struct parser_state *pstate = NULL; |
| |
| using namespace expr; |
| |
| /* A convenience typedef. */ |
| typedef std::unique_ptr<ada_assign_operation> ada_assign_up; |
| |
| /* Data that must be held for the duration of a parse. */ |
| |
| struct ada_parse_state |
| { |
| explicit ada_parse_state (const char *expr) |
| : m_original_expr (expr) |
| { |
| } |
| |
| std::string find_completion_bounds (); |
| |
| const gdb_mpz *push_integer (gdb_mpz &&val) |
| { |
| auto &result = m_int_storage.emplace_back (new gdb_mpz (std::move (val))); |
| return result.get (); |
| } |
| |
| /* The components being constructed during this parse. */ |
| std::vector<ada_component_up> components; |
| |
| /* The associations being constructed during this parse. */ |
| std::vector<ada_association_up> associations; |
| |
| /* The stack of currently active assignment expressions. This is used |
| to implement '@', the target name symbol. */ |
| std::vector<ada_assign_up> assignments; |
| |
| /* Track currently active iterated assignment names. */ |
| std::unordered_map<std::string, std::vector<ada_index_var_operation *>> |
| iterated_associations; |
| |
| auto_obstack temp_space; |
| |
| /* Depth of parentheses, used by the lexer. */ |
| int paren_depth = 0; |
| |
| /* When completing, we'll return a special character at the end of the |
| input, to signal the completion position to the lexer. This is |
| done because flex does not have a generally useful way to detect |
| EOF in a pattern. This variable records whether the special |
| character has been emitted. */ |
| bool returned_complete = false; |
| |
| private: |
| |
| /* We don't have a good way to manage non-POD data in Yacc, so store |
| values here. The storage here is only valid for the duration of |
| the parse. */ |
| std::vector<std::unique_ptr<gdb_mpz>> m_int_storage; |
| |
| /* The original expression string. */ |
| const char *m_original_expr; |
| }; |
| |
| /* The current Ada parser object. */ |
| |
| static ada_parse_state *ada_parser; |
| |
| int yyparse (void); |
| |
| static int yylex (void); |
| |
| static void yyerror (const char *); |
| |
| static void write_int (struct parser_state *, LONGEST, struct type *); |
| |
| static void write_object_renaming (struct parser_state *, |
| const struct block *, const char *, int, |
| const char *, int); |
| |
| static struct type* write_var_or_type (struct parser_state *, |
| const struct block *, struct stoken); |
| static struct type *write_var_or_type_completion (struct parser_state *, |
| const struct block *, |
| struct stoken); |
| |
| static void write_name_assoc (struct parser_state *, struct stoken); |
| |
| static const struct block *block_lookup (const struct block *, const char *); |
| |
| static void write_ambiguous_var (struct parser_state *, |
| const struct block *, const char *, int); |
| |
| static struct type *type_for_char (struct parser_state *, ULONGEST); |
| |
| static struct type *type_system_address (struct parser_state *); |
| |
| /* Handle Ada type resolution for OP. DEPROCEDURE_P and CONTEXT_TYPE |
| are passed to the resolve method, if called. */ |
| static operation_up |
| resolve (operation_up &&op, bool deprocedure_p, struct type *context_type) |
| { |
| operation_up result = std::move (op); |
| ada_resolvable *res = dynamic_cast<ada_resolvable *> (result.get ()); |
| if (res != nullptr) |
| return res->replace (std::move (result), |
| pstate->expout.get (), |
| deprocedure_p, |
| pstate->parse_completion, |
| pstate->block_tracker, |
| context_type); |
| return result; |
| } |
| |
| /* Like parser_state::pop, but handles Ada type resolution. |
| DEPROCEDURE_P and CONTEXT_TYPE are passed to the resolve method, if |
| called. */ |
| static operation_up |
| ada_pop (bool deprocedure_p = true, struct type *context_type = nullptr) |
| { |
| /* Of course it's ok to call parser_state::pop here... */ |
| return resolve (pstate->pop (), deprocedure_p, context_type); |
| } |
| |
| /* Like parser_state::wrap, but use ada_pop to pop the value. */ |
| template<typename T> |
| void |
| ada_wrap () |
| { |
| operation_up arg = ada_pop (); |
| pstate->push_new<T> (std::move (arg)); |
| } |
| |
| /* Create and push an address-of operation, as appropriate for Ada. |
| If TYPE is not NULL, the resulting operation will be wrapped in a |
| cast to TYPE. */ |
| static void |
| ada_addrof (struct type *type = nullptr) |
| { |
| operation_up arg = ada_pop (false); |
| operation_up addr = make_operation<unop_addr_operation> (std::move (arg)); |
| operation_up wrapped |
| = make_operation<ada_wrapped_operation> (std::move (addr)); |
| if (type != nullptr) |
| wrapped = make_operation<unop_cast_operation> (std::move (wrapped), type); |
| pstate->push (std::move (wrapped)); |
| } |
| |
| /* Handle operator overloading. Either returns a function all |
| operation wrapping the arguments, or it returns null, leaving the |
| caller to construct the appropriate operation. If RHS is null, a |
| unary operator is assumed. */ |
| static operation_up |
| maybe_overload (enum exp_opcode op, operation_up &lhs, operation_up &rhs) |
| { |
| struct value *args[2]; |
| |
| int nargs = 1; |
| args[0] = lhs->evaluate (nullptr, pstate->expout.get (), |
| EVAL_AVOID_SIDE_EFFECTS); |
| if (rhs == nullptr) |
| args[1] = nullptr; |
| else |
| { |
| args[1] = rhs->evaluate (nullptr, pstate->expout.get (), |
| EVAL_AVOID_SIDE_EFFECTS); |
| ++nargs; |
| } |
| |
| block_symbol fn = ada_find_operator_symbol (op, pstate->parse_completion, |
| nargs, args); |
| if (fn.symbol == nullptr) |
| return {}; |
| |
| if (symbol_read_needs_frame (fn.symbol)) |
| pstate->block_tracker->update (fn.block, INNERMOST_BLOCK_FOR_SYMBOLS); |
| operation_up callee = make_operation<ada_var_value_operation> (fn); |
| |
| std::vector<operation_up> argvec; |
| argvec.push_back (std::move (lhs)); |
| if (rhs != nullptr) |
| argvec.push_back (std::move (rhs)); |
| return make_operation<ada_funcall_operation> (std::move (callee), |
| std::move (argvec)); |
| } |
| |
| /* Like parser_state::wrap, but use ada_pop to pop the value, and |
| handle unary overloading. */ |
| template<typename T> |
| void |
| ada_wrap_overload (enum exp_opcode op) |
| { |
| operation_up arg = ada_pop (); |
| operation_up empty; |
| |
| operation_up call = maybe_overload (op, arg, empty); |
| if (call == nullptr) |
| call = make_operation<T> (std::move (arg)); |
| pstate->push (std::move (call)); |
| } |
| |
| /* A variant of parser_state::wrap2 that uses ada_pop to pop both |
| operands, and then pushes a new Ada-wrapped operation of the |
| template type T. */ |
| template<typename T> |
| void |
| ada_un_wrap2 (enum exp_opcode op) |
| { |
| operation_up rhs = ada_pop (); |
| operation_up lhs = ada_pop (); |
| |
| operation_up wrapped = maybe_overload (op, lhs, rhs); |
| if (wrapped == nullptr) |
| { |
| wrapped = make_operation<T> (std::move (lhs), std::move (rhs)); |
| wrapped = make_operation<ada_wrapped_operation> (std::move (wrapped)); |
| } |
| pstate->push (std::move (wrapped)); |
| } |
| |
| /* A variant of parser_state::wrap2 that uses ada_pop to pop both |
