blob: e8bf02e1cfa8e819ecf15afa0b95bdedea65e320 [file] [log] [blame]
This is as.info, produced by makeinfo version 4.0 from as.texinfo.
START-INFO-DIR-ENTRY
* As: (as). The GNU assembler.
END-INFO-DIR-ENTRY
This file documents the GNU Assembler "as".
Copyright (C) 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001 Free
Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

File: as.info, Node: AMD29K-Regs, Prev: AMD29K-Chars, Up: AMD29K Syntax
Register Names
..............
General-purpose registers are represented by predefined symbols of
the form `GRNNN' (for global registers) or `LRNNN' (for local
registers), where NNN represents a number between `0' and `127',
written with no leading zeros. The leading letters may be in either
upper or lower case; for example, `gr13' and `LR7' are both valid
register names.
You may also refer to general-purpose registers by specifying the
register number as the result of an expression (prefixed with `%%' to
flag the expression as a register number):
%%EXPRESSION
--where EXPRESSION must be an absolute expression evaluating to a
number between `0' and `255'. The range [0, 127] refers to global
registers, and the range [128, 255] to local registers.
In addition, `as' understands the following protected
special-purpose register names for the AMD 29K family:
vab chd pc0
ops chc pc1
cps rbp pc2
cfg tmc mmu
cha tmr lru
These unprotected special-purpose register names are also recognized:
ipc alu fpe
ipa bp inte
ipb fc fps
q cr exop

File: as.info, Node: AMD29K Floating Point, Next: AMD29K Directives, Prev: AMD29K Syntax, Up: AMD29K-Dependent
Floating Point
--------------
The AMD 29K family uses IEEE floating-point numbers.

File: as.info, Node: AMD29K Directives, Next: AMD29K Opcodes, Prev: AMD29K Floating Point, Up: AMD29K-Dependent
AMD 29K Machine Directives
--------------------------
`.block SIZE , FILL'
This directive emits SIZE bytes, each of value FILL. Both SIZE
and FILL are absolute expressions. If the comma and FILL are
omitted, FILL is assumed to be zero.
In other versions of the GNU assembler, this directive is called
`.space'.
`.cputype'
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.
`.file'
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.
_Warning:_ in other versions of the GNU assembler, `.file' is
used for the directive called `.app-file' in the AMD 29K
support.
`.line'
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.
`.sect'
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.
`.use SECTION NAME'
Establishes the section and subsection for the following code;
SECTION NAME may be one of `.text', `.data', `.data1', or `.lit'.
With one of the first three SECTION NAME options, `.use' is
equivalent to the machine directive SECTION NAME; the remaining
case, `.use .lit', is the same as `.data 200'.

File: as.info, Node: AMD29K Opcodes, Prev: AMD29K Directives, Up: AMD29K-Dependent
Opcodes
-------
`as' implements all the standard AMD 29K opcodes. No additional
pseudo-instructions are needed on this family.
For information on the 29K machine instruction set, see `Am29000
User's Manual', Advanced Micro Devices, Inc.

File: as.info, Node: ARM-Dependent, Next: D10V-Dependent, Prev: ARC-Dependent, Up: Machine Dependencies
ARM Dependent Features
======================
* Menu:
* ARM Options:: Options
* ARM Syntax:: Syntax
* ARM Floating Point:: Floating Point
* ARM Directives:: ARM Machine Directives
* ARM Opcodes:: Opcodes

File: as.info, Node: ARM Options, Next: ARM Syntax, Up: ARM-Dependent
Options
-------
`-marm`[2|250|3|6|60|600|610|620|7|7m|7d|7dm|7di|7dmi|70|700|700i|710|710c|7100|7500|7500fe|7tdmi|8|810|9|9tdmi|920|strongarm|strongarm110|strongarm1100]''
`-mxscale'
This option specifies the target processor. The assembler will
issue an error message if an attempt is made to assemble an
instruction which will not execute on the target processor.
`-marmv`[2|2a|3|3m|4|4t|5|5t|5te]''
This option specifies the target architecture. The assembler will
issue an error message if an attempt is made to assemble an
instruction which will not execute on the target architecture.
The option `-marmv5te' specifies that v5t architecture should be
used with the El Segundo extensions enabled.
`-mthumb'
This option specifies that only Thumb instructions should be
assembled.
`-mall'
This option specifies that any Arm or Thumb instruction should be
assembled.
`-mfpa `[10|11]''
This option specifies the floating point architecture in use on the
target processor.
`-mfpe-old'
Do not allow the assembly of floating point multiple instructions.
`-mno-fpu'
Do not allow the assembly of any floating point instructions.
`-mthumb-interwork'
This option specifies that the output generated by the assembler
should be marked as supporting interworking.
`-mapcs `[26|32]''
This option specifies that the output generated by the assembler
should be marked as supporting the indicated version of the Arm
Procedure. Calling Standard.
`-matpcs'
This option specifies that the output generated by the assembler
should be marked as supporting the Arm/Thumb Procedure Calling
Standard. If enabled this option will cause the assembler to
create an empty debugging section in the object file called
.arm.atpcs. Debuggers can use this to determine the ABI being
used by.
`-mapcs-float'
This indicates the the floating point variant of the APCS should be
used. In this variant floating point arguments are passed in FP
registers rather than integer registers.
`-mapcs-reentrant'
This indicates that the reentrant variant of the APCS should be
used. This variant supports position independent code.
`-EB'
This option specifies that the output generated by the assembler
should be marked as being encoded for a big-endian processor.
`-EL'
This option specifies that the output generated by the assembler
should be marked as being encoded for a little-endian processor.
`-k'
This option specifies that the output of the assembler should be
marked as position-independent code (PIC).
`-moabi'
This indicates that the code should be assembled using the old ARM
ELF conventions, based on a beta release release of the ARM-ELF
specifications, rather than the default conventions which are
based on the final release of the ARM-ELF specifications.

