| /* frv exception and interrupt support |
| Copyright (C) 1999-2024 Free Software Foundation, Inc. |
| Contributed by Red Hat. |
| |
| This file is part of the GNU simulators. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| /* This must come before any other includes. */ |
| #include "defs.h" |
| |
| #define WANT_CPU frvbf |
| #define WANT_CPU_FRVBF |
| |
| #include "sim-main.h" |
| #include "sim-signal.h" |
| #include "bfd.h" |
| #include <stdlib.h> |
| #include "cgen-mem.h" |
| |
| /* FR-V Interrupt table. |
| Describes the interrupts supported by the FR-V. |
| This table *must* be maintained in order of interrupt priority as defined by |
| frv_interrupt_kind. */ |
| #define DEFERRED 1 |
| #define PRECISE 1 |
| #define ITABLE_ENTRY(name, class, deferral, precision, offset) \ |
| {FRV_##name, FRV_EC_##name, class, deferral, precision, offset} |
| |
| struct frv_interrupt frv_interrupt_table[NUM_FRV_INTERRUPT_KINDS] = |
| { |
| /* External interrupts */ |
| ITABLE_ENTRY(INTERRUPT_LEVEL_1, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x21), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_2, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x22), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_3, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x23), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_4, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x24), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_5, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x25), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_6, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x26), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_7, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x27), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_8, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x28), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_9, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x29), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_10, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2a), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_11, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2b), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_12, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2c), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_13, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2d), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_14, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2e), |
| ITABLE_ENTRY(INTERRUPT_LEVEL_15, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2f), |
| /* Software interrupt */ |
| ITABLE_ENTRY(TRAP_INSTRUCTION, FRV_SOFTWARE_INTERRUPT, !DEFERRED, !PRECISE, 0x80), |
| /* Program interrupts */ |
| ITABLE_ENTRY(COMMIT_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x19), |
| ITABLE_ENTRY(DIVISION_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x17), |
| ITABLE_ENTRY(DATA_STORE_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x14), |
| ITABLE_ENTRY(DATA_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x13), |
| ITABLE_ENTRY(DATA_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x12), |
| ITABLE_ENTRY(DATA_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x11), |
| ITABLE_ENTRY(MP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0e), |
| ITABLE_ENTRY(FP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0d), |
| ITABLE_ENTRY(MEM_ADDRESS_NOT_ALIGNED, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x10), |
| ITABLE_ENTRY(REGISTER_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x08), |
| ITABLE_ENTRY(MP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0b), |
| ITABLE_ENTRY(FP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0a), |
| ITABLE_ENTRY(PRIVILEGED_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x06), |
| ITABLE_ENTRY(ILLEGAL_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x07), |
| ITABLE_ENTRY(INSTRUCTION_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x03), |
| ITABLE_ENTRY(INSTRUCTION_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x02), |
| ITABLE_ENTRY(INSTRUCTION_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x01), |
| ITABLE_ENTRY(COMPOUND_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x20), |
| /* Break interrupt */ |
| ITABLE_ENTRY(BREAK_EXCEPTION, FRV_BREAK_INTERRUPT, !DEFERRED, !PRECISE, 0xff), |
| /* Reset interrupt */ |
| ITABLE_ENTRY(RESET, FRV_RESET_INTERRUPT, !DEFERRED, !PRECISE, 0x00) |
| }; |
| |
| /* The current interrupt state. */ |
| struct frv_interrupt_state frv_interrupt_state; |
| |
| /* maintain the address of the start of the previous VLIW insn sequence. */ |
| IADDR previous_vliw_pc; |
| |
| /* Add a break interrupt to the interrupt queue. */ |
| struct frv_interrupt_queue_element * |
| frv_queue_break_interrupt (SIM_CPU *current_cpu) |
| { |
| return frv_queue_interrupt (current_cpu, FRV_BREAK_EXCEPTION); |
| } |
| |
| /* Add a software interrupt to the interrupt queue. */ |
| struct frv_interrupt_queue_element * |
| frv_queue_software_interrupt (SIM_CPU *current_cpu, SI offset) |
| { |
| struct frv_interrupt_queue_element *new_element |
| = frv_queue_interrupt (current_cpu, FRV_TRAP_INSTRUCTION); |
| |
| struct frv_interrupt *interrupt = & frv_interrupt_table[new_element->kind]; |
| interrupt->handler_offset = offset; |
| |
| return new_element; |
| } |
| |
| /* Add a program interrupt to the interrupt queue. */ |
| struct frv_interrupt_queue_element * |
| frv_queue_program_interrupt ( |
| SIM_CPU *current_cpu, enum frv_interrupt_kind kind |