| operands. Unlike ada_un_wrap2, ada_wrapped_operation is not |
| used. */ |
| template<typename T> |
| void |
| ada_wrap2 (enum exp_opcode op) |
| { |
| operation_up rhs = ada_pop (); |
| operation_up lhs = ada_pop (); |
| operation_up call = maybe_overload (op, lhs, rhs); |
| if (call == nullptr) |
| call = make_operation<T> (std::move (lhs), std::move (rhs)); |
| pstate->push (std::move (call)); |
| } |
| |
| /* A variant of parser_state::wrap2 that uses ada_pop to pop both |
| operands. OP is also passed to the constructor of the new binary |
| operation. */ |
| template<typename T> |
| void |
| ada_wrap_op (enum exp_opcode op) |
| { |
| operation_up rhs = ada_pop (); |
| operation_up lhs = ada_pop (); |
| operation_up call = maybe_overload (op, lhs, rhs); |
| if (call == nullptr) |
| call = make_operation<T> (op, std::move (lhs), std::move (rhs)); |
| pstate->push (std::move (call)); |
| } |
| |
| /* Pop three operands using ada_pop, then construct a new ternary |
| operation of type T and push it. */ |
| template<typename T> |
| void |
| ada_wrap3 () |
| { |
| operation_up rhs = ada_pop (); |
| operation_up mid = ada_pop (); |
| operation_up lhs = ada_pop (); |
| pstate->push_new<T> (std::move (lhs), std::move (mid), std::move (rhs)); |
| } |
| |
| /* Pop NARGS operands, then a callee operand, and use these to |
| construct and push a new Ada function call operation. */ |
| static void |
| ada_funcall (int nargs) |
| { |
| /* We use the ordinary pop here, because we're going to do |
| resolution in a separate step, in order to handle array |
| indices. */ |
| std::vector<operation_up> args = pstate->pop_vector (nargs); |
| /* Call parser_state::pop here, because we don't want to |
| function-convert the callee slot of a call we're already |
| constructing. */ |
| operation_up callee = pstate->pop (); |
| |
| ada_var_value_operation *vvo |
| = dynamic_cast<ada_var_value_operation *> (callee.get ()); |
| int array_arity = 0; |
| struct type *callee_t = nullptr; |
| if (vvo == nullptr |
| || vvo->get_symbol ()->domain () != UNDEF_DOMAIN) |
| { |
| struct value *callee_v = callee->evaluate (nullptr, |
| pstate->expout.get (), |
| EVAL_AVOID_SIDE_EFFECTS); |
| callee_t = ada_check_typedef (callee_v->type ()); |
| array_arity = ada_array_arity (callee_t); |
| } |
| |
| for (int i = 0; i < nargs; ++i) |
| { |
| struct type *subtype = nullptr; |
| if (i < array_arity) |
| subtype = ada_index_type (callee_t, i + 1, "array type"); |
| args[i] = resolve (std::move (args[i]), true, subtype); |
| } |
| |
| std::unique_ptr<ada_funcall_operation> funcall |
| (new ada_funcall_operation (std::move (callee), std::move (args))); |
| funcall->resolve (pstate->expout.get (), true, pstate->parse_completion, |
| pstate->block_tracker, nullptr); |
| pstate->push (std::move (funcall)); |
| } |
| |
| /* Create a new ada_component_up of the indicated type and arguments, |
| and push it on the global 'components' vector. */ |
| template<typename T, typename... Arg> |
| void |
| push_component (Arg... args) |
| { |
| ada_parser->components.emplace_back (new T (std::forward<Arg> (args)...)); |
| } |
| |
| /* Examine the final element of the 'components' vector, and return it |
| as a pointer to an ada_choices_component. The caller is |
| responsible for ensuring that the final element is in fact an |
| ada_choices_component. */ |
| static ada_choices_component * |
| choice_component () |
| { |
| ada_component *last = ada_parser->components.back ().get (); |
| return gdb::checked_static_cast<ada_choices_component *> (last); |
| } |
| |
| /* Pop the most recent component from the global stack, and return |
| it. */ |
| static ada_component_up |
| pop_component () |
| { |
| ada_component_up result = std::move (ada_parser->components.back ()); |
| ada_parser->components.pop_back (); |
| return result; |
| } |
| |
| /* Pop the N most recent components from the global stack, and return |
| them in a vector. */ |
| static std::vector<ada_component_up> |
| pop_components (int n) |
| { |
| std::vector<ada_component_up> result (n); |
| for (int i = 1; i <= n; ++i) |
| result[n - i] = pop_component (); |
| return result; |
| } |
| |
| /* Create a new ada_association_up of the indicated type and |
| arguments, and push it on the global 'associations' vector. */ |
| template<typename T, typename... Arg> |
| void |
| push_association (Arg... args) |
| { |
| ada_parser->associations.emplace_back (new T (std::forward<Arg> (args)...)); |
| } |
| |
| /* Pop the most recent association from the global stack, and return |
| it. */ |
| static ada_association_up |
| pop_association () |
| { |
| ada_association_up result = std::move (ada_parser->associations.back ()); |
| ada_parser->associations.pop_back (); |
| return result; |
| } |
| |
| /* Pop the N most recent associations from the global stack, and |
| return them in a vector. */ |
| static std::vector<ada_association_up> |
| pop_associations (int n) |
| { |
| std::vector<ada_association_up> result (n); |
| for (int i = 1; i <= n; ++i) |
| result[n - i] = pop_association (); |
| return result; |
| } |
| |
| /* Expression completer for attributes. */ |
| struct ada_tick_completer : public expr_completion_base |
| { |
| explicit ada_tick_completer (std::string &&name) |
| : m_name (std::move (name)) |
| { |
| } |
| |
| bool complete (struct expression *exp, |
| completion_tracker &tracker) override; |
| |
| private: |
| |
| std::string m_name; |
| }; |
| |
| /* Make a new ada_tick_completer and wrap it in a unique pointer. */ |
| static std::unique_ptr<expr_completion_base> |
| make_tick_completer (struct stoken tok) |
| { |
| return (std::unique_ptr<expr_completion_base> |
| (new ada_tick_completer (std::string (tok.ptr, tok.length)))); |
| } |
| |
| %} |
| |
| %union |
| { |
| LONGEST lval; |
| struct { |
| const gdb_mpz *val; |
| struct type *type; |
| } typed_val; |
| struct { |
| LONGEST val; |
| struct type *type; |
| } typed_char; |
| struct { |
| gdb_byte val[16]; |
| struct type *type; |
| } typed_val_float; |
| struct type *tval; |
| struct stoken sval; |
| const struct block *bval; |
| struct internalvar *ivar; |
| } |
| |
| %type <lval> positional_list component_groups component_associations |
| %type <lval> aggregate_component_list |
| %type <tval> var_or_type type_prefix opt_type_prefix |
| |
| %token <typed_val> INT NULL_PTR |
| %token <typed_char> CHARLIT |
| %token <typed_val_float> FLOAT |
| %token TRUEKEYWORD FALSEKEYWORD |
| %token WITH DELTA |
| %token COLONCOLON |
| %token <sval> STRING NAME DOT_ID TICK_COMPLETE DOT_COMPLETE NAME_COMPLETE |
| %type <bval> block |
| %type <lval> arglist tick_arglist |
| |
| /* Special type cases, put in to allow the parser to distinguish different |
| legal basetypes. */ |
| %token <sval> DOLLAR_VARIABLE |
| |
| %nonassoc ASSIGN |
| %left _AND_ OR XOR THEN ELSE |
| %left '=' NOTEQUAL '<' '>' LEQ GEQ IN DOTDOT |
| %left '@' |
| %left '+' '-' '&' |
| %left UNARY |
| %left '*' '/' MOD REM |
| %right STARSTAR ABS NOT |
| |
| /* Artificial token to give NAME => ... and NAME | priority over reducing |