File: as.info, Node: ARM Syntax, Next: ARM Floating Point, Prev: ARM Options, Up: ARM-Dependent
Syntax
------
* Menu:
* ARM-Chars:: Special Characters
* ARM-Regs:: Register Names

File: as.info, Node: ARM-Chars, Next: ARM-Regs, Up: ARM Syntax
Special Characters
..................
The presence of a `@' on a line indicates the start of a comment
that extends to the end of the current line. If a `#' appears as the
first character of a line, the whole line is treated as a comment.
The `;' character can be used instead of a newline to separate
statements.
Either `#' or `$' can be used to indicate immediate operands.
*TODO* Explain about /data modifier on symbols.

File: as.info, Node: ARM-Regs, Prev: ARM-Chars, Up: ARM Syntax
Register Names
..............
*TODO* Explain about ARM register naming, and the predefined names.

File: as.info, Node: ARM Floating Point, Next: ARM Directives, Prev: ARM Syntax, Up: ARM-Dependent
Floating Point
--------------
The ARM family uses IEEE floating-point numbers.

File: as.info, Node: ARM Directives, Next: ARM Opcodes, Prev: ARM Floating Point, Up: ARM-Dependent
ARM Machine Directives
----------------------
`.align EXPRESSION [, EXPRESSION]'
This is the generic .ALIGN directive. For the ARM however if the
first argument is zero (ie no alignment is needed) the assembler
will behave as if the argument had been 2 (ie pad to the next four
byte boundary). This is for compatability with ARM's own
assembler.
`NAME .req REGISTER NAME'
This creates an alias for REGISTER NAME called NAME. For example:
foo .req r0
`.code `[16|32]''
This directive selects the instruction set being generated. The
value 16 selects Thumb, with the value 32 selecting ARM.
`.thumb'
This performs the same action as .CODE 16.
`.arm'
This performs the same action as .CODE 32.
`.force_thumb'
This directive forces the selection of Thumb instructions, even if
the target processor does not support those instructions
`.thumb_func'
This directive specifies that the following symbol is the name of a
Thumb encoded function. This information is necessary in order to
allow the assembler and linker to generate correct code for
interworking between Arm and Thumb instructions and should be used
even if interworking is not going to be performed. The presence
of this directive also implies `.thumb'
`.thumb_set'
This performs the equivalent of a `.set' directive in that it
creates a symbol which is an alias for another symbol (possibly
not yet defined). This directive also has the added property in
that it marks the aliased symbol as being a thumb function entry
point, in the same way that the `.thumb_func' directive does.
`.ltorg'
This directive causes the current contents of the literal pool to
be dumped into the current section (which is assumed to be the
.text section) at the current location (aligned to a word
boundary).
`.pool'
This is a synonym for .ltorg.

File: as.info, Node: ARM Opcodes, Prev: ARM Directives, Up: ARM-Dependent
Opcodes
-------
`as' implements all the standard ARM opcodes. It also implements
several pseudo opcodes, including several synthetic load instructions.
`NOP'
nop
This pseudo op will always evaluate to a legal ARM instruction
that does nothing. Currently it will evaluate to MOV r0, r0.
`LDR'
ldr <register> , = <expression>
If expression evaluates to a numeric constant then a MOV or MVN
instruction will be used in place of the LDR instruction, if the
constant can be generated by either of these instructions.
Otherwise the constant will be placed into the nearest literal
pool (if it not already there) and a PC relative LDR instruction
will be generated.
`ADR'
adr <register> <label>
This instruction will load the address of LABEL into the indicated
register. The instruction will evaluate to a PC relative ADD or
SUB instruction depending upon where the label is located. If the
label is out of range, or if it is not defined in the same file
(and section) as the ADR instruction, then an error will be
generated. This instruction will not make use of the literal pool.
`ADRL'
adrl <register> <label>
This instruction will load the address of LABEL into the indicated
register. The instruction will evaluate to one or two PC relative
ADD or SUB instructions depending upon where the label is located.
If a second instruction is not needed a NOP instruction will be
generated in its place, so that this instruction is always 8 bytes
long.
If the label is out of range, or if it is not defined in the same
file (and section) as the ADRL instruction, then an error will be
generated. This instruction will not make use of the literal pool.
For information on the ARM or Thumb instruction sets, see `ARM
Software Development Toolkit Reference Manual', Advanced RISC Machines
Ltd.

File: as.info, Node: D10V-Dependent, Next: D30V-Dependent, Prev: ARM-Dependent, Up: Machine Dependencies
D10V Dependent Features
=======================
* Menu:
* D10V-Opts:: D10V Options
* D10V-Syntax:: Syntax
* D10V-Float:: Floating Point
* D10V-Opcodes:: Opcodes

File: as.info, Node: D10V-Opts, Next: D10V-Syntax, Up: D10V-Dependent
D10V Options
------------
The Mitsubishi D10V version of `as' has a few machine dependent
options.
`-O'
The D10V can often execute two sub-instructions in parallel. When
this option is used, `as' will attempt to optimize its output by
detecting when instructions can be executed in parallel.
`--nowarnswap'
To optimize execution performance, `as' will sometimes swap the
order of instructions. Normally this generates a warning. When
this option is used, no warning will be generated when
instructions are swapped.
`--gstabs-packing'
`--no-gstabs-packing'
`as' packs adjacent short instructions into a single packed
instruction. `--no-gstabs-packing' turns instruction packing off if
`--gstabs' is specified as well; `--gstabs-packing' (the default)
turns instruction packing on even when `--gstabs' is specified.

