blob: 3a3cbd3dfd70aef6d01631bfb40241bbe4d55ce9 [file] [log] [blame]
/* bfd back-end for HP PA-RISC SOM objects.
Copyright (C) 1990-2024 Free Software Foundation, Inc.
Contributed by the Center for Software Science at the
University of Utah.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libiberty.h"
#include "libbfd.h"
#include "som.h"
#include "safe-ctype.h"
#include "som/reloc.h"
#include "aout/ar.h"
static bfd_reloc_status_type hppa_som_reloc
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
static bool som_mkobject (bfd *);
static bool som_is_space (asection *);
static bool som_is_subspace (asection *);
static int compare_subspaces (const void *, const void *);
static uint32_t som_compute_checksum (struct som_external_header *);
static bool som_build_and_write_symbol_table (bfd *);
static unsigned int som_slurp_symbol_table (bfd *);
/* Magic not defined in standard HP-UX header files until 8.0. */
#ifndef CPU_PA_RISC1_0
#define CPU_PA_RISC1_0 0x20B
#endif /* CPU_PA_RISC1_0 */
#ifndef CPU_PA_RISC1_1
#define CPU_PA_RISC1_1 0x210
#endif /* CPU_PA_RISC1_1 */
#ifndef CPU_PA_RISC2_0
#define CPU_PA_RISC2_0 0x214
#endif /* CPU_PA_RISC2_0 */
#ifndef _PA_RISC1_0_ID
#define _PA_RISC1_0_ID CPU_PA_RISC1_0
#endif /* _PA_RISC1_0_ID */
#ifndef _PA_RISC1_1_ID
#define _PA_RISC1_1_ID CPU_PA_RISC1_1
#endif /* _PA_RISC1_1_ID */
#ifndef _PA_RISC2_0_ID
#define _PA_RISC2_0_ID CPU_PA_RISC2_0
#endif /* _PA_RISC2_0_ID */
#ifndef _PA_RISC_MAXID
#define _PA_RISC_MAXID 0x2FF
#endif /* _PA_RISC_MAXID */
#ifndef _PA_RISC_ID
#define _PA_RISC_ID(__m_num) \
(((__m_num) == _PA_RISC1_0_ID) || \
((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
#endif /* _PA_RISC_ID */
/* HIUX in it's infinite stupidity changed the names for several "well
known" constants. Work around such braindamage. Try the HPUX version
first, then the HIUX version, and finally provide a default. */
#ifdef HPUX_AUX_ID
#define EXEC_AUX_ID HPUX_AUX_ID
#endif
#if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
#define EXEC_AUX_ID HIUX_AUX_ID
#endif
#ifndef EXEC_AUX_ID
#define EXEC_AUX_ID 0
#endif
/* Size (in chars) of the temporary buffers used during fixup and string
table writes. */
#define SOM_TMP_BUFSIZE 8192
/* Size of the hash table in archives. */
#define SOM_LST_HASH_SIZE 31
/* Max number of SOMs to be found in an archive. */
#define SOM_LST_MODULE_LIMIT 1024
/* Generic alignment macro. */
#define SOM_ALIGN(val, alignment) \
(((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
/* SOM allows any one of the four previous relocations to be reused
with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
relocations are always a single byte, using a R_PREV_FIXUP instead
of some multi-byte relocation makes object files smaller.
Note one side effect of using a R_PREV_FIXUP is the relocation that
is being repeated moves to the front of the queue. */
static struct reloc_queue
{
unsigned char *reloc;
unsigned int size;
} reloc_queue[4];
/* This fully describes the symbol types which may be attached to
an EXPORT or IMPORT directive. Only SOM uses this formation
(ELF has no need for it). */
typedef enum
{
SYMBOL_TYPE_UNKNOWN,
SYMBOL_TYPE_ABSOLUTE,
SYMBOL_TYPE_CODE,
SYMBOL_TYPE_DATA,
SYMBOL_TYPE_ENTRY,
SYMBOL_TYPE_MILLICODE,
SYMBOL_TYPE_PLABEL,
SYMBOL_TYPE_PRI_PROG,
SYMBOL_TYPE_SEC_PROG,
} pa_symbol_type;
struct section_to_type
{
const char *section;
char type;
};
/* Assorted symbol information that needs to be derived from the BFD symbol
and/or the BFD backend private symbol data. */
struct som_misc_symbol_info
{
unsigned int symbol_type;
unsigned int symbol_scope;
unsigned int arg_reloc;
unsigned int symbol_info;
unsigned int symbol_value;
unsigned int priv_level;
unsigned int secondary_def;
unsigned int is_comdat;
unsigned int is_common;
unsigned int dup_common;
};
/* Map SOM section names to POSIX/BSD single-character symbol types.
This table includes all the standard subspaces as defined in the
current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
some reason was left out, and sections specific to embedded stabs. */
static const struct section_to_type stt[] =
{
{"$TEXT$", 't'},
{"$SHLIB_INFO$", 't'},
{"$MILLICODE$", 't'},
{"$LIT$", 't'},
{"$CODE$", 't'},
{"$UNWIND_START$", 't'},
{"$UNWIND$", 't'},
{"$PRIVATE$", 'd'},
{"$PLT$", 'd'},
{"$SHLIB_DATA$", 'd'},
{"$DATA$", 'd'},
{"$SHORTDATA$", 'g'},
{"$DLT$", 'd'},
{"$GLOBAL$", 'g'},
{"$SHORTBSS$", 's'},
{"$BSS$", 'b'},
{"$GDB_STRINGS$", 'N'},
{"$GDB_SYMBOLS$", 'N'},
{0, 0}
};
/* About the relocation formatting table...
There are 256 entries in the table, one for each possible
relocation opcode available in SOM. We index the table by
the relocation opcode. The names and operations are those
defined by a.out_800 (4).
Right now this table is only used to count and perform minimal
processing on relocation streams so that they can be internalized
into BFD and symbolically printed by utilities. To make actual use
of them would be much more difficult, BFD's concept of relocations
is far too simple to handle SOM relocations. The basic assumption
that a relocation can be completely processed independent of other
relocations before an object file is written is invalid for SOM.
The SOM relocations are meant to be processed as a stream, they
specify copying of data from the input section to the output section
while possibly modifying the data in some manner. They also can
specify that a variable number of zeros or uninitialized data be
inserted on in the output segment at the current offset. Some
relocations specify that some previous relocation be re-applied at
the current location in the input/output sections. And finally a number
of relocations have effects on other sections (R_ENTRY, R_EXIT,
R_UNWIND_AUX and a variety of others). There isn't even enough room
in the BFD relocation data structure to store enough information to
perform all the relocations.
Each entry in the table has three fields.
The first entry is an index into this "class" of relocations. This
index can then be used as a variable within the relocation itself.
The second field is a format string which actually controls processing
of the relocation. It uses a simple postfix machine to do calculations
based on variables/constants found in the string and the relocation
stream.
The third field specifys whether or not this relocation may use
a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
stored in the instruction.
Variables:
L = input space byte count
D = index into class of relocations
M = output space byte count
N = statement number (unused?)
O = stack operation
R = parameter relocation bits
S = symbol index
T = first 32 bits of stack unwind information
U = second 32 bits of stack unwind information
V = a literal constant (usually used in the next relocation)
P = a previous relocation
Lower case letters (starting with 'b') refer to following
bytes in the relocation stream. 'b' is the next 1 byte,
c is the next 2 bytes, d is the next 3 bytes, etc...
This is the variable part of the relocation entries that
makes our life a living hell.
numerical constants are also used in the format string. Note
the constants are represented in decimal.
'+', "*" and "=" represents the obvious postfix operators.
'<' represents a left shift.
Stack Operations:
Parameter Relocation Bits:
Unwind Entries:
Previous Relocations: The index field represents which in the queue
of 4 previous fixups should be re-applied.
