| /* Motorola 68HC11/HC12-specific support for 32-bit ELF |
| Copyright (C) 1999-2024 Free Software Foundation, Inc. |
| Contributed by Stephane Carrez (stcarrez@nerim.fr) |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf32-m68hc1x.h" |
| #include "elf/m68hc11.h" |
| #include "opcode/m68hc11.h" |
| #include "libiberty.h" |
| |
| #define m68hc12_stub_hash_lookup(table, string, create, copy) \ |
| ((struct elf32_m68hc11_stub_hash_entry *) \ |
| bfd_hash_lookup ((table), (string), (create), (copy))) |
| |
| static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub |
| (const char *stub_name, |
| asection *section, |
| struct m68hc11_elf_link_hash_table *htab); |
| |
| static struct bfd_hash_entry *stub_hash_newfunc |
| (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); |
| |
| static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info, |
| const char* name, bfd_vma value, |
| asection* sec); |
| |
| static bool m68hc11_elf_export_one_stub |
| (struct bfd_hash_entry *gen_entry, void *in_arg); |
| |
| static void scan_sections_for_abi (bfd*, asection*, void *); |
| |
| struct m68hc11_scan_param |
| { |
| struct m68hc11_page_info* pinfo; |
| bool use_memory_banks; |
| }; |
| |
| |
| /* Destroy a 68HC11/68HC12 ELF linker hash table. */ |
| |
| static void |
| m68hc11_elf_bfd_link_hash_table_free (bfd *obfd) |
| { |
| struct m68hc11_elf_link_hash_table *ret |
| = (struct m68hc11_elf_link_hash_table *) obfd->link.hash; |
| |
| bfd_hash_table_free (ret->stub_hash_table); |
| free (ret->stub_hash_table); |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| /* Create a 68HC11/68HC12 ELF linker hash table. */ |
| |
| struct m68hc11_elf_link_hash_table* |
| m68hc11_elf_hash_table_create (bfd *abfd) |
| { |
| struct m68hc11_elf_link_hash_table *ret; |
| size_t amt = sizeof (struct m68hc11_elf_link_hash_table); |
| |
| ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == (struct m68hc11_elf_link_hash_table *) NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
| _bfd_elf_link_hash_newfunc, |
| sizeof (struct elf_link_hash_entry), |
| M68HC11_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| /* Init the stub hash table too. */ |
| amt = sizeof (struct bfd_hash_table); |
| ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt); |
| if (ret->stub_hash_table == NULL) |
| { |
| _bfd_elf_link_hash_table_free (abfd); |
| return NULL; |
| } |
| if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc, |
| sizeof (struct elf32_m68hc11_stub_hash_entry))) |
| { |
| free (ret->stub_hash_table); |
| _bfd_elf_link_hash_table_free (abfd); |
| return NULL; |
| } |
| ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free; |
| |
| return ret; |
| } |
| |
| /* Assorted hash table functions. */ |
| |
| /* Initialize an entry in the stub hash table. */ |
| |
| static struct bfd_hash_entry * |
| stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, |
| const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = bfd_hash_allocate (table, |
| sizeof (struct elf32_m68hc11_stub_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = bfd_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf32_m68hc11_stub_hash_entry *eh; |
| |
| /* Initialize the local fields. */ |
| eh = (struct elf32_m68hc11_stub_hash_entry *) entry; |
| eh->stub_sec = NULL; |
| eh->stub_offset = 0; |
| eh->target_value = 0; |
| eh->target_section = NULL; |
| } |
| |
| return entry; |
| } |
| |
| /* Add a new stub entry to the stub hash. Not all fields of the new |
| stub entry are initialised. */ |
| |
| static struct elf32_m68hc11_stub_hash_entry * |
| m68hc12_add_stub (const char *stub_name, asection *section, |
| struct m68hc11_elf_link_hash_table *htab) |
| { |
| struct elf32_m68hc11_stub_hash_entry *stub_entry; |
| |
| /* Enter this entry into the linker stub hash table. */ |
| stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name, |
| true, false); |
| if (stub_entry == NULL) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: cannot create stub entry %s"), |
| section->owner, stub_name); |
| return NULL; |
| } |
| |
| if (htab->stub_section == 0) |
| { |
| htab->stub_section = (*htab->add_stub_section) (".tramp", |
| htab->tramp_section); |
| } |
| |
| stub_entry->stub_sec = htab->stub_section; |
| stub_entry->stub_offset = 0; |
| return stub_entry; |
| } |
| |
| /* Hook called by the linker routine which adds symbols from an object |
| file. We use it for identify far symbols and force a loading of |
| the trampoline handler. */ |
| |
| bool |
| elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
| Elf_Internal_Sym *sym, |
| const char **namep ATTRIBUTE_UNUSED, |
| flagword *flagsp ATTRIBUTE_UNUSED, |
| asection **secp ATTRIBUTE_UNUSED, |
| bfd_vma *valp ATTRIBUTE_UNUSED) |
| { |
| if (sym->st_other & STO_M68HC12_FAR) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = (struct elf_link_hash_entry *) |
| bfd_link_hash_lookup (info->hash, "__far_trampoline", |
| false, false, false); |
| if (h == NULL) |
| { |
| struct bfd_link_hash_entry* entry = NULL; |
| |