File: as.info, Node: D10V-Syntax, Next: D10V-Float, Prev: D10V-Opts, Up: D10V-Dependent
Syntax
------
The D10V syntax is based on the syntax in Mitsubishi's D10V
architecture manual. The differences are detailed below.
* Menu:
* D10V-Size:: Size Modifiers
* D10V-Subs:: Sub-Instructions
* D10V-Chars:: Special Characters
* D10V-Regs:: Register Names
* D10V-Addressing:: Addressing Modes
* D10V-Word:: @WORD Modifier

File: as.info, Node: D10V-Size, Next: D10V-Subs, Up: D10V-Syntax
Size Modifiers
..............
The D10V version of `as' uses the instruction names in the D10V
Architecture Manual. However, the names in the manual are sometimes
ambiguous. There are instruction names that can assemble to a short or
long form opcode. How does the assembler pick the correct form? `as'
will always pick the smallest form if it can. When dealing with a
symbol that is not defined yet when a line is being assembled, it will
always use the long form. If you need to force the assembler to use
either the short or long form of the instruction, you can append either
`.s' (short) or `.l' (long) to it. For example, if you are writing an
assembly program and you want to do a branch to a symbol that is
defined later in your program, you can write `bra.s foo'. Objdump
and GDB will always append `.s' or `.l' to instructions which have both
short and long forms.

File: as.info, Node: D10V-Subs, Next: D10V-Chars, Prev: D10V-Size, Up: D10V-Syntax
Sub-Instructions
................
The D10V assembler takes as input a series of instructions, either
one-per-line, or in the special two-per-line format described in the
next section. Some of these instructions will be short-form or
sub-instructions. These sub-instructions can be packed into a single
instruction. The assembler will do this automatically. It will also
detect when it should not pack instructions. For example, when a label
is defined, the next instruction will never be packaged with the
previous one. Whenever a branch and link instruction is called, it
will not be packaged with the next instruction so the return address
will be valid. Nops are automatically inserted when necessary.
If you do not want the assembler automatically making these
decisions, you can control the packaging and execution type (parallel
or sequential) with the special execution symbols described in the next
section.

File: as.info, Node: D10V-Chars, Next: D10V-Regs, Prev: D10V-Subs, Up: D10V-Syntax
Special Characters
..................
`;' and `#' are the line comment characters. Sub-instructions may
be executed in order, in reverse-order, or in parallel. Instructions
listed in the standard one-per-line format will be executed
sequentially. To specify the executing order, use the following
symbols:
`->'
Sequential with instruction on the left first.
`<-'
Sequential with instruction on the right first.
`||'
Parallel The D10V syntax allows either one instruction per line,
one instruction per line with the execution symbol, or two instructions
per line. For example
`abs a1 -> abs r0'
Execute these sequentially. The instruction on the right is in
the right container and is executed second.
`abs r0 <- abs a1'
Execute these reverse-sequentially. The instruction on the right
is in the right container, and is executed first.
`ld2w r2,@r8+ || mac a0,r0,r7'
Execute these in parallel.
`ld2w r2,@r8+ ||'
`mac a0,r0,r7'
Two-line format. Execute these in parallel.
`ld2w r2,@r8+'
`mac a0,r0,r7'
Two-line format. Execute these sequentially. Assembler will put
them in the proper containers.
`ld2w r2,@r8+ ->'
`mac a0,r0,r7'
Two-line format. Execute these sequentially. Same as above but
second instruction will always go into right container. Since `$'
has no special meaning, you may use it in symbol names.

File: as.info, Node: D10V-Regs, Next: D10V-Addressing, Prev: D10V-Chars, Up: D10V-Syntax
Register Names
..............
You can use the predefined symbols `r0' through `r15' to refer to
the D10V registers. You can also use `sp' as an alias for `r15'. The
accumulators are `a0' and `a1'. There are special register-pair names
that may optionally be used in opcodes that require even-numbered
registers. Register names are not case sensitive.
Register Pairs
`r0-r1'
`r2-r3'
`r4-r5'
`r6-r7'
`r8-r9'
`r10-r11'
`r12-r13'
`r14-r15'
The D10V also has predefined symbols for these control registers and
status bits:
`psw'
Processor Status Word
`bpsw'
Backup Processor Status Word
`pc'
Program Counter
`bpc'
Backup Program Counter
`rpt_c'
Repeat Count
`rpt_s'
Repeat Start address
`rpt_e'
Repeat End address
`mod_s'
Modulo Start address
`mod_e'
Modulo End address
`iba'
Instruction Break Address
`f0'
Flag 0
`f1'
Flag 1
`c'
Carry flag

File: as.info, Node: D10V-Addressing, Next: D10V-Word, Prev: D10V-Regs, Up: D10V-Syntax
Addressing Modes
................
`as' understands the following addressing modes for the D10V. `RN'
in the following refers to any of the numbered registers, but _not_ the
control registers.
`RN'
Register direct
`@RN'
Register indirect
`@RN+'
Register indirect with post-increment
`@RN-'
Register indirect with post-decrement
`@-SP'
Register indirect with pre-decrement
`@(DISP, RN)'
Register indirect with displacement
`ADDR'
PC relative address (for branch or rep).
`#IMM'
Immediate data (the `#' is optional and ignored)

File: as.info, Node: D10V-Word, Prev: D10V-Addressing, Up: D10V-Syntax
@WORD Modifier
..............
Any symbol followed by `@word' will be replaced by the symbol's value
shifted right by 2. This is used in situations such as loading a
register with the address of a function (or any other code fragment).
For example, if you want to load a register with the location of the
function `main' then jump to that function, you could do it as follws:
ldi r2, main@word
jmp r2

File: as.info, Node: D10V-Float, Next: D10V-Opcodes, Prev: D10V-Syntax, Up: D10V-Dependent
Floating Point
--------------
The D10V has no hardware floating point, but the `.float' and
`.double' directives generates IEEE floating-point numbers for
compatibility with other development tools.