Literal Constants: These are generally used to represent addend
parts of relocations when these constants are not stored in the
fields of the instructions themselves. For example the instruction
addil foo-$global$-0x1234 would use an override for "0x1234" rather
than storing it into the addil itself. */
struct fixup_format
{
int D;
const char *format;
};
static const struct fixup_format som_fixup_formats[256] =
{
/* R_NO_RELOCATION. */
{ 0, "LD1+4*=" }, /* 0x00 */
{ 1, "LD1+4*=" }, /* 0x01 */
{ 2, "LD1+4*=" }, /* 0x02 */
{ 3, "LD1+4*=" }, /* 0x03 */
{ 4, "LD1+4*=" }, /* 0x04 */
{ 5, "LD1+4*=" }, /* 0x05 */
{ 6, "LD1+4*=" }, /* 0x06 */
{ 7, "LD1+4*=" }, /* 0x07 */
{ 8, "LD1+4*=" }, /* 0x08 */
{ 9, "LD1+4*=" }, /* 0x09 */
{ 10, "LD1+4*=" }, /* 0x0a */
{ 11, "LD1+4*=" }, /* 0x0b */
{ 12, "LD1+4*=" }, /* 0x0c */
{ 13, "LD1+4*=" }, /* 0x0d */
{ 14, "LD1+4*=" }, /* 0x0e */
{ 15, "LD1+4*=" }, /* 0x0f */
{ 16, "LD1+4*=" }, /* 0x10 */
{ 17, "LD1+4*=" }, /* 0x11 */
{ 18, "LD1+4*=" }, /* 0x12 */
{ 19, "LD1+4*=" }, /* 0x13 */
{ 20, "LD1+4*=" }, /* 0x14 */
{ 21, "LD1+4*=" }, /* 0x15 */
{ 22, "LD1+4*=" }, /* 0x16 */
{ 23, "LD1+4*=" }, /* 0x17 */
{ 0, "LD8<b+1+4*=" }, /* 0x18 */
{ 1, "LD8<b+1+4*=" }, /* 0x19 */
{ 2, "LD8<b+1+4*=" }, /* 0x1a */
{ 3, "LD8<b+1+4*=" }, /* 0x1b */
{ 0, "LD16<c+1+4*=" }, /* 0x1c */
{ 1, "LD16<c+1+4*=" }, /* 0x1d */
{ 2, "LD16<c+1+4*=" }, /* 0x1e */
{ 0, "Ld1+=" }, /* 0x1f */
/* R_ZEROES. */
{ 0, "Lb1+4*=" }, /* 0x20 */
{ 1, "Ld1+=" }, /* 0x21 */
/* R_UNINIT. */
{ 0, "Lb1+4*=" }, /* 0x22 */
{ 1, "Ld1+=" }, /* 0x23 */
/* R_RELOCATION. */
{ 0, "L4=" }, /* 0x24 */
/* R_DATA_ONE_SYMBOL. */
{ 0, "L4=Sb=" }, /* 0x25 */
{ 1, "L4=Sd=" }, /* 0x26 */
/* R_DATA_PLABEL. */
{ 0, "L4=Sb=" }, /* 0x27 */
{ 1, "L4=Sd=" }, /* 0x28 */
/* R_SPACE_REF. */
{ 0, "L4=" }, /* 0x29 */
/* R_REPEATED_INIT. */
{ 0, "L4=Mb1+4*=" }, /* 0x2a */
{ 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
{ 2, "Lb4*=Md1+4*=" }, /* 0x2c */
{ 3, "Ld1+=Me1+=" }, /* 0x2d */
{ 0, "" }, /* 0x2e */
{ 0, "" }, /* 0x2f */
/* R_PCREL_CALL. */
{ 0, "L4=RD=Sb=" }, /* 0x30 */
{ 1, "L4=RD=Sb=" }, /* 0x31 */
{ 2, "L4=RD=Sb=" }, /* 0x32 */
{ 3, "L4=RD=Sb=" }, /* 0x33 */
{ 4, "L4=RD=Sb=" }, /* 0x34 */
{ 5, "L4=RD=Sb=" }, /* 0x35 */
{ 6, "L4=RD=Sb=" }, /* 0x36 */
{ 7, "L4=RD=Sb=" }, /* 0x37 */
{ 8, "L4=RD=Sb=" }, /* 0x38 */
{ 9, "L4=RD=Sb=" }, /* 0x39 */
{ 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
{ 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
{ 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
{ 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
/* R_SHORT_PCREL_MODE. */
{ 0, "" }, /* 0x3e */
/* R_LONG_PCREL_MODE. */
{ 0, "" }, /* 0x3f */
/* R_ABS_CALL. */
{ 0, "L4=RD=Sb=" }, /* 0x40 */
{ 1, "L4=RD=Sb=" }, /* 0x41 */
{ 2, "L4=RD=Sb=" }, /* 0x42 */
{ 3, "L4=RD=Sb=" }, /* 0x43 */
{ 4, "L4=RD=Sb=" }, /* 0x44 */
{ 5, "L4=RD=Sb=" }, /* 0x45 */
{ 6, "L4=RD=Sb=" }, /* 0x46 */
{ 7, "L4=RD=Sb=" }, /* 0x47 */
{ 8, "L4=RD=Sb=" }, /* 0x48 */
{ 9, "L4=RD=Sb=" }, /* 0x49 */
{ 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
{ 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
{ 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
{ 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
/* R_RESERVED. */
{ 0, "" }, /* 0x4e */
{ 0, "" }, /* 0x4f */
/* R_DP_RELATIVE. */
{ 0, "L4=SD=" }, /* 0x50 */
{ 1, "L4=SD=" }, /* 0x51 */
{ 2, "L4=SD=" }, /* 0x52 */
{ 3, "L4=SD=" }, /* 0x53 */
{ 4, "L4=SD=" }, /* 0x54 */
{ 5, "L4=SD=" }, /* 0x55 */
{ 6, "L4=SD=" }, /* 0x56 */
{ 7, "L4=SD=" }, /* 0x57 */
{ 8, "L4=SD=" }, /* 0x58 */
{ 9, "L4=SD=" }, /* 0x59 */
{ 10, "L4=SD=" }, /* 0x5a */
{ 11, "L4=SD=" }, /* 0x5b */
{ 12, "L4=SD=" }, /* 0x5c */
{ 13, "L4=SD=" }, /* 0x5d */
{ 14, "L4=SD=" }, /* 0x5e */
{ 15, "L4=SD=" }, /* 0x5f */
{ 16, "L4=SD=" }, /* 0x60 */
{ 17, "L4=SD=" }, /* 0x61 */
{ 18, "L4=SD=" }, /* 0x62 */
{ 19, "L4=SD=" }, /* 0x63 */
{ 20, "L4=SD=" }, /* 0x64 */
{ 21, "L4=SD=" }, /* 0x65 */
{ 22, "L4=SD=" }, /* 0x66 */
{ 23, "L4=SD=" }, /* 0x67 */
{ 24, "L4=SD=" }, /* 0x68 */
{ 25, "L4=SD=" }, /* 0x69 */
{ 26, "L4=SD=" }, /* 0x6a */
{ 27, "L4=SD=" }, /* 0x6b */
{ 28, "L4=SD=" }, /* 0x6c */
{ 29, "L4=SD=" }, /* 0x6d */
{ 30, "L4=SD=" }, /* 0x6e */
{ 31, "L4=SD=" }, /* 0x6f */
{ 32, "L4=Sb=" }, /* 0x70 */
{ 33, "L4=Sd=" }, /* 0x71 */
/* R_DATA_GPREL. */
{ 0, "L4=Sd=" }, /* 0x72 */
/* R_RESERVED. */
{ 0, "" }, /* 0x73 */
{ 0, "" }, /* 0x74 */
{ 0, "" }, /* 0x75 */
{ 0, "" }, /* 0x76 */
{ 0, "" }, /* 0x77 */
/* R_DLT_REL. */
{ 0, "L4=Sb=" }, /* 0x78 */
{ 1, "L4=Sd=" }, /* 0x79 */
/* R_RESERVED. */
{ 0, "" }, /* 0x7a */
{ 0, "" }, /* 0x7b */
{ 0, "" }, /* 0x7c */
{ 0, "" }, /* 0x7d */
{ 0, "" }, /* 0x7e */
{ 0, "" }, /* 0x7f */
/* R_CODE_ONE_SYMBOL. */
{ 0, "L4=SD=" }, /* 0x80 */
{ 1, "L4=SD=" }, /* 0x81 */
{ 2, "L4=SD=" }, /* 0x82 */
{ 3, "L4=SD=" }, /* 0x83 */
{ 4, "L4=SD=" }, /* 0x84 */
{ 5, "L4=SD=" }, /* 0x85 */
{ 6, "L4=SD=" }, /* 0x86 */
{ 7, "L4=SD=" }, /* 0x87 */
{ 8, "L4=SD=" }, /* 0x88 */
{ 9, "L4=SD=" }, /* 0x89 */
{ 10, "L4=SD=" }, /* 0x8q */
{ 11, "L4=SD=" }, /* 0x8b */
{ 12, "L4=SD=" }, /* 0x8c */
{ 13, "L4=SD=" }, /* 0x8d */
{ 14, "L4=SD=" }, /* 0x8e */
{ 15, "L4=SD=" }, /* 0x8f */
{ 16, "L4=SD=" }, /* 0x90 */
{ 17, "L4=SD=" }, /* 0x91 */
{ 18, "L4=SD=" }, /* 0x92 */
{ 19, "L4=SD=" }, /* 0x93 */
{ 20, "L4=SD=" }, /* 0x94 */
{ 21, "L4=SD=" }, /* 0x95 */
{ 22, "L4=SD=" }, /* 0x96 */
{ 23, "L4=SD=" }, /* 0x97 */
{ 24, "L4=SD=" }, /* 0x98 */
{ 25, "L4=SD=" }, /* 0x99 */
{ 26, "L4=SD=" }, /* 0x9a */
{ 27, "L4=SD=" }, /* 0x9b */
{ 28, "L4=SD=" }, /* 0x9c */
{ 29, "L4=SD=" }, /* 0x9d */
{ 30, "L4=SD=" }, /* 0x9e */
{ 31, "L4=SD=" }, /* 0x9f */
{ 32, "L4=Sb=" }, /* 0xa0 */
{ 33, "L4=Sd=" }, /* 0xa1 */
/* R_RESERVED. */
{ 0, "" }, /* 0xa2 */
{ 0, "" }, /* 0xa3 */
{ 0, "" }, /* 0xa4 */
{ 0, "" }, /* 0xa5 */
{ 0, "" }, /* 0xa6 */
{ 0, "" }, /* 0xa7 */
{ 0, "" }, /* 0xa8 */
{ 0, "" }, /* 0xa9 */
{ 0, "" }, /* 0xaa */
{ 0, "" }, /* 0xab */