| NAME to <primary> and to give <primary>' priority over reducing <primary> |
| to <simple_exp>. */ |
| %nonassoc VAR |
| |
| %nonassoc ARROW '|' |
| |
| %right TICK_ACCESS TICK_ADDRESS TICK_FIRST TICK_LAST TICK_LENGTH |
| %right TICK_MAX TICK_MIN TICK_MODULUS |
| %right TICK_POS TICK_RANGE TICK_SIZE TICK_TAG TICK_VAL |
| %right TICK_COMPLETE TICK_ENUM_REP TICK_ENUM_VAL |
| /* The following are right-associative only so that reductions at this |
| precedence have lower precedence than '.' and '('. The syntax still |
| forces a.b.c, e.g., to be LEFT-associated. */ |
| %right '.' '(' '[' DOT_ID DOT_COMPLETE |
| |
| %token NEW OTHERS FOR |
| |
| |
| %% |
| |
| start : exp1 |
| ; |
| |
| /* Expressions, including the sequencing operator. */ |
| exp1 : exp |
| | exp1 ';' exp |
| { ada_wrap2<comma_operation> (BINOP_COMMA); } |
| | primary ASSIGN |
| { |
| ada_parser->assignments.emplace_back |
| (new ada_assign_operation (ada_pop (), nullptr)); |
| } |
| exp /* Extension for convenience */ |
| { |
| ada_assign_up assign |
| = std::move (ada_parser->assignments.back ()); |
| ada_parser->assignments.pop_back (); |
| value *lhs_val = (assign->eval_for_resolution |
| (pstate->expout.get ())); |
| |
| operation_up rhs = pstate->pop (); |
| rhs = resolve (std::move (rhs), true, |
| lhs_val->type ()); |
| |
| assign->set_rhs (std::move (rhs)); |
| pstate->push (std::move (assign)); |
| } |
| ; |
| |
| /* Expressions, not including the sequencing operator. */ |
| |
| primary : primary DOT_ID |
| { |
| if (strcmp ($2.ptr, "all") == 0) |
| ada_wrap<ada_unop_ind_operation> (); |
| else |
| { |
| operation_up arg = ada_pop (); |
| pstate->push_new<ada_structop_operation> |
| (std::move (arg), copy_name ($2)); |
| } |
| } |
| ; |
| |
| primary : primary DOT_COMPLETE |
| { |
| /* This is done even for ".all", because |
| that might be a prefix. */ |
| operation_up arg = ada_pop (); |
| ada_structop_operation *str_op |
| = (new ada_structop_operation |
| (std::move (arg), copy_name ($2))); |
| str_op->set_prefix (ada_parser->find_completion_bounds ()); |
| pstate->push (operation_up (str_op)); |
| pstate->mark_struct_expression (str_op); |
| } |
| ; |
| |
| primary : primary '(' arglist ')' |
| { ada_funcall ($3); } |
| | var_or_type '(' arglist ')' |
| { |
| if ($1 != NULL) |
| { |
| if ($3 != 1) |
| error (_("Invalid conversion")); |
| operation_up arg = ada_pop (); |
| pstate->push_new<unop_cast_operation> |
| (std::move (arg), $1); |
| } |
| else |
| ada_funcall ($3); |
| } |
| ; |
| |
| primary : var_or_type '\'' '(' exp ')' |
| { |
| if ($1 == NULL) |
| error (_("Type required for qualification")); |
| operation_up arg = ada_pop (true, |
| check_typedef ($1)); |
| pstate->push_new<ada_qual_operation> |
| (std::move (arg), $1); |
| } |
| ; |
| |
| primary : |
| primary '(' simple_exp DOTDOT simple_exp ')' |
| { ada_wrap3<ada_ternop_slice_operation> (); } |
| | var_or_type '(' simple_exp DOTDOT simple_exp ')' |
| { if ($1 == NULL) |
| ada_wrap3<ada_ternop_slice_operation> (); |
| else |
| error (_("Cannot slice a type")); |
| } |
| ; |
| |
| primary : '(' exp1 ')' { } |
| ; |
| |
| /* The following rule causes a conflict with the type conversion |
| var_or_type (exp) |
| To get around it, we give '(' higher priority and add bridge rules for |
| var_or_type (exp, exp, ...) |
| var_or_type (exp .. exp) |
| We also have the action for var_or_type(exp) generate a function call |
| when the first symbol does not denote a type. */ |
| |
| primary : var_or_type %prec VAR |
| { if ($1 != NULL) |
| pstate->push_new<type_operation> ($1); |
| } |
| ; |
| |
| primary : DOLLAR_VARIABLE /* Various GDB extensions */ |
| { pstate->push_dollar ($1); } |
| ; |
| |
| primary : aggregate |
| { |
| pstate->push_new<ada_aggregate_operation> |
| (pop_component ()); |
| } |
| ; |
| |
| primary : '@' |
| { |
| if (ada_parser->assignments.empty ()) |
| error (_("the target name symbol ('@') may only " |
| "appear in an assignment context")); |
| ada_assign_operation *current |
| = ada_parser->assignments.back ().get (); |
| pstate->push_new<ada_target_operation> (current); |
| } |
| ; |
| |
| simple_exp : primary |
| ; |
| |
| simple_exp : '-' simple_exp %prec UNARY |
| { ada_wrap_overload<ada_neg_operation> (UNOP_NEG); } |
| ; |
| |
| simple_exp : '+' simple_exp %prec UNARY |
| { |
| operation_up arg = ada_pop (); |
| operation_up empty; |
| |
| /* If an overloaded operator was found, use |
| it. Otherwise, unary + has no effect and |
| the argument can be pushed instead. */ |
| operation_up call = maybe_overload (UNOP_PLUS, arg, |
| empty); |
| if (call != nullptr) |
| arg = std::move (call); |
| pstate->push (std::move (arg)); |
| } |
| ; |
| |
| simple_exp : NOT simple_exp %prec UNARY |
| { |
| ada_wrap_overload<unary_logical_not_operation> |
| (UNOP_LOGICAL_NOT); |
| } |
| ; |
| |
| simple_exp : ABS simple_exp %prec UNARY |
| { ada_wrap_overload<ada_abs_operation> (UNOP_ABS); } |
| ; |
| |
| arglist : { $$ = 0; } |
| ; |
| |
| arglist : exp |
| { $$ = 1; } |
| | NAME ARROW exp |
| { $$ = 1; } |
| | arglist ',' exp |
| { $$ = $1 + 1; } |
| | arglist ',' NAME ARROW exp |
| { $$ = $1 + 1; } |
| ; |
| |
| primary : '{' var_or_type '}' primary %prec '.' |
| /* GDB extension */ |
| { |
| if ($2 == NULL) |
| error (_("Type required within braces in coercion")); |
| operation_up arg = ada_pop (); |
| pstate->push_new<unop_memval_operation> |
| (std::move (arg), $2); |
| } |
| ; |
| |
| /* Binary operators in order of decreasing precedence. */ |
| |
| simple_exp : simple_exp STARSTAR simple_exp |
| { ada_wrap2<ada_binop_exp_operation> (BINOP_EXP); } |
| ; |
| |
| simple_exp : simple_exp '*' simple_exp |
| { ada_wrap2<ada_binop_mul_operation> (BINOP_MUL); } |
| ; |
| |
| simple_exp : simple_exp '/' simple_exp |
| { ada_wrap2<ada_binop_div_operation> (BINOP_DIV); } |
| ; |
| |
| simple_exp : simple_exp REM simple_exp /* May need to be fixed to give correct Ada REM */ |
| { ada_wrap2<ada_binop_rem_operation> (BINOP_REM); } |
| ; |
| |
| simple_exp : simple_exp MOD simple_exp |
| { ada_wrap2<ada_binop_mod_operation> (BINOP_MOD); } |
| ; |
| |
| simple_exp : simple_exp '@' simple_exp /* GDB extension */ |
| { ada_wrap2<repeat_operation> (BINOP_REPEAT); } |
| ; |
| |
| simple_exp : simple_exp '+' simple_exp |
| { ada_wrap_op<ada_binop_addsub_operation> (BINOP_ADD); } |
| ; |
| |
| simple_exp : simple_exp '&' simple_exp |
| { ada_wrap2<ada_concat_operation> (BINOP_CONCAT); } |
| ; |
| |
| simple_exp : simple_exp '-' simple_exp |
| { ada_wrap_op<ada_binop_addsub_operation> (BINOP_SUB); } |
| ; |
| |
| relation : simple_exp |
| ; |
| |
| relation : simple_exp '=' simple_exp |
| { ada_wrap_op<ada_binop_equal_operation> (BINOP_EQUAL); } |
| ; |
| |
| relation : simple_exp NOTEQUAL simple_exp |
| { ada_wrap_op<ada_binop_equal_operation> (BINOP_NOTEQUAL); } |
| ; |
| |
| relation : simple_exp LEQ simple_exp |
| { ada_un_wrap2<leq_operation> (BINOP_LEQ); } |
| ; |
| |
| relation : simple_exp IN simple_exp DOTDOT simple_exp |
| { ada_wrap3<ada_ternop_range_operation> (); } |
| | simple_exp IN primary TICK_RANGE tick_arglist |
| { |
| operation_up rhs = ada_pop (); |