| _bfd_generic_link_add_one_symbol (info, abfd, |
| "__far_trampoline", |
| BSF_GLOBAL, |
| bfd_und_section_ptr, |
| (bfd_vma) 0, (const char*) NULL, |
| false, false, &entry); |
| } |
| |
| } |
| return true; |
| } |
| |
| /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and |
| STO_M68HC12_INTERRUPT. */ |
| |
| void |
| elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h, |
| unsigned int st_other, |
| bool definition, |
| bool dynamic ATTRIBUTE_UNUSED) |
| { |
| if (definition) |
| h->other = ((st_other & ~ELF_ST_VISIBILITY (-1)) |
| | ELF_ST_VISIBILITY (h->other)); |
| } |
| |
| /* External entry points for sizing and building linker stubs. */ |
| |
| /* Set up various things so that we can make a list of input sections |
| for each output section included in the link. Returns -1 on error, |
| 0 when no stubs will be needed, and 1 on success. */ |
| |
| int |
| elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| bfd *input_bfd; |
| unsigned int bfd_count; |
| unsigned int top_id, top_index; |
| asection *section; |
| asection **input_list, **list; |
| size_t amt; |
| asection *text_section; |
| struct m68hc11_elf_link_hash_table *htab; |
| |
| htab = m68hc11_elf_hash_table (info); |
| if (htab == NULL) |
| return -1; |
| |
| if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour) |
| return 0; |
| |
| /* Count the number of input BFDs and find the top input section id. |
| Also search for an existing ".tramp" section so that we know |
| where generated trampolines must go. Default to ".text" if we |
| can't find it. */ |
| htab->tramp_section = 0; |
| text_section = 0; |
| for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next) |
| { |
| bfd_count += 1; |
| for (section = input_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| const char *name = bfd_section_name (section); |
| |
| if (!strcmp (name, ".tramp")) |
| htab->tramp_section = section; |
| |
| if (!strcmp (name, ".text")) |
| text_section = section; |
| |
| if (top_id < section->id) |
| top_id = section->id; |
| } |
| } |
| htab->bfd_count = bfd_count; |
| if (htab->tramp_section == 0) |
| htab->tramp_section = text_section; |
| |
| /* We can't use output_bfd->section_count here to find the top output |
| section index as some sections may have been removed, and |
| strip_excluded_output_sections doesn't renumber the indices. */ |
| for (section = output_bfd->sections, top_index = 0; |
| section != NULL; |
| section = section->next) |
| { |
| if (top_index < section->index) |
| top_index = section->index; |
| } |
| |
| htab->top_index = top_index; |
| amt = sizeof (asection *) * (top_index + 1); |
| input_list = (asection **) bfd_malloc (amt); |
| htab->input_list = input_list; |
| if (input_list == NULL) |
| return -1; |
| |
| /* For sections we aren't interested in, mark their entries with a |
| value we can check later. */ |
| list = input_list + top_index; |
| do |
| *list = bfd_abs_section_ptr; |
| while (list-- != input_list); |
| |
| for (section = output_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| if ((section->flags & SEC_CODE) != 0) |
| input_list[section->index] = NULL; |
| } |
| |
| return 1; |
| } |
| |
| /* Determine and set the size of the stub section for a final link. |
| |
| The basic idea here is to examine all the relocations looking for |
| PC-relative calls to a target that is unreachable with a "bl" |
| instruction. */ |
| |
| bool |
| elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd, |
| struct bfd_link_info *info, |
| asection * (*add_stub_section) (const char*, asection*)) |
| { |
| bfd *input_bfd; |
| asection *section; |
| Elf_Internal_Sym *local_syms, **all_local_syms; |
| unsigned int bfd_indx, bfd_count; |
| size_t amt; |
| asection *stub_sec; |
| struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info); |
| |
| if (htab == NULL) |
| return false; |
| |
| /* Stash our params away. */ |
| htab->stub_bfd = stub_bfd; |
| htab->add_stub_section = add_stub_section; |
| |
| /* Count the number of input BFDs and find the top input section id. */ |
| for (input_bfd = info->input_bfds, bfd_count = 0; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next) |
| bfd_count += 1; |
| |
| /* We want to read in symbol extension records only once. To do this |
| we need to read in the local symbols in parallel and save them for |
| later use; so hold pointers to the local symbols in an array. */ |
| amt = sizeof (Elf_Internal_Sym *) * bfd_count; |
| all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); |
| if (all_local_syms == NULL) |
| return false; |
| |
| /* Walk over all the input BFDs, swapping in local symbols. */ |
| for (input_bfd = info->input_bfds, bfd_indx = 0; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next, bfd_indx++) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| |
| /* We'll need the symbol table in a second. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (symtab_hdr->sh_info == 0) |
| continue; |
| |
| /* We need an array of the local symbols attached to the input bfd. */ |
