blob: 73666ca89ab7934227087e363c65555a0c78c42d [file] [log] [blame]
/* tc-z8k.c -- Assemble code for the Zilog Z800n
Copyright 1992, 1993, 1994, 1995, 1996, 1998, 2000
Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Written By Steve Chamberlain <sac@cygnus.com>. */
#define DEFINE_TABLE
#include <stdio.h>
#include "opcodes/z8k-opc.h"
#include "as.h"
#include "bfd.h"
#include <ctype.h>
const char comment_chars[] = "!";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = ";";
extern int machine;
extern int coff_flags;
int segmented_mode;
const int md_reloc_size;
void cons ();
void
s_segm ()
{
segmented_mode = 1;
machine = bfd_mach_z8001;
coff_flags = F_Z8001;
}
void
s_unseg ()
{
segmented_mode = 0;
machine = bfd_mach_z8002;
coff_flags = F_Z8002;
}
static void
even ()
{
frag_align (1, 0, 0);
record_alignment (now_seg, 1);
}
void obj_coff_section ();
int
tohex (c)
int c;
{
if (isdigit (c))
return c - '0';
if (islower (c))
return c - 'a' + 10;
return c - 'A' + 10;
}
void
sval ()
{
SKIP_WHITESPACE ();
if (*input_line_pointer == '\'')
{
int c;
input_line_pointer++;
c = *input_line_pointer++;
while (c != '\'')
{
if (c == '%')
{
c = (tohex (input_line_pointer[0]) << 4)
| tohex (input_line_pointer[1]);
input_line_pointer += 2;
}
FRAG_APPEND_1_CHAR (c);
c = *input_line_pointer++;
}
demand_empty_rest_of_line ();
}
}
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function
*/
const pseudo_typeS md_pseudo_table[] = {
{"int" , cons , 2},
{"data.b" , cons , 1},
{"data.w" , cons , 2},
{"data.l" , cons , 4},
{"form" , listing_psize , 0},
{"heading", listing_title , 0},
{"import" , s_ignore , 0},
{"page" , listing_eject , 0},
{"program", s_ignore , 0},
{"z8001" , s_segm , 0},
{"z8002" , s_unseg , 0},
{"segm" , s_segm , 0},
{"unsegm" , s_unseg , 0},
{"unseg" , s_unseg , 0},
{"name" , s_app_file , 0},
{"global" , s_globl , 0},
{"wval" , cons , 2},
{"lval" , cons , 4},
{"bval" , cons , 1},
{"sval" , sval , 0},
{"rsect" , obj_coff_section, 0},
{"sect" , obj_coff_section, 0},
{"block" , s_space , 0},
{"even" , even , 0},
{0 , 0 , 0}
};
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant.
As in 0f12.456
or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* Opcode mnemonics. */
static struct hash_control *opcode_hash_control;
void
md_begin ()
{
opcode_entry_type *opcode;
char *prev_name = "";
int idx = 0;
opcode_hash_control = hash_new ();
for (opcode = z8k_table; opcode->name; opcode++)
{
/* Only enter unique codes into the table. */
if (strcmp (opcode->name, prev_name))
{
hash_insert (opcode_hash_control, opcode->name, (char *) opcode);
idx++;
}
opcode->idx = idx;
prev_name = opcode->name;
}
/* Default to z8002. */
s_unseg ();
/* Insert the pseudo ops, too. */
for (idx = 0; md_pseudo_table[idx].poc_name; idx++)
{
opcode_entry_type *fake_opcode;
fake_opcode = (opcode_entry_type *) malloc (sizeof (opcode_entry_type));
fake_opcode->name = md_pseudo_table[idx].poc_name;
fake_opcode->func = (void *) (md_pseudo_table + idx);
fake_opcode->opcode = 250;