{ 0, "" }, /* 0xac */
{ 0, "" }, /* 0xad */
/* R_MILLI_REL. */
{ 0, "L4=Sb=" }, /* 0xae */
{ 1, "L4=Sd=" }, /* 0xaf */
/* R_CODE_PLABEL. */
{ 0, "L4=Sb=" }, /* 0xb0 */
{ 1, "L4=Sd=" }, /* 0xb1 */
/* R_BREAKPOINT. */
{ 0, "L4=" }, /* 0xb2 */
/* R_ENTRY. */
{ 0, "Te=Ue=" }, /* 0xb3 */
{ 1, "Uf=" }, /* 0xb4 */
/* R_ALT_ENTRY. */
{ 0, "" }, /* 0xb5 */
/* R_EXIT. */
{ 0, "" }, /* 0xb6 */
/* R_BEGIN_TRY. */
{ 0, "" }, /* 0xb7 */
/* R_END_TRY. */
{ 0, "R0=" }, /* 0xb8 */
{ 1, "Rb4*=" }, /* 0xb9 */
{ 2, "Rd4*=" }, /* 0xba */
/* R_BEGIN_BRTAB. */
{ 0, "" }, /* 0xbb */
/* R_END_BRTAB. */
{ 0, "" }, /* 0xbc */
/* R_STATEMENT. */
{ 0, "Nb=" }, /* 0xbd */
{ 1, "Nc=" }, /* 0xbe */
{ 2, "Nd=" }, /* 0xbf */
/* R_DATA_EXPR. */
{ 0, "L4=" }, /* 0xc0 */
/* R_CODE_EXPR. */
{ 0, "L4=" }, /* 0xc1 */
/* R_FSEL. */
{ 0, "" }, /* 0xc2 */
/* R_LSEL. */
{ 0, "" }, /* 0xc3 */
/* R_RSEL. */
{ 0, "" }, /* 0xc4 */
/* R_N_MODE. */
{ 0, "" }, /* 0xc5 */
/* R_S_MODE. */
{ 0, "" }, /* 0xc6 */
/* R_D_MODE. */
{ 0, "" }, /* 0xc7 */
/* R_R_MODE. */
{ 0, "" }, /* 0xc8 */
/* R_DATA_OVERRIDE. */
{ 0, "V0=" }, /* 0xc9 */
{ 1, "Vb=" }, /* 0xca */
{ 2, "Vc=" }, /* 0xcb */
{ 3, "Vd=" }, /* 0xcc */
{ 4, "Ve=" }, /* 0xcd */
/* R_TRANSLATED. */
{ 0, "" }, /* 0xce */
/* R_AUX_UNWIND. */
{ 0,"Sd=Ve=Ee=" }, /* 0xcf */
/* R_COMP1. */
{ 0, "Ob=" }, /* 0xd0 */
/* R_COMP2. */
{ 0, "Ob=Sd=" }, /* 0xd1 */
/* R_COMP3. */
{ 0, "Ob=Ve=" }, /* 0xd2 */
/* R_PREV_FIXUP. */
{ 0, "P" }, /* 0xd3 */
{ 1, "P" }, /* 0xd4 */
{ 2, "P" }, /* 0xd5 */
{ 3, "P" }, /* 0xd6 */
/* R_SEC_STMT. */
{ 0, "" }, /* 0xd7 */
/* R_N0SEL. */
{ 0, "" }, /* 0xd8 */
/* R_N1SEL. */
{ 0, "" }, /* 0xd9 */
/* R_LINETAB. */
{ 0, "Eb=Sd=Ve=" }, /* 0xda */
/* R_LINETAB_ESC. */
{ 0, "Eb=Mb=" }, /* 0xdb */
/* R_LTP_OVERRIDE. */
{ 0, "" }, /* 0xdc */
/* R_COMMENT. */
{ 0, "Ob=Vf=" }, /* 0xdd */
/* R_RESERVED. */
{ 0, "" }, /* 0xde */
{ 0, "" }, /* 0xdf */
{ 0, "" }, /* 0xe0 */
{ 0, "" }, /* 0xe1 */
{ 0, "" }, /* 0xe2 */
{ 0, "" }, /* 0xe3 */
{ 0, "" }, /* 0xe4 */
{ 0, "" }, /* 0xe5 */
{ 0, "" }, /* 0xe6 */
{ 0, "" }, /* 0xe7 */
{ 0, "" }, /* 0xe8 */
{ 0, "" }, /* 0xe9 */
{ 0, "" }, /* 0xea */
{ 0, "" }, /* 0xeb */
{ 0, "" }, /* 0xec */
{ 0, "" }, /* 0xed */
{ 0, "" }, /* 0xee */
{ 0, "" }, /* 0xef */
{ 0, "" }, /* 0xf0 */
{ 0, "" }, /* 0xf1 */
{ 0, "" }, /* 0xf2 */
{ 0, "" }, /* 0xf3 */
{ 0, "" }, /* 0xf4 */
{ 0, "" }, /* 0xf5 */
{ 0, "" }, /* 0xf6 */
{ 0, "" }, /* 0xf7 */
{ 0, "" }, /* 0xf8 */
{ 0, "" }, /* 0xf9 */
{ 0, "" }, /* 0xfa */
{ 0, "" }, /* 0xfb */
{ 0, "" }, /* 0xfc */
{ 0, "" }, /* 0xfd */
{ 0, "" }, /* 0xfe */
{ 0, "" }, /* 0xff */
};
static const int comp1_opcodes[] =
{
0x00,
0x40,
0x41,
0x42,
0x43,
0x44,
0x45,
0x46,
0x47,
0x48,
0x49,
0x4a,
0x4b,
0x60,
0x80,
0xa0,
0xc0,
-1
};
static const int comp2_opcodes[] =
{
0x00,
0x80,
0x82,
0xc0,
-1
};
static const int comp3_opcodes[] =
{
0x00,
0x02,
-1
};
/* These apparently are not in older versions of hpux reloc.h (hpux7). */
/* And these first appeared in hpux10. */
#ifndef R_SHORT_PCREL_MODE
#define NO_PCREL_MODES
#define R_SHORT_PCREL_MODE 0x3e
#endif
#define SOM_HOWTO(SIZE, TYPE) \
HOWTO(TYPE, 0, SIZE, 32, false, 0, 0, hppa_som_reloc, \
#TYPE, false, 0, 0, false)
static reloc_howto_type som_hppa_howto_table[] =
{
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_NO_RELOCATION),
SOM_HOWTO (0, R_ZEROES),
SOM_HOWTO (0, R_ZEROES),
SOM_HOWTO (0, R_UNINIT),
SOM_HOWTO (0, R_UNINIT),
SOM_HOWTO (4, R_RELOCATION),
SOM_HOWTO (4, R_DATA_ONE_SYMBOL),
SOM_HOWTO (4, R_DATA_ONE_SYMBOL),
SOM_HOWTO (4, R_DATA_PLABEL),
SOM_HOWTO (4, R_DATA_PLABEL),
SOM_HOWTO (4, R_SPACE_REF),
SOM_HOWTO (0, R_REPEATED_INIT),
SOM_HOWTO (0, R_REPEATED_INIT),
SOM_HOWTO (0, R_REPEATED_INIT),
SOM_HOWTO (0, R_REPEATED_INIT),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (4, R_PCREL_CALL),
SOM_HOWTO (0, R_SHORT_PCREL_MODE),
SOM_HOWTO (0, R_LONG_PCREL_MODE),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (4, R_ABS_CALL),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DP_RELATIVE),
SOM_HOWTO (4, R_DATA_GPREL),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (4, R_DLT_REL),
SOM_HOWTO (4, R_DLT_REL),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (4, R_CODE_ONE_SYMBOL),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (4, R_MILLI_REL),
SOM_HOWTO (4, R_MILLI_REL),
SOM_HOWTO (4, R_CODE_PLABEL),
SOM_HOWTO (4, R_CODE_PLABEL),
SOM_HOWTO (4, R_BREAKPOINT),
SOM_HOWTO (0, R_ENTRY),
SOM_HOWTO (0, R_ENTRY),
SOM_HOWTO (0, R_ALT_ENTRY),
SOM_HOWTO (0, R_EXIT),
SOM_HOWTO (0, R_BEGIN_TRY),
SOM_HOWTO (0, R_END_TRY),
SOM_HOWTO (0, R_END_TRY),
SOM_HOWTO (0, R_END_TRY),
SOM_HOWTO (0, R_BEGIN_BRTAB),
SOM_HOWTO (0, R_END_BRTAB),
SOM_HOWTO (0, R_STATEMENT),
SOM_HOWTO (0, R_STATEMENT),
SOM_HOWTO (0, R_STATEMENT),
SOM_HOWTO (4, R_DATA_EXPR),
SOM_HOWTO (4, R_CODE_EXPR),
SOM_HOWTO (0, R_FSEL),
SOM_HOWTO (0, R_LSEL),
SOM_HOWTO (0, R_RSEL),
SOM_HOWTO (0, R_N_MODE),
SOM_HOWTO (0, R_S_MODE),
SOM_HOWTO (0, R_D_MODE),
SOM_HOWTO (0, R_R_MODE),
SOM_HOWTO (0, R_DATA_OVERRIDE),
SOM_HOWTO (0, R_DATA_OVERRIDE),
SOM_HOWTO (0, R_DATA_OVERRIDE),
SOM_HOWTO (0, R_DATA_OVERRIDE),
SOM_HOWTO (0, R_DATA_OVERRIDE),
SOM_HOWTO (0, R_TRANSLATED),
SOM_HOWTO (0, R_AUX_UNWIND),
SOM_HOWTO (0, R_COMP1),
SOM_HOWTO (0, R_COMP2),
SOM_HOWTO (0, R_COMP3),
SOM_HOWTO (0, R_PREV_FIXUP),
SOM_HOWTO (0, R_PREV_FIXUP),
SOM_HOWTO (0, R_PREV_FIXUP),
SOM_HOWTO (0, R_PREV_FIXUP),
SOM_HOWTO (0, R_SEC_STMT),
SOM_HOWTO (0, R_N0SEL),
SOM_HOWTO (0, R_N1SEL),
SOM_HOWTO (0, R_LINETAB),
SOM_HOWTO (0, R_LINETAB_ESC),
SOM_HOWTO (0, R_LTP_OVERRIDE),
SOM_HOWTO (0, R_COMMENT),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED),
SOM_HOWTO (0, R_RESERVED)
};
/* Initialize the SOM relocation queue. By definition the queue holds
the last four multibyte fixups. */
static void
som_initialize_reloc_queue (struct reloc_queue *queue)
{
queue[0].reloc = NULL;
queue[0].size = 0;
queue[1].reloc = NULL;
queue[1].size = 0;
queue[2].reloc = NULL;