| local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (local_syms == NULL) |
| { |
| local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| /* Cache them for elf_link_input_bfd. */ |
| symtab_hdr->contents = (unsigned char *) local_syms; |
| } |
| if (local_syms == NULL) |
| { |
| free (all_local_syms); |
| return false; |
| } |
| |
| all_local_syms[bfd_indx] = local_syms; |
| } |
| |
| for (input_bfd = info->input_bfds, bfd_indx = 0; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next, bfd_indx++) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry ** sym_hashes; |
| |
| sym_hashes = elf_sym_hashes (input_bfd); |
| |
| /* We'll need the symbol table in a second. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (symtab_hdr->sh_info == 0) |
| continue; |
| |
| local_syms = all_local_syms[bfd_indx]; |
| |
| /* Walk over each section attached to the input bfd. */ |
| for (section = input_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| Elf_Internal_Rela *internal_relocs, *irelaend, *irela; |
| |
| /* If there aren't any relocs, then there's nothing more |
| to do. */ |
| if ((section->flags & SEC_RELOC) == 0 |
| || section->reloc_count == 0) |
| continue; |
| |
| /* If this section is a link-once section that will be |
| discarded, then don't create any stubs. */ |
| if (section->output_section == NULL |
| || section->output_section->owner != output_bfd) |
| continue; |
| |
| /* Get the relocs. */ |
| internal_relocs |
| = _bfd_elf_link_read_relocs (input_bfd, section, NULL, |
| (Elf_Internal_Rela *) NULL, |
| info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_ret_free_local; |
| |
| /* Now examine each relocation. */ |
| irela = internal_relocs; |
| irelaend = irela + section->reloc_count; |
| for (; irela < irelaend; irela++) |
| { |
| unsigned int r_type, r_indx; |
| struct elf32_m68hc11_stub_hash_entry *stub_entry; |
| asection *sym_sec; |
| bfd_vma sym_value; |
| struct elf_link_hash_entry *hash; |
| const char *stub_name; |
| Elf_Internal_Sym *sym; |
| |
| r_type = ELF32_R_TYPE (irela->r_info); |
| |
| /* Only look at 16-bit relocs. */ |
| if (r_type != (unsigned int) R_M68HC11_16) |
| continue; |
| |
| /* Now determine the call target, its name, value, |
| section. */ |
| r_indx = ELF32_R_SYM (irela->r_info); |
| if (r_indx < symtab_hdr->sh_info) |
| { |
| /* It's a local symbol. */ |
| Elf_Internal_Shdr *hdr; |
| bool is_far; |
| |
| sym = local_syms + r_indx; |
| is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); |
| if (!is_far) |
| continue; |
| |
| if (sym->st_shndx >= elf_numsections (input_bfd)) |
| sym_sec = NULL; |
| else |
| { |
| hdr = elf_elfsections (input_bfd)[sym->st_shndx]; |
| sym_sec = hdr->bfd_section; |
| } |
| stub_name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, |
| sym->st_name)); |
| sym_value = sym->st_value; |
| hash = NULL; |
| } |
| else |
| { |
| /* It's an external symbol. */ |
| int e_indx; |
| |
| e_indx = r_indx - symtab_hdr->sh_info; |
| hash = (struct elf_link_hash_entry *) |
| (sym_hashes[e_indx]); |
| |
| while (hash->root.type == bfd_link_hash_indirect |
| || hash->root.type == bfd_link_hash_warning) |
| hash = ((struct elf_link_hash_entry *) |
| hash->root.u.i.link); |
| |
| if (hash->root.type == bfd_link_hash_defined |
| || hash->root.type == bfd_link_hash_defweak |
| || hash->root.type == bfd_link_hash_new) |
| { |
| if (!(hash->other & STO_M68HC12_FAR)) |
| continue; |
| } |
| else if (hash->root.type == bfd_link_hash_undefweak) |
| { |
| continue; |
| } |
| else if (hash->root.type == bfd_link_hash_undefined) |
| { |
| continue; |
| } |
| else |
| { |
| bfd_set_error (bfd_error_bad_value); |
| goto error_ret_free_internal; |
| } |
| sym_sec = hash->root.u.def.section; |
| sym_value = hash->root.u.def.value; |
| stub_name = hash->root.root.string; |
| } |
| |
| if (!stub_name) |
| goto error_ret_free_internal; |
| |
| stub_entry = m68hc12_stub_hash_lookup |
| (htab->stub_hash_table, |
| stub_name, |
| false, false); |
| if (stub_entry == NULL) |
| { |
| if (add_stub_section == 0) |
| continue; |
| |
| stub_entry = m68hc12_add_stub (stub_name, section, htab); |
| if (stub_entry == NULL) |
| { |
| error_ret_free_internal: |
| if (elf_section_data (section)->relocs == NULL) |
| free (internal_relocs); |
| goto error_ret_free_local; |
| } |
| } |
| |
| stub_entry->target_value = sym_value; |
| stub_entry->target_section = sym_sec; |
| } |
| |
| /* We're done with the internal relocs, free them. */ |
| if (elf_section_data (section)->relocs == NULL) |
| free (internal_relocs); |
| } |
| } |
| |
| if (add_stub_section) |
| { |
| /* OK, we've added some stubs. Find out the new size of the |
| stub sections. */ |
| for (stub_sec = htab->stub_bfd->sections; |
| stub_sec != NULL; |
| stub_sec = stub_sec->next) |
| { |
| stub_sec->size = 0; |
| } |
| |
| bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab); |
| } |
| free (all_local_syms); |
| return true; |
| |
| error_ret_free_local: |
| free (all_local_syms); |
| return false; |
| } |
| |
| /* Export the trampoline addresses in the symbol table. */ |