| operation_up lhs = ada_pop (); |
| pstate->push_new<ada_binop_in_bounds_operation> |
| (std::move (lhs), std::move (rhs), $5); |
| } |
| | simple_exp IN var_or_type %prec TICK_ACCESS |
| { |
| if ($3 == NULL) |
| error (_("Right operand of 'in' must be type")); |
| operation_up arg = ada_pop (); |
| pstate->push_new<ada_unop_range_operation> |
| (std::move (arg), $3); |
| } |
| | simple_exp NOT IN simple_exp DOTDOT simple_exp |
| { ada_wrap3<ada_ternop_range_operation> (); |
| ada_wrap<unary_logical_not_operation> (); } |
| | simple_exp NOT IN primary TICK_RANGE tick_arglist |
| { |
| operation_up rhs = ada_pop (); |
| operation_up lhs = ada_pop (); |
| pstate->push_new<ada_binop_in_bounds_operation> |
| (std::move (lhs), std::move (rhs), $6); |
| ada_wrap<unary_logical_not_operation> (); |
| } |
| | simple_exp NOT IN var_or_type %prec TICK_ACCESS |
| { |
| if ($4 == NULL) |
| error (_("Right operand of 'in' must be type")); |
| operation_up arg = ada_pop (); |
| pstate->push_new<ada_unop_range_operation> |
| (std::move (arg), $4); |
| ada_wrap<unary_logical_not_operation> (); |
| } |
| ; |
| |
| relation : simple_exp GEQ simple_exp |
| { ada_un_wrap2<geq_operation> (BINOP_GEQ); } |
| ; |
| |
| relation : simple_exp '<' simple_exp |
| { ada_un_wrap2<less_operation> (BINOP_LESS); } |
| ; |
| |
| relation : simple_exp '>' simple_exp |
| { ada_un_wrap2<gtr_operation> (BINOP_GTR); } |
| ; |
| |
| exp : relation |
| | and_exp |
| | and_then_exp |
| | or_exp |
| | or_else_exp |
| | xor_exp |
| ; |
| |
| and_exp : |
| relation _AND_ relation |
| { ada_wrap2<bitwise_and_operation> |
| (BINOP_BITWISE_AND); } |
| | and_exp _AND_ relation |
| { ada_wrap2<bitwise_and_operation> |
| (BINOP_BITWISE_AND); } |
| ; |
| |
| and_then_exp : |
| relation _AND_ THEN relation |
| { ada_wrap2<logical_and_operation> |
| (BINOP_LOGICAL_AND); } |
| | and_then_exp _AND_ THEN relation |
| { ada_wrap2<logical_and_operation> |
| (BINOP_LOGICAL_AND); } |
| ; |
| |
| or_exp : |
| relation OR relation |
| { ada_wrap2<bitwise_ior_operation> |
| (BINOP_BITWISE_IOR); } |
| | or_exp OR relation |
| { ada_wrap2<bitwise_ior_operation> |
| (BINOP_BITWISE_IOR); } |
| ; |
| |
| or_else_exp : |
| relation OR ELSE relation |
| { ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); } |
| | or_else_exp OR ELSE relation |
| { ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); } |
| ; |
| |
| xor_exp : relation XOR relation |
| { ada_wrap2<bitwise_xor_operation> |
| (BINOP_BITWISE_XOR); } |
| | xor_exp XOR relation |
| { ada_wrap2<bitwise_xor_operation> |
| (BINOP_BITWISE_XOR); } |
| ; |
| |
| /* Primaries can denote types (OP_TYPE). In cases such as |
| primary TICK_ADDRESS, where a type would be invalid, it will be |
| caught when evaluate_subexp in ada-lang.c tries to evaluate the |
| primary, expecting a value. Precedence rules resolve the ambiguity |
| in NAME TICK_ACCESS in favor of shifting to form a var_or_type. A |
| construct such as aType'access'access will again cause an error when |
| aType'access evaluates to a type that evaluate_subexp attempts to |
| evaluate. */ |
| primary : primary TICK_ACCESS |
| { ada_addrof (); } |
| | primary TICK_ADDRESS |
| { ada_addrof (type_system_address (pstate)); } |
| | primary TICK_COMPLETE |
| { |
| pstate->mark_completion (make_tick_completer ($2)); |
| } |
| | primary TICK_FIRST tick_arglist |
| { |
| operation_up arg = ada_pop (); |
| pstate->push_new<ada_unop_atr_operation> |
| (std::move (arg), OP_ATR_FIRST, $3); |
| } |
| | primary TICK_LAST tick_arglist |
| { |
| operation_up arg = ada_pop (); |
| pstate->push_new<ada_unop_atr_operation> |
| (std::move (arg), OP_ATR_LAST, $3); |
| } |
| | primary TICK_LENGTH tick_arglist |
| { |
| operation_up arg = ada_pop (); |
| pstate->push_new<ada_unop_atr_operation> |
| (std::move (arg), OP_ATR_LENGTH, $3); |
| } |
| | primary TICK_SIZE |
| { ada_wrap<ada_atr_size_operation> (); } |
| | primary TICK_TAG |
| { ada_wrap<ada_atr_tag_operation> (); } |
| | opt_type_prefix TICK_MIN '(' exp ',' exp ')' |
| { ada_wrap2<ada_binop_min_operation> (BINOP_MIN); } |
| | opt_type_prefix TICK_MAX '(' exp ',' exp ')' |
| { ada_wrap2<ada_binop_max_operation> (BINOP_MAX); } |
| | opt_type_prefix TICK_POS '(' exp ')' |
| { ada_wrap<ada_pos_operation> (); } |
| | type_prefix TICK_VAL '(' exp ')' |
| { |
| operation_up arg = ada_pop (); |
| pstate->push_new<ada_atr_val_operation> |
| ($1, std::move (arg)); |
| } |
| | type_prefix TICK_ENUM_REP '(' exp ')' |
| { |
| operation_up arg = ada_pop (true, $1); |
| pstate->push_new<ada_atr_enum_rep_operation> |
| ($1, std::move (arg)); |
| } |
| | type_prefix TICK_ENUM_VAL '(' exp ')' |
| { |
| operation_up arg = ada_pop (true, $1); |
| pstate->push_new<ada_atr_enum_val_operation> |
| ($1, std::move (arg)); |
| } |
| | type_prefix TICK_MODULUS |
| { |
| struct type *type_arg = check_typedef ($1); |
| if (!ada_is_modular_type (type_arg)) |
| error (_("'modulus must be applied to modular type")); |
| write_int (pstate, ada_modulus (type_arg), |
| type_arg->target_type ()); |
| } |
| ; |
| |
| tick_arglist : %prec '(' |
| { $$ = 1; } |
| | '(' INT ')' |
| { $$ = $2.val->as_integer<LONGEST> (); } |
| ; |
| |
| type_prefix : |
| var_or_type |
| { |
| if ($1 == NULL) |
| error (_("Prefix must be type")); |
| $$ = $1; |
| } |
| ; |
| |
| opt_type_prefix : |
| type_prefix |
| { $$ = $1; } |
| | /* EMPTY */ |
| { $$ = parse_type (pstate)->builtin_void; } |
| ; |
| |
| |
| primary : INT |
| { |
| pstate->push_new<long_const_operation> ($1.type, *$1.val); |
| ada_wrap<ada_wrapped_operation> (); |
| } |
| ; |
| |
| primary : CHARLIT |
| { |
| pstate->push_new<ada_char_operation> ($1.type, $1.val); |
| } |
| ; |
| |
| primary : FLOAT |
| { |
| float_data data; |
| std::copy (std::begin ($1.val), std::end ($1.val), |
| std::begin (data)); |
| pstate->push_new<float_const_operation> |
| ($1.type, data); |
| ada_wrap<ada_wrapped_operation> (); |
| } |
| ; |
| |
| primary : NULL_PTR |
| { |
| struct type *null_ptr_type |
| = lookup_pointer_type (parse_type (pstate)->builtin_int0); |
| write_int (pstate, 0, null_ptr_type); |
| } |
| ; |
| |
| primary : STRING |
| { |
| pstate->push_new<ada_string_operation> |
| (copy_name ($1)); |
| } |
| ; |
| |
| primary : TRUEKEYWORD |
| { |
| write_int (pstate, 1, |
| parse_type (pstate)->builtin_bool); |
| } |
| | FALSEKEYWORD |
| { |
| write_int (pstate, 0, |
| parse_type (pstate)->builtin_bool); |
| } |
| ; |
| |
| primary : NEW NAME |
| { error (_("NEW not implemented.")); } |
| ; |
| |
| var_or_type: NAME %prec VAR |
| { $$ = write_var_or_type (pstate, NULL, $1); } |
| | NAME_COMPLETE %prec VAR |
| { |
| $$ = write_var_or_type_completion (pstate, |
| NULL, |
| $1); |
| } |
| | block NAME %prec VAR |
| { $$ = write_var_or_type (pstate, $1, $2); } |
| | block NAME_COMPLETE %prec VAR |
| { |
| $$ = write_var_or_type_completion (pstate, |
| $1, |
| $2); |
| } |
| | NAME TICK_ACCESS |
| { |
| $$ = write_var_or_type (pstate, NULL, $1); |
| if ($$ == NULL) |
| ada_addrof (); |
| else |
| $$ = lookup_pointer_type ($$); |
| } |
| | block NAME TICK_ACCESS |
| { |
| $$ = write_var_or_type (pstate, $1, $2); |