hash_insert (opcode_hash_control, fake_opcode->name, fake_opcode);
}
linkrelax = 1;
}
struct z8k_exp {
char *e_beg;
char *e_end;
expressionS e_exp;
};
typedef struct z8k_op {
/* 'b','w','r','q'. */
char regsize;
/* 0 .. 15. */
unsigned int reg;
int mode;
/* Any other register associated with the mode. */
unsigned int x_reg;
/* Any expression. */
expressionS exp;
} op_type;
static expressionS *da_operand;
static expressionS *imm_operand;
int reg[16];
int the_cc;
int the_ctrl;
int the_flags;
int the_interrupt;
char *
whatreg (reg, src)
int *reg;
char *src;
{
if (isdigit (src[1]))
{
*reg = (src[0] - '0') * 10 + src[1] - '0';
return src + 2;
}
else
{
*reg = (src[0] - '0');
return src + 1;
}
}
/* Parse operands
rh0-rh7, rl0-rl7
r0-r15
rr0-rr14
rq0--rq12
WREG r0,r1,r2,r3,r4,r5,r6,r7,fp,sp
r0l,r0h,..r7l,r7h
@WREG
@WREG+
@-WREG
#const
*/
/* Try to parse a reg name. Return a pointer to the first character
in SRC after the reg name. */
char *
parse_reg (src, mode, reg)
char *src;
int *mode;
unsigned int *reg;
{
char *res = 0;
char regno;
if (src[0] == 's' && src[1] == 'p')
{
if (segmented_mode)
{
*mode = CLASS_REG_LONG;
*reg = 14;
}
else
{
*mode = CLASS_REG_WORD;
*reg = 15;
}
return src + 2;
}
if (src[0] == 'r')
{
if (src[1] == 'r')
{
*mode = CLASS_REG_LONG;
res = whatreg (reg, src + 2);
regno = *reg;
if (regno > 14)
as_warn (_("register rr%d, out of range."), regno);
}
else if (src[1] == 'h')
{
*mode = CLASS_REG_BYTE;
res = whatreg (reg, src + 2);
regno = *reg;
if (regno > 7)
as_warn (_("register rh%d, out of range."), regno);
}
else if (src[1] == 'l')
{
*mode = CLASS_REG_BYTE;
res = whatreg (reg, src + 2);
regno = *reg;
if (regno > 7)
as_warn (_("register rl%d, out of range."), regno);
*reg += 8;
}
else if (src[1] == 'q')
{
*mode = CLASS_REG_QUAD;
res = whatreg (reg, src + 2);
regno = *reg;
if (regno > 12)
as_warn (_("register rq%d, out of range."), regno);
}
else
{
*mode = CLASS_REG_WORD;
res = whatreg (reg, src + 1);
regno = *reg;
if (regno > 15)
as_warn (_("register r%d, out of range."), regno);
}
}
return res;
}
char *
parse_exp (s, op)
char *s;
expressionS *op;
{
char *save = input_line_pointer;
char *new;
input_line_pointer = s;
expression (op);
if (op->X_op == O_absent)
as_bad (_("missing operand"));
new = input_line_pointer;
input_line_pointer = save;
return new;
}
/* The many forms of operand:
<rb>
<r>
<rr>
<rq>
@r
#exp
exp
exp(r)
r(#exp)
r(r)
*/
static char *
checkfor (ptr, what)
char *ptr;
char what;
{
if (*ptr == what)
ptr++;
else
as_bad (_("expected %c"), what);
return ptr;
}
/* Make sure the mode supplied is the size of a word. */
static void
regword (mode, string)
int mode;
char *string;
{
int ok;
ok = CLASS_REG_WORD;
if (ok != mode)
{
as_bad (_("register is wrong size for a word %s"), string);
}
}
/* Make sure the mode supplied is the size of an address. */
static void
regaddr (mode, string)
int mode;
char *string;
{
int ok;
ok = segmented_mode ? CLASS_REG_LONG : CLASS_REG_WORD;
if (ok != mode)
{
as_bad (_("register is wrong size for address %s"), string);
}
}