| static bool |
| m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) |
| { |
| struct bfd_link_info *info; |
| struct m68hc11_elf_link_hash_table *htab; |
| struct elf32_m68hc11_stub_hash_entry *stub_entry; |
| char* name; |
| bool result; |
| |
| info = (struct bfd_link_info *) in_arg; |
| htab = m68hc11_elf_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| /* Massage our args to the form they really have. */ |
| stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry; |
| |
| /* Generate the trampoline according to HC11 or HC12. */ |
| result = (* htab->build_one_stub) (gen_entry, in_arg); |
| |
| /* Make a printable name that does not conflict with the real function. */ |
| name = concat ("tramp.", stub_entry->root.string, NULL); |
| |
| /* Export the symbol for debugging/disassembling. */ |
| m68hc11_elf_set_symbol (htab->stub_bfd, info, name, |
| stub_entry->stub_offset, |
| stub_entry->stub_sec); |
| free (name); |
| return result; |
| } |
| |
| /* Export a symbol or set its value and section. */ |
| static void |
| m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info, |
| const char *name, bfd_vma value, asection *sec) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = (struct elf_link_hash_entry *) |
| bfd_link_hash_lookup (info->hash, name, false, false, false); |
| if (h == NULL) |
| { |
| _bfd_generic_link_add_one_symbol (info, abfd, |
| name, |
| BSF_GLOBAL, |
| sec, |
| value, |
| (const char*) NULL, |
| true, false, NULL); |
| } |
| else |
| { |
| h->root.type = bfd_link_hash_defined; |
| h->root.u.def.value = value; |
| h->root.u.def.section = sec; |
| } |
| } |
| |
| |
| /* Build all the stubs associated with the current output file. The |
| stubs are kept in a hash table attached to the main linker hash |
| table. This function is called via m68hc12elf_finish in the |
| linker. */ |
| |
| bool |
| elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info) |
| { |
| asection *stub_sec; |
| struct bfd_hash_table *table; |
| struct m68hc11_elf_link_hash_table *htab; |
| struct m68hc11_scan_param param; |
| |
| m68hc11_elf_get_bank_parameters (info); |
| htab = m68hc11_elf_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| for (stub_sec = htab->stub_bfd->sections; |
| stub_sec != NULL; |
| stub_sec = stub_sec->next) |
| { |
| bfd_size_type size; |
| |
| /* Allocate memory to hold the linker stubs. */ |
| size = stub_sec->size; |
| stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); |
| if (stub_sec->contents == NULL && size != 0) |
| return false; |
| stub_sec->size = 0; |
| } |
| |
| /* Build the stubs as directed by the stub hash table. */ |
| table = htab->stub_hash_table; |
| bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info); |
| |
| /* Scan the output sections to see if we use the memory banks. |
| If so, export the symbols that define how the memory banks |
| are mapped. This is used by gdb and the simulator to obtain |
| the information. It can be used by programs to burn the eprom |
| at the good addresses. */ |
| param.use_memory_banks = false; |
| param.pinfo = &htab->pinfo; |
| bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); |
| if (param.use_memory_banks) |
| { |
| m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME, |
| htab->pinfo.bank_physical, |
| bfd_abs_section_ptr); |
| m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME, |
| htab->pinfo.bank_virtual, |
| bfd_abs_section_ptr); |
| m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME, |
| htab->pinfo.bank_size, |
| bfd_abs_section_ptr); |
| } |
| |
| return true; |
| } |
| |
| void |
| m68hc11_elf_get_bank_parameters (struct bfd_link_info *info) |
| { |
| unsigned i; |
| struct m68hc11_page_info *pinfo; |
| struct bfd_link_hash_entry *h; |
| struct m68hc11_elf_link_hash_table *htab; |
| |
| htab = m68hc11_elf_hash_table (info); |
| if (htab == NULL) |
| return; |
| |
| pinfo = & htab->pinfo; |
| if (pinfo->bank_param_initialized) |
| return; |
| |
| pinfo->bank_virtual = M68HC12_BANK_VIRT; |
| pinfo->bank_mask = M68HC12_BANK_MASK; |
| pinfo->bank_physical = M68HC12_BANK_BASE; |
| pinfo->bank_shift = M68HC12_BANK_SHIFT; |
| pinfo->bank_size = 1 << M68HC12_BANK_SHIFT; |
| |
| h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME, |
| false, false, true); |
| if (h != (struct bfd_link_hash_entry*) NULL |
| && h->type == bfd_link_hash_defined) |
| pinfo->bank_physical = (h->u.def.value |
| + h->u.def.section->output_section->vma |
| + h->u.def.section->output_offset); |
| |
| h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME, |
| false, false, true); |
| if (h != (struct bfd_link_hash_entry*) NULL |
| && h->type == bfd_link_hash_defined) |
| pinfo->bank_virtual = (h->u.def.value |
| + h->u.def.section->output_section->vma |
| + h->u.def.section->output_offset); |
| |
| h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME, |
| false, false, true); |
| if (h != (struct bfd_link_hash_entry*) NULL |
| && h->type == bfd_link_hash_defined) |
| pinfo->bank_size = (h->u.def.value |