File: as.info, Node: D10V-Opcodes, Prev: D10V-Float, Up: D10V-Dependent
Opcodes
-------
For detailed information on the D10V machine instruction set, see
`D10V Architecture: A VLIW Microprocessor for Multimedia Applications'
(Mitsubishi Electric Corp.). `as' implements all the standard D10V
opcodes. The only changes are those described in the section on size
modifiers

File: as.info, Node: D30V-Dependent, Next: H8/300-Dependent, Prev: D10V-Dependent, Up: Machine Dependencies
D30V Dependent Features
=======================
* Menu:
* D30V-Opts:: D30V Options
* D30V-Syntax:: Syntax
* D30V-Float:: Floating Point
* D30V-Opcodes:: Opcodes

File: as.info, Node: D30V-Opts, Next: D30V-Syntax, Up: D30V-Dependent
D30V Options
------------
The Mitsubishi D30V version of `as' has a few machine dependent
options.
`-O'
The D30V can often execute two sub-instructions in parallel. When
this option is used, `as' will attempt to optimize its output by
detecting when instructions can be executed in parallel.
`-n'
When this option is used, `as' will issue a warning every time it
adds a nop instruction.
`-N'
When this option is used, `as' will issue a warning if it needs to
insert a nop after a 32-bit multiply before a load or 16-bit
multiply instruction.

File: as.info, Node: D30V-Syntax, Next: D30V-Float, Prev: D30V-Opts, Up: D30V-Dependent
Syntax
------
The D30V syntax is based on the syntax in Mitsubishi's D30V
architecture manual. The differences are detailed below.
* Menu:
* D30V-Size:: Size Modifiers
* D30V-Subs:: Sub-Instructions
* D30V-Chars:: Special Characters
* D30V-Guarded:: Guarded Execution
* D30V-Regs:: Register Names
* D30V-Addressing:: Addressing Modes

File: as.info, Node: D30V-Size, Next: D30V-Subs, Up: D30V-Syntax
Size Modifiers
..............
The D30V version of `as' uses the instruction names in the D30V
Architecture Manual. However, the names in the manual are sometimes
ambiguous. There are instruction names that can assemble to a short or
long form opcode. How does the assembler pick the correct form? `as'
will always pick the smallest form if it can. When dealing with a
symbol that is not defined yet when a line is being assembled, it will
always use the long form. If you need to force the assembler to use
either the short or long form of the instruction, you can append either
`.s' (short) or `.l' (long) to it. For example, if you are writing an
assembly program and you want to do a branch to a symbol that is
defined later in your program, you can write `bra.s foo'. Objdump and
GDB will always append `.s' or `.l' to instructions which have both
short and long forms.

File: as.info, Node: D30V-Subs, Next: D30V-Chars, Prev: D30V-Size, Up: D30V-Syntax
Sub-Instructions
................
The D30V assembler takes as input a series of instructions, either
one-per-line, or in the special two-per-line format described in the
next section. Some of these instructions will be short-form or
sub-instructions. These sub-instructions can be packed into a single
instruction. The assembler will do this automatically. It will also
detect when it should not pack instructions. For example, when a label
is defined, the next instruction will never be packaged with the
previous one. Whenever a branch and link instruction is called, it
will not be packaged with the next instruction so the return address
will be valid. Nops are automatically inserted when necessary.
If you do not want the assembler automatically making these
decisions, you can control the packaging and execution type (parallel
or sequential) with the special execution symbols described in the next
section.

File: as.info, Node: D30V-Chars, Next: D30V-Guarded, Prev: D30V-Subs, Up: D30V-Syntax
Special Characters
..................
`;' and `#' are the line comment characters. Sub-instructions may
be executed in order, in reverse-order, or in parallel. Instructions
listed in the standard one-per-line format will be executed
sequentially unless you use the `-O' option.
To specify the executing order, use the following symbols:
`->'
Sequential with instruction on the left first.
`<-'
Sequential with instruction on the right first.
`||'
Parallel
The D30V syntax allows either one instruction per line, one
instruction per line with the execution symbol, or two instructions per
line. For example
`abs r2,r3 -> abs r4,r5'
Execute these sequentially. The instruction on the right is in
the right container and is executed second.
`abs r2,r3 <- abs r4,r5'
Execute these reverse-sequentially. The instruction on the right
is in the right container, and is executed first.
`abs r2,r3 || abs r4,r5'
Execute these in parallel.
`ldw r2,@(r3,r4) ||'
`mulx r6,r8,r9'
Two-line format. Execute these in parallel.
`mulx a0,r8,r9'
`stw r2,@(r3,r4)'
Two-line format. Execute these sequentially unless `-O' option is
used. If the `-O' option is used, the assembler will determine if
the instructions could be done in parallel (the above two
instructions can be done in parallel), and if so, emit them as
parallel instructions. The assembler will put them in the proper
containers. In the above example, the assembler will put the
`stw' instruction in left container and the `mulx' instruction in
the right container.
`stw r2,@(r3,r4) ->'
`mulx a0,r8,r9'
Two-line format. Execute the `stw' instruction followed by the
`mulx' instruction sequentially. The first instruction goes in the
left container and the second instruction goes into right
container. The assembler will give an error if the machine
ordering constraints are violated.
`stw r2,@(r3,r4) <-'
`mulx a0,r8,r9'
Same as previous example, except that the `mulx' instruction is
executed before the `stw' instruction.
Since `$' has no special meaning, you may use it in symbol names.

File: as.info, Node: D30V-Guarded, Next: D30V-Regs, Prev: D30V-Chars, Up: D30V-Syntax
Guarded Execution
.................
`as' supports the full range of guarded execution directives for
each instruction. Just append the directive after the instruction
proper. The directives are:
`/tx'
Execute the instruction if flag f0 is true.
`/fx'
Execute the instruction if flag f0 is false.
`/xt'
Execute the instruction if flag f1 is true.
`/xf'
Execute the instruction if flag f1 is false.
`/tt'
Execute the instruction if both flags f0 and f1 are true.
`/tf'
Execute the instruction if flag f0 is true and flag f1 is false.