| if ($$ == NULL) |
| ada_addrof (); |
| else |
| $$ = lookup_pointer_type ($$); |
| } |
| ; |
| |
| /* GDB extension */ |
| block : NAME COLONCOLON |
| { $$ = block_lookup (NULL, $1.ptr); } |
| | block NAME COLONCOLON |
| { $$ = block_lookup ($1, $2.ptr); } |
| ; |
| |
| aggregate : |
| '(' exp WITH DELTA aggregate_component_list ')' |
| { |
| std::vector<ada_component_up> components |
| = pop_components ($5); |
| operation_up base = ada_pop (); |
| |
| push_component<ada_aggregate_component> |
| (std::move (base), std::move (components)); |
| } |
| | '(' aggregate_component_list ')' |
| { |
| std::vector<ada_component_up> components |
| = pop_components ($2); |
| |
| push_component<ada_aggregate_component> |
| (std::move (components)); |
| } |
| ; |
| |
| aggregate_component_list : |
| component_groups { $$ = $1; } |
| | positional_list exp |
| { |
| push_component<ada_positional_component> |
| ($1, ada_pop ()); |
| $$ = $1 + 1; |
| } |
| | positional_list component_groups |
| { $$ = $1 + $2; } |
| ; |
| |
| positional_list : |
| exp ',' |
| { |
| push_component<ada_positional_component> |
| (0, ada_pop ()); |
| $$ = 1; |
| } |
| | positional_list exp ',' |
| { |
| push_component<ada_positional_component> |
| ($1, ada_pop ()); |
| $$ = $1 + 1; |
| } |
| ; |
| |
| component_groups: |
| others { $$ = 1; } |
| | component_group { $$ = 1; } |
| | component_group ',' component_groups |
| { $$ = $3 + 1; } |
| ; |
| |
| others : OTHERS ARROW exp |
| { |
| push_component<ada_others_component> (ada_pop ()); |
| } |
| ; |
| |
| component_group : |
| component_associations |
| { |
| ada_choices_component *choices = choice_component (); |
| choices->set_associations (pop_associations ($1)); |
| } |
| | FOR NAME IN |
| { |
| std::string name = copy_name ($2); |
| |
| auto iter = ada_parser->iterated_associations.find (name); |
| if (iter != ada_parser->iterated_associations.end ()) |
| error (_("Nested use of index parameter '%s'"), |
| name.c_str ()); |
| |
| ada_parser->iterated_associations[name] = {}; |
| } |
| component_associations |
| { |
| std::string name = copy_name ($2); |
| |
| ada_choices_component *choices = choice_component (); |
| choices->set_associations (pop_associations ($5)); |
| |
| auto iter = ada_parser->iterated_associations.find (name); |
| gdb_assert (iter != ada_parser->iterated_associations.end ()); |
| for (ada_index_var_operation *var : iter->second) |
| var->set_choices (choices); |
| |
| ada_parser->iterated_associations.erase (name); |
| |
| choices->set_name (std::move (name)); |
| } |
| ; |
| |
| /* We use this somewhat obscure definition in order to handle NAME => and |
| NAME | differently from exp => and exp |. ARROW and '|' have a precedence |
| above that of the reduction of NAME to var_or_type. By delaying |
| decisions until after the => or '|', we convert the ambiguity to a |
| resolved shift/reduce conflict. */ |
| component_associations : |
| NAME ARROW exp |
| { |
| push_component<ada_choices_component> (ada_pop ()); |
| write_name_assoc (pstate, $1); |
| $$ = 1; |
| } |
| | simple_exp ARROW exp |
| { |
| push_component<ada_choices_component> (ada_pop ()); |
| push_association<ada_name_association> (ada_pop ()); |
| $$ = 1; |
| } |
| | simple_exp DOTDOT simple_exp ARROW exp |
| { |
| push_component<ada_choices_component> (ada_pop ()); |
| operation_up rhs = ada_pop (); |
| operation_up lhs = ada_pop (); |
| push_association<ada_discrete_range_association> |
| (std::move (lhs), std::move (rhs)); |
| $$ = 1; |
| } |
| | NAME '|' component_associations |
| { |
| write_name_assoc (pstate, $1); |
| $$ = $3 + 1; |
| } |
| | simple_exp '|' component_associations |
| { |
| push_association<ada_name_association> (ada_pop ()); |
| $$ = $3 + 1; |
| } |
| | simple_exp DOTDOT simple_exp '|' component_associations |
| |
| { |
| operation_up rhs = ada_pop (); |
| operation_up lhs = ada_pop (); |
| push_association<ada_discrete_range_association> |
| (std::move (lhs), std::move (rhs)); |
| $$ = $5 + 1; |
| } |
| ; |
| |
| /* Some extensions borrowed from C, for the benefit of those who find they |
| can't get used to Ada notation in GDB. */ |
| |
| primary : '*' primary %prec '.' |
| { ada_wrap<ada_unop_ind_operation> (); } |
| | '&' primary %prec '.' |
| { ada_addrof (); } |
| | primary '[' exp ']' |
| { |
| ada_wrap2<subscript_operation> (BINOP_SUBSCRIPT); |
| ada_wrap<ada_wrapped_operation> (); |
| } |
| ; |
| |
| %% |
| |
| /* yylex defined in ada-lex.c: Reads one token, getting characters */ |
| /* through lexptr. */ |
| |
| /* Remap normal flex interface names (yylex) as well as gratuitously */ |
| /* global symbol names, so we can have multiple flex-generated parsers */ |
| /* in gdb. */ |
| |
| /* (See note above on previous definitions for YACC.) */ |
| |
| #define yy_create_buffer ada_yy_create_buffer |
| #define yy_delete_buffer ada_yy_delete_buffer |
| #define yy_init_buffer ada_yy_init_buffer |
| #define yy_load_buffer_state ada_yy_load_buffer_state |
| #define yy_switch_to_buffer ada_yy_switch_to_buffer |
| #define yyrestart ada_yyrestart |
| #define yytext ada_yytext |
| |
| /* The following kludge was found necessary to prevent conflicts between */ |
| /* defs.h and non-standard stdlib.h files. */ |
| #define qsort __qsort__dummy |
| #include "ada-lex.c" |
| |
| int |
| ada_parse (struct parser_state *par_state) |
| { |
| /* Setting up the parser state. */ |
| scoped_restore pstate_restore = make_scoped_restore (&pstate, par_state); |
| gdb_assert (par_state != NULL); |
| |
| ada_parse_state parser (par_state->lexptr); |
| scoped_restore parser_restore = make_scoped_restore (&ada_parser, &parser); |
| |
| scoped_restore restore_yydebug = make_scoped_restore (&yydebug, |
| par_state->debug); |
| |
| lexer_init (yyin); /* (Re-)initialize lexer. */ |
| |
| int result = yyparse (); |
| if (!result) |
| { |
| struct type *context_type = nullptr; |
| if (par_state->void_context_p) |
| context_type = parse_type (par_state)->builtin_void; |
| pstate->set_operation (ada_pop (true, context_type)); |
| } |
| return result; |
| } |
| |
| static void |
| yyerror (const char *msg) |
| { |
| pstate->parse_error (msg); |
| } |
| |
| /* Emit expression to access an instance of SYM, in block BLOCK (if |
| non-NULL). */ |
| |
| static void |
| write_var_from_sym (struct parser_state *par_state, block_symbol sym) |
| { |
| if (symbol_read_needs_frame (sym.symbol)) |
| par_state->block_tracker->update (sym.block, INNERMOST_BLOCK_FOR_SYMBOLS); |
| |
| par_state->push_new<ada_var_value_operation> (sym); |
| } |
| |
| /* Write integer or boolean constant ARG of type TYPE. */ |
| |
| static void |
| write_int (struct parser_state *par_state, LONGEST arg, struct type *type) |
| { |
| pstate->push_new<long_const_operation> (type, arg); |
| ada_wrap<ada_wrapped_operation> (); |
| } |
| |
| /* Emit expression corresponding to the renamed object named |
| designated by RENAMED_ENTITY[0 .. RENAMED_ENTITY_LEN-1] in the |
| context of ORIG_LEFT_CONTEXT, to which is applied the operations |
| encoded by RENAMING_EXPR. MAX_DEPTH is the maximum number of |