| + h->u.def.section->output_section->vma |
| + h->u.def.section->output_offset); |
| |
| pinfo->bank_shift = 0; |
| for (i = pinfo->bank_size; i != 0; i >>= 1) |
| pinfo->bank_shift++; |
| pinfo->bank_shift--; |
| pinfo->bank_mask = (1 << pinfo->bank_shift) - 1; |
| pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size; |
| pinfo->bank_param_initialized = 1; |
| |
| h = bfd_link_hash_lookup (info->hash, "__far_trampoline", false, |
| false, true); |
| if (h != (struct bfd_link_hash_entry*) NULL |
| && h->type == bfd_link_hash_defined) |
| pinfo->trampoline_addr = (h->u.def.value |
| + h->u.def.section->output_section->vma |
| + h->u.def.section->output_offset); |
| } |
| |
| /* Return 1 if the address is in banked memory. |
| This can be applied to a virtual address and to a physical address. */ |
| int |
| m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr) |
| { |
| if (addr >= pinfo->bank_virtual) |
| return 1; |
| |
| if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Return the physical address seen by the processor, taking |
| into account banked memory. */ |
| bfd_vma |
| m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr) |
| { |
| if (addr < pinfo->bank_virtual) |
| return addr; |
| |
| /* Map the address to the memory bank. */ |
| addr -= pinfo->bank_virtual; |
| addr &= pinfo->bank_mask; |
| addr += pinfo->bank_physical; |
| return addr; |
| } |
| |
| /* Return the page number corresponding to an address in banked memory. */ |
| bfd_vma |
| m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr) |
| { |
| if (addr < pinfo->bank_virtual) |
| return 0; |
| |
| /* Map the address to the memory bank. */ |
| addr -= pinfo->bank_virtual; |
| addr >>= pinfo->bank_shift; |
| addr &= 0x0ff; |
| return addr; |
| } |
| |
| /* This function is used for relocs which are only used for relaxing, |
| which the linker should otherwise ignore. */ |
| |
| bfd_reloc_status_type |
| m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
| arelent *reloc_entry, |
| asymbol *symbol ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED, |
| asection *input_section, |
| bfd *output_bfd, |
| char **error_message ATTRIBUTE_UNUSED) |
| { |
| if (output_bfd != NULL) |
| reloc_entry->address += input_section->output_offset; |
| return bfd_reloc_ok; |
| } |
| |
| bfd_reloc_status_type |
| m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
| arelent *reloc_entry, |
| asymbol *symbol, |
| void *data ATTRIBUTE_UNUSED, |
| asection *input_section, |
| bfd *output_bfd, |
| char **error_message ATTRIBUTE_UNUSED) |
| { |
| if (output_bfd != (bfd *) NULL |
| && (symbol->flags & BSF_SECTION_SYM) == 0 |
| && (! reloc_entry->howto->partial_inplace |
| || reloc_entry->addend == 0)) |
| { |
| reloc_entry->address += input_section->output_offset; |
| return bfd_reloc_ok; |
| } |
| |
| if (output_bfd != NULL) |
| return bfd_reloc_continue; |
| |
| if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
| return bfd_reloc_outofrange; |
| |
| abort(); |
| } |
| |
| /* Look through the relocs for a section during the first phase. |
| Since we don't do .gots or .plts, we just need to consider the |
| virtual table relocs for gc. */ |
| |
| bool |
| elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, const Elf_Internal_Rela *relocs) |
| { |
| Elf_Internal_Shdr * symtab_hdr; |
| struct elf_link_hash_entry ** sym_hashes; |
| const Elf_Internal_Rela * rel; |
| const Elf_Internal_Rela * rel_end; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| symtab_hdr = & elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| rel_end = relocs + sec->reloc_count; |
| |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| struct elf_link_hash_entry * h; |
| unsigned long r_symndx; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| h = NULL; |
| else |
| { |
| h = sym_hashes [r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_M68HC11_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return false; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_M68HC11_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| return false; |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool ATTRIBUTE_PRINTF (6, 7) |
| reloc_warning (struct bfd_link_info *info, const char *name, bfd *input_bfd, |
| asection *input_section, const Elf_Internal_Rela *rel, |
| const char *fmt, ...) |
| { |
| va_list ap; |
| char *buf; |
| int ret; |
| |
| va_start (ap, fmt); |
| ret = vasprintf (&buf, fmt, ap); |
| va_end (ap); |
| if (ret < 0) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| return false; |
| } |
| info->callbacks->warning (info, buf, name, input_bfd, input_section, |
| rel->r_offset); |
| free (buf); |
| return true; |
| } |
| |
| /* Relocate a 68hc11/68hc12 ELF section. */ |
| int |
| elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info, |
| bfd *input_bfd, asection *input_section, |
| bfd_byte *contents, Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| Elf_Internal_Rela *rel, *relend; |
| const char *name = NULL; |
| struct m68hc11_page_info *pinfo; |
