| /* Hitachi SH specific support for 32-bit ELF |
| Copyright 1996, 1997, 1998, 1999, 2000, 2001 |
| Free Software Foundation, Inc. |
| Contributed by Ian Lance Taylor, Cygnus Support. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
| |
| #include "bfd.h" |
| #include "sysdep.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf/sh.h" |
| |
| static bfd_reloc_status_type sh_elf_reloc |
| PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); |
| static bfd_reloc_status_type sh_elf_ignore_reloc |
| PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); |
| static reloc_howto_type *sh_elf_reloc_type_lookup |
| PARAMS ((bfd *, bfd_reloc_code_real_type)); |
| static void sh_elf_info_to_howto |
| PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); |
| static boolean sh_elf_set_private_flags |
| PARAMS ((bfd *, flagword)); |
| static boolean sh_elf_copy_private_data |
| PARAMS ((bfd *, bfd *)); |
| static boolean sh_elf_merge_private_data |
| PARAMS ((bfd *, bfd *)); |
| static boolean sh_elf_set_mach_from_flags |
| PARAMS ((bfd *)); |
| static boolean sh_elf_relax_section |
| PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *)); |
| static boolean sh_elf_relax_delete_bytes |
| PARAMS ((bfd *, asection *, bfd_vma, int)); |
| static boolean sh_elf_align_loads |
| PARAMS ((bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, boolean *)); |
| static boolean sh_elf_swap_insns |
| PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma)); |
| static boolean sh_elf_relocate_section |
| PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, |
| Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); |
| static bfd_byte *sh_elf_get_relocated_section_contents |
| PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *, |
| bfd_byte *, boolean, asymbol **)); |
| static boolean sh_elf_check_relocs |
| PARAMS ((bfd *, struct bfd_link_info *, asection *, |
| const Elf_Internal_Rela *)); |
| static struct bfd_hash_entry *sh_elf_link_hash_newfunc |
| PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); |
| static struct bfd_link_hash_table *sh_elf_link_hash_table_create |
| PARAMS ((bfd *)); |
| static boolean sh_elf_adjust_dynamic_symbol |
| PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); |
| static boolean sh_elf_size_dynamic_sections |
| PARAMS ((bfd *, struct bfd_link_info *)); |
| static boolean sh_elf_finish_dynamic_symbol |
| PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, |
| Elf_Internal_Sym *)); |
| static boolean sh_elf_finish_dynamic_sections |
| PARAMS ((bfd *, struct bfd_link_info *)); |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" |
| |
| static reloc_howto_type sh_elf_howto_table[] = |
| { |
| /* No relocation. */ |
| HOWTO (R_SH_NONE, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_NONE", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* 32 bit absolute relocation. Setting partial_inplace to true and |
| src_mask to a non-zero value is similar to the COFF toolchain. */ |
| HOWTO (R_SH_DIR32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| sh_elf_reloc, /* special_function */ |
| "R_SH_DIR32", /* name */ |
| true, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* 32 bit PC relative relocation. */ |
| HOWTO (R_SH_REL32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_REL32", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* 8 bit PC relative branch divided by 2. */ |
| HOWTO (R_SH_DIR8WPN, /* type */ |
| 1, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_DIR8WPN", /* name */ |
| true, /* partial_inplace */ |
| 0xff, /* src_mask */ |
| 0xff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* 12 bit PC relative branch divided by 2. */ |
| HOWTO (R_SH_IND12W, /* type */ |
| 1, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 12, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| sh_elf_reloc, /* special_function */ |
| "R_SH_IND12W", /* name */ |
| true, /* partial_inplace */ |
| 0xfff, /* src_mask */ |
| 0xfff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* 8 bit unsigned PC relative divided by 4. */ |
| HOWTO (R_SH_DIR8WPL, /* type */ |
| 2, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_DIR8WPL", /* name */ |
| true, /* partial_inplace */ |
| 0xff, /* src_mask */ |
| 0xff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* 8 bit unsigned PC relative divided by 2. */ |
| HOWTO (R_SH_DIR8WPZ, /* type */ |
| 1, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_DIR8WPZ", /* name */ |
| true, /* partial_inplace */ |
| 0xff, /* src_mask */ |
| 0xff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* 8 bit GBR relative. FIXME: This only makes sense if we have some |
| special symbol for the GBR relative area, and that is not |
| implemented. */ |
| HOWTO (R_SH_DIR8BP, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_DIR8BP", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* 8 bit GBR relative divided by 2. FIXME: This only makes sense if |
| we have some special symbol for the GBR relative area, and that |
| is not implemented. */ |
| HOWTO (R_SH_DIR8W, /* type */ |
| 1, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_DIR8W", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* 8 bit GBR relative divided by 4. FIXME: This only makes sense if |
| we have some special symbol for the GBR relative area, and that |
| is not implemented. */ |
| HOWTO (R_SH_DIR8L, /* type */ |
| 2, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_DIR8L", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| EMPTY_HOWTO (10), |
| EMPTY_HOWTO (11), |
| EMPTY_HOWTO (12), |
| EMPTY_HOWTO (13), |
| EMPTY_HOWTO (14), |
| EMPTY_HOWTO (15), |
| EMPTY_HOWTO (16), |
| EMPTY_HOWTO (17), |
| EMPTY_HOWTO (18), |
| EMPTY_HOWTO (19), |
| EMPTY_HOWTO (20), |
| EMPTY_HOWTO (21), |
| EMPTY_HOWTO (22), |
| EMPTY_HOWTO (23), |
| EMPTY_HOWTO (24), |
| |
| /* The remaining relocs are a GNU extension used for relaxing. The |
| final pass of the linker never needs to do anything with any of |
| these relocs. Any required operations are handled by the |
| relaxation code. */ |
| |
| /* A 16 bit switch table entry. This is generated for an expression |
| such as ``.word L1 - L2''. The offset holds the difference |
| between the reloc address and L2. */ |
| HOWTO (R_SH_SWITCH16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_SWITCH16", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* A 32 bit switch table entry. This is generated for an expression |
| such as ``.long L1 - L2''. The offset holds the difference |
| between the reloc address and L2. */ |
| HOWTO (R_SH_SWITCH32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_SWITCH32", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* Indicates a .uses pseudo-op. The compiler will generate .uses |
| pseudo-ops when it finds a function call which can be relaxed. |
| The offset field holds the PC relative offset to the instruction |
| which loads the register used in the function call. */ |
| HOWTO (R_SH_USES, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_USES", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* The assembler will generate this reloc for addresses referred to |
| by the register loads associated with USES relocs. The offset |
| field holds the number of times the address is referenced in the |
| object file. */ |
| HOWTO (R_SH_COUNT, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_COUNT", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* Indicates an alignment statement. The offset field is the power |
| of 2 to which subsequent portions of the object file must be |
| aligned. */ |
| HOWTO (R_SH_ALIGN, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_ALIGN", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* The assembler will generate this reloc before a block of |
| instructions. A section should be processed as assumining it |
| contains data, unless this reloc is seen. */ |
| HOWTO (R_SH_CODE, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_CODE", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* The assembler will generate this reloc after a block of |
| instructions when it sees data that is not instructions. */ |
| HOWTO (R_SH_DATA, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_DATA", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* The assembler generates this reloc for each label within a block |
| of instructions. This permits the linker to avoid swapping |
| instructions which are the targets of branches. */ |
| HOWTO (R_SH_LABEL, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_LABEL", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* An 8 bit switch table entry. This is generated for an expression |
| such as ``.word L1 - L2''. The offset holds the difference |
| between the reloc address and L2. */ |
| HOWTO (R_SH_SWITCH8, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_unsigned, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_SWITCH8", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* GNU extension to record C++ vtable hierarchy */ |
| HOWTO (R_SH_GNU_VTINHERIT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_SH_GNU_VTINHERIT", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* GNU extension to record C++ vtable member usage */ |