| cascaded renamings to allow. If ORIG_LEFT_CONTEXT is null, it |
| defaults to the currently selected block. ORIG_SYMBOL is the |
| symbol that originally encoded the renaming. It is needed only |
| because its prefix also qualifies any index variables used to index |
| or slice an array. It should not be necessary once we go to the |
| new encoding entirely (FIXME pnh 7/20/2007). */ |
| |
| static void |
| write_object_renaming (struct parser_state *par_state, |
| const struct block *orig_left_context, |
| const char *renamed_entity, int renamed_entity_len, |
| const char *renaming_expr, int max_depth) |
| { |
| char *name; |
| enum { SIMPLE_INDEX, LOWER_BOUND, UPPER_BOUND } slice_state; |
| |
| if (max_depth <= 0) |
| error (_("Could not find renamed symbol")); |
| |
| if (orig_left_context == NULL) |
| orig_left_context = get_selected_block (NULL); |
| |
| name = obstack_strndup (&ada_parser->temp_space, renamed_entity, |
| renamed_entity_len); |
| block_symbol sym_info = ada_lookup_encoded_symbol (name, orig_left_context, |
| SEARCH_VFT); |
| if (sym_info.symbol == NULL) |
| error (_("Could not find renamed variable: %s"), ada_decode (name).c_str ()); |
| else if (sym_info.symbol->aclass () == LOC_TYPEDEF) |
| /* We have a renaming of an old-style renaming symbol. Don't |
| trust the block information. */ |
| sym_info.block = orig_left_context; |
| |
| { |
| const char *inner_renamed_entity; |
| int inner_renamed_entity_len; |
| const char *inner_renaming_expr; |
| |
| switch (ada_parse_renaming (sym_info.symbol, &inner_renamed_entity, |
| &inner_renamed_entity_len, |
| &inner_renaming_expr)) |
| { |
| case ADA_NOT_RENAMING: |
| write_var_from_sym (par_state, sym_info); |
| break; |
| case ADA_OBJECT_RENAMING: |
| write_object_renaming (par_state, sym_info.block, |
| inner_renamed_entity, inner_renamed_entity_len, |
| inner_renaming_expr, max_depth - 1); |
| break; |
| default: |
| goto BadEncoding; |
| } |
| } |
| |
| slice_state = SIMPLE_INDEX; |
| while (*renaming_expr == 'X') |
| { |
| renaming_expr += 1; |
| |
| switch (*renaming_expr) { |
| case 'A': |
| renaming_expr += 1; |
| ada_wrap<ada_unop_ind_operation> (); |
| break; |
| case 'L': |
| slice_state = LOWER_BOUND; |
| [[fallthrough]]; |
| case 'S': |
| renaming_expr += 1; |
| if (isdigit (*renaming_expr)) |
| { |
| char *next; |
| long val = strtol (renaming_expr, &next, 10); |
| if (next == renaming_expr) |
| goto BadEncoding; |
| renaming_expr = next; |
| write_int (par_state, val, parse_type (par_state)->builtin_int); |
| } |
| else |
| { |
| const char *end; |
| char *index_name; |
| |
| end = strchr (renaming_expr, 'X'); |
| if (end == NULL) |
| end = renaming_expr + strlen (renaming_expr); |
| |
| index_name = obstack_strndup (&ada_parser->temp_space, |
| renaming_expr, |
| end - renaming_expr); |
| renaming_expr = end; |
| |
| block_symbol index_sym_info |
| = ada_lookup_encoded_symbol (index_name, orig_left_context, |
| SEARCH_VFT); |
| if (index_sym_info.symbol == NULL) |
| error (_("Could not find %s"), index_name); |
| else if (index_sym_info.symbol->aclass () == LOC_TYPEDEF) |
| /* Index is an old-style renaming symbol. */ |
| index_sym_info.block = orig_left_context; |
| write_var_from_sym (par_state, index_sym_info); |
| } |
| if (slice_state == SIMPLE_INDEX) |
| ada_funcall (1); |
| else if (slice_state == LOWER_BOUND) |
| slice_state = UPPER_BOUND; |
| else if (slice_state == UPPER_BOUND) |
| { |
| ada_wrap3<ada_ternop_slice_operation> (); |
| slice_state = SIMPLE_INDEX; |
| } |
| break; |
| |
| case 'R': |
| { |
| const char *end; |
| |
| renaming_expr += 1; |
| |
| if (slice_state != SIMPLE_INDEX) |
| goto BadEncoding; |
| end = strchr (renaming_expr, 'X'); |
| if (end == NULL) |
| end = renaming_expr + strlen (renaming_expr); |
| |
| operation_up arg = ada_pop (); |
| pstate->push_new<ada_structop_operation> |
| (std::move (arg), std::string (renaming_expr, |
| end - renaming_expr)); |
| renaming_expr = end; |
| break; |
| } |
| |
| default: |
| goto BadEncoding; |
| } |
| } |
| if (slice_state == SIMPLE_INDEX) |
| return; |
| |
| BadEncoding: |
| error (_("Internal error in encoding of renaming declaration")); |
| } |
| |
| static const struct block* |
| block_lookup (const struct block *context, const char *raw_name) |
| { |
| const char *name; |
| struct symtab *symtab; |
| const struct block *result = NULL; |
| |
| std::string name_storage; |
| if (raw_name[0] == '\'') |
| { |
| raw_name += 1; |
| name = raw_name; |
| } |
| else |
| { |
| name_storage = ada_encode (raw_name); |
| name = name_storage.c_str (); |
| } |
| |
| std::vector<struct block_symbol> syms |
| = ada_lookup_symbol_list (name, context, SEARCH_FUNCTION_DOMAIN); |
| |
| if (context == NULL |
| && (syms.empty () || syms[0].symbol->aclass () != LOC_BLOCK)) |
| symtab = lookup_symtab (name); |
| else |
| symtab = NULL; |
| |
| if (symtab != NULL) |
| result = symtab->compunit ()->blockvector ()->static_block (); |
| else if (syms.empty () || syms[0].symbol->aclass () != LOC_BLOCK) |
| { |
| if (context == NULL) |
| error (_("No file or function \"%s\"."), raw_name); |
| else |
| error (_("No function \"%s\" in specified context."), raw_name); |
| } |
| else |
| { |
| if (syms.size () > 1) |
| warning (_("Function name \"%s\" ambiguous here"), raw_name); |
| result = syms[0].symbol->value_block (); |
| } |
| |
| return result; |
| } |
| |
| static struct symbol* |
| select_possible_type_sym (const std::vector<struct block_symbol> &syms) |
| { |
| int i; |
| int preferred_index; |
| struct type *preferred_type; |
| |
| preferred_index = -1; preferred_type = NULL; |
| for (i = 0; i < syms.size (); i += 1) |
| switch (syms[i].symbol->aclass ()) |
| { |
| case LOC_TYPEDEF: |
| if (ada_prefer_type (syms[i].symbol->type (), preferred_type)) |
| { |
| preferred_index = i; |
| preferred_type = syms[i].symbol->type (); |
| } |
| break; |
| case LOC_REGISTER: |
| case LOC_ARG: |
| case LOC_REF_ARG: |
| case LOC_REGPARM_ADDR: |
| case LOC_LOCAL: |
| case LOC_COMPUTED: |
| return NULL; |
| default: |
| break; |
| } |
| if (preferred_type == NULL) |
| return NULL; |
| return syms[preferred_index].symbol; |
| } |
| |
| static struct type* |
| find_primitive_type (struct parser_state *par_state, const char *name) |
| { |
| struct type *type; |
| type = language_lookup_primitive_type (par_state->language (), |
| par_state->gdbarch (), |
| name); |
| if (type == NULL && strcmp ("system__address", name) == 0) |
| type = type_system_address (par_state); |
| |
| if (type != NULL) |
| { |
| /* Check to see if we have a regular definition of this |
| type that just didn't happen to have been read yet. */ |
| struct symbol *sym; |
| char *expanded_name = |
| (char *) alloca (strlen (name) + sizeof ("standard__")); |
| strcpy (expanded_name, "standard__"); |
| strcat (expanded_name, name); |
| sym = ada_lookup_symbol (expanded_name, NULL, SEARCH_TYPE_DOMAIN).symbol; |
| if (sym != NULL && sym->aclass () == LOC_TYPEDEF) |
| type = sym->type (); |
| } |
| |
| return type; |
| } |
| |
| static int |
| chop_selector (const char *name, int end) |
| { |
| int i; |
| for (i = end - 1; i > 0; i -= 1) |