| const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd); |
| struct m68hc11_elf_link_hash_table *htab; |
| unsigned long e_flags; |
| |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (input_bfd); |
| e_flags = elf_elfheader (input_bfd)->e_flags; |
| |
| htab = m68hc11_elf_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| /* Get memory bank parameters. */ |
| m68hc11_elf_get_bank_parameters (info); |
| |
| pinfo = & htab->pinfo; |
| rel = relocs; |
| relend = relocs + input_section->reloc_count; |
| |
| for (; rel < relend; rel++) |
| { |
| int r_type; |
| arelent arel; |
| reloc_howto_type *howto; |
| unsigned long r_symndx; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| bfd_vma relocation = 0; |
| bfd_reloc_status_type r = bfd_reloc_undefined; |
| bfd_vma phys_page; |
| bfd_vma phys_addr; |
| bfd_vma insn_addr; |
| bfd_vma insn_page; |
| bool is_far = false; |
| bool is_xgate_symbol = false; |
| bool is_section_symbol = false; |
| struct elf_link_hash_entry *h; |
| bfd_vma val; |
| const char *msg; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| |
| if (r_type == R_M68HC11_GNU_VTENTRY |
| || r_type == R_M68HC11_GNU_VTINHERIT) |
| continue; |
| |
| if (! (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel)) |
| continue; |
| howto = arel.howto; |
| |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| relocation = (sec->output_section->vma |
| + sec->output_offset |
| + sym->st_value); |
| is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); |
| is_xgate_symbol = (sym && (sym->st_target_internal)); |
| is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION; |
| } |
| else |
| { |
| bool unresolved_reloc, warned, ignored; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| h, sec, relocation, unresolved_reloc, |
| warned, ignored); |
| |
| is_far = (h && (h->other & STO_M68HC12_FAR)); |
| is_xgate_symbol = (h && (h->target_internal)); |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| { |
| /* This is a relocatable link. We don't have to change |
| anything, unless the reloc is against a section symbol, |
| in which case we have to adjust according to where the |
| section symbol winds up in the output section. */ |
| if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
| rel->r_addend += sec->output_offset; |
| continue; |
| } |
| |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| { |
| name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
| if (name == NULL || *name == '\0') |
| name = bfd_section_name (sec); |
| } |
| |
| if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16) |
| { |
| struct elf32_m68hc11_stub_hash_entry* stub; |
| |
| stub = m68hc12_stub_hash_lookup (htab->stub_hash_table, |
| name, false, false); |
| if (stub) |
| { |
| relocation = stub->stub_offset |
| + stub->stub_sec->output_section->vma |
| + stub->stub_sec->output_offset; |
| is_far = false; |
| } |
| } |
| |
| /* Do the memory bank mapping. */ |
| phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend); |
| phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend); |
| switch (r_type) |
| { |
| case R_M68HC12_LO8XG: |
| /* This relocation is specific to XGATE IMM16 calls and will precede |
| a HI8. tc-m68hc11 only generates them in pairs. |
| Leave the relocation to the HI8XG step. */ |
| r = bfd_reloc_ok; |
| r_type = R_M68HC11_NONE; |
| break; |
| |
| case R_M68HC12_HI8XG: |
| /* This relocation is specific to XGATE IMM16 calls and must follow |
| a LO8XG. Does not actually check that it was a LO8XG. |
| Adjusts high and low bytes. */ |
| relocation = phys_addr; |
| if ((e_flags & E_M68HC11_XGATE_RAMOFFSET) |
| && (relocation >= 0x2000)) |
| relocation += 0xc000; /* HARDCODED RAM offset for XGATE. */ |
| |
| /* Fetch 16 bit value including low byte in previous insn. */ |
| val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8) |
| | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2); |
| |
| /* Add on value to preserve carry, then write zero to high byte. */ |
| relocation += val; |
| |
| /* Write out top byte. */ |
| bfd_put_8 (input_bfd, (relocation >> 8) & 0xff, |
| (bfd_byte*) contents + rel->r_offset); |
| |
| /* Write out low byte to previous instruction. */ |
| bfd_put_8 (input_bfd, relocation & 0xff, |
| (bfd_byte*) contents + rel->r_offset - 2); |
| |
| /* Mark as relocation completed. */ |
| r = bfd_reloc_ok; |
| r_type = R_M68HC11_NONE; |
| break; |
| |
| /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr) |
| assembler directives. %hi does not support carry. */ |
| case R_M68HC11_HI8: |
| case R_M68HC11_LO8: |
| relocation = phys_addr; |
| break; |
| |
| case R_M68HC11_24: |
| /* Reloc used by 68HC12 call instruction. */ |
| bfd_put_16 (input_bfd, phys_addr, |
| (bfd_byte*) contents + rel->r_offset); |
| bfd_put_8 (input_bfd, phys_page, |
| (bfd_byte*) contents + rel->r_offset + 2); |
| r = bfd_reloc_ok; |
| r_type = R_M68HC11_NONE; |
| break; |
| |
| case R_M68HC11_NONE: |
| r = bfd_reloc_ok; |
| break; |
| |
| case R_M68HC11_LO16: |
| /* Reloc generated by %addr(expr) gas to obtain the |