| ) |
| { |
| return frv_queue_interrupt (current_cpu, kind); |
| } |
| |
| /* Add an external interrupt to the interrupt queue. */ |
| struct frv_interrupt_queue_element * |
| frv_queue_external_interrupt ( |
| SIM_CPU *current_cpu, enum frv_interrupt_kind kind |
| ) |
| { |
| if (! GET_H_PSR_ET () |
| || (kind != FRV_INTERRUPT_LEVEL_15 && kind < GET_H_PSR_PIL ())) |
| return NULL; /* Leave it for later. */ |
| |
| return frv_queue_interrupt (current_cpu, kind); |
| } |
| |
| /* Add any interrupt to the interrupt queue. It will be added in reverse |
| priority order. This makes it easy to find the highest priority interrupt |
| at the end of the queue and to remove it after processing. */ |
| struct frv_interrupt_queue_element * |
| frv_queue_interrupt (SIM_CPU *current_cpu, enum frv_interrupt_kind kind) |
| { |
| int i; |
| int j; |
| int limit = frv_interrupt_state.queue_index; |
| struct frv_interrupt_queue_element *new_element; |
| enum frv_interrupt_class iclass; |
| |
| if (limit >= FRV_INTERRUPT_QUEUE_SIZE) |
| abort (); /* TODO: Make the queue dynamic */ |
| |
| /* Find the right place in the queue. */ |
| for (i = 0; i < limit; ++i) |
| { |
| if (frv_interrupt_state.queue[i].kind >= kind) |
| break; |
| } |
| |
| /* Don't queue two external interrupts of the same priority. */ |
| iclass = frv_interrupt_table[kind].iclass; |
| if (i < limit && iclass == FRV_EXTERNAL_INTERRUPT) |
| { |
| if (frv_interrupt_state.queue[i].kind == kind) |
| return & frv_interrupt_state.queue[i]; |
| } |
| |
| /* Make room for the new interrupt in this spot. */ |
| for (j = limit - 1; j >= i; --j) |
| frv_interrupt_state.queue[j + 1] = frv_interrupt_state.queue[j]; |
| |
| /* Add the new interrupt. */ |
| frv_interrupt_state.queue_index++; |
| new_element = & frv_interrupt_state.queue[i]; |
| new_element->kind = kind; |
| new_element->vpc = CPU_PC_GET (current_cpu); |
| new_element->u.data_written.length = 0; |
| frv_set_interrupt_queue_slot (current_cpu, new_element); |
| |
| return new_element; |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_register_exception_interrupt (SIM_CPU *current_cpu, enum frv_rec rec) |
| { |
| struct frv_interrupt_queue_element *new_element = |
| frv_queue_program_interrupt (current_cpu, FRV_REGISTER_EXCEPTION); |
| |
| new_element->u.rec = rec; |
| |
| return new_element; |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_mem_address_not_aligned_interrupt (SIM_CPU *current_cpu, USI addr) |
| { |
| struct frv_interrupt_queue_element *new_element; |
| USI isr = GET_ISR (); |
| |
| /* Make sure that this exception is not masked. */ |
| if (GET_ISR_EMAM (isr)) |
| return NULL; |
| |
| /* Queue the interrupt. */ |
| new_element = frv_queue_program_interrupt (current_cpu, |
| FRV_MEM_ADDRESS_NOT_ALIGNED); |
| new_element->eaddress = addr; |
| new_element->u.data_written = frv_interrupt_state.data_written; |
| frv_interrupt_state.data_written.length = 0; |
| |
| return new_element; |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_data_access_error_interrupt (SIM_CPU *current_cpu, USI addr) |
| { |
| struct frv_interrupt_queue_element *new_element; |
| new_element = frv_queue_program_interrupt (current_cpu, |
| FRV_DATA_ACCESS_ERROR); |
| new_element->eaddress = addr; |
| return new_element; |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_data_access_exception_interrupt (SIM_CPU *current_cpu) |
| { |
| return frv_queue_program_interrupt (current_cpu, FRV_DATA_ACCESS_EXCEPTION); |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_instruction_access_error_interrupt (SIM_CPU *current_cpu) |
| { |
| return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_ERROR); |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_instruction_access_exception_interrupt (SIM_CPU *current_cpu) |
| { |
| return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_EXCEPTION); |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_illegal_instruction_interrupt ( |
| SIM_CPU *current_cpu, const CGEN_INSN *insn |
| ) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| switch (STATE_ARCHITECTURE (sd)->mach) |
| { |
| case bfd_mach_fr400: |
| case bfd_mach_fr450: |
| case bfd_mach_fr550: |
| break; |
| default: |
| /* Some machines generate fp_exception for this case. */ |
| if (frv_is_float_insn (insn) || frv_is_media_insn (insn)) |
| { |
| struct frv_fp_exception_info fp_info = { |
| FSR_NO_EXCEPTION, FTT_SEQUENCE_ERROR |
| }; |
| return frv_queue_fp_exception_interrupt (current_cpu, & fp_info); |
| } |
| break; |
| } |
| |
| return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_privileged_instruction_interrupt (SIM_CPU *current_cpu, const CGEN_INSN *insn) |
| { |
| /* The fr550 has no privileged instruction interrupt. It uses |
| illegal_instruction. */ |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) |
| return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| |
| return frv_queue_program_interrupt (current_cpu, FRV_PRIVILEGED_INSTRUCTION); |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_float_disabled_interrupt (SIM_CPU *current_cpu) |
| { |
| /* The fr550 has no fp_disabled interrupt. It uses illegal_instruction. */ |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) |
| return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| |
| return frv_queue_program_interrupt (current_cpu, FRV_FP_DISABLED); |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_media_disabled_interrupt (SIM_CPU *current_cpu) |
| { |
| /* The fr550 has no mp_disabled interrupt. It uses illegal_instruction. */ |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) |