| HOWTO (R_SH_GNU_VTENTRY, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| _bfd_elf_rel_vtable_reloc_fn, /* special_function */ |
| "R_SH_GNU_VTENTRY", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* 8 bit PC relative divided by 2 - but specified in a very odd way. */ |
| HOWTO (R_SH_LOOP_START, /* type */ |
| 1, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_LOOP_START", /* name */ |
| true, /* partial_inplace */ |
| 0xff, /* src_mask */ |
| 0xff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* 8 bit PC relative divided by 2 - but specified in a very odd way. */ |
| HOWTO (R_SH_LOOP_END, /* type */ |
| 1, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| sh_elf_ignore_reloc, /* special_function */ |
| "R_SH_LOOP_END", /* name */ |
| true, /* partial_inplace */ |
| 0xff, /* src_mask */ |
| 0xff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| EMPTY_HOWTO (38), |
| EMPTY_HOWTO (39), |
| EMPTY_HOWTO (40), |
| EMPTY_HOWTO (41), |
| EMPTY_HOWTO (42), |
| EMPTY_HOWTO (43), |
| EMPTY_HOWTO (44), |
| EMPTY_HOWTO (45), |
| EMPTY_HOWTO (46), |
| EMPTY_HOWTO (47), |
| EMPTY_HOWTO (48), |
| EMPTY_HOWTO (49), |
| EMPTY_HOWTO (50), |
| EMPTY_HOWTO (51), |
| EMPTY_HOWTO (52), |
| EMPTY_HOWTO (53), |
| EMPTY_HOWTO (54), |
| EMPTY_HOWTO (55), |
| EMPTY_HOWTO (56), |
| EMPTY_HOWTO (57), |
| EMPTY_HOWTO (58), |
| EMPTY_HOWTO (59), |
| EMPTY_HOWTO (60), |
| EMPTY_HOWTO (61), |
| EMPTY_HOWTO (62), |
| EMPTY_HOWTO (63), |
| EMPTY_HOWTO (64), |
| EMPTY_HOWTO (65), |
| EMPTY_HOWTO (66), |
| EMPTY_HOWTO (67), |
| EMPTY_HOWTO (68), |
| EMPTY_HOWTO (69), |
| EMPTY_HOWTO (70), |
| EMPTY_HOWTO (71), |
| EMPTY_HOWTO (72), |
| EMPTY_HOWTO (73), |
| EMPTY_HOWTO (74), |
| EMPTY_HOWTO (75), |
| EMPTY_HOWTO (76), |
| EMPTY_HOWTO (77), |
| EMPTY_HOWTO (78), |
| EMPTY_HOWTO (79), |
| EMPTY_HOWTO (80), |
| EMPTY_HOWTO (81), |
| EMPTY_HOWTO (82), |
| EMPTY_HOWTO (83), |
| EMPTY_HOWTO (84), |
| EMPTY_HOWTO (85), |
| EMPTY_HOWTO (86), |
| EMPTY_HOWTO (87), |
| EMPTY_HOWTO (88), |
| EMPTY_HOWTO (89), |
| EMPTY_HOWTO (90), |
| EMPTY_HOWTO (91), |
| EMPTY_HOWTO (92), |
| EMPTY_HOWTO (93), |
| EMPTY_HOWTO (94), |
| EMPTY_HOWTO (95), |
| EMPTY_HOWTO (96), |
| EMPTY_HOWTO (97), |
| EMPTY_HOWTO (98), |
| EMPTY_HOWTO (99), |
| EMPTY_HOWTO (100), |
| EMPTY_HOWTO (101), |
| EMPTY_HOWTO (102), |
| EMPTY_HOWTO (103), |
| EMPTY_HOWTO (104), |
| EMPTY_HOWTO (105), |
| EMPTY_HOWTO (106), |
| EMPTY_HOWTO (107), |
| EMPTY_HOWTO (108), |
| EMPTY_HOWTO (109), |
| EMPTY_HOWTO (110), |
| EMPTY_HOWTO (111), |
| EMPTY_HOWTO (112), |
| EMPTY_HOWTO (113), |
| EMPTY_HOWTO (114), |
| EMPTY_HOWTO (115), |
| EMPTY_HOWTO (116), |
| EMPTY_HOWTO (117), |
| EMPTY_HOWTO (118), |
| EMPTY_HOWTO (119), |
| EMPTY_HOWTO (120), |
| EMPTY_HOWTO (121), |
| EMPTY_HOWTO (122), |
| EMPTY_HOWTO (123), |
| EMPTY_HOWTO (124), |
| EMPTY_HOWTO (125), |
| EMPTY_HOWTO (126), |
| EMPTY_HOWTO (127), |
| EMPTY_HOWTO (128), |
| EMPTY_HOWTO (129), |
| EMPTY_HOWTO (130), |
| EMPTY_HOWTO (131), |
| EMPTY_HOWTO (132), |
| EMPTY_HOWTO (133), |
| EMPTY_HOWTO (134), |
| EMPTY_HOWTO (135), |
| EMPTY_HOWTO (136), |
| EMPTY_HOWTO (137), |
| EMPTY_HOWTO (138), |
| EMPTY_HOWTO (139), |
| EMPTY_HOWTO (140), |
| EMPTY_HOWTO (141), |
| EMPTY_HOWTO (142), |
| EMPTY_HOWTO (143), |
| EMPTY_HOWTO (144), |
| EMPTY_HOWTO (145), |
| EMPTY_HOWTO (146), |
| EMPTY_HOWTO (147), |
| EMPTY_HOWTO (148), |
| EMPTY_HOWTO (149), |
| EMPTY_HOWTO (150), |
| EMPTY_HOWTO (151), |
| EMPTY_HOWTO (152), |
| EMPTY_HOWTO (153), |
| EMPTY_HOWTO (154), |
| EMPTY_HOWTO (155), |
| EMPTY_HOWTO (156), |
| EMPTY_HOWTO (157), |
| EMPTY_HOWTO (158), |
| EMPTY_HOWTO (159), |
| |
| HOWTO (R_SH_GOT32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_SH_GOT32", /* name */ |
| true, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_SH_PLT32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_SH_PLT32", /* name */ |
| true, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_SH_COPY, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_SH_COPY", /* name */ |
| true, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_SH_GLOB_DAT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_SH_GLOB_DAT", /* name */ |
| true, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_SH_JMP_SLOT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_SH_JMP_SLOT", /* name */ |
| true, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_SH_RELATIVE, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_SH_RELATIVE", /* name */ |
| true, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_SH_GOTOFF, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_SH_GOTOFF", /* name */ |
| true, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_SH_GOTPC, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_SH_GOTPC", /* name */ |
| true, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| }; |
| |
| static bfd_reloc_status_type |
| sh_elf_reloc_loop (r_type, input_bfd, input_section, contents, addr, |
| symbol_section, start, end) |
| int r_type ATTRIBUTE_UNUSED; |
| bfd *input_bfd; |
| asection *input_section; |
| bfd_byte *contents; |
| bfd_vma addr; |
| asection *symbol_section; |
| bfd_vma start, end; |
| { |
| static bfd_vma last_addr; |
| static asection *last_symbol_section; |
| bfd_byte *free_contents = NULL; |
| bfd_byte *start_ptr, *ptr, *last_ptr; |
| int diff, cum_diff; |
| bfd_signed_vma x; |
| int insn; |
| |
| /* Sanity check the address. */ |
| if (addr > input_section->_raw_size) |
| return bfd_reloc_outofrange; |
| |
| /* We require the start and end relocations to be processed consecutively - |
| although we allow then to be processed forwards or backwards. */ |
| if (! last_addr) |
| { |
| last_addr = addr; |
| last_symbol_section = symbol_section; |
| return bfd_reloc_ok; |
| } |
| if (last_addr != addr) |
| abort (); |
| last_addr = 0; |
| |
| if (! symbol_section || last_symbol_section != symbol_section || end < start) |
| return bfd_reloc_outofrange; |
| |
| /* Get the symbol_section contents. */ |
| if (symbol_section != input_section) |
| { |
| if (elf_section_data (symbol_section)->this_hdr.contents != NULL) |
| contents = elf_section_data (symbol_section)->this_hdr.contents; |
| else |
| { |
| free_contents = contents |
| = (bfd_byte *) bfd_malloc (symbol_section->_raw_size); |
| if (contents == NULL) |
| return bfd_reloc_outofrange; |
| if (! bfd_get_section_contents (input_bfd, symbol_section, contents, |
| (file_ptr) 0, |
| symbol_section->_raw_size)) |
| { |
| free (contents); |
| return bfd_reloc_outofrange; |
| } |
| } |
| } |
| #define IS_PPI(PTR) ((bfd_get_16 (input_bfd, (PTR)) & 0xfc00) == 0xf800) |
| start_ptr = contents + start; |
| for (cum_diff = -6, ptr = contents + end; cum_diff < 0 && ptr > start_ptr;) |
| { |
| for (last_ptr = ptr, ptr -= 4; ptr >= start_ptr && IS_PPI (ptr);) |
| ptr -= 2; |
| ptr += 2; |
| diff = (last_ptr - ptr) >> 1; |
| cum_diff += diff & 1; |
| cum_diff += diff; |
| } |
| /* Calculate the start / end values to load into rs / re minus four - |
| so that will cancel out the four we would otherwise have to add to |
| addr to get the value to subtract in order to get relative addressing. */ |
| if (cum_diff >= 0) |
| { |
| start -= 4; |
| end = (ptr + cum_diff * 2) - contents; |
| } |
| else |
| { |
| bfd_vma start0 = start - 4; |
| |
| while (start0 && IS_PPI (contents + start0)) |
| start0 -= 2; |
| start0 = start - 2 - ((start - start0) & 2); |
| start = start0 - cum_diff - 2; |
| end = start0; |
| } |
| |
| if (free_contents) |
| free (free_contents); |
| |
| insn = bfd_get_16 (input_bfd, contents + addr); |
| |
| x = (insn & 0x200 ? end : start) - addr; |
| if (input_section != symbol_section) |
| x += ((symbol_section->output_section->vma + symbol_section->output_offset) |
| - (input_section->output_section->vma |
| + input_section->output_offset)); |
| x >>= 1; |
| if (x < -128 || x > 127) |
| return bfd_reloc_overflow; |
| |
| x = (insn & ~0xff) | (x & 0xff); |
| bfd_put_16 (input_bfd, x, contents + addr); |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* This function is used for normal relocs. This used to be like the COFF |
| function, and is almost certainly incorrect for other ELF targets. */ |
| |
| static bfd_reloc_status_type |
| sh_elf_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd, |
| error_message) |
| bfd *abfd; |
| arelent *reloc_entry; |
| asymbol *symbol_in; |
| PTR data; |
| asection *input_section; |
| bfd *output_bfd; |
| char **error_message ATTRIBUTE_UNUSED; |
| { |
| unsigned long insn; |
| bfd_vma sym_value; |
| enum elf_sh_reloc_type r_type; |
| bfd_vma addr = reloc_entry->address; |
| bfd_byte *hit_data = addr + (bfd_byte *) data; |
| |
| r_type = (enum elf_sh_reloc_type) reloc_entry->howto->type; |
| |
| if (output_bfd != NULL) |
| { |
| /* Partial linking--do nothing. */ |
| reloc_entry->address += input_section->output_offset; |
| return bfd_reloc_ok; |
| } |
| |
| /* Almost all relocs have to do with relaxing. If any work must be |
| done for them, it has been done in sh_relax_section. */ |