| address as mapped in the memory bank window. */ |
| relocation = phys_addr; |
| break; |
| |
| case R_M68HC11_PAGE: |
| /* Reloc generated by %page(expr) gas to obtain the |
| page number associated with the address. */ |
| relocation = phys_page; |
| break; |
| |
| case R_M68HC11_16: |
| if (is_far) |
| { |
| if (!reloc_warning (info, name, input_bfd, input_section, rel, |
| _("reference to the far symbol `%s' using a " |
| "wrong relocation may result in incorrect " |
| "execution"), name)) |
| return false; |
| } |
| |
| /* Get virtual address of instruction having the relocation. */ |
| insn_addr = input_section->output_section->vma |
| + input_section->output_offset |
| + rel->r_offset; |
| |
| insn_page = m68hc11_phys_page (pinfo, insn_addr); |
| |
| /* If we are linking an S12 instruction against an XGATE symbol, we |
| need to change the offset of the symbol value so that it's correct |
| from the S12's perspective. */ |
| if (is_xgate_symbol) |
| { |
| /* The ram in the global space is mapped to 0x2000 in the 16-bit |
| address space for S12 and 0xE000 in the 16-bit address space |
| for XGATE. */ |
| if (relocation >= 0xE000) |
| { |
| /* We offset the address by the difference |
| between these two mappings. */ |
| relocation -= 0xC000; |
| break; |
| } |
| else |
| { |
| if (!reloc_warning (info, name, input_bfd, input_section, rel, |
| _("XGATE address (%lx) is not within " |
| "shared RAM(0xE000-0xFFFF), therefore " |
| "you must manually offset the address, " |
| "and possibly manage the page, in your " |
| "code."), (long) phys_addr)) |
| return false; |
| break; |
| } |
| } |
| |
| if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend) |
| && m68hc11_addr_is_banked (pinfo, insn_addr) |
| && phys_page != insn_page |
| && !(e_flags & E_M68HC11_NO_BANK_WARNING)) |
| { |
| if (!reloc_warning (info, name, input_bfd, input_section, rel, |
| _("banked address [%lx:%04lx] (%lx) is not " |
| "in the same bank as current banked " |
| "address [%lx:%04lx] (%lx)"), |
| (long) phys_page, (long) phys_addr, |
| (long) (relocation + rel->r_addend), |
| (long) insn_page, |
| (long) m68hc11_phys_addr (pinfo, insn_addr), |
| (long) insn_addr)) |
| return false; |
| break; |
| } |
| |
| if (phys_page != 0 && insn_page == 0) |
| { |
| if (!reloc_warning (info, name, input_bfd, input_section, rel, |
| _("reference to a banked address [%lx:%04lx] " |
| "in the normal address space at %04lx"), |
| (long) phys_page, (long) phys_addr, |
| (long) insn_addr)) |
| return false; |
| relocation = phys_addr; |
| break; |
| } |
| |
| /* If this is a banked address use the phys_addr so that |
| we stay in the banked window. */ |
| if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)) |
| relocation = phys_addr; |
| break; |
| } |
| |
| /* If we are linking an XGATE instruction against an S12 symbol, we |
| need to change the offset of the symbol value so that it's correct |
| from the XGATE's perspective. */ |
| if (!strcmp (howto->name, "R_XGATE_IMM8_LO") |
| || !strcmp (howto->name, "R_XGATE_IMM8_HI")) |
| { |
| /* We can only offset S12 addresses that lie within the non-paged |
| area of RAM. */ |
| if (!is_xgate_symbol && !is_section_symbol) |
| { |
| /* The ram in the global space is mapped to 0x2000 and stops at |
| 0x4000 in the 16-bit address space for S12 and 0xE000 in the |
| 16-bit address space for XGATE. */ |
| if (relocation >= 0x2000 && relocation < 0x4000) |
| /* We offset the address by the difference |
| between these two mappings. */ |
| relocation += 0xC000; |
| else |
| { |
| if (!reloc_warning (info, name, input_bfd, input_section, rel, |
| _("S12 address (%lx) is not within " |
| "shared RAM(0x2000-0x4000), therefore " |
| "you must manually offset the address " |
| "in your code"), (long) phys_addr)) |
| return false; |
| break; |
| } |
| } |
| } |
| |
| if (r_type != R_M68HC11_NONE) |
| { |
| if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10)) |
| r = _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, |
| relocation - 2, rel->r_addend); |
| else |
| r = _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, |
| relocation, rel->r_addend); |
| } |
| |
| if (r != bfd_reloc_ok) |
| { |
| switch (r) |
| { |
| case bfd_reloc_overflow: |
| (*info->callbacks->reloc_overflow) |
| (info, NULL, name, howto->name, (bfd_vma) 0, |
| input_bfd, input_section, rel->r_offset); |
| break; |
| |
| case bfd_reloc_undefined: |
| (*info->callbacks->undefined_symbol) |
| (info, name, input_bfd, input_section, rel->r_offset, true); |
| break; |
| |
| case bfd_reloc_outofrange: |
| msg = _ ("internal error: out of range error"); |
| goto common_error; |
| |
| case bfd_reloc_notsupported: |
| msg = _ ("internal error: unsupported relocation error"); |
| goto common_error; |
| |
| case bfd_reloc_dangerous: |
| msg = _ ("internal error: dangerous error"); |
| goto common_error; |
| |
| default: |
| msg = _ ("internal error: unknown error"); |
| /* fall through */ |
| |
| common_error: |
| (*info->callbacks->warning) (info, msg, name, input_bfd, |