struct ctrl_names {
int value;
char *name;
};
struct ctrl_names ctrl_table[] = {
{ 0x2, "fcw" },
{ 0x3, "refresh" },
{ 0x4, "psapseg" },
{ 0x5, "psapoff" },
{ 0x5, "psap" },
{ 0x6, "nspseg" },
{ 0x7, "nspoff" },
{ 0x7, "nsp" },
{ 0 , 0 }
};
static void
get_ctrl_operand (ptr, mode, dst)
char **ptr;
struct z8k_op *mode;
unsigned int dst ATTRIBUTE_UNUSED;
{
char *src = *ptr;
int i;
while (*src == ' ')
src++;
mode->mode = CLASS_CTRL;
for (i = 0; ctrl_table[i].name; i++)
{
int j;
for (j = 0; ctrl_table[i].name[j]; j++)
{
if (ctrl_table[i].name[j] != src[j])
goto fail;
}
the_ctrl = ctrl_table[i].value;
*ptr = src + j;
return;
fail:
;
}
the_ctrl = 0;
return;
}
struct flag_names {
int value;
char *name;
};
struct flag_names flag_table[] = {
{ 0x1, "p" },
{ 0x1, "v" },
{ 0x2, "s" },
{ 0x4, "z" },
{ 0x8, "c" },
{ 0x0, "+" },
{ 0, 0 }
};
static void
get_flags_operand (ptr, mode, dst)
char **ptr;
struct z8k_op *mode;
unsigned int dst ATTRIBUTE_UNUSED;
{
char *src = *ptr;
int i;
int j;
while (*src == ' ')
src++;
mode->mode = CLASS_FLAGS;
the_flags = 0;
for (j = 0; j <= 9; j++)
{
if (!src[j])
goto done;
for (i = 0; flag_table[i].name; i++)
{
if (flag_table[i].name[0] == src[j])
{
the_flags = the_flags | flag_table[i].value;
goto match;
}
}
goto done;
match:
;
}
done:
*ptr = src + j;
return;
}
struct interrupt_names {
int value;
char *name;
};
struct interrupt_names intr_table[] = {
{ 0x1, "nvi" },
{ 0x2, "vi" },
{ 0x3, "both" },
{ 0x3, "all" },
{ 0, 0 }
};
static void
get_interrupt_operand (ptr, mode, dst)
char **ptr;
struct z8k_op *mode;
unsigned int dst ATTRIBUTE_UNUSED;
{
char *src = *ptr;
int i;
while (*src == ' ')
src++;
mode->mode = CLASS_IMM;
for (i = 0; intr_table[i].name; i++)
{
int j;
for (j = 0; intr_table[i].name[j]; j++)
{
if (intr_table[i].name[j] != src[j])
goto fail;
}
the_interrupt = intr_table[i].value;
*ptr = src + j;
return;
fail:
;
}
the_interrupt = 0x0;
return;
}
struct cc_names {
int value;
char *name;
};
struct cc_names table[] = {
{ 0x0, "f" },
{ 0x1, "lt" },
{ 0x2, "le" },
{ 0x3, "ule" },
{ 0x4, "ov" },
{ 0x4, "pe" },
{ 0x5, "mi" },
{ 0x6, "eq" },
{ 0x6, "z" },
{ 0x7, "c" },
{ 0x7, "ult" },
{ 0x8, "t" },
{ 0x9, "ge" },
{ 0xa, "gt" },
{ 0xb, "ugt" },
{ 0xc, "nov" },
{ 0xc, "po" },
{ 0xd, "pl" },
{ 0xe, "ne" },
{ 0xe, "nz" },
{ 0xf, "nc" },
{ 0xf, "uge" },
{ 0 , 0 }
};
static void
get_cc_operand (ptr, mode, dst)
char **ptr;
struct z8k_op *mode;
unsigned int dst ATTRIBUTE_UNUSED;
{
char *src = *ptr;
int i;
while (*src == ' ')
src++;
mode->mode = CLASS_CC;
for (i = 0; table[i].name; i++)
{
int j;
for (j = 0; table[i].name[j]; j++)
{
if (table[i].name[j] != src[j])
goto fail;
}
the_cc = table[i].value;
*ptr = src + j;
return;
fail:
;
}
the_cc = 0x8;
}
static void
get_operand (ptr, mode, dst)
char **ptr;
struct z8k_op *mode;
unsigned int dst ATTRIBUTE_UNUSED;
{
char *src = *ptr;
char *end;
mode->mode = 0;
while (*src == ' ')
src++;
if (*src == '#')
{
mode->mode = CLASS_IMM;
imm_operand = &(mode->exp);
src = parse_exp (src + 1, &(mode->exp));
}
else if (*src == '@')