| return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| |
| return frv_queue_program_interrupt (current_cpu, FRV_MP_DISABLED); |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_non_implemented_instruction_interrupt ( |
| SIM_CPU *current_cpu, const CGEN_INSN *insn |
| ) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| switch (STATE_ARCHITECTURE (sd)->mach) |
| { |
| case bfd_mach_fr400: |
| case bfd_mach_fr450: |
| case bfd_mach_fr550: |
| break; |
| default: |
| /* Some machines generate fp_exception or mp_exception for this case. */ |
| if (frv_is_float_insn (insn)) |
| { |
| struct frv_fp_exception_info fp_info = { |
| FSR_NO_EXCEPTION, FTT_UNIMPLEMENTED_FPOP |
| }; |
| return frv_queue_fp_exception_interrupt (current_cpu, & fp_info); |
| } |
| if (frv_is_media_insn (insn)) |
| { |
| frv_set_mp_exception_registers (current_cpu, MTT_UNIMPLEMENTED_MPOP, |
| 0); |
| return NULL; /* no interrupt queued at this time. */ |
| } |
| break; |
| } |
| |
| return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| } |
| |
| /* Queue the given fp_exception interrupt. Also update fp_info by removing |
| masked interrupts and updating the 'slot' flield. */ |
| struct frv_interrupt_queue_element * |
| frv_queue_fp_exception_interrupt ( |
| SIM_CPU *current_cpu, struct frv_fp_exception_info *fp_info |
| ) |
| { |
| SI fsr0 = GET_FSR (0); |
| int tem = GET_FSR_TEM (fsr0); |
| int aexc = GET_FSR_AEXC (fsr0); |
| struct frv_interrupt_queue_element *new_element = NULL; |
| |
| /* Update AEXC with the interrupts that are masked. */ |
| aexc |= fp_info->fsr_mask & ~tem; |
| SET_FSR_AEXC (fsr0, aexc); |
| SET_FSR (0, fsr0); |
| |
| /* update fsr_mask with the exceptions that are enabled. */ |
| fp_info->fsr_mask &= tem; |
| |
| /* If there is an unmasked interrupt then queue it, unless |
| this was a non-excepting insn, in which case simply set the NE |
| status registers. */ |
| if (frv_interrupt_state.ne_index != NE_NOFLAG |
| && fp_info->fsr_mask != FSR_NO_EXCEPTION) |
| { |
| SET_NE_FLAG (frv_interrupt_state.f_ne_flags, |
| frv_interrupt_state.ne_index); |
| /* TODO -- Set NESR for chips which support it. */ |
| new_element = NULL; |
| } |
| else if (fp_info->fsr_mask != FSR_NO_EXCEPTION |
| || fp_info->ftt == FTT_UNIMPLEMENTED_FPOP |
| || fp_info->ftt == FTT_SEQUENCE_ERROR |
| || fp_info->ftt == FTT_INVALID_FR) |
| { |
| new_element = frv_queue_program_interrupt (current_cpu, FRV_FP_EXCEPTION); |
| new_element->u.fp_info = *fp_info; |
| } |
| |
| return new_element; |
| } |
| |
| struct frv_interrupt_queue_element * |
| frv_queue_division_exception_interrupt (SIM_CPU *current_cpu, enum frv_dtt dtt) |
| { |
| struct frv_interrupt_queue_element *new_element = |
| frv_queue_program_interrupt (current_cpu, FRV_DIVISION_EXCEPTION); |
| |
| new_element->u.dtt = dtt; |
| |
| return new_element; |
| } |
| |
| /* Check for interrupts caused by illegal insn access. These conditions are |
| checked in the order specified by the fr400 and fr500 LSI specs. */ |
| void |
| frv_detect_insn_access_interrupts (SIM_CPU *current_cpu, SCACHE *sc) |
| { |
| |
| const CGEN_INSN *insn = sc->argbuf.idesc->idata; |
| FRV_VLIW *vliw = CPU_VLIW (current_cpu); |
| |
| /* Check for vliw constraints. */ |
| if (vliw->constraint_violation) |
| frv_queue_illegal_instruction_interrupt (current_cpu, insn); |
| /* Check for non-excepting insns. */ |
| else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_NON_EXCEPTING) |
| && ! GET_H_PSR_NEM ()) |
| frv_queue_non_implemented_instruction_interrupt (current_cpu, insn); |
| /* Check for conditional insns. */ |
| else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_CONDITIONAL) |
| && ! GET_H_PSR_CM ()) |
| frv_queue_non_implemented_instruction_interrupt (current_cpu, insn); |
| /* Make sure floating point support is enabled. */ |
| else if (! GET_H_PSR_EF ()) |
| { |
| /* Generate fp_disabled if it is a floating point insn or if PSR.EM is |
| off and the insns accesses a fp register. */ |
| if (frv_is_float_insn (insn) |
| || (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS) |
| && ! GET_H_PSR_EM ())) |
| frv_queue_float_disabled_interrupt (current_cpu); |
| } |
| /* Make sure media support is enabled. */ |
| else if (! GET_H_PSR_EM ()) |
| { |
| /* Generate mp_disabled if it is a media insn. */ |
| if (frv_is_media_insn (insn) || CGEN_INSN_NUM (insn) == FRV_INSN_MTRAP) |
| frv_queue_media_disabled_interrupt (current_cpu); |
| } |
| /* Check for privileged insns. */ |
| else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_PRIVILEGED) && |
| ! GET_H_PSR_S ()) |
| frv_queue_privileged_instruction_interrupt (current_cpu, insn); |
| #if 0 /* disable for now until we find out how FSR0.QNE gets reset. */ |
| else |
| { |
| /* Enter the halt state if FSR0.QNE is set and we are executing a |
| floating point insn, a media insn or an insn which access a FR |
| register. */ |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| SI fsr0 = GET_FSR (0); |
| if (GET_FSR_QNE (fsr0) |
| && (frv_is_float_insn (insn) || frv_is_media_insn (insn) |
| || CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS))) |
| { |
| sim_engine_halt (sd, current_cpu, NULL, GET_H_PC (), sim_stopped, |
| SIM_SIGINT); |
| } |
| } |
| #endif |
| } |
| |
| /* Record the current VLIW slot in the given interrupt queue element. */ |
| void |
| frv_set_interrupt_queue_slot ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item |
| ) |
| { |
| FRV_VLIW *vliw = CPU_VLIW (current_cpu); |
| int slot = vliw->next_slot - 1; |
| item->slot = (*vliw->current_vliw)[slot]; |
| } |
| |
| /* Handle an individual interrupt. */ |