File: as.info, Node: D30V-Regs, Next: D30V-Addressing, Prev: D30V-Guarded, Up: D30V-Syntax
Register Names
..............
You can use the predefined symbols `r0' through `r63' to refer to
the D30V registers. You can also use `sp' as an alias for `r63' and
`link' as an alias for `r62'. The accumulators are `a0' and `a1'.
The D30V also has predefined symbols for these control registers and
status bits:
`psw'
Processor Status Word
`bpsw'
Backup Processor Status Word
`pc'
Program Counter
`bpc'
Backup Program Counter
`rpt_c'
Repeat Count
`rpt_s'
Repeat Start address
`rpt_e'
Repeat End address
`mod_s'
Modulo Start address
`mod_e'
Modulo End address
`iba'
Instruction Break Address
`f0'
Flag 0
`f1'
Flag 1
`f2'
Flag 2
`f3'
Flag 3
`f4'
Flag 4
`f5'
Flag 5
`f6'
Flag 6
`f7'
Flag 7
`s'
Same as flag 4 (saturation flag)
`v'
Same as flag 5 (overflow flag)
`va'
Same as flag 6 (sticky overflow flag)
`c'
Same as flag 7 (carry/borrow flag)
`b'
Same as flag 7 (carry/borrow flag)

File: as.info, Node: D30V-Addressing, Prev: D30V-Regs, Up: D30V-Syntax
Addressing Modes
................
`as' understands the following addressing modes for the D30V. `RN'
in the following refers to any of the numbered registers, but _not_ the
control registers.
`RN'
Register direct
`@RN'
Register indirect
`@RN+'
Register indirect with post-increment
`@RN-'
Register indirect with post-decrement
`@-SP'
Register indirect with pre-decrement
`@(DISP, RN)'
Register indirect with displacement
`ADDR'
PC relative address (for branch or rep).
`#IMM'
Immediate data (the `#' is optional and ignored)

File: as.info, Node: D30V-Float, Next: D30V-Opcodes, Prev: D30V-Syntax, Up: D30V-Dependent
Floating Point
--------------
The D30V has no hardware floating point, but the `.float' and
`.double' directives generates IEEE floating-point numbers for
compatibility with other development tools.

File: as.info, Node: D30V-Opcodes, Prev: D30V-Float, Up: D30V-Dependent
Opcodes
-------
For detailed information on the D30V machine instruction set, see
`D30V Architecture: A VLIW Microprocessor for Multimedia Applications'
(Mitsubishi Electric Corp.). `as' implements all the standard D30V
opcodes. The only changes are those described in the section on size
modifiers

File: as.info, Node: H8/300-Dependent, Next: H8/500-Dependent, Prev: D30V-Dependent, Up: Machine Dependencies
H8/300 Dependent Features
=========================
* Menu:
* H8/300 Options:: Options
* H8/300 Syntax:: Syntax
* H8/300 Floating Point:: Floating Point
* H8/300 Directives:: H8/300 Machine Directives
* H8/300 Opcodes:: Opcodes

File: as.info, Node: H8/300 Options, Next: H8/300 Syntax, Up: H8/300-Dependent
Options
-------
`as' has no additional command-line options for the Hitachi H8/300
family.

File: as.info, Node: H8/300 Syntax, Next: H8/300 Floating Point, Prev: H8/300 Options, Up: H8/300-Dependent
Syntax
------
* Menu:
* H8/300-Chars:: Special Characters
* H8/300-Regs:: Register Names
* H8/300-Addressing:: Addressing Modes

File: as.info, Node: H8/300-Chars, Next: H8/300-Regs, Up: H8/300 Syntax
Special Characters
..................
`;' is the line comment character.
`$' can be used instead of a newline to separate statements.
Therefore _you may not use `$' in symbol names_ on the H8/300.

File: as.info, Node: H8/300-Regs, Next: H8/300-Addressing, Prev: H8/300-Chars, Up: H8/300 Syntax
Register Names
..............
You can use predefined symbols of the form `rNh' and `rNl' to refer
to the H8/300 registers as sixteen 8-bit general-purpose registers. N
is a digit from `0' to `7'); for instance, both `r0h' and `r7l' are
valid register names.
You can also use the eight predefined symbols `rN' to refer to the
H8/300 registers as 16-bit registers (you must use this form for
addressing).
On the H8/300H, you can also use the eight predefined symbols `erN'
(`er0' ... `er7') to refer to the 32-bit general purpose registers.
The two control registers are called `pc' (program counter; a 16-bit
register, except on the H8/300H where it is 24 bits) and `ccr'
(condition code register; an 8-bit register). `r7' is used as the
stack pointer, and can also be called `sp'.

File: as.info, Node: H8/300-Addressing, Prev: H8/300-Regs, Up: H8/300 Syntax
Addressing Modes
................
as understands the following addressing modes for the H8/300:
`rN'
Register direct
`@rN'
Register indirect
`@(D, rN)'
`@(D:16, rN)'
`@(D:24, rN)'
Register indirect: 16-bit or 24-bit displacement D from register
N. (24-bit displacements are only meaningful on the H8/300H.)
`@rN+'
Register indirect with post-increment
`@-rN'
Register indirect with pre-decrement
``@'AA'
``@'AA:8'
``@'AA:16'
``@'AA:24'
Absolute address `aa'. (The address size `:24' only makes sense
on the H8/300H.)
`#XX'
`#XX:8'
`#XX:16'
`#XX:32'
Immediate data XX. You may specify the `:8', `:16', or `:32' for
clarity, if you wish; but `as' neither requires this nor uses
it--the data size required is taken from context.
``@'`@'AA'
``@'`@'AA:8'
Memory indirect. You may specify the `:8' for clarity, if you
wish; but `as' neither requires this nor uses it.

File: as.info, Node: H8/300 Floating Point, Next: H8/300 Directives, Prev: H8/300 Syntax, Up: H8/300-Dependent
Floating Point
--------------
The H8/300 family has no hardware floating point, but the `.float'
directive generates IEEE floating-point numbers for compatibility with
other development tools.