queue[2].size = 0;
queue[3].reloc = NULL;
queue[3].size = 0;
}
/* Insert a new relocation into the relocation queue. */
static void
som_reloc_queue_insert (unsigned char *p,
unsigned int size,
struct reloc_queue *queue)
{
queue[3].reloc = queue[2].reloc;
queue[3].size = queue[2].size;
queue[2].reloc = queue[1].reloc;
queue[2].size = queue[1].size;
queue[1].reloc = queue[0].reloc;
queue[1].size = queue[0].size;
queue[0].reloc = p;
queue[0].size = size;
}
/* When an entry in the relocation queue is reused, the entry moves
to the front of the queue. */
static void
som_reloc_queue_fix (struct reloc_queue *queue, unsigned int idx)
{
if (idx == 0)
return;
if (idx == 1)
{
unsigned char *tmp1 = queue[0].reloc;
unsigned int tmp2 = queue[0].size;
queue[0].reloc = queue[1].reloc;
queue[0].size = queue[1].size;
queue[1].reloc = tmp1;
queue[1].size = tmp2;
return;
}
if (idx == 2)
{
unsigned char *tmp1 = queue[0].reloc;
unsigned int tmp2 = queue[0].size;
queue[0].reloc = queue[2].reloc;
queue[0].size = queue[2].size;
queue[2].reloc = queue[1].reloc;
queue[2].size = queue[1].size;
queue[1].reloc = tmp1;
queue[1].size = tmp2;
return;
}
if (idx == 3)
{
unsigned char *tmp1 = queue[0].reloc;
unsigned int tmp2 = queue[0].size;
queue[0].reloc = queue[3].reloc;
queue[0].size = queue[3].size;
queue[3].reloc = queue[2].reloc;
queue[3].size = queue[2].size;
queue[2].reloc = queue[1].reloc;
queue[2].size = queue[1].size;
queue[1].reloc = tmp1;
queue[1].size = tmp2;
return;
}
abort ();
}
/* Search for a particular relocation in the relocation queue. */
static int
som_reloc_queue_find (unsigned char *p,
unsigned int size,
struct reloc_queue *queue)
{
if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
&& size == queue[0].size)
return 0;
if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
&& size == queue[1].size)
return 1;
if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
&& size == queue[2].size)
return 2;
if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
&& size == queue[3].size)
return 3;
return -1;
}
static unsigned char *
try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED,
unsigned int *subspace_reloc_sizep,
unsigned char *p,
unsigned int size,
struct reloc_queue *queue)
{
int queue_index = som_reloc_queue_find (p, size, queue);
if (queue_index != -1)
{
/* Found this in a previous fixup. Undo the fixup we
just built and use R_PREV_FIXUP instead. We saved
a total of size - 1 bytes in the fixup stream. */
bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
p += 1;
*subspace_reloc_sizep += 1;
som_reloc_queue_fix (queue, queue_index);
}
else
{
som_reloc_queue_insert (p, size, queue);
*subspace_reloc_sizep += size;
p += size;
}
return p;
}
/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
bytes without any relocation. Update the size of the subspace
relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
current pointer into the relocation stream. */
static unsigned char *
som_reloc_skip (bfd *abfd,
unsigned int skip,
unsigned char *p,
unsigned int *subspace_reloc_sizep,
struct reloc_queue *queue)
{
/* Use a 4 byte R_NO_RELOCATION entry with a maximal value
then R_PREV_FIXUPs to get the difference down to a
reasonable size. */
if (skip >= 0x1000000)
{
skip -= 0x1000000;
bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
bfd_put_8 (abfd, 0xff, p + 1);
bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
while (skip >= 0x1000000)
{
skip -= 0x1000000;
bfd_put_8 (abfd, R_PREV_FIXUP, p);
p++;
*subspace_reloc_sizep += 1;
/* No need to adjust queue here since we are repeating the
most recent fixup. */
}
}
/* The difference must be less than 0x1000000. Use one
more R_NO_RELOCATION entry to get to the right difference. */
if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
{
/* Difference can be handled in a simple single-byte
R_NO_RELOCATION entry. */
if (skip <= 0x60)
{
bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
*subspace_reloc_sizep += 1;
p++;
}
/* Handle it with a two byte R_NO_RELOCATION entry. */
else if (skip <= 0x1000)
{
bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
}
/* Handle it with a three byte R_NO_RELOCATION entry. */
else
{
bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
}
}
/* Ugh. Punt and use a 4 byte entry. */
else if (skip > 0)
{
bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
}
return p;
}
/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
from a BFD relocation. Update the size of the subspace relocation
stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
into the relocation stream. */
static unsigned char *
som_reloc_addend (bfd *abfd,
bfd_vma addend,
unsigned char *p,
unsigned int *subspace_reloc_sizep,
struct reloc_queue *queue)
{
if (addend + 0x80 < 0x100)
{
bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
bfd_put_8 (abfd, addend, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
}
else if (addend + 0x8000 < 0x10000)
{
bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
bfd_put_16 (abfd, addend, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
}
else if (addend + 0x800000 < 0x1000000)
{
bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
bfd_put_8 (abfd, addend >> 16, p + 1);
bfd_put_16 (abfd, addend, p + 2);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
}
else
{
bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
bfd_put_32 (abfd, addend, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
}
return p;
}
/* Handle a single function call relocation. */
static unsigned char *
som_reloc_call (bfd *abfd,
unsigned char *p,
unsigned int *subspace_reloc_sizep,
arelent *bfd_reloc,
int sym_num,
struct reloc_queue *queue)
{
int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
int rtn_bits = arg_bits & 0x3;
int type, done = 0;
/* You'll never believe all this is necessary to handle relocations
for function calls. Having to compute and pack the argument
relocation bits is the real nightmare.