{
int d;
mode->mode = CLASS_IR;
src = parse_reg (src + 1, &d, &mode->reg);
}
else
{
int regn;
end = parse_reg (src, &mode->mode, &regn);
if (end)
{
int nw, nr;
src = end;
if (*src == '(')
{
src++;
end = parse_reg (src, &nw, &nr);
if (end)
{
/* Got Ra(Rb). */
src = end;
if (*src != ')')
as_bad (_("Missing ) in ra(rb)"));
else
src++;
regaddr (mode->mode, "ra(rb) ra");
#if 0
regword (mode->mode, "ra(rb) rb");
#endif
mode->mode = CLASS_BX;
mode->reg = regn;
mode->x_reg = nr;
reg[ARG_RX] = nr;
}
else
{
/* Got Ra(disp). */
if (*src == '#')
src++;
src = parse_exp (src, &(mode->exp));
src = checkfor (src, ')');
mode->mode = CLASS_BA;
mode->reg = regn;
mode->x_reg = 0;
imm_operand = &(mode->exp);
}
}
else
{
mode->reg = regn;
mode->x_reg = 0;
}
}
else
{
/* No initial reg. */
src = parse_exp (src, &(mode->exp));
if (*src == '(')
{
src++;
end = parse_reg (src, &(mode->mode), &regn);
regword (mode->mode, "addr(Ra) ra");
mode->mode = CLASS_X;
mode->reg = regn;
mode->x_reg = 0;
da_operand = &(mode->exp);
src = checkfor (end, ')');
}
else
{
/* Just an address. */
mode->mode = CLASS_DA;
mode->reg = 0;
mode->x_reg = 0;
da_operand = &(mode->exp);
}
}
}
*ptr = src;
}
static char *
get_operands (opcode, op_end, operand)
opcode_entry_type *opcode;
char *op_end;
op_type *operand;
{
char *ptr = op_end;
char *savptr;
switch (opcode->noperands)
{
case 0:
operand[0].mode = 0;
operand[1].mode = 0;
break;
case 1:
ptr++;
if (opcode->arg_info[0] == CLASS_CC)
{
get_cc_operand (&ptr, operand + 0, 0);
}
else if (opcode->arg_info[0] == CLASS_FLAGS)
{
get_flags_operand (&ptr, operand + 0, 0);
}
else if (opcode->arg_info[0] == (CLASS_IMM + (ARG_IMM2)))
{
get_interrupt_operand (&ptr, operand + 0, 0);
}
else
{
get_operand (&ptr, operand + 0, 0);
}
operand[1].mode = 0;
break;
case 2:
ptr++;
savptr = ptr;
if (opcode->arg_info[0] == CLASS_CC)
{
get_cc_operand (&ptr, operand + 0, 0);
}
else if (opcode->arg_info[0] == CLASS_CTRL)
{
get_ctrl_operand (&ptr, operand + 0, 0);
if (the_ctrl == 0)
{
ptr = savptr;
get_operand (&ptr, operand + 0, 0);
if (ptr == 0)
return NULL;
if (*ptr == ',')
ptr++;
get_ctrl_operand (&ptr, operand + 1, 1);
return ptr;
}
}
else
{
get_operand (&ptr, operand + 0, 0);
}
if (ptr == 0)
return NULL;
if (*ptr == ',')
ptr++;
get_operand (&ptr, operand + 1, 1);
break;
case 3:
ptr++;
get_operand (&ptr, operand + 0, 0);
if (*ptr == ',')
ptr++;
get_operand (&ptr, operand + 1, 1);
if (*ptr == ',')
ptr++;
get_operand (&ptr, operand + 2, 2);
break;
case 4:
ptr++;
get_operand (&ptr, operand + 0, 0);
if (*ptr == ',')
ptr++;
get_operand (&ptr, operand + 1, 1);
if (*ptr == ',')
ptr++;
get_operand (&ptr, operand + 2, 2);
if (*ptr == ',')
ptr++;
get_cc_operand (&ptr, operand + 3, 3);
break;
default:
abort ();
}
return ptr;
}
/* Passed a pointer to a list of opcodes which use different
addressing modes. Return the opcode which matches the opcodes
provided. */
static opcode_entry_type *
get_specific (opcode, operands)
opcode_entry_type *opcode;
op_type *operands;
{
opcode_entry_type *this_try = opcode;