| if (r_type == R_SH_IND12W && (symbol_in->flags & BSF_LOCAL) != 0) |
| return bfd_reloc_ok; |
| |
| if (symbol_in != NULL |
| && bfd_is_und_section (symbol_in->section)) |
| return bfd_reloc_undefined; |
| |
| if (bfd_is_com_section (symbol_in->section)) |
| sym_value = 0; |
| else |
| sym_value = (symbol_in->value + |
| symbol_in->section->output_section->vma + |
| symbol_in->section->output_offset); |
| |
| switch (r_type) |
| { |
| case R_SH_DIR32: |
| insn = bfd_get_32 (abfd, hit_data); |
| insn += sym_value + reloc_entry->addend; |
| bfd_put_32 (abfd, insn, hit_data); |
| break; |
| case R_SH_IND12W: |
| insn = bfd_get_16 (abfd, hit_data); |
| sym_value += reloc_entry->addend; |
| sym_value -= (input_section->output_section->vma |
| + input_section->output_offset |
| + addr |
| + 4); |
| sym_value += (insn & 0xfff) << 1; |
| if (insn & 0x800) |
| sym_value -= 0x1000; |
| insn = (insn & 0xf000) | (sym_value & 0xfff); |
| bfd_put_16 (abfd, insn, hit_data); |
| if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000) |
| return bfd_reloc_overflow; |
| break; |
| default: |
| abort (); |
| break; |
| } |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* This function is used for relocs which are only used for relaxing, |
| which the linker should otherwise ignore. */ |
| |
| static bfd_reloc_status_type |
| sh_elf_ignore_reloc (abfd, reloc_entry, symbol, data, input_section, |
| output_bfd, error_message) |
| bfd *abfd ATTRIBUTE_UNUSED; |
| arelent *reloc_entry; |
| asymbol *symbol ATTRIBUTE_UNUSED; |
| PTR data ATTRIBUTE_UNUSED; |
| asection *input_section; |
| bfd *output_bfd; |
| char **error_message ATTRIBUTE_UNUSED; |
| { |
| if (output_bfd != NULL) |
| reloc_entry->address += input_section->output_offset; |
| return bfd_reloc_ok; |
| } |
| |
| /* This structure is used to map BFD reloc codes to SH ELF relocs. */ |
| |
| struct elf_reloc_map |
| { |
| bfd_reloc_code_real_type bfd_reloc_val; |
| unsigned char elf_reloc_val; |
| }; |
| |
| /* An array mapping BFD reloc codes to SH ELF relocs. */ |
| |
| static const struct elf_reloc_map sh_reloc_map[] = |
| { |
| { BFD_RELOC_NONE, R_SH_NONE }, |
| { BFD_RELOC_32, R_SH_DIR32 }, |
| { BFD_RELOC_CTOR, R_SH_DIR32 }, |
| { BFD_RELOC_32_PCREL, R_SH_REL32 }, |
| { BFD_RELOC_SH_PCDISP8BY2, R_SH_DIR8WPN }, |
| { BFD_RELOC_SH_PCDISP12BY2, R_SH_IND12W }, |
| { BFD_RELOC_SH_PCRELIMM8BY2, R_SH_DIR8WPZ }, |
| { BFD_RELOC_SH_PCRELIMM8BY4, R_SH_DIR8WPL }, |
| { BFD_RELOC_8_PCREL, R_SH_SWITCH8 }, |
| { BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 }, |
| { BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 }, |
| { BFD_RELOC_SH_USES, R_SH_USES }, |
| { BFD_RELOC_SH_COUNT, R_SH_COUNT }, |
| { BFD_RELOC_SH_ALIGN, R_SH_ALIGN }, |
| { BFD_RELOC_SH_CODE, R_SH_CODE }, |
| { BFD_RELOC_SH_DATA, R_SH_DATA }, |
| { BFD_RELOC_SH_LABEL, R_SH_LABEL }, |
| { BFD_RELOC_VTABLE_INHERIT, R_SH_GNU_VTINHERIT }, |
| { BFD_RELOC_VTABLE_ENTRY, R_SH_GNU_VTENTRY }, |
| { BFD_RELOC_SH_LOOP_START, R_SH_LOOP_START }, |
| { BFD_RELOC_SH_LOOP_END, R_SH_LOOP_END }, |
| { BFD_RELOC_32_GOT_PCREL, R_SH_GOT32 }, |
| { BFD_RELOC_32_PLT_PCREL, R_SH_PLT32 }, |
| { BFD_RELOC_SH_COPY, R_SH_COPY }, |
| { BFD_RELOC_SH_GLOB_DAT, R_SH_GLOB_DAT }, |
| { BFD_RELOC_SH_JMP_SLOT, R_SH_JMP_SLOT }, |
| { BFD_RELOC_SH_RELATIVE, R_SH_RELATIVE }, |
| { BFD_RELOC_32_GOTOFF, R_SH_GOTOFF }, |
| { BFD_RELOC_SH_GOTPC, R_SH_GOTPC }, |
| }; |
| |
| /* Given a BFD reloc code, return the howto structure for the |
| corresponding SH ELf reloc. */ |
| |
| static reloc_howto_type * |
| sh_elf_reloc_type_lookup (abfd, code) |
| bfd *abfd ATTRIBUTE_UNUSED; |
| bfd_reloc_code_real_type code; |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof (sh_reloc_map) / sizeof (struct elf_reloc_map); i++) |
| { |
| if (sh_reloc_map[i].bfd_reloc_val == code) |
| return &sh_elf_howto_table[(int) sh_reloc_map[i].elf_reloc_val]; |
| } |
| |
| return NULL; |
| } |
| |
| /* Given an ELF reloc, fill in the howto field of a relent. */ |
| |
| static void |
| sh_elf_info_to_howto (abfd, cache_ptr, dst) |
| bfd *abfd ATTRIBUTE_UNUSED; |
| arelent *cache_ptr; |
| Elf_Internal_Rela *dst; |
| { |
| unsigned int r; |
| |
| r = ELF32_R_TYPE (dst->r_info); |
| |
| BFD_ASSERT (r < (unsigned int) R_SH_max); |
| BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC || r > R_SH_LAST_INVALID_RELOC); |
| BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_2 || r > R_SH_LAST_INVALID_RELOC_2); |
| |
| cache_ptr->howto = &sh_elf_howto_table[r]; |
| } |
| |
| /* This function handles relaxing for SH ELF. See the corresponding |
| function in coff-sh.c for a description of what this does. FIXME: |
| There is a lot of duplication here between this code and the COFF |
| specific code. The format of relocs and symbols is wound deeply |
| into this code, but it would still be better if the duplication |
| could be eliminated somehow. Note in particular that although both |
| functions use symbols like R_SH_CODE, those symbols have different |
| values; in coff-sh.c they come from include/coff/sh.h, whereas here |
| they come from enum elf_sh_reloc_type in include/elf/sh.h. */ |
| |
| static boolean |
| sh_elf_relax_section (abfd, sec, link_info, again) |
| bfd *abfd; |
| asection *sec; |
| struct bfd_link_info *link_info; |
| boolean *again; |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *free_relocs = NULL; |
| boolean have_code; |
| Elf_Internal_Rela *irel, *irelend; |
| bfd_byte *contents = NULL; |
| bfd_byte *free_contents = NULL; |
| Elf32_External_Sym *extsyms = NULL; |
| Elf32_External_Sym *free_extsyms = NULL; |
| |
| *again = false; |
| |
| if (link_info->relocateable |
| || (sec->flags & SEC_RELOC) == 0 |
| || sec->reloc_count == 0) |
| return true; |
| |
| /* If this is the first time we have been called for this section, |
| initialize the cooked size. */ |
| if (sec->_cooked_size == 0) |
| sec->_cooked_size = sec->_raw_size; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| internal_relocs = (_bfd_elf32_link_read_relocs |
| (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL, |
| link_info->keep_memory)); |
| if (internal_relocs == NULL) |
| goto error_return; |
| if (! link_info->keep_memory) |
| free_relocs = internal_relocs; |
| |
| have_code = false; |
| |
| irelend = internal_relocs + sec->reloc_count; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| bfd_vma laddr, paddr, symval; |
| unsigned short insn; |
| Elf_Internal_Rela *irelfn, *irelscan, *irelcount; |
| bfd_signed_vma foff; |
| |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_CODE) |
| have_code = true; |
| |
| if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_USES) |
| continue; |
| |
| /* Get the section contents. */ |
| if (contents == NULL) |
| { |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| contents = (bfd_byte *) bfd_malloc (sec->_raw_size); |
| if (contents == NULL) |
| goto error_return; |
| free_contents = contents; |
| |
| if (! bfd_get_section_contents (abfd, sec, contents, |
| (file_ptr) 0, sec->_raw_size)) |
| goto error_return; |
| } |
| } |
| |
| /* The r_addend field of the R_SH_USES reloc will point us to |
| the register load. The 4 is because the r_addend field is |
| computed as though it were a jump offset, which are based |
| from 4 bytes after the jump instruction. */ |
| laddr = irel->r_offset + 4 + irel->r_addend; |
| if (laddr >= sec->_raw_size) |
| { |
| (*_bfd_error_handler) (_("%s: 0x%lx: warning: bad R_SH_USES offset"), |
| bfd_get_filename (abfd), |
| (unsigned long) irel->r_offset); |
| continue; |
| } |
| insn = bfd_get_16 (abfd, contents + laddr); |
| |
| /* If the instruction is not mov.l NN,rN, we don't know what to |
| do. */ |
| if ((insn & 0xf000) != 0xd000) |
| { |
| ((*_bfd_error_handler) |
| (_("%s: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x"), |
| bfd_get_filename (abfd), (unsigned long) irel->r_offset, insn)); |
| continue; |
| } |
| |
| /* Get the address from which the register is being loaded. The |
| displacement in the mov.l instruction is quadrupled. It is a |
| displacement from four bytes after the movl instruction, but, |
| before adding in the PC address, two least significant bits |
| of the PC are cleared. We assume that the section is aligned |
| on a four byte boundary. */ |
| paddr = insn & 0xff; |
| paddr *= 4; |
| paddr += (laddr + 4) & ~3; |
| if (paddr >= sec->_raw_size) |
| { |
| ((*_bfd_error_handler) |
| (_("%s: 0x%lx: warning: bad R_SH_USES load offset"), |
| bfd_get_filename (abfd), (unsigned long) irel->r_offset)); |
| continue; |
| } |
| |
| /* Get the reloc for the address from which the register is |
| being loaded. This reloc will tell us which function is |
| actually being called. */ |
| for (irelfn = internal_relocs; irelfn < irelend; irelfn++) |
| if (irelfn->r_offset == paddr |
| && ELF32_R_TYPE (irelfn->r_info) == (int) R_SH_DIR32) |
| break; |
| if (irelfn >= irelend) |
| { |
| ((*_bfd_error_handler) |
| (_("%s: 0x%lx: warning: could not find expected reloc"), |
| bfd_get_filename (abfd), (unsigned long) paddr)); |
| continue; |
| } |
| |
| /* Read this BFD's symbols if we haven't done so already. */ |
| if (extsyms == NULL) |
| { |