File: as.info, Node: H8/300 Directives, Next: H8/300 Opcodes, Prev: H8/300 Floating Point, Up: H8/300-Dependent
H8/300 Machine Directives
-------------------------
`as' has only one machine-dependent directive for the H8/300:
`.h8300h'
Recognize and emit additional instructions for the H8/300H
variant, and also make `.int' emit 32-bit numbers rather than the
usual (16-bit) for the H8/300 family.
On the H8/300 family (including the H8/300H) `.word' directives
generate 16-bit numbers.

File: as.info, Node: H8/300 Opcodes, Prev: H8/300 Directives, Up: H8/300-Dependent
Opcodes
-------
For detailed information on the H8/300 machine instruction set, see
`H8/300 Series Programming Manual' (Hitachi ADE-602-025). For
information specific to the H8/300H, see `H8/300H Series Programming
Manual' (Hitachi).
`as' implements all the standard H8/300 opcodes. No additional
pseudo-instructions are needed on this family.
The following table summarizes the H8/300 opcodes, and their
arguments. Entries marked `*' are opcodes used only on the H8/300H.
Legend:
Rs source register
Rd destination register
abs absolute address
imm immediate data
disp:N N-bit displacement from a register
pcrel:N N-bit displacement relative to program counter
add.b #imm,rd * andc #imm,ccr
add.b rs,rd band #imm,rd
add.w rs,rd band #imm,@rd
* add.w #imm,rd band #imm,@abs:8
* add.l rs,rd bra pcrel:8
* add.l #imm,rd * bra pcrel:16
adds #imm,rd bt pcrel:8
addx #imm,rd * bt pcrel:16
addx rs,rd brn pcrel:8
and.b #imm,rd * brn pcrel:16
and.b rs,rd bf pcrel:8
* and.w rs,rd * bf pcrel:16
* and.w #imm,rd bhi pcrel:8
* and.l #imm,rd * bhi pcrel:16
* and.l rs,rd bls pcrel:8
* bls pcrel:16 bld #imm,rd
bcc pcrel:8 bld #imm,@rd
* bcc pcrel:16 bld #imm,@abs:8
bhs pcrel:8 bnot #imm,rd
* bhs pcrel:16 bnot #imm,@rd
bcs pcrel:8 bnot #imm,@abs:8
* bcs pcrel:16 bnot rs,rd
blo pcrel:8 bnot rs,@rd
* blo pcrel:16 bnot rs,@abs:8
bne pcrel:8 bor #imm,rd
* bne pcrel:16 bor #imm,@rd
beq pcrel:8 bor #imm,@abs:8
* beq pcrel:16 bset #imm,rd
bvc pcrel:8 bset #imm,@rd
* bvc pcrel:16 bset #imm,@abs:8
bvs pcrel:8 bset rs,rd
* bvs pcrel:16 bset rs,@rd
bpl pcrel:8 bset rs,@abs:8
* bpl pcrel:16 bsr pcrel:8
bmi pcrel:8 bsr pcrel:16
* bmi pcrel:16 bst #imm,rd
bge pcrel:8 bst #imm,@rd
* bge pcrel:16 bst #imm,@abs:8
blt pcrel:8 btst #imm,rd
* blt pcrel:16 btst #imm,@rd
bgt pcrel:8 btst #imm,@abs:8
* bgt pcrel:16 btst rs,rd
ble pcrel:8 btst rs,@rd
* ble pcrel:16 btst rs,@abs:8
bclr #imm,rd bxor #imm,rd
bclr #imm,@rd bxor #imm,@rd
bclr #imm,@abs:8 bxor #imm,@abs:8
bclr rs,rd cmp.b #imm,rd
bclr rs,@rd cmp.b rs,rd
bclr rs,@abs:8 cmp.w rs,rd
biand #imm,rd cmp.w rs,rd
biand #imm,@rd * cmp.w #imm,rd
biand #imm,@abs:8 * cmp.l #imm,rd
bild #imm,rd * cmp.l rs,rd
bild #imm,@rd daa rs
bild #imm,@abs:8 das rs
bior #imm,rd dec.b rs
bior #imm,@rd * dec.w #imm,rd
bior #imm,@abs:8 * dec.l #imm,rd
bist #imm,rd divxu.b rs,rd
bist #imm,@rd * divxu.w rs,rd
bist #imm,@abs:8 * divxs.b rs,rd
bixor #imm,rd * divxs.w rs,rd
bixor #imm,@rd eepmov
bixor #imm,@abs:8 * eepmovw
* exts.w rd mov.w rs,@abs:16
* exts.l rd * mov.l #imm,rd
* extu.w rd * mov.l rs,rd
* extu.l rd * mov.l @rs,rd
inc rs * mov.l @(disp:16,rs),rd
* inc.w #imm,rd * mov.l @(disp:24,rs),rd
* inc.l #imm,rd * mov.l @rs+,rd
jmp @rs * mov.l @abs:16,rd
jmp abs * mov.l @abs:24,rd
jmp @@abs:8 * mov.l rs,@rd
jsr @rs * mov.l rs,@(disp:16,rd)
jsr abs * mov.l rs,@(disp:24,rd)
jsr @@abs:8 * mov.l rs,@-rd
ldc #imm,ccr * mov.l rs,@abs:16
ldc rs,ccr * mov.l rs,@abs:24
* ldc @abs:16,ccr movfpe @abs:16,rd
* ldc @abs:24,ccr movtpe rs,@abs:16
* ldc @(disp:16,rs),ccr mulxu.b rs,rd
* ldc @(disp:24,rs),ccr * mulxu.w rs,rd
* ldc @rs+,ccr * mulxs.b rs,rd
* ldc @rs,ccr * mulxs.w rs,rd
* mov.b @(disp:24,rs),rd neg.b rs
* mov.b rs,@(disp:24,rd) * neg.w rs
mov.b @abs:16,rd * neg.l rs
mov.b rs,rd nop
mov.b @abs:8,rd not.b rs
mov.b rs,@abs:8 * not.w rs
mov.b rs,rd * not.l rs
mov.b #imm,rd or.b #imm,rd
mov.b @rs,rd or.b rs,rd
mov.b @(disp:16,rs),rd * or.w #imm,rd
mov.b @rs+,rd * or.w rs,rd
mov.b @abs:8,rd * or.l #imm,rd
mov.b rs,@rd * or.l rs,rd
mov.b rs,@(disp:16,rd) orc #imm,ccr
mov.b rs,@-rd pop.w rs
mov.b rs,@abs:8 * pop.l rs
mov.w rs,@rd push.w rs
* mov.w @(disp:24,rs),rd * push.l rs
* mov.w rs,@(disp:24,rd) rotl.b rs
* mov.w @abs:24,rd * rotl.w rs
* mov.w rs,@abs:24 * rotl.l rs
mov.w rs,rd rotr.b rs
mov.w #imm,rd * rotr.w rs
mov.w @rs,rd * rotr.l rs
mov.w @(disp:16,rs),rd rotxl.b rs
mov.w @rs+,rd * rotxl.w rs
mov.w @abs:16,rd * rotxl.l rs
mov.w rs,@(disp:16,rd) rotxr.b rs
mov.w rs,@-rd * rotxr.w rs
* rotxr.l rs * stc ccr,@(disp:24,rd)
bpt * stc ccr,@-rd
rte * stc ccr,@abs:16
rts * stc ccr,@abs:24
shal.b rs sub.b rs,rd
* shal.w rs sub.w rs,rd
* shal.l rs * sub.w #imm,rd
shar.b rs * sub.l rs,rd
* shar.w rs * sub.l #imm,rd
* shar.l rs subs #imm,rd
shll.b rs subx #imm,rd
* shll.w rs subx rs,rd
* shll.l rs * trapa #imm
shlr.b rs xor #imm,rd
* shlr.w rs xor rs,rd
* shlr.l rs * xor.w #imm,rd
sleep * xor.w rs,rd
stc ccr,rd * xor.l #imm,rd
* stc ccr,@rs * xor.l rs,rd
* stc ccr,@(disp:16,rd) xorc #imm,ccr
Four H8/300 instructions (`add', `cmp', `mov', `sub') are defined
with variants using the suffixes `.b', `.w', and `.l' to specify the
size of a memory operand. `as' supports these suffixes, but does not
require them; since one of the operands is always a register, `as' can
deduce the correct size.
For example, since `r0' refers to a 16-bit register,
mov r0,@foo
is equivalent to
mov.w r0,@foo
If you use the size suffixes, `as' issues a warning when the suffix
and the register size do not match.