| input_section, rel->r_offset); |
| break; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| |
| /* Set and control ELF flags in ELF header. */ |
| |
| bool |
| _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags) |
| { |
| BFD_ASSERT (!elf_flags_init (abfd) |
| || elf_elfheader (abfd)->e_flags == flags); |
| |
| elf_elfheader (abfd)->e_flags = flags; |
| elf_flags_init (abfd) = true; |
| return true; |
| } |
| |
| /* Merge backend specific data from an object file to the output |
| object file when linking. */ |
| |
| bool |
| _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| flagword old_flags; |
| flagword new_flags; |
| bool ok = true; |
| |
| /* Check if we have the same endianness */ |
| if (!_bfd_generic_verify_endian_match (ibfd, info)) |
| return false; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| return true; |
| |
| new_flags = elf_elfheader (ibfd)->e_flags; |
| elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI; |
| old_flags = elf_elfheader (obfd)->e_flags; |
| |
| if (! elf_flags_init (obfd)) |
| { |
| elf_flags_init (obfd) = true; |
| elf_elfheader (obfd)->e_flags = new_flags; |
| elf_elfheader (obfd)->e_ident[EI_CLASS] |
| = elf_elfheader (ibfd)->e_ident[EI_CLASS]; |
| |
| if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
| && bfd_get_arch_info (obfd)->the_default) |
| { |
| if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
| bfd_get_mach (ibfd))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Check ABI compatibility. */ |
| if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32)) |
| { |
| _bfd_error_handler |
| (_("%pB: linking files compiled for 16-bit integers (-mshort) " |
| "and others for 32-bit integers"), ibfd); |
| ok = false; |
| } |
| if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64)) |
| { |
| _bfd_error_handler |
| (_("%pB: linking files compiled for 32-bit double (-fshort-double) " |
| "and others for 64-bit double"), ibfd); |
| ok = false; |
| } |
| |
| /* Processor compatibility. */ |
| if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags)) |
| { |
| _bfd_error_handler |
| (_("%pB: linking files compiled for HCS12 with " |
| "others compiled for HC12"), ibfd); |
| ok = false; |
| } |
| new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK) |
| | (EF_M68HC11_MERGE_MACH (new_flags, old_flags))); |
| |
| elf_elfheader (obfd)->e_flags = new_flags; |
| |
| new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); |
| old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); |
| |
| /* Warn about any other mismatches */ |
| if (new_flags != old_flags) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"), |
| ibfd, new_flags, old_flags); |
| ok = false; |
| } |
| |
| if (! ok) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
| { |
| FILE *file = (FILE *) ptr; |
| |
| BFD_ASSERT (abfd != NULL && ptr != NULL); |
| |
| /* Print normal ELF private data. */ |
| _bfd_elf_print_private_bfd_data (abfd, ptr); |
| |
| /* xgettext:c-format */ |
| fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); |
| |
| if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32) |
| fprintf (file, _("[abi=32-bit int, ")); |
| else |
| fprintf (file, _("[abi=16-bit int, ")); |
| |
| if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64) |
| fprintf (file, _("64-bit double, ")); |
| else |
| fprintf (file, _("32-bit double, ")); |
| |
| if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0) |
| fprintf (file, _("cpu=HC11]")); |
| else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH) |
| fprintf (file, _("cpu=HCS12]")); |
| else |
| fprintf (file, _("cpu=HC12]")); |
| |
| if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS) |
| fprintf (file, _(" [memory=bank-model]")); |
| else |
| fprintf (file, _(" [memory=flat]")); |
| |
| if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET) |
| fprintf (file, _(" [XGATE RAM offsetting]")); |
| |
| fputc ('\n', file); |
| |
| return true; |
| } |
| |
| static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED, |
| asection *asect, void *arg) |
| { |
| struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg; |
| |
| if (asect->vma >= p->pinfo->bank_virtual) |
| p->use_memory_banks = true; |
| } |
| |
| /* Tweak the OSABI field of the elf header. */ |
| |
| bool |
| elf32_m68hc11_init_file_header (bfd *abfd, struct bfd_link_info *link_info) |
| { |
| struct m68hc11_scan_param param; |
| struct m68hc11_elf_link_hash_table *htab; |
| |
| if (!_bfd_elf_init_file_header (abfd, link_info)) |
| return false; |
| |
| if (link_info == NULL) |
| return true; |
| |
| htab = m68hc11_elf_hash_table (link_info); |
| if (htab == NULL) |
| return true; |
| |
| m68hc11_elf_get_bank_parameters (link_info); |
| |
| param.use_memory_banks = false; |
| param.pinfo = & htab->pinfo; |
| |
| bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); |
| |
| if (param.use_memory_banks) |
| { |
| Elf_Internal_Ehdr * i_ehdrp; |
| |
| i_ehdrp = elf_elfheader (abfd); |
| i_ehdrp->e_flags |= E_M68HC12_BANKS; |
| } |
| return true; |
| } |