| if (symtab_hdr->contents != NULL) |
| extsyms = (Elf32_External_Sym *) symtab_hdr->contents; |
| else |
| { |
| extsyms = ((Elf32_External_Sym *) |
| bfd_malloc (symtab_hdr->sh_size)); |
| if (extsyms == NULL) |
| goto error_return; |
| free_extsyms = extsyms; |
| if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0 |
| || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd) |
| != symtab_hdr->sh_size)) |
| goto error_return; |
| } |
| } |
| |
| /* Get the value of the symbol referred to by the reloc. */ |
| if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info) |
| { |
| Elf_Internal_Sym isym; |
| |
| /* A local symbol. */ |
| bfd_elf32_swap_symbol_in (abfd, |
| extsyms + ELF32_R_SYM (irelfn->r_info), |
| &isym); |
| |
| if (isym.st_shndx != _bfd_elf_section_from_bfd_section (abfd, sec)) |
| { |
| ((*_bfd_error_handler) |
| (_("%s: 0x%lx: warning: symbol in unexpected section"), |
| bfd_get_filename (abfd), (unsigned long) paddr)); |
| continue; |
| } |
| |
| symval = (isym.st_value |
| + sec->output_section->vma |
| + sec->output_offset); |
| } |
| else |
| { |
| unsigned long indx; |
| struct elf_link_hash_entry *h; |
| |
| indx = ELF32_R_SYM (irelfn->r_info) - symtab_hdr->sh_info; |
| h = elf_sym_hashes (abfd)[indx]; |
| BFD_ASSERT (h != NULL); |
| if (h->root.type != bfd_link_hash_defined |
| && h->root.type != bfd_link_hash_defweak) |
| { |
| /* This appears to be a reference to an undefined |
| symbol. Just ignore it--it will be caught by the |
| regular reloc processing. */ |
| continue; |
| } |
| |
| symval = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| |
| symval += bfd_get_32 (abfd, contents + paddr); |
| |
| /* See if this function call can be shortened. */ |
| foff = (symval |
| - (irel->r_offset |
| + sec->output_section->vma |
| + sec->output_offset |
| + 4)); |
| if (foff < -0x1000 || foff >= 0x1000) |
| { |
| /* After all that work, we can't shorten this function call. */ |
| continue; |
| } |
| |
| /* Shorten the function call. */ |
| |
| /* For simplicity of coding, we are going to modify the section |
| contents, the section relocs, and the BFD symbol table. We |
| must tell the rest of the code not to free up this |
| information. It would be possible to instead create a table |
| of changes which have to be made, as is done in coff-mips.c; |
| that would be more work, but would require less memory when |
| the linker is run. */ |
| |
| elf_section_data (sec)->relocs = internal_relocs; |
| free_relocs = NULL; |
| |
| elf_section_data (sec)->this_hdr.contents = contents; |
| free_contents = NULL; |
| |
| symtab_hdr->contents = (bfd_byte *) extsyms; |
| free_extsyms = NULL; |
| |
| /* Replace the jsr with a bsr. */ |
| |
| /* Change the R_SH_USES reloc into an R_SH_IND12W reloc, and |
| replace the jsr with a bsr. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_SH_IND12W); |
| if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info) |
| { |
| /* If this needs to be changed because of future relaxing, |
| it will be handled here like other internal IND12W |
| relocs. */ |
| bfd_put_16 (abfd, |
| 0xb000 | ((foff >> 1) & 0xfff), |
| contents + irel->r_offset); |
| } |
| else |
| { |
| /* We can't fully resolve this yet, because the external |
| symbol value may be changed by future relaxing. We let |
| the final link phase handle it. */ |
| bfd_put_16 (abfd, 0xb000, contents + irel->r_offset); |
| } |
| |
| /* See if there is another R_SH_USES reloc referring to the same |
| register load. */ |
| for (irelscan = internal_relocs; irelscan < irelend; irelscan++) |
| if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_USES |
| && laddr == irelscan->r_offset + 4 + irelscan->r_addend) |
| break; |
| if (irelscan < irelend) |
| { |
| /* Some other function call depends upon this register load, |
| and we have not yet converted that function call. |
| Indeed, we may never be able to convert it. There is |
| nothing else we can do at this point. */ |
| continue; |
| } |
| |
| /* Look for a R_SH_COUNT reloc on the location where the |
| function address is stored. Do this before deleting any |
| bytes, to avoid confusion about the address. */ |
| for (irelcount = internal_relocs; irelcount < irelend; irelcount++) |
| if (irelcount->r_offset == paddr |
| && ELF32_R_TYPE (irelcount->r_info) == (int) R_SH_COUNT) |
| break; |
| |
| /* Delete the register load. */ |
| if (! sh_elf_relax_delete_bytes (abfd, sec, laddr, 2)) |
| goto error_return; |
| |
| /* That will change things, so, just in case it permits some |
| other function call to come within range, we should relax |
| again. Note that this is not required, and it may be slow. */ |
| *again = true; |
| |
| /* Now check whether we got a COUNT reloc. */ |
| if (irelcount >= irelend) |
| { |
| ((*_bfd_error_handler) |
| (_("%s: 0x%lx: warning: could not find expected COUNT reloc"), |
| bfd_get_filename (abfd), (unsigned long) paddr)); |
| continue; |
| } |
| |
| /* The number of uses is stored in the r_addend field. We've |
| just deleted one. */ |
| if (irelcount->r_addend == 0) |
| { |
| ((*_bfd_error_handler) (_("%s: 0x%lx: warning: bad count"), |
| bfd_get_filename (abfd), |
| (unsigned long) paddr)); |
| continue; |
| } |
| |
| --irelcount->r_addend; |
| |
| /* If there are no more uses, we can delete the address. Reload |
| the address from irelfn, in case it was changed by the |
| previous call to sh_elf_relax_delete_bytes. */ |
| if (irelcount->r_addend == 0) |
| { |
| if (! sh_elf_relax_delete_bytes (abfd, sec, irelfn->r_offset, 4)) |
| goto error_return; |
| } |
| |
| /* We've done all we can with that function call. */ |
| } |
| |
| /* Look for load and store instructions that we can align on four |
| byte boundaries. */ |
| if (have_code) |
| { |
| boolean swapped; |
| |
| /* Get the section contents. */ |
| if (contents == NULL) |
| { |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| contents = (bfd_byte *) bfd_malloc (sec->_raw_size); |
| if (contents == NULL) |
| goto error_return; |
| free_contents = contents; |
| |
| if (! bfd_get_section_contents (abfd, sec, contents, |
| (file_ptr) 0, sec->_raw_size)) |
| goto error_return; |
| } |
| } |
| |
| if (! sh_elf_align_loads (abfd, sec, internal_relocs, contents, |
| &swapped)) |
| goto error_return; |
| |
| if (swapped) |
| { |
| elf_section_data (sec)->relocs = internal_relocs; |
| free_relocs = NULL; |
| |
| elf_section_data (sec)->this_hdr.contents = contents; |
| free_contents = NULL; |
| |
| symtab_hdr->contents = (bfd_byte *) extsyms; |
| free_extsyms = NULL; |
| } |
| } |
| |
| if (free_relocs != NULL) |
| { |
| free (free_relocs); |
| free_relocs = NULL; |
| } |
| |
| if (free_contents != NULL) |
| { |
| if (! link_info->keep_memory) |
| free (free_contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| free_contents = NULL; |
| } |
| |
| if (free_extsyms != NULL) |
| { |
| if (! link_info->keep_memory) |
| free (free_extsyms); |
| else |
| { |
| /* Cache the symbols for elf_link_input_bfd. */ |
| symtab_hdr->contents = extsyms; |
| } |
| free_extsyms = NULL; |
| } |
| |
| return true; |
| |
| error_return: |
| if (free_relocs != NULL) |
| free (free_relocs); |
| if (free_contents != NULL) |
| free (free_contents); |
| if (free_extsyms != NULL) |
| free (free_extsyms); |
| return false; |
| } |
| |
| /* Delete some bytes from a section while relaxing. FIXME: There is a |
| lot of duplication between this function and sh_relax_delete_bytes |
| in coff-sh.c. */ |
| |
| static boolean |
| sh_elf_relax_delete_bytes (abfd, sec, addr, count) |
| bfd *abfd; |
| asection *sec; |
| bfd_vma addr; |
| int count; |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf32_External_Sym *extsyms; |
| int shndx, index; |
| bfd_byte *contents; |
| Elf_Internal_Rela *irel, *irelend; |
| Elf_Internal_Rela *irelalign; |
| bfd_vma toaddr; |
| Elf32_External_Sym *esym, *esymend; |
| struct elf_link_hash_entry *sym_hash; |
| asection *o; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| extsyms = (Elf32_External_Sym *) symtab_hdr->contents; |
| |
| shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| |
| contents = elf_section_data (sec)->this_hdr.contents; |
| |
| /* The deletion must stop at the next ALIGN reloc for an aligment |
| power larger than the number of bytes we are deleting. */ |
| |
| irelalign = NULL; |
| toaddr = sec->_cooked_size; |
| |
| irel = elf_section_data (sec)->relocs; |
| irelend = irel + sec->reloc_count; |
| for (; irel < irelend; irel++) |
| { |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN |
| && irel->r_offset > addr |
| && count < (1 << irel->r_addend)) |
| { |
| irelalign = irel; |
| toaddr = irel->r_offset; |
| break; |
| } |
| } |
| |
| /* Actually delete the bytes. */ |
| memmove (contents + addr, contents + addr + count, toaddr - addr - count); |
| if (irelalign == NULL) |
| sec->_cooked_size -= count; |
| else |
| { |
| int i; |
| |
| #define NOP_OPCODE (0x0009) |
| |
| BFD_ASSERT ((count & 1) == 0); |
| for (i = 0; i < count; i += 2) |
| bfd_put_16 (abfd, NOP_OPCODE, contents + toaddr - count + i); |
| } |
| |
| /* Adjust all the relocs. */ |
| for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) |