File: as.info, Node: H8/500-Dependent, Next: HPPA-Dependent, Prev: H8/300-Dependent, Up: Machine Dependencies
H8/500 Dependent Features
=========================
* Menu:
* H8/500 Options:: Options
* H8/500 Syntax:: Syntax
* H8/500 Floating Point:: Floating Point
* H8/500 Directives:: H8/500 Machine Directives
* H8/500 Opcodes:: Opcodes

File: as.info, Node: H8/500 Options, Next: H8/500 Syntax, Up: H8/500-Dependent
Options
-------
`as' has no additional command-line options for the Hitachi H8/500
family.

File: as.info, Node: H8/500 Syntax, Next: H8/500 Floating Point, Prev: H8/500 Options, Up: H8/500-Dependent
Syntax
------
* Menu:
* H8/500-Chars:: Special Characters
* H8/500-Regs:: Register Names
* H8/500-Addressing:: Addressing Modes

File: as.info, Node: H8/500-Chars, Next: H8/500-Regs, Up: H8/500 Syntax
Special Characters
..................
`!' is the line comment character.
`;' can be used instead of a newline to separate statements.
Since `$' has no special meaning, you may use it in symbol names.

File: as.info, Node: H8/500-Regs, Next: H8/500-Addressing, Prev: H8/500-Chars, Up: H8/500 Syntax
Register Names
..............
You can use the predefined symbols `r0', `r1', `r2', `r3', `r4',
`r5', `r6', and `r7' to refer to the H8/500 registers.
The H8/500 also has these control registers:
`cp'
code pointer
`dp'
data pointer
`bp'
base pointer
`tp'
stack top pointer
`ep'
extra pointer
`sr'
status register
`ccr'
condition code register
All registers are 16 bits long. To represent 32 bit numbers, use two
adjacent registers; for distant memory addresses, use one of the segment
pointers (`cp' for the program counter; `dp' for `r0'-`r3'; `ep' for
`r4' and `r5'; and `tp' for `r6' and `r7'.

File: as.info, Node: H8/500-Addressing, Prev: H8/500-Regs, Up: H8/500 Syntax
Addressing Modes
................
as understands the following addressing modes for the H8/500:
`RN'
Register direct
`@RN'
Register indirect
`@(d:8, RN)'
Register indirect with 8 bit signed displacement
`@(d:16, RN)'
Register indirect with 16 bit signed displacement
`@-RN'
Register indirect with pre-decrement
`@RN+'
Register indirect with post-increment
`@AA:8'
8 bit absolute address
`@AA:16'
16 bit absolute address
`#XX:8'
8 bit immediate
`#XX:16'
16 bit immediate

File: as.info, Node: H8/500 Floating Point, Next: H8/500 Directives, Prev: H8/500 Syntax, Up: H8/500-Dependent
Floating Point
--------------
The H8/500 family has no hardware floating point, but the `.float'
directive generates IEEE floating-point numbers for compatibility with
other development tools.