| static void |
| handle_interrupt (SIM_CPU *current_cpu, IADDR pc) |
| { |
| struct frv_interrupt *interrupt; |
| int writeback_done = 0; |
| while (1) |
| { |
| /* Interrupts are queued in priority order with the highest priority |
| last. */ |
| int index = frv_interrupt_state.queue_index - 1; |
| struct frv_interrupt_queue_element *item |
| = & frv_interrupt_state.queue[index]; |
| interrupt = & frv_interrupt_table[item->kind]; |
| |
| switch (interrupt->iclass) |
| { |
| case FRV_EXTERNAL_INTERRUPT: |
| /* Perform writeback first. This may cause a higher priority |
| interrupt. */ |
| if (! writeback_done) |
| { |
| frvbf_perform_writeback (current_cpu); |
| writeback_done = 1; |
| continue; |
| } |
| frv_external_interrupt (current_cpu, item, pc); |
| return; |
| case FRV_SOFTWARE_INTERRUPT: |
| frv_interrupt_state.queue_index = index; |
| frv_software_interrupt (current_cpu, item, pc); |
| return; |
| case FRV_PROGRAM_INTERRUPT: |
| /* If the program interrupt is not strict (imprecise), then perform |
| writeback first. This may, in turn, cause a higher priority |
| interrupt. */ |
| if (! interrupt->precise && ! writeback_done) |
| { |
| frv_interrupt_state.imprecise_interrupt = item; |
| frvbf_perform_writeback (current_cpu); |
| writeback_done = 1; |
| continue; |
| } |
| frv_interrupt_state.queue_index = index; |
| frv_program_interrupt (current_cpu, item, pc); |
| return; |
| case FRV_BREAK_INTERRUPT: |
| frv_interrupt_state.queue_index = index; |
| frv_break_interrupt (current_cpu, interrupt, pc); |
| return; |
| case FRV_RESET_INTERRUPT: |
| break; |
| default: |
| break; |
| } |
| frv_interrupt_state.queue_index = index; |
| break; /* out of loop. */ |
| } |
| |
| /* We should never get here. */ |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt class not supported %d\n", |
| interrupt->iclass); |
| } |
| } |
| |
| /* Check to see the if the RSTR.HR or RSTR.SR bits have been set. If so, handle |
| the appropriate reset interrupt. */ |
| static int |
| check_reset (SIM_CPU *current_cpu, IADDR pc) |
| { |
| int hsr0; |
| int hr; |
| int sr; |
| SI rstr; |
| FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); |
| IADDR address = RSTR_ADDRESS; |
| |
| /* We don't want this to show up in the cache statistics, so read the |
| cache passively. */ |
| if (! frv_cache_read_passive_SI (cache, address, & rstr)) |
| rstr = sim_core_read_unaligned_4 (current_cpu, pc, read_map, address); |
| |
| hr = GET_RSTR_HR (rstr); |
| sr = GET_RSTR_SR (rstr); |
| |
| if (! hr && ! sr) |
| return 0; /* no reset. */ |
| |
| /* Reinitialize the machine state. */ |
| if (hr) |
| frv_hardware_reset (current_cpu); |
| else |
| frv_software_reset (current_cpu); |
| |
| /* Branch to the reset address. */ |
| hsr0 = GET_HSR0 (); |
| if (GET_HSR0_SA (hsr0)) |
| SET_H_PC (0xff000000); |
| else |
| SET_H_PC (0); |
| |
| return 1; /* reset */ |
| } |
| |
| /* Process any pending interrupt(s) after a group of parallel insns. */ |
| void |
| frv_process_interrupts (SIM_CPU *current_cpu) |
| { |
| SI NE_flags[2]; |
| /* Need to save the pc here because writeback may change it (due to a |
| branch). */ |
| IADDR pc = CPU_PC_GET (current_cpu); |
| |
| /* Check for a reset before anything else. */ |
| if (check_reset (current_cpu, pc)) |
| return; |
| |
| /* First queue the writes for any accumulated NE flags. */ |
| if (frv_interrupt_state.f_ne_flags[0] != 0 |
| || frv_interrupt_state.f_ne_flags[1] != 0) |
| { |
| GET_NE_FLAGS (NE_flags, H_SPR_FNER0); |
| NE_flags[0] |= frv_interrupt_state.f_ne_flags[0]; |
| NE_flags[1] |= frv_interrupt_state.f_ne_flags[1]; |
| SET_NE_FLAGS (H_SPR_FNER0, NE_flags); |
| } |
| |
| /* If there is no interrupt pending, then perform parallel writeback. This |
| may cause an interrupt. */ |
| if (frv_interrupt_state.queue_index <= 0) |
| frvbf_perform_writeback (current_cpu); |
| |
| /* If there is an interrupt pending, then process it. */ |
| if (frv_interrupt_state.queue_index > 0) |
| handle_interrupt (current_cpu, pc); |
| } |
| |
| /* Find the next available ESR and return its index */ |
| static int |
| esr_for_data_access_exception ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item |
| ) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) |
| return 8; /* Use ESR8, EPCR8. */ |
| |
| if (item->slot == UNIT_I0) |
| return 8; /* Use ESR8, EPCR8, EAR8, EDR8. */ |
| |
| return 9; /* Use ESR9, EPCR9, EAR9. */ |
| } |
| |
| /* Set the next available EDR register with the data which was to be stored |
| and return the index of the register. */ |
| static int |
| set_edr_register ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, int edr_index |
| ) |
| { |
| /* EDR0, EDR4 and EDR8 are available as blocks of 4. |
| SI data uses EDR3, EDR7 and EDR11 |
| DI data uses EDR2, EDR6 and EDR10 |
| XI data uses EDR0, EDR4 and EDR8. */ |
| int i; |
| edr_index += 4 - item->u.data_written.length; |
| for (i = 0; i < item->u.data_written.length; ++i) |
| SET_EDR (edr_index + i, item->u.data_written.words[i]); |
| |
| return edr_index; |
| }; |
| |
| /* Clear ESFR0, EPCRx, ESRx, EARx and EDRx. */ |
| static void |
| clear_exception_status_registers (SIM_CPU *current_cpu) |
| { |
| int i; |
| /* It is only necessary to clear the flag bits indicating which registers |
| are valid. */ |
| SET_ESFR (0, 0); |
| SET_ESFR (1, 0); |
| |
| for (i = 0; i <= 2; ++i) |
| { |
| SI esr = GET_ESR (i); |
| CLEAR_ESR_VALID (esr); |
| SET_ESR (i, esr); |
| } |
| for (i = 8; i <= 15; ++i) |
| { |
| SI esr = GET_ESR (i); |
| CLEAR_ESR_VALID (esr); |
| SET_ESR (i, esr); |
| } |
| } |
| |