int found = 0;
unsigned int noperands = opcode->noperands;
int this_index = opcode->idx;
while (this_index == opcode->idx && !found)
{
unsigned int i;
this_try = opcode++;
for (i = 0; i < noperands; i++)
{
unsigned int mode = operands[i].mode;
if ((mode & CLASS_MASK) != (this_try->arg_info[i] & CLASS_MASK))
{
/* It could be an pc rel operand, if this is a da mode
and we like disps, then insert it. */
if (mode == CLASS_DA && this_try->arg_info[i] == CLASS_DISP)
{
/* This is the case. */
operands[i].mode = CLASS_DISP;
}
else if (mode == CLASS_BA && this_try->arg_info[i])
{
/* Can't think of a way to turn what we've been
given into something that's OK. */
goto fail;
}
else if (this_try->arg_info[i] & CLASS_PR)
{
if (mode == CLASS_REG_LONG && segmented_mode)
{
/* OK. */
}
else if (mode == CLASS_REG_WORD && !segmented_mode)
{
/* OK. */
}
else
goto fail;
}
else
goto fail;
}
switch (mode & CLASS_MASK)
{
default:
break;
case CLASS_X:
case CLASS_IR:
case CLASS_BA:
case CLASS_BX:
case CLASS_DISP:
case CLASS_REG:
case CLASS_REG_WORD:
case CLASS_REG_BYTE:
case CLASS_REG_QUAD:
case CLASS_REG_LONG:
case CLASS_REGN0:
reg[this_try->arg_info[i] & ARG_MASK] = operands[i].reg;
break;
}
}
found = 1;
fail:
;
}
if (found)
return this_try;
else
return 0;
}
#if 0 /* Not used. */
static void
check_operand (operand, width, string)
struct z8k_op *operand;
unsigned int width;
char *string;
{
if (operand->exp.X_add_symbol == 0
&& operand->exp.X_op_symbol == 0)
{
/* No symbol involved, let's look at offset, it's dangerous if
any of the high bits are not 0 or ff's, find out by oring or
anding with the width and seeing if the answer is 0 or all
fs. */
if ((operand->exp.X_add_number & ~width) != 0 &&
(operand->exp.X_add_number | width) != (~0))
{
as_warn (_("operand %s0x%x out of range."),
string, operand->exp.X_add_number);
}
}
}
#endif
static char buffer[20];
static void
newfix (ptr, type, operand)
int ptr;
int type;
expressionS *operand;
{
if (operand->X_add_symbol
|| operand->X_op_symbol
|| operand->X_add_number)
{
fix_new_exp (frag_now,
ptr,
1,
operand,
0,
type);
}
}
static char *
apply_fix (ptr, type, operand, size)
char *ptr;
int type;
expressionS *operand;
int size;
{
int n = operand->X_add_number;
newfix ((ptr - buffer) / 2, type, operand);
switch (size)
{
case 8: /* 8 nibbles == 32 bits. */
*ptr++ = n >> 28;
*ptr++ = n >> 24;
*ptr++ = n >> 20;
*ptr++ = n >> 16;
case 4: /* 4 nibbles == 16 bits. */
*ptr++ = n >> 12;
*ptr++ = n >> 8;
case 2:
*ptr++ = n >> 4;
case 1:
*ptr++ = n >> 0;
break;
}
return ptr;
}
/* Now we know what sort of opcodes it is. Let's build the bytes. */
#define INSERT(x,y) *x++ = y>>24; *x++ = y>> 16; *x++=y>>8; *x++ =y;
static void
build_bytes (this_try, operand)
opcode_entry_type *this_try;
struct z8k_op *operand ATTRIBUTE_UNUSED;
{
char *output_ptr = buffer;
int c;
int nib;
int nibble;
unsigned int *class_ptr;
frag_wane (frag_now);
frag_new (0);
memset (buffer, 20, 0);
class_ptr = this_try->byte_info;
for (nibble = 0; (c = *class_ptr++); nibble++)