| { |
| bfd_vma nraddr, stop; |
| bfd_vma start = 0; |
| int insn = 0; |
| Elf_Internal_Sym sym; |
| int off, adjust, oinsn; |
| bfd_signed_vma voff = 0; |
| boolean overflow; |
| |
| /* Get the new reloc address. */ |
| nraddr = irel->r_offset; |
| if ((irel->r_offset > addr |
| && irel->r_offset < toaddr) |
| || (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN |
| && irel->r_offset == toaddr)) |
| nraddr -= count; |
| |
| /* See if this reloc was for the bytes we have deleted, in which |
| case we no longer care about it. Don't delete relocs which |
| represent addresses, though. */ |
| if (irel->r_offset >= addr |
| && irel->r_offset < addr + count |
| && ELF32_R_TYPE (irel->r_info) != (int) R_SH_ALIGN |
| && ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE |
| && ELF32_R_TYPE (irel->r_info) != (int) R_SH_DATA |
| && ELF32_R_TYPE (irel->r_info) != (int) R_SH_LABEL) |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (int) R_SH_NONE); |
| |
| /* If this is a PC relative reloc, see if the range it covers |
| includes the bytes we have deleted. */ |
| switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info)) |
| { |
| default: |
| break; |
| |
| case R_SH_DIR8WPN: |
| case R_SH_IND12W: |
| case R_SH_DIR8WPZ: |
| case R_SH_DIR8WPL: |
| start = irel->r_offset; |
| insn = bfd_get_16 (abfd, contents + nraddr); |
| break; |
| } |
| |
| switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info)) |
| { |
| default: |
| start = stop = addr; |
| break; |
| |
| case R_SH_DIR32: |
| /* If this reloc is against a symbol defined in this |
| section, and the symbol will not be adjusted below, we |
| must check the addend to see it will put the value in |
| range to be adjusted, and hence must be changed. */ |
| if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) |
| { |
| bfd_elf32_swap_symbol_in (abfd, |
| extsyms + ELF32_R_SYM (irel->r_info), |
| &sym); |
| if (sym.st_shndx == shndx |
| && (sym.st_value <= addr |
| || sym.st_value >= toaddr)) |
| { |
| bfd_vma val; |
| |
| val = bfd_get_32 (abfd, contents + nraddr); |
| val += sym.st_value; |
| if (val > addr && val < toaddr) |
| bfd_put_32 (abfd, val - count, contents + nraddr); |
| } |
| } |
| start = stop = addr; |
| break; |
| |
| case R_SH_DIR8WPN: |
| off = insn & 0xff; |
| if (off & 0x80) |
| off -= 0x100; |
| stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); |
| break; |
| |
| case R_SH_IND12W: |
| if (ELF32_R_SYM (irel->r_info) >= symtab_hdr->sh_info) |
| start = stop = addr; |
| else |
| { |
| off = insn & 0xfff; |
| if (off & 0x800) |
| off -= 0x1000; |
| stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); |
| } |
| break; |
| |
| case R_SH_DIR8WPZ: |
| off = insn & 0xff; |
| stop = start + 4 + off * 2; |
| break; |
| |
| case R_SH_DIR8WPL: |
| off = insn & 0xff; |
| stop = (start & ~(bfd_vma) 3) + 4 + off * 4; |
| break; |
| |
| case R_SH_SWITCH8: |
| case R_SH_SWITCH16: |
| case R_SH_SWITCH32: |
| /* These relocs types represent |
| .word L2-L1 |
| The r_addend field holds the difference between the reloc |
| address and L1. That is the start of the reloc, and |
| adding in the contents gives us the top. We must adjust |
| both the r_offset field and the section contents. |
| N.B. in gas / coff bfd, the elf bfd r_addend is called r_offset, |
| and the elf bfd r_offset is called r_vaddr. */ |
| |
| stop = irel->r_offset; |
| start = (bfd_vma) ((bfd_signed_vma) stop - (long) irel->r_addend); |
| |
| if (start > addr |
| && start < toaddr |
| && (stop <= addr || stop >= toaddr)) |
| irel->r_addend += count; |
| else if (stop > addr |
| && stop < toaddr |
| && (start <= addr || start >= toaddr)) |
| irel->r_addend -= count; |
| |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH16) |
| voff = bfd_get_signed_16 (abfd, contents + nraddr); |
| else if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH8) |
| voff = bfd_get_8 (abfd, contents + nraddr); |
| else |
| voff = bfd_get_signed_32 (abfd, contents + nraddr); |
| stop = (bfd_vma) ((bfd_signed_vma) start + voff); |
| |
| break; |
| |
| case R_SH_USES: |
| start = irel->r_offset; |
| stop = (bfd_vma) ((bfd_signed_vma) start |
| + (long) irel->r_addend |
| + 4); |
| break; |
| } |
| |
| if (start > addr |
| && start < toaddr |
| && (stop <= addr || stop >= toaddr)) |
| adjust = count; |
| else if (stop > addr |
| && stop < toaddr |
| && (start <= addr || start >= toaddr)) |
| adjust = - count; |
| else |
| adjust = 0; |
| |
| if (adjust != 0) |
| { |
| oinsn = insn; |
| overflow = false; |
| switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info)) |
| { |
| default: |
| abort (); |
| break; |
| |
| case R_SH_DIR8WPN: |
| case R_SH_DIR8WPZ: |
| insn += adjust / 2; |
| if ((oinsn & 0xff00) != (insn & 0xff00)) |
| overflow = true; |
| bfd_put_16 (abfd, insn, contents + nraddr); |
| break; |
| |
| case R_SH_IND12W: |
| insn += adjust / 2; |
| if ((oinsn & 0xf000) != (insn & 0xf000)) |
| overflow = true; |
| bfd_put_16 (abfd, insn, contents + nraddr); |
| break; |
| |
| case R_SH_DIR8WPL: |
| BFD_ASSERT (adjust == count || count >= 4); |
| if (count >= 4) |
| insn += adjust / 4; |
| else |
| { |
| if ((irel->r_offset & 3) == 0) |
| ++insn; |
| } |
| if ((oinsn & 0xff00) != (insn & 0xff00)) |
| overflow = true; |
| bfd_put_16 (abfd, insn, contents + nraddr); |
| break; |
| |
| case R_SH_SWITCH8: |
| voff += adjust; |
| if (voff < 0 || voff >= 0xff) |
| overflow = true; |
| bfd_put_8 (abfd, voff, contents + nraddr); |
| break; |
| |
| case R_SH_SWITCH16: |
| voff += adjust; |
| if (voff < - 0x8000 || voff >= 0x8000) |
| overflow = true; |
| bfd_put_signed_16 (abfd, voff, contents + nraddr); |
| break; |
| |
| case R_SH_SWITCH32: |
| voff += adjust; |
| bfd_put_signed_32 (abfd, voff, contents + nraddr); |
| break; |
| |
| case R_SH_USES: |
| irel->r_addend += adjust; |
| break; |
| } |
| |
| if (overflow) |
| { |
| ((*_bfd_error_handler) |
| (_("%s: 0x%lx: fatal: reloc overflow while relaxing"), |
| bfd_get_filename (abfd), (unsigned long) irel->r_offset)); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| |
| irel->r_offset = nraddr; |
| } |
| |
| /* Look through all the other sections. If there contain any IMM32 |
| relocs against internal symbols which we are not going to adjust |
| below, we may need to adjust the addends. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *irelscan, *irelscanend; |
| bfd_byte *ocontents; |
| |
| if (o == sec |
| || (o->flags & SEC_RELOC) == 0 |
| || o->reloc_count == 0) |
| continue; |
| |
| /* We always cache the relocs. Perhaps, if info->keep_memory is |
| false, we should free them, if we are permitted to, when we |
| leave sh_coff_relax_section. */ |
| internal_relocs = (_bfd_elf32_link_read_relocs |
| (abfd, o, (PTR) NULL, (Elf_Internal_Rela *) NULL, |
| true)); |
| if (internal_relocs == NULL) |
| return false; |
| |
| ocontents = NULL; |
| irelscanend = internal_relocs + o->reloc_count; |
| for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) |
| { |
| Elf_Internal_Sym sym; |
| |
| /* Dwarf line numbers use R_SH_SWITCH32 relocs. */ |
| if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_SWITCH32) |
| { |
| bfd_vma start, stop; |
| bfd_signed_vma voff; |
| |
| if (ocontents == NULL) |
| { |
| if (elf_section_data (o)->this_hdr.contents != NULL) |
| ocontents = elf_section_data (o)->this_hdr.contents; |
| else |
| { |
| /* We always cache the section contents. |
| Perhaps, if info->keep_memory is false, we |
| should free them, if we are permitted to, |
| when we leave sh_coff_relax_section. */ |
| ocontents = (bfd_byte *) bfd_malloc (o->_raw_size); |
| if (ocontents == NULL) |
| return false; |
| if (! bfd_get_section_contents (abfd, o, ocontents, |
| (file_ptr) 0, |
| o->_raw_size)) |
| return false; |
| elf_section_data (o)->this_hdr.contents = ocontents; |
| } |
| } |
| |
| stop = irelscan->r_offset; |
| start |
| = (bfd_vma) ((bfd_signed_vma) stop - (long) irelscan->r_addend); |
| |
| /* STOP is in a different section, so it won't change. */ |
| if (start > addr && start < toaddr) |
| irelscan->r_addend += count; |
| |
| voff = bfd_get_signed_32 (abfd, ocontents + irelscan->r_offset); |
| stop = (bfd_vma) ((bfd_signed_vma) start + voff); |
| |
| if (start > addr |
| && start < toaddr |
| && (stop <= addr || stop >= toaddr)) |
| bfd_put_signed_32 (abfd, voff + count, |
| ocontents + irelscan->r_offset); |
| else if (stop > addr |
| && stop < toaddr |
| && (start <= addr || start >= toaddr)) |
| bfd_put_signed_32 (abfd, voff - count, |
| ocontents + irelscan->r_offset); |
| } |
| |
| if (ELF32_R_TYPE (irelscan->r_info) != (int) R_SH_DIR32) |
| continue; |
| |
| if (ELF32_R_SYM (irelscan->r_info) >= symtab_hdr->sh_info) |
| continue; |
| |
| bfd_elf32_swap_symbol_in (abfd, |
| extsyms + ELF32_R_SYM (irelscan->r_info), |
| &sym); |
| |
| if (sym.st_shndx == shndx |
| && (sym.st_value <= addr |
| || sym.st_value >= toaddr)) |
| { |
| bfd_vma val; |
| |
| if (ocontents == NULL) |
| { |
| if (elf_section_data (o)->this_hdr.contents != NULL) |
| ocontents = elf_section_data (o)->this_hdr.contents; |
| else |
| { |
| /* We always cache the section contents. |