| /* Record state for media exception. */ |
| void |
| frv_set_mp_exception_registers ( |
| SIM_CPU *current_cpu, enum frv_msr_mtt mtt, int sie |
| ) |
| { |
| /* Record the interrupt factor in MSR0. */ |
| SI msr0 = GET_MSR (0); |
| if (GET_MSR_MTT (msr0) == MTT_NONE) |
| SET_MSR_MTT (msr0, mtt); |
| |
| /* Also set the OVF bit in the appropriate MSR as well as MSR0.AOVF. */ |
| if (mtt == MTT_OVERFLOW) |
| { |
| FRV_VLIW *vliw = CPU_VLIW (current_cpu); |
| int slot = vliw->next_slot - 1; |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| |
| /* If this insn is in the M2 slot, then set MSR1.OVF and MSR1.SIE, |
| otherwise set MSR0.OVF and MSR0.SIE. */ |
| if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550 && (*vliw->current_vliw)[slot] == UNIT_FM1) |
| { |
| SI msr = GET_MSR (1); |
| OR_MSR_SIE (msr, sie); |
| SET_MSR_OVF (msr); |
| SET_MSR (1, msr); |
| } |
| else |
| { |
| OR_MSR_SIE (msr0, sie); |
| SET_MSR_OVF (msr0); |
| } |
| |
| /* Generate the interrupt now if MSR0.MPEM is set on fr550 */ |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550 && GET_MSR_MPEM (msr0)) |
| frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION); |
| else |
| { |
| /* Regardless of the slot, set MSR0.AOVF. */ |
| SET_MSR_AOVF (msr0); |
| } |
| } |
| |
| SET_MSR (0, msr0); |
| } |
| |
| /* Determine the correct FQ register to use for the given exception. |
| Return -1 if a register is not available. */ |
| static int |
| fq_for_exception ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item |
| ) |
| { |
| SI fq; |
| struct frv_fp_exception_info *fp_info = & item->u.fp_info; |
| |
| /* For fp_exception overflow, underflow or inexact, use FQ0 or FQ1. */ |
| if (fp_info->ftt == FTT_IEEE_754_EXCEPTION |
| && (fp_info->fsr_mask & (FSR_OVERFLOW | FSR_UNDERFLOW | FSR_INEXACT))) |
| { |
| fq = GET_FQ (0); |
| if (! GET_FQ_VALID (fq)) |
| return 0; /* FQ0 is available. */ |
| fq = GET_FQ (1); |
| if (! GET_FQ_VALID (fq)) |
| return 1; /* FQ1 is available. */ |
| |
| /* No FQ register is available */ |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| IADDR pc = CPU_PC_GET (current_cpu); |
| sim_engine_abort (sd, current_cpu, pc, "No FQ register available\n"); |
| } |
| return -1; |
| } |
| /* For other exceptions, use FQ2 if the insn was in slot F0/I0 and FQ3 |
| otherwise. */ |
| if (item->slot == UNIT_FM0 || item->slot == UNIT_I0) |
| return 2; |
| |
| return 3; |
| } |
| |
| /* Set FSR0, FQ0-FQ9, depending on the interrupt. */ |
| static void |
| set_fp_exception_registers ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item |
| ) |
| { |
| int fq_index; |
| SI fq; |
| SI insn; |
| SI fsr0; |
| IADDR pc; |
| struct frv_fp_exception_info *fp_info; |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| |
| /* No FQ registers on fr550 */ |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) |
| { |
| /* Update the fsr. */ |
| fp_info = & item->u.fp_info; |
| fsr0 = GET_FSR (0); |
| SET_FSR_FTT (fsr0, fp_info->ftt); |
| SET_FSR (0, fsr0); |
| return; |
| } |
| |
| /* Select an FQ and update it with the exception information. */ |
| fq_index = fq_for_exception (current_cpu, item); |
| if (fq_index == -1) |
| return; |
| |
| fp_info = & item->u.fp_info; |
| fq = GET_FQ (fq_index); |
| SET_FQ_MIV (fq, MIV_FLOAT); |
| SET_FQ_SIE (fq, SIE_NIL); |
| SET_FQ_FTT (fq, fp_info->ftt); |
| SET_FQ_CEXC (fq, fp_info->fsr_mask); |
| SET_FQ_VALID (fq); |
| SET_FQ (fq_index, fq); |
| |
| /* Write the failing insn into FQx.OPC. */ |
| pc = item->vpc; |
| insn = GETMEMSI (current_cpu, pc, pc); |
| SET_FQ_OPC (fq_index, insn); |
| |
| /* Update the fsr. */ |
| fsr0 = GET_FSR (0); |
| SET_FSR_QNE (fsr0); /* FQ not empty */ |
| SET_FSR_FTT (fsr0, fp_info->ftt); |
| SET_FSR (0, fsr0); |
| } |
| |
| /* Record the state of a division exception in the ISR. */ |
| static void |
| set_isr_exception_fields ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item |
| ) |
| { |
| USI isr = GET_ISR (); |
| int dtt = GET_ISR_DTT (isr); |
| dtt |= item->u.dtt; |
| SET_ISR_DTT (isr, dtt); |
| SET_ISR (isr); |
| } |
| |
| /* Set ESFR0, EPCRx, ESRx, EARx and EDRx, according to the given program |
| interrupt. */ |
| static void |
| set_exception_status_registers ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item |
| ) |
| { |
| struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind]; |
| int reg_index = -1; |
| int set_ear = 0; |
| int set_edr = 0; |
| int set_daec = 0; |
| int set_epcr = 0; |
| SI esr = 0; |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| |
| /* If the interrupt is strict (precise) or the interrupt is on the insns |
| in the I0 pipe, then set the 0 registers. */ |
| if (interrupt->precise) |
| { |
| reg_index = 0; |
| if (interrupt->kind == FRV_REGISTER_EXCEPTION) |
| SET_ESR_REC (esr, item->u.rec); |
| else if (interrupt->kind == FRV_INSTRUCTION_ACCESS_EXCEPTION) |
| SET_ESR_IAEC (esr, item->u.iaec); |
| /* For fr550, don't set epcr for precise interrupts. */ |
| if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550) |
| set_epcr = 1; |
| } |
| else |
| { |
| switch (interrupt->kind) |
| { |
| case FRV_DIVISION_EXCEPTION: |
| set_isr_exception_fields (current_cpu, item); |
| ATTRIBUTE_FALLTHROUGH; /* To set reg_index. */ |
| case FRV_COMMIT_EXCEPTION: |
| /* For fr550, always use ESR0. */ |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) |
| reg_index = 0; |
| else if (item->slot == UNIT_I0) |
| reg_index = 0; |
| else if (item->slot == UNIT_I1) |
| reg_index = 1; |
| set_epcr = 1; |
| break; |
| case FRV_DATA_STORE_ERROR: |
| reg_index = 14; /* Use ESR14. */ |
| break; |