If you're interested in how this works, just forget it. You really
do not want to know about this braindamage. */
/* First see if this can be done with a "simple" relocation. Simple
relocations have a symbol number < 0x100 and have simple encodings
of argument relocations. */
if (sym_num < 0x100)
{
switch (arg_bits)
{
case 0:
case 1:
type = 0;
break;
case 1 << 8:
case 1 << 8 | 1:
type = 1;
break;
case 1 << 8 | 1 << 6:
case 1 << 8 | 1 << 6 | 1:
type = 2;
break;
case 1 << 8 | 1 << 6 | 1 << 4:
case 1 << 8 | 1 << 6 | 1 << 4 | 1:
type = 3;
break;
case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
type = 4;
break;
default:
/* Not one of the easy encodings. This will have to be
handled by the more complex code below. */
type = -1;
break;
}
if (type != -1)
{
/* Account for the return value too. */
if (rtn_bits)
type += 5;
/* Emit a 2 byte relocation. Then see if it can be handled
with a relocation which is already in the relocation queue. */
bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
bfd_put_8 (abfd, sym_num, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
done = 1;
}
}
/* If this could not be handled with a simple relocation, then do a hard
one. Hard relocations occur if the symbol number was too high or if
the encoding of argument relocation bits is too complex. */
if (! done)
{
/* Don't ask about these magic sequences. I took them straight
from gas-1.36 which took them from the a.out man page. */
type = rtn_bits;
if ((arg_bits >> 6 & 0xf) == 0xe)
type += 9 * 40;
else
type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
if ((arg_bits >> 2 & 0xf) == 0xe)
type += 9 * 4;
else
type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
/* Output the first two bytes of the relocation. These describe
the length of the relocation and encoding style. */
bfd_put_8 (abfd, bfd_reloc->howto->type + 10
+ 2 * (sym_num >= 0x100) + (type >= 0x100),
p);
bfd_put_8 (abfd, type, p + 1);
/* Now output the symbol index and see if this bizarre relocation
just happened to be in the relocation queue. */
if (sym_num < 0x100)
{
bfd_put_8 (abfd, sym_num, p + 2);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
}
else
{
bfd_put_8 (abfd, sym_num >> 16, p + 2);
bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
}
}
return p;
}
/* Return the logarithm of X, base 2, considering X unsigned,
if X is a power of 2. Otherwise, returns -1. */
static int
exact_log2 (unsigned int x)
{
int log = 0;
/* Test for 0 or a power of 2. */
if (x == 0 || x != (x & -x))
return -1;
while ((x >>= 1) != 0)
log++;
return log;
}
static bfd_reloc_status_type
hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED,
arelent *reloc_entry,
asymbol *symbol_in ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
if (output_bfd)
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
/* Given a generic HPPA relocation type, the instruction format,
and a field selector, return one or more appropriate SOM relocations. */
int **
hppa_som_gen_reloc_type (bfd *abfd,
int base_type,
int format,
enum hppa_reloc_field_selector_type_alt field,
int sym_diff,
asymbol *sym)
{
int *final_type, **final_types;
final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
if (!final_types || !final_type)
return NULL;
/* The field selector may require additional relocations to be
generated. It's impossible to know at this moment if additional
relocations will be needed, so we make them. The code to actually
write the relocation/fixup stream is responsible for removing
any redundant relocations. */
switch (field)
{
case e_fsel:
case e_psel:
case e_lpsel:
case e_rpsel:
final_types[0] = final_type;
final_types[1] = NULL;
final_types[2] = NULL;
*final_type = base_type;
break;
case e_tsel:
case e_ltsel:
case e_rtsel:
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
if (!final_types[0])
return NULL;
if (field == e_tsel)
*final_types[0] = R_FSEL;
else if (field == e_ltsel)
*final_types[0] = R_LSEL;
else
*final_types[0] = R_RSEL;
final_types[1] = final_type;
final_types[2] = NULL;
*final_type = base_type;
break;
case e_lssel:
case e_rssel:
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
if (!final_types[0])
return NULL;
*final_types[0] = R_S_MODE;
final_types[1] = final_type;
final_types[2] = NULL;
*final_type = base_type;
break;
case e_lsel:
case e_rsel:
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
if (!final_types[0])
return NULL;
*final_types[0] = R_N_MODE;
final_types[1] = final_type;
final_types[2] = NULL;
*final_type = base_type;
break;
case e_ldsel:
case e_rdsel:
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
if (!final_types[0])
return NULL;
*final_types[0] = R_D_MODE;
final_types[1] = final_type;
final_types[2] = NULL;
*final_type = base_type;
break;
case e_lrsel:
case e_rrsel:
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
if (!final_types[0])
return NULL;
*final_types[0] = R_R_MODE;
final_types[1] = final_type;
final_types[2] = NULL;
*final_type = base_type;
break;
case e_nsel:
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
if (!final_types[0])
return NULL;
*final_types[0] = R_N1SEL;
final_types[1] = final_type;
final_types[2] = NULL;
*final_type = base_type;
break;
case e_nlsel:
case e_nlrsel:
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
if (!final_types[0])
return NULL;
*final_types[0] = R_N0SEL;
final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
if (!final_types[1])
return NULL;
if (field == e_nlsel)
*final_types[1] = R_N_MODE;
else
*final_types[1] = R_R_MODE;
final_types[2] = final_type;
final_types[3] = NULL;
*final_type = base_type;
break;
/* FIXME: These two field selectors are not currently supported. */
case e_ltpsel:
case e_rtpsel:
abort ();
}
switch (base_type)
{
case R_HPPA:
/* The difference of two symbols needs *very* special handling. */
if (sym_diff)
{
size_t amt = sizeof (int);
final_types[0] = bfd_alloc (abfd, amt);
final_types[1] = bfd_alloc (abfd, amt);
final_types[2] = bfd_alloc (abfd, amt);
final_types[3] = bfd_alloc (abfd, amt);
if (!final_types[0] || !final_types[1] || !final_types[2])
return NULL;
if (field == e_fsel)
*final_types[0] = R_FSEL;
else if (field == e_rsel)
*final_types[0] = R_RSEL;
else if (field == e_lsel)
*final_types[0] = R_LSEL;
*final_types[1] = R_COMP2;
*final_types[2] = R_COMP2;
*final_types[3] = R_COMP1;
final_types[4] = final_type;
if (format == 32)
*final_types[4] = R_DATA_EXPR;
else
*final_types[4] = R_CODE_EXPR;
final_types[5] = NULL;
break;
}
/* PLABELs get their own relocation type. */
else if (field == e_psel
|| field == e_lpsel
|| field == e_rpsel)
{
/* A PLABEL relocation that has a size of 32 bits must
be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
if (format == 32)
*final_type = R_DATA_PLABEL;
else
*final_type = R_CODE_PLABEL;
}
/* PIC stuff. */
else if (field == e_tsel
|| field == e_ltsel
|| field == e_rtsel)
*final_type = R_DLT_REL;
/* A relocation in the data space is always a full 32bits. */
else if (format == 32)
{
*final_type = R_DATA_ONE_SYMBOL;
/* If there's no SOM symbol type associated with this BFD
symbol, then set the symbol type to ST_DATA.
Only do this if the type is going to default later when
we write the object file.
This is done so that the linker never encounters an
R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
This allows the compiler to generate exception handling
tables.
Note that one day we may need to also emit BEGIN_BRTAB and
END_BRTAB to prevent the linker from optimizing away insns
in exception handling regions. */
if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
&& (sym->flags & BSF_SECTION_SYM) == 0
&& (sym->flags & BSF_FUNCTION) == 0
&& ! bfd_is_com_section (sym->section))
som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
}
break;
case R_HPPA_GOTOFF:
/* More PLABEL special cases. */
if (field == e_psel
|| field == e_lpsel
|| field == e_rpsel)
*final_type = R_DATA_PLABEL;
else if (field == e_fsel && format == 32)
*final_type = R_DATA_GPREL;
break;
case R_HPPA_COMPLEX:
/* The difference of two symbols needs *very* special handling. */
if (sym_diff)
{
size_t amt = sizeof (int);
final_types[0] = bfd_alloc (abfd, amt);
final_types[1] = bfd_alloc (abfd, amt);
final_types[2] = bfd_alloc (abfd, amt);
final_types[3] = bfd_alloc (abfd, amt);
if (!final_types[0] || !final_types[1] || !final_types[2])
return NULL;
if (field == e_fsel)