{
switch (c & CLASS_MASK)
{
default:
abort ();
case CLASS_ADDRESS:
/* Direct address, we don't cope with the SS mode right now. */
if (segmented_mode)
{
/* da_operand->X_add_number |= 0x80000000; -- Now set at relocation time. */
output_ptr = apply_fix (output_ptr, R_IMM32, da_operand, 8);
}
else
{
output_ptr = apply_fix (output_ptr, R_IMM16, da_operand, 4);
}
da_operand = 0;
break;
case CLASS_DISP8:
/* pc rel 8 bit */
output_ptr = apply_fix (output_ptr, R_JR, da_operand, 2);
da_operand = 0;
break;
case CLASS_0DISP7:
/* pc rel 7 bit */
*output_ptr = 0;
output_ptr = apply_fix (output_ptr, R_DISP7, da_operand, 2);
da_operand = 0;
break;
case CLASS_1DISP7:
/* pc rel 7 bit */
*output_ptr = 0x80;
output_ptr = apply_fix (output_ptr, R_DISP7, da_operand, 2);
output_ptr[-2] = 0x8;
da_operand = 0;
break;
case CLASS_BIT_1OR2:
*output_ptr = c & 0xf;
if (imm_operand)
{
if (imm_operand->X_add_number == 2)
*output_ptr |= 2;
else if (imm_operand->X_add_number != 1)
as_bad (_("immediate must be 1 or 2"));
}
else
as_bad (_("immediate 1 or 2 expected"));
output_ptr++;
break;
case CLASS_CC:
*output_ptr++ = the_cc;
break;
case CLASS_0CCC:
*output_ptr++ = the_ctrl;
break;
case CLASS_1CCC:
*output_ptr++ = the_ctrl | 0x8;
break;
case CLASS_00II:
*output_ptr++ = (~the_interrupt & 0x3);
break;
case CLASS_01II:
*output_ptr++ = (~the_interrupt & 0x3) | 0x4;
break;
case CLASS_FLAGS:
*output_ptr++ = the_flags;
break;
case CLASS_BIT:
*output_ptr++ = c & 0xf;
break;
case CLASS_REGN0:
if (reg[c & 0xf] == 0)
as_bad (_("can't use R0 here"));
/* Fall through. */
case CLASS_REG:
case CLASS_REG_BYTE:
case CLASS_REG_WORD:
case CLASS_REG_LONG:
case CLASS_REG_QUAD:
/* Insert bit mattern of right reg. */
*output_ptr++ = reg[c & 0xf];
break;
case CLASS_DISP:
switch (c & ARG_MASK)
{
case ARG_DISP12:
output_ptr = apply_fix (output_ptr, R_CALLR, da_operand, 4);
break;
case ARG_DISP16:
output_ptr = apply_fix (output_ptr, R_REL16, da_operand, 4);
break;
default:
output_ptr = apply_fix (output_ptr, R_IMM16, da_operand, 4);
}
da_operand = 0;
break;
case CLASS_IMM:
{
nib = 0;
switch (c & ARG_MASK)
{
case ARG_IMM4:
output_ptr = apply_fix (output_ptr, R_IMM4L, imm_operand, 1);
break;
case ARG_IMM4M1:
imm_operand->X_add_number--;
output_ptr = apply_fix (output_ptr, R_IMM4L, imm_operand, 1);
break;
case ARG_IMMNMINUS1:
imm_operand->X_add_number--;
output_ptr = apply_fix (output_ptr, R_IMM4L, imm_operand, 1);
break;
case ARG_NIM8:
imm_operand->X_add_number = -imm_operand->X_add_number;
case ARG_IMM8:
output_ptr = apply_fix (output_ptr, R_IMM8, imm_operand, 2);
break;
case ARG_IMM16:
output_ptr = apply_fix (output_ptr, R_IMM16, imm_operand, 4);
break;
case ARG_IMM32:
output_ptr = apply_fix (output_ptr, R_IMM32, imm_operand, 8);
break;
default:
abort ();
}
}
}
}
/* Copy from the nibble buffer into the frag. */
{
int length = (output_ptr - buffer) / 2;
char *src = buffer;
char *fragp = frag_more (length);
while (src < output_ptr)
{
*fragp = (src[0] << 4) | src[1];
src += 2;
fragp++;
}
}
}