| case FRV_DATA_ACCESS_ERROR: |
| reg_index = 15; /* Use ESR15, EPCR15. */ |
| set_ear = 1; |
| break; |
| case FRV_DATA_ACCESS_EXCEPTION: |
| set_daec = 1; |
| ATTRIBUTE_FALLTHROUGH; |
| case FRV_DATA_ACCESS_MMU_MISS: |
| case FRV_MEM_ADDRESS_NOT_ALIGNED: |
| /* Get the appropriate ESR, EPCR, EAR and EDR. |
| EAR will be set. EDR will not be set if this is a store insn. */ |
| set_ear = 1; |
| /* For fr550, never use EDRx. */ |
| if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550) |
| if (item->u.data_written.length != 0) |
| set_edr = 1; |
| reg_index = esr_for_data_access_exception (current_cpu, item); |
| set_epcr = 1; |
| break; |
| case FRV_MP_EXCEPTION: |
| /* For fr550, use EPCR2 and ESR2. */ |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) |
| { |
| reg_index = 2; |
| set_epcr = 1; |
| } |
| break; /* MSR0-1, FQ0-9 are already set. */ |
| case FRV_FP_EXCEPTION: |
| set_fp_exception_registers (current_cpu, item); |
| /* For fr550, use EPCR2 and ESR2. */ |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) |
| { |
| reg_index = 2; |
| set_epcr = 1; |
| } |
| break; |
| default: |
| { |
| IADDR pc = CPU_PC_GET (current_cpu); |
| sim_engine_abort (sd, current_cpu, pc, |
| "invalid non-strict program interrupt kind: %d\n", |
| interrupt->kind); |
| break; |
| } |
| } |
| } /* non-strict (imprecise) interrupt */ |
| |
| /* Now fill in the selected exception status registers. */ |
| if (reg_index != -1) |
| { |
| /* Now set the exception status registers. */ |
| SET_ESFR_FLAG (reg_index); |
| SET_ESR_EC (esr, interrupt->ec); |
| |
| if (set_epcr) |
| { |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400) |
| SET_EPCR (reg_index, previous_vliw_pc); |
| else |
| SET_EPCR (reg_index, item->vpc); |
| } |
| |
| if (set_ear) |
| { |
| SET_EAR (reg_index, item->eaddress); |
| SET_ESR_EAV (esr); |
| } |
| else |
| CLEAR_ESR_EAV (esr); |
| |
| if (set_edr) |
| { |
| int edn = set_edr_register (current_cpu, item, 0/* EDR0-3 */); |
| SET_ESR_EDN (esr, edn); |
| SET_ESR_EDV (esr); |
| } |
| else |
| CLEAR_ESR_EDV (esr); |
| |
| if (set_daec) |
| SET_ESR_DAEC (esr, item->u.daec); |
| |
| SET_ESR_VALID (esr); |
| SET_ESR (reg_index, esr); |
| } |
| } |
| |
| /* Check for compound interrupts. |
| Returns NULL if no interrupt is to be processed. */ |
| static struct frv_interrupt * |
| check_for_compound_interrupt ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item |
| ) |
| { |
| struct frv_interrupt *interrupt; |
| |
| /* Set the exception status registers for the original interrupt. */ |
| set_exception_status_registers (current_cpu, item); |
| interrupt = & frv_interrupt_table[item->kind]; |
| |
| if (! interrupt->precise) |
| { |
| IADDR vpc = 0; |
| int mask = 0; |
| |
| vpc = item->vpc; |
| mask = (1 << item->kind); |
| |
| /* Look for more queued program interrupts which are non-deferred |
| (pending inhibit), imprecise (non-strict) different than an interrupt |
| already found and caused by a different insn. A bit mask is used |
| to keep track of interrupts which have already been detected. */ |
| while (item != frv_interrupt_state.queue) |
| { |
| enum frv_interrupt_kind kind; |
| struct frv_interrupt *next_interrupt; |
| --item; |
| kind = item->kind; |
| next_interrupt = & frv_interrupt_table[kind]; |
| |
| if (next_interrupt->iclass != FRV_PROGRAM_INTERRUPT) |
| break; /* no program interrupts left. */ |
| |
| if (item->vpc == vpc) |
| continue; /* caused by the same insn. */ |
| |
| vpc = item->vpc; |
| if (! next_interrupt->precise && ! next_interrupt->deferred) |
| { |
| if (! (mask & (1 << kind))) |
| { |
| /* Set the exception status registers for the additional |
| interrupt. */ |
| set_exception_status_registers (current_cpu, item); |
| mask |= (1 << kind); |
| interrupt = & frv_interrupt_table[FRV_COMPOUND_EXCEPTION]; |
| } |
| } |
| } |
| } |
| |
| /* Return with either the original interrupt, a compound_exception, |
| or no exception. */ |
| return interrupt; |
| } |
| |
| /* Handle a program interrupt. */ |
| void |
| frv_program_interrupt ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc |
| ) |
| { |
| struct frv_interrupt *interrupt; |
| |
| clear_exception_status_registers (current_cpu); |
| /* If two or more non-deferred imprecise (non-strict) interrupts occur |
| on two or more insns, then generate a compound_exception. */ |
| interrupt = check_for_compound_interrupt (current_cpu, item); |
| if (interrupt != NULL) |
| { |
| frv_program_or_software_interrupt (current_cpu, interrupt, pc); |
| frv_clear_interrupt_classes (FRV_SOFTWARE_INTERRUPT, |
| FRV_PROGRAM_INTERRUPT); |
| } |
| } |
| |
| /* Handle a software interrupt. */ |
| void |
| frv_software_interrupt ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc |
| ) |
| { |
| struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind]; |
| frv_program_or_software_interrupt (current_cpu, interrupt, pc); |
| } |
| |
| /* Handle a program interrupt or a software interrupt in non-operating mode. */ |
| void |
| frv_non_operating_interrupt ( |
| SIM_CPU *current_cpu, enum frv_interrupt_kind kind, IADDR pc |
| ) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| switch (kind) |
| { |
| case FRV_INTERRUPT_LEVEL_1: |
| case FRV_INTERRUPT_LEVEL_2: |
| case FRV_INTERRUPT_LEVEL_3: |
| case FRV_INTERRUPT_LEVEL_4: |
| case FRV_INTERRUPT_LEVEL_5: |
| case FRV_INTERRUPT_LEVEL_6: |
| case FRV_INTERRUPT_LEVEL_7: |
| case FRV_INTERRUPT_LEVEL_8: |
| case FRV_INTERRUPT_LEVEL_9: |
| case FRV_INTERRUPT_LEVEL_10: |
| case FRV_INTERRUPT_LEVEL_11: |
| case FRV_INTERRUPT_LEVEL_12: |
| case FRV_INTERRUPT_LEVEL_13: |