*final_types[0] = R_FSEL;
else if (field == e_rsel)
*final_types[0] = R_RSEL;
else if (field == e_lsel)
*final_types[0] = R_LSEL;
*final_types[1] = R_COMP2;
*final_types[2] = R_COMP2;
*final_types[3] = R_COMP1;
final_types[4] = final_type;
if (format == 32)
*final_types[4] = R_DATA_EXPR;
else
*final_types[4] = R_CODE_EXPR;
final_types[5] = NULL;
break;
}
else
break;
case R_HPPA_NONE:
case R_HPPA_ABS_CALL:
/* Right now we can default all these. */
break;
case R_HPPA_PCREL_CALL:
{
#ifndef NO_PCREL_MODES
/* If we have short and long pcrel modes, then generate the proper
mode selector, then the pcrel relocation. Redundant selectors
will be eliminated as the relocs are sized and emitted. */
size_t amt = sizeof (int);
final_types[0] = bfd_alloc (abfd, amt);
if (!final_types[0])
return NULL;
if (format == 17)
*final_types[0] = R_SHORT_PCREL_MODE;
else
*final_types[0] = R_LONG_PCREL_MODE;
final_types[1] = final_type;
final_types[2] = NULL;
*final_type = base_type;
#endif
break;
}
}
return final_types;
}
/* Return the address of the correct entry in the PA SOM relocation
howto table. */
static reloc_howto_type *
som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
if ((int) code < (int) R_NO_RELOCATION + 255)
{
BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
return &som_hppa_howto_table[(int) code];
}
return NULL;
}
static reloc_howto_type *
som_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0;
i < sizeof (som_hppa_howto_table) / sizeof (som_hppa_howto_table[0]);
i++)
if (som_hppa_howto_table[i].name != NULL
&& strcasecmp (som_hppa_howto_table[i].name, r_name) == 0)
return &som_hppa_howto_table[i];
return NULL;
}
static void
som_swap_clock_in (struct som_external_clock *src,
struct som_clock *dst)
{
dst->secs = bfd_getb32 (src->secs);
dst->nanosecs = bfd_getb32 (src->nanosecs);
}
static void
som_swap_clock_out (struct som_clock *src,
struct som_external_clock *dst)
{
bfd_putb32 (src->secs, dst->secs);
bfd_putb32 (src->nanosecs, dst->nanosecs);
}
static void
som_swap_header_in (struct som_external_header *src,
struct som_header *dst)
{
dst->system_id = bfd_getb16 (src->system_id);
dst->a_magic = bfd_getb16 (src->a_magic);
dst->version_id = bfd_getb32 (src->version_id);
som_swap_clock_in (&src->file_time, &dst->file_time);
dst->entry_space = bfd_getb32 (src->entry_space);
dst->entry_subspace = bfd_getb32 (src->entry_subspace);
dst->entry_offset = bfd_getb32 (src->entry_offset);
dst->aux_header_location = bfd_getb32 (src->aux_header_location);
dst->aux_header_size = bfd_getb32 (src->aux_header_size);
dst->som_length = bfd_getb32 (src->som_length);
dst->presumed_dp = bfd_getb32 (src->presumed_dp);
dst->space_location = bfd_getb32 (src->space_location);
dst->space_total = bfd_getb32 (src->space_total);
dst->subspace_location = bfd_getb32 (src->subspace_location);
dst->subspace_total = bfd_getb32 (src->subspace_total);
dst->loader_fixup_location = bfd_getb32 (src->loader_fixup_location);
dst->loader_fixup_total = bfd_getb32 (src->loader_fixup_total);
dst->space_strings_location = bfd_getb32 (src->space_strings_location);
dst->space_strings_size = bfd_getb32 (src->space_strings_size);
dst->init_array_location = bfd_getb32 (src->init_array_location);
dst->init_array_total = bfd_getb32 (src->init_array_total);
dst->compiler_location = bfd_getb32 (src->compiler_location);
dst->compiler_total = bfd_getb32 (src->compiler_total);
dst->symbol_location = bfd_getb32 (src->symbol_location);
dst->symbol_total = bfd_getb32 (src->symbol_total);
dst->fixup_request_location = bfd_getb32 (src->fixup_request_location);
dst->fixup_request_total = bfd_getb32 (src->fixup_request_total);
dst->symbol_strings_location = bfd_getb32 (src->symbol_strings_location);
dst->symbol_strings_size = bfd_getb32 (src->symbol_strings_size);
dst->unloadable_sp_location = bfd_getb32 (src->unloadable_sp_location);
dst->unloadable_sp_size = bfd_getb32 (src->unloadable_sp_size);
dst->checksum = bfd_getb32 (src->checksum);
}
static void
som_swap_header_out (struct som_header *src,
struct som_external_header *dst)
{
bfd_putb16 (src->system_id, dst->system_id);
bfd_putb16 (src->a_magic, dst->a_magic);
bfd_putb32 (src->version_id, dst->version_id);
som_swap_clock_out (&src->file_time, &dst->file_time);
bfd_putb32 (src->entry_space, dst->entry_space);
bfd_putb32 (src->entry_subspace, dst->entry_subspace);
bfd_putb32 (src->entry_offset, dst->entry_offset);
bfd_putb32 (src->aux_header_location, dst->aux_header_location);
bfd_putb32 (src->aux_header_size, dst->aux_header_size);
bfd_putb32 (src->som_length, dst->som_length);
bfd_putb32 (src->presumed_dp, dst->presumed_dp);
bfd_putb32 (src->space_location, dst->space_location);
bfd_putb32 (src->space_total, dst->space_total);
bfd_putb32 (src->subspace_location, dst->subspace_location);
bfd_putb32 (src->subspace_total, dst->subspace_total);
bfd_putb32 (src->loader_fixup_location, dst->loader_fixup_location);
bfd_putb32 (src->loader_fixup_total, dst->loader_fixup_total);
bfd_putb32 (src->space_strings_location, dst->space_strings_location);
bfd_putb32 (src->space_strings_size, dst->space_strings_size);
bfd_putb32 (src->init_array_location, dst->init_array_location);
bfd_putb32 (src->init_array_total, dst->init_array_total);
bfd_putb32 (src->compiler_location, dst->compiler_location);
bfd_putb32 (src->compiler_total, dst->compiler_total);
bfd_putb32 (src->symbol_location, dst->symbol_location);
bfd_putb32 (src->symbol_total, dst->symbol_total);
bfd_putb32 (src->fixup_request_location, dst->fixup_request_location);
bfd_putb32 (src->fixup_request_total, dst->fixup_request_total);
bfd_putb32 (src->symbol_strings_location, dst->symbol_strings_location);
bfd_putb32 (src->symbol_strings_size, dst->symbol_strings_size);
bfd_putb32 (src->unloadable_sp_location, dst->unloadable_sp_location);
bfd_putb32 (src->unloadable_sp_size, dst->unloadable_sp_size);
bfd_putb32 (src->checksum, dst->checksum);
}
static void
som_swap_space_dictionary_in (struct som_external_space_dictionary_record *src,
struct som_space_dictionary_record *dst)
{
unsigned int flags;
dst->name = bfd_getb32 (src->name);
flags = bfd_getb32 (src->flags);
dst->is_loadable = (flags & SOM_SPACE_IS_LOADABLE) != 0;
dst->is_defined = (flags & SOM_SPACE_IS_DEFINED) != 0;
dst->is_private = (flags & SOM_SPACE_IS_PRIVATE) != 0;
dst->has_intermediate_code = (flags & SOM_SPACE_HAS_INTERMEDIATE_CODE) != 0;
dst->is_tspecific = (flags & SOM_SPACE_IS_TSPECIFIC) != 0;
dst->reserved = 0;
dst->sort_key = (flags >> SOM_SPACE_SORT_KEY_SH) & SOM_SPACE_SORT_KEY_MASK;
dst->reserved2 = 0;
dst->space_number = bfd_getb32 (src->space_number);
dst->subspace_index = bfd_getb32 (src->subspace_index);
dst->subspace_quantity = bfd_getb32 (src->subspace_quantity);
dst->loader_fix_index = bfd_getb32 (src->loader_fix_index);
dst->loader_fix_quantity = bfd_getb32 (src->loader_fix_quantity);
dst->init_pointer_index = bfd_getb32 (src->init_pointer_index);
dst->init_pointer_quantity = bfd_getb32 (src->init_pointer_quantity);
}
static void
som_swap_space_dictionary_out (struct som_space_dictionary_record *src,
struct som_external_space_dictionary_record *dst)
{
unsigned int flags;
bfd_putb32 (src->name, dst->name);
flags = 0;
if (src->is_loadable)
flags |= SOM_SPACE_IS_LOADABLE;
if (src->is_defined)
flags |= SOM_SPACE_IS_DEFINED;
if (src->is_private)
flags |= SOM_SPACE_IS_PRIVATE;
if (src->has_intermediate_code)
flags |= SOM_SPACE_HAS_INTERMEDIATE_CODE;
if (src->is_tspecific)
flags |= SOM_SPACE_IS_TSPECIFIC;
flags |= (src->sort_key & SOM_SPACE_SORT_KEY_MASK) << SOM_SPACE_SORT_KEY_SH;
bfd_putb32 (flags, dst->flags);
bfd_putb32 (src->space_number, dst->space_number);
bfd_putb32 (src->subspace_index, dst->subspace_index);
bfd_putb32 (src->subspace_quantity, dst->subspace_quantity);
bfd_putb32 (src->loader_fix_index, dst->loader_fix_index);
bfd_putb32 (src->loader_fix_quantity, dst->loader_fix_quantity);
bfd_putb32 (src->init_pointer_index, dst->init_pointer_index);
bfd_putb32 (src->init_pointer_quantity, dst->init_pointer_quantity);
}
static void
som_swap_subspace_dictionary_in
(struct som_external_subspace_dictionary_record *src,
struct som_subspace_dictionary_record *dst)
{
unsigned int flags;
dst->space_index = bfd_getb32 (src->space_index);
flags = bfd_getb32 (src->flags);
dst->access_control_bits = (flags >> SOM_SUBSPACE_ACCESS_CONTROL_BITS_SH)