| if (name[i] == '.' || (name[i] == '_' && name[i+1] == '_')) |
| return i; |
| return -1; |
| } |
| |
| /* If NAME is a string beginning with a separator (either '__', or |
| '.'), chop this separator and return the result; else, return |
| NAME. */ |
| |
| static const char * |
| chop_separator (const char *name) |
| { |
| if (*name == '.') |
| return name + 1; |
| |
| if (name[0] == '_' && name[1] == '_') |
| return name + 2; |
| |
| return name; |
| } |
| |
| /* Given that SELS is a string of the form (<sep><identifier>)*, where |
| <sep> is '__' or '.', write the indicated sequence of |
| STRUCTOP_STRUCT expression operators. Returns a pointer to the |
| last operation that was pushed. */ |
| static ada_structop_operation * |
| write_selectors (struct parser_state *par_state, const char *sels) |
| { |
| ada_structop_operation *result = nullptr; |
| while (*sels != '\0') |
| { |
| const char *p = chop_separator (sels); |
| sels = p; |
| while (*sels != '\0' && *sels != '.' |
| && (sels[0] != '_' || sels[1] != '_')) |
| sels += 1; |
| operation_up arg = ada_pop (); |
| result = new ada_structop_operation (std::move (arg), |
| std::string (p, sels - p)); |
| pstate->push (operation_up (result)); |
| } |
| return result; |
| } |
| |
| /* Write a variable access (OP_VAR_VALUE) to ambiguous encoded name |
| NAME[0..LEN-1], in block context BLOCK, to be resolved later. Writes |
| a temporary symbol that is valid until the next call to ada_parse. |
| */ |
| static void |
| write_ambiguous_var (struct parser_state *par_state, |
| const struct block *block, const char *name, int len) |
| { |
| struct symbol *sym = new (&ada_parser->temp_space) symbol (); |
| |
| sym->set_domain (UNDEF_DOMAIN); |
| sym->set_linkage_name (obstack_strndup (&ada_parser->temp_space, name, len)); |
| sym->set_language (language_ada, nullptr); |
| |
| block_symbol bsym { sym, block }; |
| par_state->push_new<ada_var_value_operation> (bsym); |
| } |
| |
| /* A convenient wrapper around ada_get_field_index that takes |
| a non NUL-terminated FIELD_NAME0 and a FIELD_NAME_LEN instead |
| of a NUL-terminated field name. */ |
| |
| static int |
| ada_nget_field_index (const struct type *type, const char *field_name0, |
| int field_name_len, int maybe_missing) |
| { |
| char *field_name = (char *) alloca ((field_name_len + 1) * sizeof (char)); |
| |
| strncpy (field_name, field_name0, field_name_len); |
| field_name[field_name_len] = '\0'; |
| return ada_get_field_index (type, field_name, maybe_missing); |
| } |
| |
| /* If encoded_field_name is the name of a field inside symbol SYM, |
| then return the type of that field. Otherwise, return NULL. |
| |
| This function is actually recursive, so if ENCODED_FIELD_NAME |
| doesn't match one of the fields of our symbol, then try to see |
| if ENCODED_FIELD_NAME could not be a succession of field names |
| (in other words, the user entered an expression of the form |
| TYPE_NAME.FIELD1.FIELD2.FIELD3), in which case we evaluate |
| each field name sequentially to obtain the desired field type. |
| In case of failure, we return NULL. */ |
| |
| static struct type * |
| get_symbol_field_type (struct symbol *sym, const char *encoded_field_name) |
| { |
| const char *field_name = encoded_field_name; |
| const char *subfield_name; |
| struct type *type = sym->type (); |
| int fieldno; |
| |
| if (type == NULL || field_name == NULL) |
| return NULL; |
| type = check_typedef (type); |
| |
| while (field_name[0] != '\0') |
| { |
| field_name = chop_separator (field_name); |
| |
| fieldno = ada_get_field_index (type, field_name, 1); |
| if (fieldno >= 0) |
| return type->field (fieldno).type (); |
| |
| subfield_name = field_name; |
| while (*subfield_name != '\0' && *subfield_name != '.' |
| && (subfield_name[0] != '_' || subfield_name[1] != '_')) |
| subfield_name += 1; |
| |
| if (subfield_name[0] == '\0') |
| return NULL; |
| |
| fieldno = ada_nget_field_index (type, field_name, |
| subfield_name - field_name, 1); |
| if (fieldno < 0) |
| return NULL; |
| |
| type = type->field (fieldno).type (); |
| field_name = subfield_name; |
| } |
| |
| return NULL; |
| } |
| |
| /* Look up NAME0 (an unencoded identifier or dotted name) in BLOCK (or |
| expression_block_context if NULL). If it denotes a type, return |
| that type. Otherwise, write expression code to evaluate it as an |
| object and return NULL. In this second case, NAME0 will, in general, |
| have the form <name>(.<selector_name>)*, where <name> is an object |
| or renaming encoded in the debugging data. Calls error if no |
| prefix <name> matches a name in the debugging data (i.e., matches |
| either a complete name or, as a wild-card match, the final |
| identifier). */ |
| |
| static struct type* |
| write_var_or_type (struct parser_state *par_state, |
| const struct block *block, struct stoken name0) |
| { |
| int depth; |
| char *encoded_name; |
| int name_len; |
| |
| std::string name_storage = ada_encode (name0.ptr); |
| |
| if (block == nullptr) |
| { |
| auto iter = ada_parser->iterated_associations.find (name_storage); |
| if (iter != ada_parser->iterated_associations.end ()) |
| { |
| auto op = std::make_unique<ada_index_var_operation> (); |
| iter->second.push_back (op.get ()); |
| par_state->push (std::move (op)); |
| return nullptr; |
| } |
| |
| block = par_state->expression_context_block; |
| } |
| |
| name_len = name_storage.size (); |
| encoded_name = obstack_strndup (&ada_parser->temp_space, |
| name_storage.c_str (), |
| name_len); |
| for (depth = 0; depth < MAX_RENAMING_CHAIN_LENGTH; depth += 1) |
| { |
| int tail_index; |
| |
| tail_index = name_len; |
| while (tail_index > 0) |
| { |
| struct symbol *type_sym; |
| struct symbol *renaming_sym; |
| const char* renaming; |
| int renaming_len; |
| const char* renaming_expr; |
| int terminator = encoded_name[tail_index]; |
| |
| encoded_name[tail_index] = '\0'; |
| /* In order to avoid double-encoding, we want to only pass |
| the decoded form to lookup functions. */ |
| std::string decoded_name = ada_decode (encoded_name); |
| encoded_name[tail_index] = terminator; |
| |
| std::vector<struct block_symbol> syms |
| = ada_lookup_symbol_list (decoded_name.c_str (), block, |
| SEARCH_VFT); |
| |
| type_sym = select_possible_type_sym (syms); |
| |
| if (type_sym != NULL) |
| renaming_sym = type_sym; |
| else if (syms.size () == 1) |
| renaming_sym = syms[0].symbol; |
| else |
| renaming_sym = NULL; |
| |
| switch (ada_parse_renaming (renaming_sym, &renaming, |
| &renaming_len, &renaming_expr)) |
| { |
| case ADA_NOT_RENAMING: |
| break; |
| case ADA_PACKAGE_RENAMING: |
| case ADA_EXCEPTION_RENAMING: |
| case ADA_SUBPROGRAM_RENAMING: |
| { |
| int alloc_len = renaming_len + name_len - tail_index + 1; |
| char *new_name |
| = (char *) obstack_alloc (&ada_parser->temp_space, |
| alloc_len); |
| strncpy (new_name, renaming, renaming_len); |
| strcpy (new_name + renaming_len, encoded_name + tail_index); |
| encoded_name = new_name; |
| name_len = renaming_len + name_len - tail_index; |
| goto TryAfterRenaming; |
| } |
| case ADA_OBJECT_RENAMING: |