| case FRV_INTERRUPT_LEVEL_14: |
| case FRV_INTERRUPT_LEVEL_15: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: external %d\n", kind + 1); |
| break; |
| case FRV_TRAP_INSTRUCTION: |
| break; /* handle as in operating mode. */ |
| case FRV_COMMIT_EXCEPTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: commit_exception\n"); |
| break; |
| case FRV_DIVISION_EXCEPTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: division_exception\n"); |
| break; |
| case FRV_DATA_STORE_ERROR: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: data_store_error\n"); |
| break; |
| case FRV_DATA_ACCESS_EXCEPTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: data_access_exception\n"); |
| break; |
| case FRV_DATA_ACCESS_MMU_MISS: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: data_access_mmu_miss\n"); |
| break; |
| case FRV_DATA_ACCESS_ERROR: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: data_access_error\n"); |
| break; |
| case FRV_MP_EXCEPTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: mp_exception\n"); |
| break; |
| case FRV_FP_EXCEPTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: fp_exception\n"); |
| break; |
| case FRV_MEM_ADDRESS_NOT_ALIGNED: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: mem_address_not_aligned\n"); |
| break; |
| case FRV_REGISTER_EXCEPTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: register_exception\n"); |
| break; |
| case FRV_MP_DISABLED: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: mp_disabled\n"); |
| break; |
| case FRV_FP_DISABLED: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: fp_disabled\n"); |
| break; |
| case FRV_PRIVILEGED_INSTRUCTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: privileged_instruction\n"); |
| break; |
| case FRV_ILLEGAL_INSTRUCTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: illegal_instruction\n"); |
| break; |
| case FRV_INSTRUCTION_ACCESS_EXCEPTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: instruction_access_exception\n"); |
| break; |
| case FRV_INSTRUCTION_ACCESS_MMU_MISS: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: instruction_access_mmu_miss\n"); |
| break; |
| case FRV_INSTRUCTION_ACCESS_ERROR: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: insn_access_error\n"); |
| break; |
| case FRV_COMPOUND_EXCEPTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: compound_exception\n"); |
| break; |
| case FRV_BREAK_EXCEPTION: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: break_exception\n"); |
| break; |
| case FRV_RESET: |
| sim_engine_abort (sd, current_cpu, pc, |
| "interrupt: reset\n"); |
| break; |
| default: |
| sim_engine_abort (sd, current_cpu, pc, |
| "unhandled interrupt kind: %d\n", kind); |
| break; |
| } |
| } |
| |
| /* Handle a break interrupt. */ |
| void |
| frv_break_interrupt ( |
| SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc |
| ) |
| { |
| IADDR new_pc; |
| |
| /* BPCSR=PC |
| BPSR.BS=PSR.S |
| BPSR.BET=PSR.ET |
| PSR.S=1 |
| PSR.ET=0 |
| TBR.TT=0xff |
| PC=TBR |
| */ |
| /* Must set PSR.S first to allow access to supervisor-only spr registers. */ |
| SET_H_BPSR_BS (GET_H_PSR_S ()); |
| SET_H_BPSR_BET (GET_H_PSR_ET ()); |
| SET_H_PSR_S (1); |
| SET_H_PSR_ET (0); |
| /* Must set PSR.S first to allow access to supervisor-only spr registers. */ |
| SET_H_SPR (H_SPR_BPCSR, current_pc); |
| |
| /* Set the new PC in the TBR. */ |
| SET_H_TBR_TT (interrupt->handler_offset); |
| new_pc = GET_H_SPR (H_SPR_TBR); |
| SET_H_PC (new_pc); |
| |
| CPU_DEBUG_STATE (current_cpu) = 1; |
| } |
| |
| /* Handle a program interrupt or a software interrupt. */ |
| void |
| frv_program_or_software_interrupt ( |
| SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc |
| ) |
| { |
| USI new_pc; |
| int original_psr_et; |
| |
| /* PCSR=PC |
| PSR.PS=PSR.S |
| PSR.ET=0 |
| PSR.S=1 |
| if PSR.ESR==1 |
| SR0 through SR3=GR4 through GR7 |
| TBR.TT=interrupt handler offset |
| PC=TBR |
| */ |
| original_psr_et = GET_H_PSR_ET (); |
| |
| SET_H_PSR_PS (GET_H_PSR_S ()); |
| SET_H_PSR_ET (0); |
| SET_H_PSR_S (1); |
| |
| /* Must set PSR.S first to allow access to supervisor-only spr registers. */ |
| /* The PCSR depends on the precision of the interrupt. */ |
| if (interrupt->precise) |
| SET_H_SPR (H_SPR_PCSR, previous_vliw_pc); |
| else |
| SET_H_SPR (H_SPR_PCSR, current_pc); |
| |
| /* Set the new PC in the TBR. */ |
| SET_H_TBR_TT (interrupt->handler_offset); |
| new_pc = GET_H_SPR (H_SPR_TBR); |
| SET_H_PC (new_pc); |
| |
| /* If PSR.ET was not originally set, then enter the stopped state. */ |
| if (! original_psr_et) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| frv_non_operating_interrupt (current_cpu, interrupt->kind, current_pc); |
| sim_engine_halt (sd, current_cpu, NULL, new_pc, sim_stopped, SIM_SIGINT); |
| } |
| } |
| |
| /* Handle a program interrupt or a software interrupt. */ |
| void |
| frv_external_interrupt ( |
| SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc |
| ) |
| { |
| USI new_pc; |
| struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind]; |
| |
| /* Don't process the interrupt if PSR.ET is not set or if it is masked. |
| Interrupt 15 is processed even if it appears to be masked. */ |
| if (! GET_H_PSR_ET () |
| || (interrupt->kind != FRV_INTERRUPT_LEVEL_15 |
| && interrupt->kind < GET_H_PSR_PIL ())) |
| return; /* Leave it for later. */ |
| |
| /* Remove the interrupt from the queue. */ |
| --frv_interrupt_state.queue_index; |
| |
| /* PCSR=PC |
| PSR.PS=PSR.S |
| PSR.ET=0 |
| PSR.S=1 |
| if PSR.ESR==1 |
| SR0 through SR3=GR4 through GR7 |
| TBR.TT=interrupt handler offset |
| PC=TBR |