& SOM_SUBSPACE_ACCESS_CONTROL_BITS_MASK;
dst->memory_resident = (flags & SOM_SUBSPACE_MEMORY_RESIDENT) != 0;
dst->dup_common = (flags & SOM_SUBSPACE_DUP_COMMON) != 0;
dst->is_common = (flags & SOM_SUBSPACE_IS_COMMON) != 0;
dst->is_loadable = (flags & SOM_SUBSPACE_IS_LOADABLE) != 0;
dst->quadrant = (flags >> SOM_SUBSPACE_QUADRANT_SH)
& SOM_SUBSPACE_QUADRANT_MASK;
dst->initially_frozen = (flags & SOM_SUBSPACE_INITIALLY_FROZEN) != 0;
dst->is_first = (flags & SOM_SUBSPACE_IS_FIRST) != 0;
dst->code_only = (flags & SOM_SUBSPACE_CODE_ONLY) != 0;
dst->sort_key = (flags >> SOM_SUBSPACE_SORT_KEY_SH)
& SOM_SUBSPACE_SORT_KEY_MASK;
dst->replicate_init = (flags & SOM_SUBSPACE_REPLICATE_INIT) != 0;
dst->continuation = (flags & SOM_SUBSPACE_CONTINUATION) != 0;
dst->is_tspecific = (flags & SOM_SUBSPACE_IS_TSPECIFIC) != 0;
dst->is_comdat = (flags & SOM_SUBSPACE_IS_COMDAT) != 0;
dst->reserved = 0;
dst->file_loc_init_value = bfd_getb32 (src->file_loc_init_value);
dst->initialization_length = bfd_getb32 (src->initialization_length);
dst->subspace_start = bfd_getb32 (src->subspace_start);
dst->subspace_length = bfd_getb32 (src->subspace_length);
dst->alignment = bfd_getb32 (src->alignment);
dst->name = bfd_getb32 (src->name);
dst->fixup_request_index = bfd_getb32 (src->fixup_request_index);
dst->fixup_request_quantity = bfd_getb32 (src->fixup_request_quantity);
}
static void
som_swap_subspace_dictionary_record_out
(struct som_subspace_dictionary_record *src,
struct som_external_subspace_dictionary_record *dst)
{
unsigned int flags;
bfd_putb32 (src->space_index, dst->space_index);
flags = (src->access_control_bits & SOM_SUBSPACE_ACCESS_CONTROL_BITS_MASK)
<< SOM_SUBSPACE_ACCESS_CONTROL_BITS_SH;
if (src->memory_resident)
flags |= SOM_SUBSPACE_MEMORY_RESIDENT;
if (src->dup_common)
flags |= SOM_SUBSPACE_DUP_COMMON;
if (src->is_common)
flags |= SOM_SUBSPACE_IS_COMMON;
if (src->is_loadable)
flags |= SOM_SUBSPACE_IS_LOADABLE;
flags |= (src->quadrant & SOM_SUBSPACE_QUADRANT_MASK)
<< SOM_SUBSPACE_QUADRANT_SH;
if (src->initially_frozen)
flags |= SOM_SUBSPACE_INITIALLY_FROZEN;
if (src->is_first)
flags |= SOM_SUBSPACE_IS_FIRST;
if (src->code_only)
flags |= SOM_SUBSPACE_CODE_ONLY;
flags |= (src->sort_key & SOM_SUBSPACE_SORT_KEY_MASK)
<< SOM_SUBSPACE_SORT_KEY_SH;
if (src->replicate_init)
flags |= SOM_SUBSPACE_REPLICATE_INIT;
if (src->continuation)
flags |= SOM_SUBSPACE_CONTINUATION;
if (src->is_tspecific)
flags |= SOM_SUBSPACE_IS_TSPECIFIC;
if (src->is_comdat)
flags |= SOM_SUBSPACE_IS_COMDAT;
bfd_putb32 (flags, dst->flags);
bfd_putb32 (src->file_loc_init_value, dst->file_loc_init_value);
bfd_putb32 (src->initialization_length, dst->initialization_length);
bfd_putb32 (src->subspace_start, dst->subspace_start);
bfd_putb32 (src->subspace_length, dst->subspace_length);
bfd_putb32 (src->alignment, dst->alignment);
bfd_putb32 (src->name, dst->name);
bfd_putb32 (src->fixup_request_index, dst->fixup_request_index);
bfd_putb32 (src->fixup_request_quantity, dst->fixup_request_quantity);
}
static void
som_swap_aux_id_in (struct som_external_aux_id *src,
struct som_aux_id *dst)
{
unsigned int flags = bfd_getb32 (src->flags);
dst->mandatory = (flags & SOM_AUX_ID_MANDATORY) != 0;
dst->copy = (flags & SOM_AUX_ID_COPY) != 0;
dst->append = (flags & SOM_AUX_ID_APPEND) != 0;
dst->ignore = (flags & SOM_AUX_ID_IGNORE) != 0;
dst->type = (flags >> SOM_AUX_ID_TYPE_SH) & SOM_AUX_ID_TYPE_MASK;
dst->length = bfd_getb32 (src->length);
}
static void
som_swap_aux_id_out (struct som_aux_id *src,
struct som_external_aux_id *dst)
{
unsigned int flags = 0;
if (src->mandatory)
flags |= SOM_AUX_ID_MANDATORY;
if (src->copy)
flags |= SOM_AUX_ID_COPY;
if (src->append)
flags |= SOM_AUX_ID_APPEND;
if (src->ignore)
flags |= SOM_AUX_ID_IGNORE;
flags |= (src->type & SOM_AUX_ID_TYPE_MASK) << SOM_AUX_ID_TYPE_SH;
bfd_putb32 (flags, dst->flags);
bfd_putb32 (src->length, dst->length);
}
static void
som_swap_string_auxhdr_out (struct som_string_auxhdr *src,
struct som_external_string_auxhdr *dst)
{
som_swap_aux_id_out (&src->header_id, &dst->header_id);
bfd_putb32 (src->string_length, dst->string_length);
}
static void
som_swap_compilation_unit_out (struct som_compilation_unit *src,
struct som_external_compilation_unit *dst)
{
bfd_putb32 (src->name.strx, dst->name);
bfd_putb32 (src->language_name.strx, dst->language_name);
bfd_putb32 (src->product_id.strx, dst->product_id);
bfd_putb32 (src->version_id.strx, dst->version_id);
bfd_putb32 (src->flags, dst->flags);
som_swap_clock_out (&src->compile_time, &dst->compile_time);
som_swap_clock_out (&src->source_time, &dst->source_time);
}
static void
som_swap_exec_auxhdr_in (struct som_external_exec_auxhdr *src,
struct som_exec_auxhdr *dst)
{
som_swap_aux_id_in (&src->som_auxhdr, &dst->som_auxhdr);
dst->exec_tsize = bfd_getb32 (src->exec_tsize);
dst->exec_tmem = bfd_getb32 (src->exec_tmem);
dst->exec_tfile = bfd_getb32 (src->exec_tfile);
dst->exec_dsize = bfd_getb32 (src->exec_dsize);
dst->exec_dmem = bfd_getb32 (src->exec_dmem);
dst->exec_dfile = bfd_getb32 (src->exec_dfile);
dst->exec_bsize = bfd_getb32 (src->exec_bsize);
dst->exec_entry = bfd_getb32 (src->exec_entry);
dst->exec_flags = bfd_getb32 (src->exec_flags);
dst->exec_bfill = bfd_getb32 (src->exec_bfill);
}
static void
som_swap_exec_auxhdr_out (struct som_exec_auxhdr *src,
struct som_external_exec_auxhdr *dst)
{
som_swap_aux_id_out (&src->som_auxhdr, &dst->som_auxhdr);
bfd_putb32 (src->exec_tsize, dst->exec_tsize);
bfd_putb32 (src->exec_tmem, dst->exec_tmem);
bfd_putb32 (src->exec_tfile, dst->exec_tfile);
bfd_putb32 (src->exec_dsize, dst->exec_dsize);
bfd_putb32 (src->exec_dmem, dst->exec_dmem);
bfd_putb32 (src->exec_dfile, dst->exec_dfile);
bfd_putb32 (src->exec_bsize, dst->exec_bsize);
bfd_putb32 (src->exec_entry, dst->exec_entry);
bfd_putb32 (src->exec_flags, dst->exec_flags);
bfd_putb32 (src->exec_bfill, dst->exec_bfill);
}
static void
som_swap_lst_header_in (struct som_external_lst_header *src,
struct som_lst_header *dst)
{
dst->system_id = bfd_getb16 (src->system_id);
dst->a_magic = bfd_getb16 (src->a_magic);
dst->version_id = bfd_getb32 (src->version_id);
som_swap_clock_in (&src->file_time, &dst->file_time);
dst->hash_loc = bfd_getb32 (src->hash_loc);
dst->hash_size = bfd_getb32 (src->hash_size);
dst->module_count = bfd_getb32 (src->module_count);
dst->module_limit = bfd_getb32 (src->module_limit);
dst->dir_loc = bfd_getb32 (src->dir_loc);
dst->export_loc = bfd_getb32 (src->export_loc);
dst->export_count = bfd_getb32 (src->export_count);
dst->import_loc = bfd_getb32 (src->import_loc);
dst->aux_loc = bfd_getb32 (src->aux_loc);
dst->aux_size = bfd_getb32 (src->aux_size);
dst->string_loc = bfd_getb32 (src->string_loc);
dst->string_size = bfd_getb32 (src->string_size);
dst->free_list = bfd_getb32 (src->free_list);
dst->file_end = bfd_getb32 (src->file_end);
dst->checksum = bfd_getb32 (src->checksum);
}
/* Perform some initialization for an object. Save results of this
initialization in the BFD. */
static bfd_cleanup
som_object_setup (bfd *abfd,
struct som_header *file_hdrp,
struct som_exec_auxhdr *aux_hdrp,
unsigned long current_offset)
{
asection *section;
/* som_mkobject will set bfd_error if som_mkobject fails. */
if (! som_mkobject (abfd))
return NULL;
/* Set BFD flags based on what information is available in the SOM. */
abfd->flags = BFD_NO_FLAGS;
if (file_hdrp->symbol_total)
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
switch (file_hdrp->a_magic)
{
case DEMAND_MAGIC:
abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
break;
case SHARE_MAGIC:
abfd->flags |= (WP_TEXT | EXEC_P);
break;
case EXEC_MAGIC:
abfd->flags |= (EXEC_P);
break;
case RELOC_MAGIC:
abfd->flags |= HAS_RELOC;
break;
#ifdef SHL_MAGIC
case SHL_MAGIC:
#endif
#ifdef DL_MAGIC
case DL_MAGIC:
#endif
abfd->flags |= DYNAMIC;
break;
default:
break;
}
/* Save the auxiliary header. */
obj_som_exec_hdr (abfd) = aux_hdrp;
/* Allocate space to hold the saved exec header information. */
obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
if (obj_som_exec_data (abfd) == NULL)
return NULL;
/* The braindamaged OSF1 linker switched exec_flags and exec_entry!
We used to identify OSF1 binaries based on NEW_VERSION_ID, but
apparently the latest HPUX linker is using NEW_VERSION_ID now.
It's about time, OSF has used the new id since at least 1992;
HPUX didn't start till nearly 1995!.