| Perhaps, if info->keep_memory is false, we |
| should free them, if we are permitted to, |
| when we leave sh_coff_relax_section. */ |
| ocontents = (bfd_byte *) bfd_malloc (o->_raw_size); |
| if (ocontents == NULL) |
| return false; |
| if (! bfd_get_section_contents (abfd, o, ocontents, |
| (file_ptr) 0, |
| o->_raw_size)) |
| return false; |
| elf_section_data (o)->this_hdr.contents = ocontents; |
| } |
| } |
| |
| val = bfd_get_32 (abfd, ocontents + irelscan->r_offset); |
| val += sym.st_value; |
| if (val > addr && val < toaddr) |
| bfd_put_32 (abfd, val - count, |
| ocontents + irelscan->r_offset); |
| } |
| } |
| } |
| |
| /* Adjust the local symbols defined in this section. */ |
| esym = extsyms; |
| esymend = esym + symtab_hdr->sh_info; |
| for (; esym < esymend; esym++) |
| { |
| Elf_Internal_Sym isym; |
| |
| bfd_elf32_swap_symbol_in (abfd, esym, &isym); |
| |
| if (isym.st_shndx == shndx |
| && isym.st_value > addr |
| && isym.st_value < toaddr) |
| { |
| isym.st_value -= count; |
| bfd_elf32_swap_symbol_out (abfd, &isym, esym); |
| } |
| } |
| |
| /* Now adjust the global symbols defined in this section. */ |
| esym = extsyms + symtab_hdr->sh_info; |
| esymend = extsyms + (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)); |
| for (index = 0; esym < esymend; esym++, index++) |
| { |
| Elf_Internal_Sym isym; |
| |
| bfd_elf32_swap_symbol_in (abfd, esym, &isym); |
| sym_hash = elf_sym_hashes (abfd)[index]; |
| if (isym.st_shndx == shndx |
| && ((sym_hash)->root.type == bfd_link_hash_defined |
| || (sym_hash)->root.type == bfd_link_hash_defweak) |
| && (sym_hash)->root.u.def.section == sec |
| && (sym_hash)->root.u.def.value > addr |
| && (sym_hash)->root.u.def.value < toaddr) |
| { |
| (sym_hash)->root.u.def.value -= count; |
| } |
| } |
| |
| /* See if we can move the ALIGN reloc forward. We have adjusted |
| r_offset for it already. */ |
| if (irelalign != NULL) |
| { |
| bfd_vma alignto, alignaddr; |
| |
| alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend); |
| alignaddr = BFD_ALIGN (irelalign->r_offset, |
| 1 << irelalign->r_addend); |
| if (alignto != alignaddr) |
| { |
| /* Tail recursion. */ |
| return sh_elf_relax_delete_bytes (abfd, sec, alignaddr, |
| alignto - alignaddr); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Look for loads and stores which we can align to four byte |
| boundaries. This is like sh_align_loads in coff-sh.c. */ |
| |
| static boolean |
| sh_elf_align_loads (abfd, sec, internal_relocs, contents, pswapped) |
| bfd *abfd; |
| asection *sec; |
| Elf_Internal_Rela *internal_relocs; |
| bfd_byte *contents; |
| boolean *pswapped; |
| { |
| Elf_Internal_Rela *irel, *irelend; |
| bfd_vma *labels = NULL; |
| bfd_vma *label, *label_end; |
| |
| *pswapped = false; |
| |
| irelend = internal_relocs + sec->reloc_count; |
| |
| /* Get all the addresses with labels on them. */ |
| labels = (bfd_vma *) bfd_malloc (sec->reloc_count * sizeof (bfd_vma)); |
| if (labels == NULL) |
| goto error_return; |
| label_end = labels; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_LABEL) |
| { |
| *label_end = irel->r_offset; |
| ++label_end; |
| } |
| } |
| |
| /* Note that the assembler currently always outputs relocs in |
| address order. If that ever changes, this code will need to sort |
| the label values and the relocs. */ |
| |
| label = labels; |
| |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| bfd_vma start, stop; |
| |
| if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE) |
| continue; |
| |
| start = irel->r_offset; |
| |
| for (irel++; irel < irelend; irel++) |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_DATA) |
| break; |
| if (irel < irelend) |
| stop = irel->r_offset; |
| else |
| stop = sec->_cooked_size; |
| |
| if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_elf_swap_insns, |
| (PTR) internal_relocs, &label, |
| label_end, start, stop, pswapped)) |
| goto error_return; |
| } |
| |
| free (labels); |
| |
| return true; |
| |
| error_return: |
| if (labels != NULL) |
| free (labels); |
| return false; |
| } |
| |
| /* Swap two SH instructions. This is like sh_swap_insns in coff-sh.c. */ |
| |
| static boolean |
| sh_elf_swap_insns (abfd, sec, relocs, contents, addr) |
| bfd *abfd; |
| asection *sec; |
| PTR relocs; |
| bfd_byte *contents; |
| bfd_vma addr; |
| { |
| Elf_Internal_Rela *internal_relocs = (Elf_Internal_Rela *) relocs; |
| unsigned short i1, i2; |
| Elf_Internal_Rela *irel, *irelend; |
| |
| /* Swap the instructions themselves. */ |
| i1 = bfd_get_16 (abfd, contents + addr); |
| i2 = bfd_get_16 (abfd, contents + addr + 2); |
| bfd_put_16 (abfd, i2, contents + addr); |
| bfd_put_16 (abfd, i1, contents + addr + 2); |
| |
| /* Adjust all reloc addresses. */ |
| irelend = internal_relocs + sec->reloc_count; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| enum elf_sh_reloc_type type; |
| int add; |
| |
| /* There are a few special types of relocs that we don't want to |
| adjust. These relocs do not apply to the instruction itself, |
| but are only associated with the address. */ |
| type = (enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info); |
| if (type == R_SH_ALIGN |
| || type == R_SH_CODE |
| || type == R_SH_DATA |
| || type == R_SH_LABEL) |
| continue; |
| |
| /* If an R_SH_USES reloc points to one of the addresses being |
| swapped, we must adjust it. It would be incorrect to do this |
| for a jump, though, since we want to execute both |
| instructions after the jump. (We have avoided swapping |
| around a label, so the jump will not wind up executing an |
| instruction it shouldn't). */ |
| if (type == R_SH_USES) |
| { |
| bfd_vma off; |
| |
| off = irel->r_offset + 4 + irel->r_addend; |
| if (off == addr) |
| irel->r_offset += 2; |
| else if (off == addr + 2) |
| irel->r_offset -= 2; |
| } |
| |
| if (irel->r_offset == addr) |
| { |
| irel->r_offset += 2; |
| add = -2; |
| } |
| else if (irel->r_offset == addr + 2) |
| { |
| irel->r_offset -= 2; |
| add = 2; |
| } |
| else |
| add = 0; |
| |
| if (add != 0) |
| { |
| bfd_byte *loc; |
| unsigned short insn, oinsn; |
| boolean overflow; |
| |
| loc = contents + irel->r_offset; |
| overflow = false; |
| switch (type) |
| { |
| default: |
| break; |
| |
| case R_SH_DIR8WPN: |
| case R_SH_DIR8WPZ: |
| insn = bfd_get_16 (abfd, loc); |
| oinsn = insn; |
| insn += add / 2; |
| if ((oinsn & 0xff00) != (insn & 0xff00)) |
| overflow = true; |
| bfd_put_16 (abfd, insn, loc); |
| break; |
| |
| case R_SH_IND12W: |
| insn = bfd_get_16 (abfd, loc); |
| oinsn = insn; |
| insn += add / 2; |
| if ((oinsn & 0xf000) != (insn & 0xf000)) |
| overflow = true; |
| bfd_put_16 (abfd, insn, loc); |
| break; |
| |
| case R_SH_DIR8WPL: |
| /* This reloc ignores the least significant 3 bits of |
| the program counter before adding in the offset. |
| This means that if ADDR is at an even address, the |
| swap will not affect the offset. If ADDR is an at an |
| odd address, then the instruction will be crossing a |
| four byte boundary, and must be adjusted. */ |
| if ((addr & 3) != 0) |
| { |
| insn = bfd_get_16 (abfd, loc); |
| oinsn = insn; |
| insn += add / 2; |
| if ((oinsn & 0xff00) != (insn & 0xff00)) |
| overflow = true; |
| bfd_put_16 (abfd, insn, loc); |
| } |
| |
| break; |
| } |
| |
| if (overflow) |
| { |
| ((*_bfd_error_handler) |
| (_("%s: 0x%lx: fatal: reloc overflow while relaxing"), |
| bfd_get_filename (abfd), (unsigned long) irel->r_offset)); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* The size in bytes of an entry in the procedure linkage table. */ |
| |
| #define PLT_ENTRY_SIZE 28 |
| |
| /* First entry in an absolute procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_sh_plt0_entry_be[PLT_ENTRY_SIZE] = |
| { |
| 0xd0, 0x04, /* mov.l 1f,r0 */ |
| 0xd2, 0x05, /* mov.l 2f,r2 */ |
| 0x60, 0x02, /* mov.l @r0,r0 */ |
| 0x62, 0x22, /* mov.l @r2,r2 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0xe0, 0x00, /* mov #0,r0 */ |
| 0x00, 0x09, /* nop */ |
| 0x00, 0x09, /* nop */ |
| 0x00, 0x09, /* nop */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */ |
| 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */ |
| }; |
| |
| static const bfd_byte elf_sh_plt0_entry_le[PLT_ENTRY_SIZE] = |
| { |
| 0x04, 0xd0, /* mov.l 1f,r0 */ |
| 0x05, 0xd2, /* mov.l 2f,r2 */ |
| 0x02, 0x60, /* mov.l @r0,r0 */ |
| 0x22, 0x62, /* mov.l @r2,r2 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x00, 0xe0, /* mov #0,r0 */ |
| 0x09, 0x00, /* nop */ |
| 0x09, 0x00, /* nop */ |
| 0x09, 0x00, /* nop */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */ |
| 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */ |
| }; |
| |
| /* Sebsequent entries in an absolute procedure linkage table look like |
| this. */ |
| |
| static const bfd_byte elf_sh_plt_entry_be[PLT_ENTRY_SIZE] = |
| { |
| 0xd0, 0x04, /* mov.l 1f,r0 */ |
| 0x60, 0x02, /* mov.l @r0,r0 */ |
| 0xd2, 0x02, /* mov.l 0f,r2 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x60, 0x23, /* mov r2,r0 */ |
| 0xd1, 0x03, /* mov.l 2f,r1 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */ |
| 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ |
| 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */ |
| }; |
| |
| static const bfd_byte elf_sh_plt_entry_le[PLT_ENTRY_SIZE] = |
| { |
| 0x04, 0xd0, /* mov.l 1f,r0 */ |
| 0x02, 0x60, /* mov.l @r0,r0 */ |
| 0x02, 0xd2, /* mov.l 0f,r2 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x23, 0x60, /* mov r2,r0 */ |
| 0x03, 0xd1, /* mov.l 2f,r1 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with address of .PLT. */ |
| 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ |
| 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */ |
| }; |
| |
| /* Entries in a PIC procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_sh_pic_plt_entry_be[PLT_ENTRY_SIZE] = |
| { |
| 0xd0, 0x04, /* mov.l 1f,r0 */ |
| 0x00, 0xce, /* mov.l @(r0,r12),r0 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x00, 0x09, /* nop */ |
| 0x50, 0xc2, /* 0: mov.l @(8,r12),r0 */ |
| 0x52, 0xc1, /* 1: mov.l @(4,r12),r2 */ |
| 0xd1, 0x02, /* mov.l 2f,r1 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0xe0, 0x00, /* mov #0,r0 ! shows the type of PLT. */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ |
| 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */ |
| }; |
| |
| static const bfd_byte elf_sh_pic_plt_entry_le[PLT_ENTRY_SIZE] = |
| { |
| 0x04, 0xd0, /* mov.l 1f,r0 */ |
| 0xce, 0x00, /* mov.l @(r0,r12),r0 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x09, 0x00, /* nop */ |
| 0xc2, 0x50, /* 0: mov.l @(8,r12),r0 */ |
| 0xc1, 0x52, /* 1: mov.l @(4,r12),r2 */ |
| 0x02, 0xd1, /* mov.l 2f,r1 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x00, 0xe0, /* mov #0,r0 ! shows the type of PLT. */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ |
| 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */ |
| }; |
| |
| static const bfd_byte *elf_sh_plt0_entry; |
| static const bfd_byte *elf_sh_plt_entry; |
| static const bfd_byte *elf_sh_pic_plt_entry; |
| |
| /* Return size of a PLT entry. */ |
| #define elf_sh_sizeof_plt(info) PLT_ENTRY_SIZE |
| |
| /* Return offset of the PLT0 address in an absolute PLT entry. */ |
| #define elf_sh_plt_plt0_offset(info) 16 |
| |
| /* Return offset of the linker in PLT0 entry. */ |
| #define elf_sh_plt0_linker_offset(info) 20 |
| |
| /* Return offset of the GOT id in PLT0 entry. */ |
| #define elf_sh_plt0_gotid_offset(info) 24 |
| |
| /* Return offset of the tempoline in PLT entry */ |
| #define elf_sh_plt_temp_offset(info) 8 |
| |
| /* Return offset of the symbol in PLT entry. */ |
| #define elf_sh_plt_symbol_offset(info) 20 |
| |
| /* Return offset of the relocation in PLT entry. */ |
| #define elf_sh_plt_reloc_offset(info) 24 |
| |
| /* The sh linker needs to keep track of the number of relocs that it |
| decides to copy in check_relocs for each symbol. This is so that |
| it can discard PC relative relocs if it doesn't need them when |
| linking with -Bsymbolic. We store the information in a field |
| extending the regular ELF linker hash table. */ |
| |
| /* This structure keeps track of the number of PC relative relocs we |
| have copied for a given symbol. */ |
| |
| struct elf_sh_pcrel_relocs_copied |
| { |
| /* Next section. */ |
| struct elf_sh_pcrel_relocs_copied *next; |
| /* A section in dynobj. */ |
| asection *section; |
| /* Number of relocs copied in this section. */ |
| bfd_size_type count; |
| }; |
| |
| /* sh ELF linker hash entry. */ |
| |
| struct elf_sh_link_hash_entry |
| { |
| struct elf_link_hash_entry root; |
| |
| /* Number of PC relative relocs copied for this symbol. */ |
| struct elf_sh_pcrel_relocs_copied *pcrel_relocs_copied; |
| }; |
| |
| /* sh ELF linker hash table. */ |
| |
| struct elf_sh_link_hash_table |
| { |
| struct elf_link_hash_table root; |
| }; |
| |
| /* Declare this now that the above structures are defined. */ |
| |
| static boolean sh_elf_discard_copies |
| PARAMS ((struct elf_sh_link_hash_entry *, PTR)); |
| |
| /* Traverse an sh ELF linker hash table. */ |
| |
| #define sh_elf_link_hash_traverse(table, func, info) \ |
| (elf_link_hash_traverse \ |
| (&(table)->root, \ |
| (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ |
| (info))) |
| |
| /* Get the sh ELF linker hash table from a link_info structure. */ |
| |
| #define sh_elf_hash_table(p) \ |
| ((struct elf_sh_link_hash_table *) ((p)->hash)) |
| |
| /* Create an entry in an sh ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| sh_elf_link_hash_newfunc (entry, table, string) |
| struct bfd_hash_entry *entry; |
| struct bfd_hash_table *table; |
| const char *string; |
| { |
| struct elf_sh_link_hash_entry *ret = |
| (struct elf_sh_link_hash_entry *) entry; |
| |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (ret == (struct elf_sh_link_hash_entry *) NULL) |
| ret = ((struct elf_sh_link_hash_entry *) |
| bfd_hash_allocate (table, |
| sizeof (struct elf_sh_link_hash_entry))); |
| if (ret == (struct elf_sh_link_hash_entry *) NULL) |
| return (struct bfd_hash_entry *) ret; |
| |
| /* Call the allocation method of the superclass. */ |
| ret = ((struct elf_sh_link_hash_entry *) |
| _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| table, string)); |
| if (ret != (struct elf_sh_link_hash_entry *) NULL) |
| { |
| ret->pcrel_relocs_copied = NULL; |
| } |
| |
| return (struct bfd_hash_entry *) ret; |
| } |
| |
| /* Create an sh ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| sh_elf_link_hash_table_create (abfd) |
| bfd *abfd; |
| { |
| struct elf_sh_link_hash_table *ret; |
| |
| ret = ((struct elf_sh_link_hash_table *) |
| bfd_alloc (abfd, sizeof (struct elf_sh_link_hash_table))); |
| if (ret == (struct elf_sh_link_hash_table *) NULL) |
| return NULL; |
| |
| if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, |
| sh_elf_link_hash_newfunc)) |
| { |
| bfd_release (abfd, ret); |
| return NULL; |
| } |
| |
| return &ret->root.root; |
| } |
| |
| /* Create dynamic sections when linking against a dynamic object. */ |
| |
| static boolean |
| sh_elf_create_dynamic_sections (abfd, info) |
| bfd *abfd; |
| struct bfd_link_info *info; |
| { |
| flagword flags, pltflags; |
| register asection *s; |
| struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| int ptralign = 0; |
| |
| switch (bed->s->arch_size) |
| { |
| case 32: |
| ptralign = 2; |
| break; |
| |
| case 64: |
| ptralign = 3; |
| break; |
| |
| default: |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
| .rel[a].bss sections. */ |
| |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| |
| pltflags = flags; |
| pltflags |= SEC_CODE; |
| if (bed->plt_not_loaded) |
| pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS); |
| if (bed->plt_readonly) |
| pltflags |= SEC_READONLY; |
| |
| s = bfd_make_section (abfd, ".plt"); |
| if (s == NULL |
| || ! bfd_set_section_flags (abfd, s, pltflags) |
| || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) |
| return false; |
| |
| if (bed->want_plt_sym) |
| { |
| /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the |
| .plt section. */ |
| struct elf_link_hash_entry *h = NULL; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, |
| (bfd_vma) 0, (const char *) NULL, false, |
| get_elf_backend_data (abfd)->collect, |
| (struct bfd_link_hash_entry **) &h))) |
| return false; |
| h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| h->type = STT_OBJECT; |
| |
| if (info->shared |
| && ! _bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| s = bfd_make_section (abfd, |
| bed->default_use_rela_p ? ".rela.plt" : ".rel.plt"); |
| if (s == NULL |
| || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) |
| || ! bfd_set_section_alignment (abfd, s, ptralign)) |
| return false; |
| |
| if (! _bfd_elf_create_got_section (abfd, info)) |
| return false; |
| |
| { |
| const char *secname; |
| char *relname; |
| flagword secflags; |
| asection *sec; |
| |
| for (sec = abfd->sections; sec; sec = sec->next) |
| { |
| secflags = bfd_get_section_flags (abfd, sec); |
| if ((secflags & (SEC_DATA | SEC_LINKER_CREATED)) |
| || ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS)) |
| continue; |
| secname = bfd_get_section_name (abfd, sec); |
| relname = (char *) bfd_malloc (strlen (secname) + 6); |
| strcpy (relname, ".rela"); |
| strcat (relname, secname); |
| s = bfd_make_section (abfd, relname); |
| if (s == NULL |
| || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) |
| || ! bfd_set_section_alignment (abfd, s, ptralign)) |
| return false; |
| } |
| } |
| |
| if (bed->want_dynbss) |
| { |
| /* The .dynbss section is a place to put symbols which are defined |
| by dynamic objects, are referenced by regular objects, and are |
| not functions. We must allocate space for them in the process |
| image and use a R_*_COPY reloc to tell the dynamic linker to |
| initialize them at run time. The linker script puts the .dynbss |
| section into the .bss section of the final image. */ |
| s = bfd_make_section (abfd, ".dynbss"); |
| if (s == NULL |
| || ! bfd_set_section_flags (abfd, s, SEC_ALLOC)) |
| return false; |
| |
| /* The .rel[a].bss section holds copy relocs. This section is not |
| normally needed. We need to create it here, though, so that the |
| linker will map it to an output section. We can't just create it |