File: as.info, Node: H8/500 Directives, Next: H8/500 Opcodes, Prev: H8/500 Floating Point, Up: H8/500-Dependent
H8/500 Machine Directives
-------------------------
`as' has no machine-dependent directives for the H8/500. However,
on this platform the `.int' and `.word' directives generate 16-bit
numbers.

File: as.info, Node: H8/500 Opcodes, Prev: H8/500 Directives, Up: H8/500-Dependent
Opcodes
-------
For detailed information on the H8/500 machine instruction set, see
`H8/500 Series Programming Manual' (Hitachi M21T001).
`as' implements all the standard H8/500 opcodes. No additional
pseudo-instructions are needed on this family.
The following table summarizes H8/500 opcodes and their operands:
Legend:
abs8 8-bit absolute address
abs16 16-bit absolute address
abs24 24-bit absolute address
crb `ccr', `br', `ep', `dp', `tp', `dp'
disp8 8-bit displacement
ea `rn', `@rn', `@(d:8, rn)', `@(d:16, rn)',
`@-rn', `@rn+', `@aa:8', `@aa:16',
`#xx:8', `#xx:16'
ea_mem `@rn', `@(d:8, rn)', `@(d:16, rn)',
`@-rn', `@rn+', `@aa:8', `@aa:16'
ea_noimm `rn', `@rn', `@(d:8, rn)', `@(d:16, rn)',
`@-rn', `@rn+', `@aa:8', `@aa:16'
fp r6
imm4 4-bit immediate data
imm8 8-bit immediate data
imm16 16-bit immediate data
pcrel8 8-bit offset from program counter
pcrel16 16-bit offset from program counter
qim `-2', `-1', `1', `2'
rd any register
rs a register distinct from rd
rlist comma-separated list of registers in parentheses;
register ranges `rd-rs' are allowed
sp stack pointer (`r7')
sr status register
sz size; `.b' or `.w'. If omitted, default `.w'
ldc[.b] ea,crb bcc[.w] pcrel16
ldc[.w] ea,sr bcc[.b] pcrel8
add[:q] sz qim,ea_noimm bhs[.w] pcrel16
add[:g] sz ea,rd bhs[.b] pcrel8
adds sz ea,rd bcs[.w] pcrel16
addx sz ea,rd bcs[.b] pcrel8
and sz ea,rd blo[.w] pcrel16
andc[.b] imm8,crb blo[.b] pcrel8
andc[.w] imm16,sr bne[.w] pcrel16
bpt bne[.b] pcrel8
bra[.w] pcrel16 beq[.w] pcrel16
bra[.b] pcrel8 beq[.b] pcrel8
bt[.w] pcrel16 bvc[.w] pcrel16
bt[.b] pcrel8 bvc[.b] pcrel8
brn[.w] pcrel16 bvs[.w] pcrel16
brn[.b] pcrel8 bvs[.b] pcrel8
bf[.w] pcrel16 bpl[.w] pcrel16
bf[.b] pcrel8 bpl[.b] pcrel8
bhi[.w] pcrel16 bmi[.w] pcrel16
bhi[.b] pcrel8 bmi[.b] pcrel8
bls[.w] pcrel16 bge[.w] pcrel16
bls[.b] pcrel8 bge[.b] pcrel8
blt[.w] pcrel16 mov[:g][.b] imm8,ea_mem
blt[.b] pcrel8 mov[:g][.w] imm16,ea_mem
bgt[.w] pcrel16 movfpe[.b] ea,rd
bgt[.b] pcrel8 movtpe[.b] rs,ea_noimm
ble[.w] pcrel16 mulxu sz ea,rd
ble[.b] pcrel8 neg sz ea
bclr sz imm4,ea_noimm nop
bclr sz rs,ea_noimm not sz ea
bnot sz imm4,ea_noimm or sz ea,rd
bnot sz rs,ea_noimm orc[.b] imm8,crb
bset sz imm4,ea_noimm orc[.w] imm16,sr
bset sz rs,ea_noimm pjmp abs24
bsr[.b] pcrel8 pjmp @rd
bsr[.w] pcrel16 pjsr abs24
btst sz imm4,ea_noimm pjsr @rd
btst sz rs,ea_noimm prtd imm8
clr sz ea prtd imm16
cmp[:e][.b] imm8,rd prts
cmp[:i][.w] imm16,rd rotl sz ea
cmp[:g].b imm8,ea_noimm rotr sz ea
cmp[:g][.w] imm16,ea_noimm rotxl sz ea
Cmp[:g] sz ea,rd rotxr sz ea
dadd rs,rd rtd imm8
divxu sz ea,rd rtd imm16
dsub rs,rd rts
exts[.b] rd scb/f rs,pcrel8
extu[.b] rd scb/ne rs,pcrel8
jmp @rd scb/eq rs,pcrel8
jmp @(imm8,rd) shal sz ea
jmp @(imm16,rd) shar sz ea
jmp abs16 shll sz ea
jsr @rd shlr sz ea
jsr @(imm8,rd) sleep
jsr @(imm16,rd) stc[.b] crb,ea_noimm
jsr abs16 stc[.w] sr,ea_noimm
ldm @sp+,(rlist) stm (rlist),@-sp
link fp,imm8 sub sz ea,rd
link fp,imm16 subs sz ea,rd
mov[:e][.b] imm8,rd subx sz ea,rd
mov[:i][.w] imm16,rd swap[.b] rd
mov[:l][.w] abs8,rd tas[.b] ea
mov[:l].b abs8,rd trapa imm4
mov[:s][.w] rs,abs8 trap/vs
mov[:s].b rs,abs8 tst sz ea
mov[:f][.w] @(disp8,fp),rd unlk fp
mov[:f][.w] rs,@(disp8,fp) xch[.w] rs,rd
mov[:f].b @(disp8,fp),rd xor sz ea,rd
mov[:f].b rs,@(disp8,fp) xorc.b imm8,crb
mov[:g] sz rs,ea_mem xorc.w imm16,sr
mov[:g] sz ea,rd