/* This is the guts of the machine-dependent assembler. STR points to a
machine dependent instruction. This function is supposed to emit
the frags/bytes it assembles to. */
void
md_assemble (str)
char *str;
{
char c;
char *op_start;
char *op_end;
struct z8k_op operand[3];
opcode_entry_type *opcode;
opcode_entry_type *prev_opcode;
/* Drop leading whitespace. */
while (*str == ' ')
str++;
/* Find the op code end. */
for (op_start = op_end = str;
*op_end != 0 && *op_end != ' ';
op_end++)
;
if (op_end == op_start)
{
as_bad (_("can't find opcode "));
}
c = *op_end;
*op_end = 0;
opcode = (opcode_entry_type *) hash_find (opcode_hash_control, op_start);
if (opcode == NULL)
{
as_bad (_("unknown opcode"));
return;
}
if (opcode->opcode == 250)
{
/* Was really a pseudo op. */
pseudo_typeS *p;
char oc;
char *old = input_line_pointer;
*op_end = c;
input_line_pointer = op_end;
oc = *old;
*old = '\n';
while (*input_line_pointer == ' ')
input_line_pointer++;
p = (pseudo_typeS *) (opcode->func);
(p->poc_handler) (p->poc_val);
input_line_pointer = old;
*old = oc;
}
else
{
input_line_pointer = get_operands (opcode, op_end, operand);
prev_opcode = opcode;
opcode = get_specific (opcode, operand);
if (opcode == 0)
{
/* Couldn't find an opcode which matched the operands. */
char *where = frag_more (2);
where[0] = 0x0;
where[1] = 0x0;
as_bad (_("Can't find opcode to match operands"));
return;
}
build_bytes (opcode, operand);
}
}
void
tc_crawl_symbol_chain (headers)
object_headers *headers ATTRIBUTE_UNUSED;
{
printf (_("call to tc_crawl_symbol_chain \n"));
}
symbolS *
md_undefined_symbol (name)
char *name ATTRIBUTE_UNUSED;
{
return 0;
}
void
tc_headers_hook (headers)
object_headers *headers ATTRIBUTE_UNUSED;
{
printf (_("call to tc_headers_hook \n"));
}
/* Various routines to kill one day. */
/* Equal to MAX_PRECISION in atof-ieee.c. */
#define MAX_LITTLENUMS 6
/* Turn a string in input_line_pointer into a floating point constant
of type TYPE, and store the appropriate bytes in *LITP. The number
of LITTLENUMS emitted is stored in *SIZEP. An error message is
returned, or NULL on OK. */
char *
md_atof (type, litP, sizeP)
char type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
LITTLENUM_TYPE *wordP;
char *t;
char *atof_ieee ();
switch (type)
{
case 'f':
case 'F':
case 's':
case 'S':
prec = 2;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = 4;
break;
case 'x':
case 'X':
prec = 6;
break;
case 'p':
case 'P':
prec = 6;
break;
default:
*sizeP = 0;
return _("Bad call to MD_ATOF()");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * sizeof (LITTLENUM_TYPE);
for (wordP = words; prec--;)
{
md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
return 0;
}
CONST char *md_shortopts = "z:";
struct option md_longopts[] = {
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
int
md_parse_option (c, arg)
int c;
char *arg;
{
switch (c)
{
case 'z':
if (!strcmp (arg, "8001"))
s_segm ();
else if (!strcmp (arg, "8002"))
s_unseg ();
else
{
as_bad (_("invalid architecture -z%s"), arg);
return 0;
}