| only if we need it, because we will not know whether we need it |
| until we have seen all the input files, and the first time the |
| main linker code calls BFD after examining all the input files |
| (size_dynamic_sections) the input sections have already been |
| mapped to the output sections. If the section turns out not to |
| be needed, we can discard it later. We will never need this |
| section when generating a shared object, since they do not use |
| copy relocs. */ |
| if (! info->shared) |
| { |
| s = bfd_make_section (abfd, |
| (bed->default_use_rela_p |
| ? ".rela.bss" : ".rel.bss")); |
| if (s == NULL |
| || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) |
| || ! bfd_set_section_alignment (abfd, s, ptralign)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static boolean |
| sh_elf_adjust_dynamic_symbol (info, h) |
| struct bfd_link_info *info; |
| struct elf_link_hash_entry *h; |
| { |
| bfd *dynobj; |
| asection *s; |
| unsigned int power_of_two; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| |
| /* Make sure we know what is going on here. */ |
| BFD_ASSERT (dynobj != NULL |
| && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) |
| || h->weakdef != NULL |
| || ((h->elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
| && (h->elf_link_hash_flags |
| & ELF_LINK_HASH_REF_REGULAR) != 0 |
| && (h->elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_REGULAR) == 0))); |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC |
| || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) |
| { |
| if (! info->shared |
| && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 |
| && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0) |
| { |
| /* This case can occur if we saw a PLT reloc in an input |
| file, but the symbol was never referred to by a dynamic |
| object. In such a case, we don't actually need to build |
| a procedure linkage table, and we can just do a REL32 |
| reloc instead. */ |
| BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0); |
| return true; |
| } |
| |
| /* Make sure this symbol is output as a dynamic symbol. */ |
| if (h->dynindx == -1) |
| { |
| if (! bfd_elf32_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| s = bfd_get_section_by_name (dynobj, ".plt"); |
| BFD_ASSERT (s != NULL); |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. */ |
| if (s->_raw_size == 0) |
| s->_raw_size += PLT_ENTRY_SIZE; |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (! info->shared |
| && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = s->_raw_size; |
| } |
| |
| h->plt.offset = s->_raw_size; |
| |
| /* Make room for this entry. */ |
| s->_raw_size += elf_sh_sizeof_plt (info); |
| |
| /* We also need to make an entry in the .got.plt section, which |
| will be placed in the .got section by the linker script. */ |
| |
| s = bfd_get_section_by_name (dynobj, ".got.plt"); |
| BFD_ASSERT (s != NULL); |
| s->_raw_size += 4; |
| |
| /* We also need to make an entry in the .rela.plt section. */ |
| |
| s = bfd_get_section_by_name (dynobj, ".rela.plt"); |
| BFD_ASSERT (s != NULL); |
| s->_raw_size += sizeof (Elf32_External_Rela); |
| |
| return true; |
| } |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->weakdef != NULL) |
| { |
| BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined |
| || h->weakdef->root.type == bfd_link_hash_defweak); |
| h->root.u.def.section = h->weakdef->root.u.def.section; |
| h->root.u.def.value = h->weakdef->root.u.def.value; |
| return true; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (info->shared) |
| return true; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0) |
| return true; |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| s = bfd_get_section_by_name (dynobj, ".dynbss"); |
| BFD_ASSERT (s != NULL); |
| |
| /* We must generate a R_SH_COPY reloc to tell the dynamic linker to |
| copy the initial value out of the dynamic object and into the |
| runtime process image. We need to remember the offset into the |
| .rela.bss section we are going to use. */ |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) |
| { |
| asection *srel; |
| |
| srel = bfd_get_section_by_name (dynobj, ".rela.bss"); |
| BFD_ASSERT (srel != NULL); |
| srel->_raw_size += sizeof (Elf32_External_Rela); |
| h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY; |
| } |
| |
| /* We need to figure out the alignment required for this symbol. I |
| have no idea how ELF linkers handle this. */ |
| power_of_two = bfd_log2 (h->size); |
| if (power_of_two > 3) |
| power_of_two = 3; |
| |
| /* Apply the required alignment. */ |
| s->_raw_size = BFD_ALIGN (s->_raw_size, |
| (bfd_size_type) (1 << power_of_two)); |
| if (power_of_two > bfd_get_section_alignment (dynobj, s)) |
| { |
| if (! bfd_set_section_alignment (dynobj, s, power_of_two)) |
| return false; |
| } |
| |
| /* Define the symbol as being at this point in the section. */ |
| h->root.u.def.section = s; |
| h->root.u.def.value = s->_raw_size; |
| |
| /* Increment the section size to make room for the symbol. */ |
| s->_raw_size += h->size; |
| |
| return true; |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| static boolean |
| sh_elf_size_dynamic_sections (output_bfd, info) |
| bfd *output_bfd; |
| struct bfd_link_info *info; |
| { |
| bfd *dynobj; |
| asection *s; |
| boolean plt; |
| boolean relocs; |
| boolean reltext; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| BFD_ASSERT (dynobj != NULL); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (! info->shared) |
| { |
| s = bfd_get_section_by_name (dynobj, ".interp"); |
| BFD_ASSERT (s != NULL); |
| s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; |
| s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| } |
| } |
| else |
| { |
| /* We may have created entries in the .rela.got section. |
| However, if we are not creating the dynamic sections, we will |
| not actually use these entries. Reset the size of .rela.got, |
| which will cause it to get stripped from the output file |
| below. */ |
| s = bfd_get_section_by_name (dynobj, ".rela.got"); |
| if (s != NULL) |
| s->_raw_size = 0; |
| } |
| |
| /* If this is a -Bsymbolic shared link, then we need to discard all |
| PC relative relocs against symbols defined in a regular object. |
| We allocated space for them in the check_relocs routine, but we |
| will not fill them in in the relocate_section routine. */ |
| if (info->shared && info->symbolic) |
| sh_elf_link_hash_traverse (sh_elf_hash_table (info), |
| sh_elf_discard_copies, |
| (PTR) NULL); |
| |
| /* The check_relocs and adjust_dynamic_symbol entry points have |
| determined the sizes of the various dynamic sections. Allocate |
| memory for them. */ |
| plt = false; |
| relocs = false; |
| reltext = false; |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| const char *name; |
| boolean strip; |
| |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| /* It's OK to base decisions on the section name, because none |
| of the dynobj section names depend upon the input files. */ |
| name = bfd_get_section_name (dynobj, s); |
| |
| strip = false; |
| |
| if (strcmp (name, ".plt") == 0) |
| { |
| if (s->_raw_size == 0) |
| { |
| /* Strip this section if we don't need it; see the |
| comment below. */ |
| strip = true; |
| } |
| else |
| { |
| /* Remember whether there is a PLT. */ |
| plt = true; |
| } |
| } |
| else if (strncmp (name, ".rela", 5) == 0) |
| { |
| if (s->_raw_size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rela.bss and |
| .rela.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| strip = true; |
| } |
| else |
| { |
| asection *target; |
| |
| /* Remember whether there are any reloc sections other |
| than .rela.plt. */ |
| if (strcmp (name, ".rela.plt") != 0) |
| { |
| const char *outname; |
| |
| relocs = true; |
| |
| /* If this relocation section applies to a read only |
| section, then we probably need a DT_TEXTREL |
| entry. The entries in the .rela.plt section |
| really apply to the .got section, which we |
| created ourselves and so know is not readonly. */ |
| outname = bfd_get_section_name (output_bfd, |
| s->output_section); |
| target = bfd_get_section_by_name (output_bfd, outname + 5); |
| if (target != NULL |
| && (target->flags & SEC_READONLY) != 0 |
| && (target->flags & SEC_ALLOC) != 0) |
| reltext = true; |
| } |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| s->reloc_count = 0; |
| } |
| } |
| else if (strncmp (name, ".got", 4) != 0) |
| { |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| } |
| |
| if (strip) |
| { |
| _bfd_strip_section_from_output (info, s); |
| continue; |
| } |
| |
| /* Allocate memory for the section contents. */ |
| s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
| if (s->contents == NULL && s->_raw_size != 0) |
| return false; |
| } |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Add some entries to the .dynamic section. We fill in the |
| values later, in sh_elf_finish_dynamic_sections, but we |
| must add the entries now so that we get the correct size for |
| the .dynamic section. The DT_DEBUG entry is filled in by the |
| dynamic linker and used by the debugger. */ |
| |