| write_object_renaming (par_state, block, renaming, renaming_len, |
| renaming_expr, MAX_RENAMING_CHAIN_LENGTH); |
| write_selectors (par_state, encoded_name + tail_index); |
| return NULL; |
| default: |
| internal_error (_("impossible value from ada_parse_renaming")); |
| } |
| |
| if (type_sym != NULL) |
| { |
| struct type *field_type; |
| |
| if (tail_index == name_len) |
| return type_sym->type (); |
| |
| /* We have some extraneous characters after the type name. |
| If this is an expression "TYPE_NAME.FIELD0.[...].FIELDN", |
| then try to get the type of FIELDN. */ |
| field_type |
| = get_symbol_field_type (type_sym, encoded_name + tail_index); |
| if (field_type != NULL) |
| return field_type; |
| else |
| error (_("Invalid attempt to select from type: \"%s\"."), |
| name0.ptr); |
| } |
| else if (tail_index == name_len && syms.empty ()) |
| { |
| struct type *type = find_primitive_type (par_state, |
| encoded_name); |
| |
| if (type != NULL) |
| return type; |
| } |
| |
| if (syms.size () == 1) |
| { |
| write_var_from_sym (par_state, syms[0]); |
| write_selectors (par_state, encoded_name + tail_index); |
| return NULL; |
| } |
| else if (syms.empty ()) |
| { |
| struct objfile *objfile = nullptr; |
| if (block != nullptr) |
| objfile = block->objfile (); |
| |
| bound_minimal_symbol msym |
| = ada_lookup_simple_minsym (decoded_name.c_str (), objfile); |
| if (msym.minsym != NULL) |
| { |
| par_state->push_new<ada_var_msym_value_operation> (msym); |
| /* Maybe cause error here rather than later? FIXME? */ |
| write_selectors (par_state, encoded_name + tail_index); |
| return NULL; |
| } |
| |
| if (tail_index == name_len |
| && strncmp (encoded_name, "standard__", |
| sizeof ("standard__") - 1) == 0) |
| error (_("No definition of \"%s\" found."), name0.ptr); |
| |
| tail_index = chop_selector (encoded_name, tail_index); |
| } |
| else |
| { |
| write_ambiguous_var (par_state, block, encoded_name, |
| tail_index); |
| write_selectors (par_state, encoded_name + tail_index); |
| return NULL; |
| } |
| } |
| |
| if (!have_full_symbols (current_program_space) |
| && !have_partial_symbols (current_program_space) |
| && block == NULL) |
| error (_("No symbol table is loaded. Use the \"file\" command.")); |
| if (block == par_state->expression_context_block) |
| error (_("No definition of \"%s\" in current context."), name0.ptr); |
| else |
| error (_("No definition of \"%s\" in specified context."), name0.ptr); |
| |
| TryAfterRenaming: ; |
| } |
| |
| error (_("Could not find renamed symbol \"%s\""), name0.ptr); |
| |
| } |
| |
| /* Because ada_completer_word_break_characters does not contain '.' -- |
| and it cannot easily be added, this breaks other completions -- we |
| have to recreate the completion word-splitting here, so that we can |
| provide a prefix that is then used when completing field names. |
| Without this, an attempt like "complete print abc.d" will give a |
| result like "print def" rather than "print abc.def". */ |
| |
| std::string |
| ada_parse_state::find_completion_bounds () |
| { |
| const char *end = pstate->lexptr; |
| /* First the end of the prefix. Here we stop at the token start or |
| at '.' or space. */ |
| for (; end > m_original_expr && end[-1] != '.' && !isspace (end[-1]); --end) |
| { |
| /* Nothing. */ |
| } |
| /* Now find the start of the prefix. */ |
| const char *ptr = end; |
| /* Here we allow '.'. */ |
| for (; |
| ptr > m_original_expr && (ptr[-1] == '.' |
| || ptr[-1] == '_' |
| || (ptr[-1] >= 'a' && ptr[-1] <= 'z') |
| || (ptr[-1] >= 'A' && ptr[-1] <= 'Z') |
| || (ptr[-1] & 0xff) >= 0x80); |
| --ptr) |
| { |
| /* Nothing. */ |
| } |
| /* ... except, skip leading spaces. */ |
| ptr = skip_spaces (ptr); |
| |
| return std::string (ptr, end); |
| } |
| |
| /* A wrapper for write_var_or_type that is used specifically when |
| completion is requested for the last of a sequence of |
| identifiers. */ |
| |
| static struct type * |
| write_var_or_type_completion (struct parser_state *par_state, |
| const struct block *block, struct stoken name0) |
| { |
| int tail_index = chop_selector (name0.ptr, name0.length); |
| /* If there's no separator, just defer to ordinary symbol |
| completion. */ |
| if (tail_index == -1) |
| return write_var_or_type (par_state, block, name0); |
| |
| std::string copy (name0.ptr, tail_index); |
| struct type *type = write_var_or_type (par_state, block, |
| { copy.c_str (), |
| (int) copy.length () }); |
| /* For completion purposes, it's enough that we return a type |
| here. */ |
| if (type != nullptr) |
| return type; |
| |
| ada_structop_operation *op = write_selectors (par_state, |
| name0.ptr + tail_index); |
| op->set_prefix (ada_parser->find_completion_bounds ()); |
| par_state->mark_struct_expression (op); |
| return nullptr; |
| } |
| |
| /* Write a left side of a component association (e.g., NAME in NAME => |
| exp). If NAME has the form of a selected component, write it as an |
| ordinary expression. If it is a simple variable that unambiguously |
| corresponds to exactly one symbol that does not denote a type or an |
| object renaming, also write it normally as an OP_VAR_VALUE. |
| Otherwise, write it as an OP_NAME. |
| |
| Unfortunately, we don't know at this point whether NAME is supposed |
| to denote a record component name or the value of an array index. |
| Therefore, it is not appropriate to disambiguate an ambiguous name |
| as we normally would, nor to replace a renaming with its referent. |
| As a result, in the (one hopes) rare case that one writes an |
| aggregate such as (R => 42) where R renames an object or is an |
| ambiguous name, one must write instead ((R) => 42). */ |
| |
| static void |
| write_name_assoc (struct parser_state *par_state, struct stoken name) |
| { |
| if (strchr (name.ptr, '.') == NULL) |
| { |
| std::vector<struct block_symbol> syms |
| = ada_lookup_symbol_list (name.ptr, |
| par_state->expression_context_block, |
| SEARCH_VFT); |
| |
| if (syms.size () != 1 || syms[0].symbol->aclass () == LOC_TYPEDEF) |
| pstate->push_new<ada_string_operation> (copy_name (name)); |
| else |
| write_var_from_sym (par_state, syms[0]); |
| } |
| else |
| if (write_var_or_type (par_state, NULL, name) != NULL) |
| error (_("Invalid use of type.")); |
| |
| push_association<ada_name_association> (ada_pop ()); |
| } |
| |
| static struct type * |
| type_for_char (struct parser_state *par_state, ULONGEST value) |
| { |
| if (value <= 0xff) |
| return language_string_char_type (par_state->language (), |
| par_state->gdbarch ()); |
| else if (value <= 0xffff) |
| return language_lookup_primitive_type (par_state->language (), |
| par_state->gdbarch (), |
| "wide_character"); |
| return language_lookup_primitive_type (par_state->language (), |
| par_state->gdbarch (), |
| "wide_wide_character"); |
| } |
| |
| static struct type * |
| type_system_address (struct parser_state *par_state) |
| { |
| struct type *type |
| = language_lookup_primitive_type (par_state->language (), |
| par_state->gdbarch (), |
| "system__address"); |
| return type != NULL ? type : parse_type (par_state)->builtin_data_ptr; |
| } |