| */ |
| SET_H_PSR_PS (GET_H_PSR_S ()); |
| SET_H_PSR_ET (0); |
| SET_H_PSR_S (1); |
| /* Must set PSR.S first to allow access to supervisor-only spr registers. */ |
| SET_H_SPR (H_SPR_PCSR, GET_H_PC ()); |
| |
| /* Set the new PC in the TBR. */ |
| SET_H_TBR_TT (interrupt->handler_offset); |
| new_pc = GET_H_SPR (H_SPR_TBR); |
| SET_H_PC (new_pc); |
| } |
| |
| /* Clear interrupts which fall within the range of classes given. */ |
| void |
| frv_clear_interrupt_classes ( |
| enum frv_interrupt_class low_class, enum frv_interrupt_class high_class |
| ) |
| { |
| int i; |
| int j; |
| int limit = frv_interrupt_state.queue_index; |
| |
| /* Find the lowest priority interrupt to be removed. */ |
| for (i = 0; i < limit; ++i) |
| { |
| enum frv_interrupt_kind kind = frv_interrupt_state.queue[i].kind; |
| struct frv_interrupt* interrupt = & frv_interrupt_table[kind]; |
| if (interrupt->iclass >= low_class) |
| break; |
| } |
| |
| /* Find the highest priority interrupt to be removed. */ |
| for (j = limit - 1; j >= i; --j) |
| { |
| enum frv_interrupt_kind kind = frv_interrupt_state.queue[j].kind; |
| struct frv_interrupt* interrupt = & frv_interrupt_table[kind]; |
| if (interrupt->iclass <= high_class) |
| break; |
| } |
| |
| /* Shuffle the remaining high priority interrupts down into the empty space |
| left by the deleted interrupts. */ |
| if (j >= i) |
| { |
| for (++j; j < limit; ++j) |
| frv_interrupt_state.queue[i++] = frv_interrupt_state.queue[j]; |
| frv_interrupt_state.queue_index -= (j - i); |
| } |
| } |
| |
| /* Save data written to memory into the interrupt state so that it can be |
| copied to the appropriate EDR register, if necessary, in the event of an |
| interrupt. */ |
| void |
| frv_save_data_written_for_interrupts ( |
| SIM_CPU *current_cpu, CGEN_WRITE_QUEUE_ELEMENT *item |
| ) |
| { |
| /* Record the slot containing the insn doing the write in the |
| interrupt state. */ |
| frv_interrupt_state.slot = CGEN_WRITE_QUEUE_ELEMENT_PIPE (item); |
| |
| /* Now record any data written to memory in the interrupt state. */ |
| switch (CGEN_WRITE_QUEUE_ELEMENT_KIND (item)) |
| { |
| case CGEN_BI_WRITE: |
| case CGEN_QI_WRITE: |
| case CGEN_SI_WRITE: |
| case CGEN_SF_WRITE: |
| case CGEN_PC_WRITE: |
| case CGEN_FN_HI_WRITE: |
| case CGEN_FN_SI_WRITE: |
| case CGEN_FN_SF_WRITE: |
| case CGEN_FN_DI_WRITE: |
| case CGEN_FN_DF_WRITE: |
| case CGEN_FN_XI_WRITE: |
| case CGEN_FN_PC_WRITE: |
| break; /* Ignore writes to registers. */ |
| case CGEN_MEM_QI_WRITE: |
| frv_interrupt_state.data_written.length = 1; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.mem_qi_write.value; |
| break; |
| case CGEN_MEM_HI_WRITE: |
| frv_interrupt_state.data_written.length = 1; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.mem_hi_write.value; |
| break; |
| case CGEN_MEM_SI_WRITE: |
| frv_interrupt_state.data_written.length = 1; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.mem_si_write.value; |
| break; |
| case CGEN_MEM_DI_WRITE: |
| frv_interrupt_state.data_written.length = 2; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.mem_di_write.value >> 32; |
| frv_interrupt_state.data_written.words[1] |
| = item->kinds.mem_di_write.value; |
| break; |
| case CGEN_MEM_DF_WRITE: |
| frv_interrupt_state.data_written.length = 2; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.mem_df_write.value >> 32; |
| frv_interrupt_state.data_written.words[1] |
| = item->kinds.mem_df_write.value; |
| break; |
| case CGEN_MEM_XI_WRITE: |
| frv_interrupt_state.data_written.length = 4; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.mem_xi_write.value[0]; |
| frv_interrupt_state.data_written.words[1] |
| = item->kinds.mem_xi_write.value[1]; |
| frv_interrupt_state.data_written.words[2] |
| = item->kinds.mem_xi_write.value[2]; |
| frv_interrupt_state.data_written.words[3] |
| = item->kinds.mem_xi_write.value[3]; |
| break; |
| case CGEN_FN_MEM_QI_WRITE: |
| frv_interrupt_state.data_written.length = 1; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.fn_mem_qi_write.value; |
| break; |
| case CGEN_FN_MEM_HI_WRITE: |
| frv_interrupt_state.data_written.length = 1; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.fn_mem_hi_write.value; |
| break; |
| case CGEN_FN_MEM_SI_WRITE: |
| frv_interrupt_state.data_written.length = 1; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.fn_mem_si_write.value; |
| break; |
| case CGEN_FN_MEM_DI_WRITE: |
| frv_interrupt_state.data_written.length = 2; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.fn_mem_di_write.value >> 32; |
| frv_interrupt_state.data_written.words[1] |
| = item->kinds.fn_mem_di_write.value; |
| break; |
| case CGEN_FN_MEM_DF_WRITE: |
| frv_interrupt_state.data_written.length = 2; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.fn_mem_df_write.value >> 32; |
| frv_interrupt_state.data_written.words[1] |
| = item->kinds.fn_mem_df_write.value; |
| break; |
| case CGEN_FN_MEM_XI_WRITE: |
| frv_interrupt_state.data_written.length = 4; |
| frv_interrupt_state.data_written.words[0] |
| = item->kinds.fn_mem_xi_write.value[0]; |
| frv_interrupt_state.data_written.words[1] |
| = item->kinds.fn_mem_xi_write.value[1]; |
| frv_interrupt_state.data_written.words[2] |
| = item->kinds.fn_mem_xi_write.value[2]; |
| frv_interrupt_state.data_written.words[3] |
| = item->kinds.fn_mem_xi_write.value[3]; |
| break; |
| default: |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| IADDR pc = CPU_PC_GET (current_cpu); |
| sim_engine_abort (sd, current_cpu, pc, |
| "unknown write kind during save for interrupt\n"); |
| } |
| break; |
| } |
| } |