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (stream)
FILE *stream;
{
fprintf (stream, _("\
Z8K options:\n\
-z8001 generate segmented code\n\
-z8002 generate unsegmented code\n"));
}
void
tc_aout_fix_to_chars ()
{
printf (_("call to tc_aout_fix_to_chars \n"));
abort ();
}
void
md_convert_frag (headers, seg, fragP)
object_headers *headers ATTRIBUTE_UNUSED;
segT seg ATTRIBUTE_UNUSED;
fragS *fragP ATTRIBUTE_UNUSED;
{
printf (_("call to md_convert_frag \n"));
abort ();
}
valueT
md_section_align (seg, size)
segT seg;
valueT size;
{
return ((size + (1 << section_alignment[(int) seg]) - 1)
& (-1 << section_alignment[(int) seg]));
}
void
md_apply_fix (fixP, val)
fixS *fixP;
long val;
{
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
switch (fixP->fx_r_type)
{
case R_IMM4L:
buf[0] = (buf[0] & 0xf0) | ((buf[0] + val) & 0xf);
break;
case R_JR:
*buf++ = val;
#if 0
if (val != 0)
abort ();
#endif
break;
case R_DISP7:
*buf++ += val;
#if 0
if (val != 0)
abort ();
#endif
break;
case R_IMM8:
buf[0] += val;
break;
case R_IMM16:
*buf++ = (val >> 8);
*buf++ = val;
break;
case R_IMM32:
*buf++ = (val >> 24);
*buf++ = (val >> 16);
*buf++ = (val >> 8);
*buf++ = val;
break;
#if 0
case R_DA | R_SEG:
*buf++ = (val >> 16);
*buf++ = 0x00;
*buf++ = (val >> 8);
*buf++ = val;
break;
#endif
case 0:
md_number_to_chars (buf, val, fixP->fx_size);
break;
default:
abort ();
}
}
int
md_estimate_size_before_relax (fragP, segment_type)
register fragS *fragP ATTRIBUTE_UNUSED;
register segT segment_type ATTRIBUTE_UNUSED;
{
printf (_("call tomd_estimate_size_before_relax \n"));
abort ();
}
/* Put number into target byte order. */
void
md_number_to_chars (ptr, use, nbytes)
char *ptr;
valueT use;
int nbytes;
{
number_to_chars_bigendian (ptr, use, nbytes);
}
long
md_pcrel_from (fixP)
fixS *fixP ATTRIBUTE_UNUSED;
{
abort ();
}
void
tc_coff_symbol_emit_hook (s)
symbolS *s ATTRIBUTE_UNUSED;
{
}
void
tc_reloc_mangle (fix_ptr, intr, base)
fixS *fix_ptr;
struct internal_reloc *intr;
bfd_vma base;
{
symbolS *symbol_ptr;
if (fix_ptr->fx_addsy
&& fix_ptr->fx_subsy)
{
symbolS *add = fix_ptr->fx_addsy;
symbolS *sub = fix_ptr->fx_subsy;
if (S_GET_SEGMENT (add) != S_GET_SEGMENT (sub))
as_bad (_("Can't subtract symbols in different sections %s %s"),
S_GET_NAME (add), S_GET_NAME (sub));
else
{
int diff = S_GET_VALUE (add) - S_GET_VALUE (sub);
fix_ptr->fx_addsy = 0;
fix_ptr->fx_subsy = 0;
fix_ptr->fx_offset += diff;
}
}
symbol_ptr = fix_ptr->fx_addsy;
/* If this relocation is attached to a symbol then it's ok
to output it. */
if (fix_ptr->fx_r_type == 0)
{
/* cons likes to create reloc32's whatever the size of the reloc. */
switch (fix_ptr->fx_size)
{
case 2:
intr->r_type = R_IMM16;
break;
case 1:
intr->r_type = R_IMM8;
break;
case 4:
intr->r_type = R_IMM32;
break;
default:
abort ();
}
}
else
intr->r_type = fix_ptr->fx_r_type;
intr->r_vaddr = fix_ptr->fx_frag->fr_address + fix_ptr->fx_where + base;
intr->r_offset = fix_ptr->fx_offset;
if (symbol_ptr)
intr->r_symndx = symbol_ptr->sy_number;
else
intr->r_symndx = -1;
}