The new approach examines the entry field for an executable. If
it is not 4-byte aligned then it's not a proper code address and
we guess it's really the executable flags. For a main program,
we also consider zero to be indicative of a buggy linker, since
that is not a valid entry point. The entry point for a shared
library, however, can be zero so we do not consider that to be
indicative of a buggy linker. */
if (aux_hdrp)
{
int found = 0;
for (section = abfd->sections; section; section = section->next)
{
bfd_vma entry;
if ((section->flags & SEC_CODE) == 0)
continue;
entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem;
if (entry >= section->vma
&& entry < section->vma + section->size)
found = 1;
}
if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC))
|| (aux_hdrp->exec_entry & 0x3) != 0
|| ! found)
{
abfd->start_address = aux_hdrp->exec_flags;
obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
}
else
{
abfd->start_address = aux_hdrp->exec_entry + current_offset;
obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
}
}
obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
abfd->symcount = file_hdrp->symbol_total;
/* Initialize the saved symbol table and string table to NULL.
Save important offsets and sizes from the SOM header into
the BFD. */
obj_som_stringtab (abfd) = NULL;
obj_som_symtab (abfd) = NULL;
obj_som_sorted_syms (abfd) = NULL;
obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
+ current_offset);
obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
+ current_offset);
obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
return _bfd_no_cleanup;
}
/* Convert all of the space and subspace info into BFD sections. Each space
contains a number of subspaces, which in turn describe the mapping between
regions of the exec file, and the address space that the program runs in.
BFD sections which correspond to spaces will overlap the sections for the
associated subspaces. */
static bool
setup_sections (bfd *abfd,
struct som_header *file_hdr,
unsigned long current_offset)
{
char *space_strings = NULL;
unsigned int space_index, i;
unsigned int total_subspaces = 0;
asection **subspace_sections = NULL;
asection *section;
size_t amt;
/* First, read in space names. */
amt = file_hdr->space_strings_size;
if (amt == (size_t) -1)
{
bfd_set_error (bfd_error_no_memory);
goto error_return;
}
if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
SEEK_SET) != 0)
goto error_return;
space_strings = (char *) _bfd_malloc_and_read (abfd, amt + 1, amt);
if (space_strings == NULL)
goto error_return;
/* Make sure that the string table is NUL terminated. */
space_strings[amt] = 0;
/* Loop over all of the space dictionaries, building up sections. */
for (space_index = 0; space_index < file_hdr->space_total; space_index++)
{
struct som_space_dictionary_record space;
struct som_external_space_dictionary_record ext_space;
char *space_name;
struct som_external_subspace_dictionary_record ext_subspace;
struct som_subspace_dictionary_record subspace, save_subspace;
unsigned int subspace_index;
asection *space_asect;
bfd_size_type space_size = 0;
char *newname;
/* Read the space dictionary element. */
if (bfd_seek (abfd,
(current_offset + file_hdr->space_location
+ space_index * sizeof (ext_space)),
SEEK_SET) != 0)
goto error_return;
amt = sizeof ext_space;
if (bfd_read (&ext_space, amt, abfd) != amt)
goto error_return;
som_swap_space_dictionary_in (&ext_space, &space);
/* Setup the space name string. */
if (space.name >= file_hdr->space_strings_size)
goto error_return;
space_name = space.name + space_strings;
/* Make a section out of it. */
amt = strlen (space_name) + 1;
newname = bfd_alloc (abfd, amt);
if (!newname)
goto error_return;
strcpy (newname, space_name);
space_asect = bfd_make_section_anyway (abfd, newname);
if (!space_asect)
goto error_return;
if (space.is_loadable == 0)
space_asect->flags |= SEC_DEBUGGING;
/* Set up all the attributes for the space. */
if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
space.is_private, space.sort_key,
space.space_number))
goto error_return;
/* If the space has no subspaces, then we're done. */
if (space.subspace_quantity == 0)
continue;
/* Now, read in the first subspace for this space. */
if (bfd_seek (abfd,
(current_offset + file_hdr->subspace_location
+ space.subspace_index * sizeof ext_subspace),
SEEK_SET) != 0)
goto error_return;
amt = sizeof ext_subspace;
if (bfd_read (&ext_subspace, amt, abfd) != amt)
goto error_return;
/* Seek back to the start of the subspaces for loop below. */
if (bfd_seek (abfd,
(current_offset + file_hdr->subspace_location
+ space.subspace_index * sizeof ext_subspace),
SEEK_SET) != 0)
goto error_return;
som_swap_subspace_dictionary_in (&ext_subspace, &subspace);
/* Setup the start address and file loc from the first subspace
record. */
space_asect->vma = subspace.subspace_start;
space_asect->filepos = subspace.file_loc_init_value + current_offset;
space_asect->alignment_power = exact_log2 (subspace.alignment);
if (space_asect->alignment_power == (unsigned) -1)
goto error_return;
/* Initialize save_subspace so we can reliably determine if this
loop placed any useful values into it. */
memset (&save_subspace, 0, sizeof (save_subspace));
/* Loop over the rest of the subspaces, building up more sections. */
for (subspace_index = 0; subspace_index < space.subspace_quantity;
subspace_index++)
{
asection *subspace_asect;
char *subspace_name;
/* Read in the next subspace. */
amt = sizeof ext_subspace;
if (bfd_read (&ext_subspace, amt, abfd) != amt)
goto error_return;
som_swap_subspace_dictionary_in (&ext_subspace, &subspace);
/* Setup the subspace name string. */
if (subspace.name >= file_hdr->space_strings_size)
goto error_return;
subspace_name = subspace.name + space_strings;
amt = strlen (subspace_name) + 1;
newname = bfd_alloc (abfd, amt);
if (!newname)
goto error_return;
strcpy (newname, subspace_name);
/* Make a section out of this subspace. */
subspace_asect = bfd_make_section_anyway (abfd, newname);
if (!subspace_asect)
goto error_return;
/* Store private information about the section. */
if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
subspace.access_control_bits,
subspace.sort_key,
subspace.quadrant,
subspace.is_comdat,
subspace.is_common,
subspace.dup_common))
goto error_return;
/* Keep an easy mapping between subspaces and sections.
Note we do not necessarily read the subspaces in the
same order in which they appear in the object file.
So to make the target index come out correctly, we
store the location of the subspace header in target
index, then sort using the location of the subspace
header as the key. Then we can assign correct
subspace indices. */
total_subspaces++;
subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
/* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
by the access_control_bits in the subspace header. */
switch (subspace.access_control_bits >> 4)
{
/* Readonly data. */
case 0x0:
subspace_asect->flags |= SEC_DATA | SEC_READONLY;
break;
/* Normal data. */
case 0x1:
subspace_asect->flags |= SEC_DATA;
break;
/* Readonly code and the gateways.
Gateways have other attributes which do not map
into anything BFD knows about. */
case 0x2:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
subspace_asect->flags |= SEC_CODE | SEC_READONLY;
break;
/* dynamic (writable) code. */
case 0x3:
subspace_asect->flags |= SEC_CODE;
break;
}
if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
subspace_asect->flags |= SEC_LINK_ONCE;
if (subspace.subspace_length > 0)
subspace_asect->flags |= SEC_HAS_CONTENTS;
if (subspace.is_loadable)
subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
else
subspace_asect->flags |= SEC_DEBUGGING;
if (subspace.code_only)
subspace_asect->flags |= SEC_CODE;
/* Both file_loc_init_value and initialization_length will
be zero for a BSS like subspace. */
if (subspace.file_loc_init_value == 0
&& subspace.initialization_length == 0)
subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
/* This subspace has relocations.
The fixup_request_quantity is a byte count for the number of
entries in the relocation stream; it is not the actual number
of relocations in the subspace. */
if (subspace.fixup_request_quantity != 0)
{
subspace_asect->flags |= SEC_RELOC;
subspace_asect->rel_filepos = subspace.fixup_request_index;
som_section_data (subspace_asect)->reloc_size
= subspace.fixup_request_quantity;
/* We can not determine this yet. When we read in the
relocation table the correct value will be filled in. */
subspace_asect->reloc_count = (unsigned) -1;
}
/* Update save_subspace if appropriate. */
if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
save_subspace = subspace;
subspace_asect->vma = subspace.subspace_start;
subspace_asect->size = subspace.subspace_length;
subspace_asect->filepos = (subspace.file_loc_init_value
+ current_offset);
subspace_asect->alignment_power = exact_log2 (subspace.alignment);
if (subspace_asect->alignment_power == (unsigned) -1)
goto error_return;
/* Keep track of the accumulated sizes of the sections. */
space_size += subspace.subspace_length;
}
/* This can happen for a .o which defines symbols in otherwise
empty subspaces. */
if (!save_subspace.file_loc_init_value)
space_asect->size = 0;
else
{
if (file_hdr->a_magic != RELOC_MAGIC)
{
/* Setup the size for the space section based upon the info
in the last subspace of the space. */
space_asect->size = (save_subspace.subspace_start
- space_asect->vma
+ save_subspace.subspace_length);
}
else
{
/* The subspace_start field is not initialised in relocatable
only objects, so it cannot be used for length calculations.
Instead we use the space_size value which we have been
accumulating. This isn't an accurate estimate since it
ignores alignment and ordering issues. */
space_asect->size = space_size;
}
}
}
/* Now that we've read in all the subspace records, we need to assign
a target index to each subspace. */
if (_bfd_mul_overflow (total_subspaces, sizeof (asection *), &amt))
{
bfd_set_error (bfd_error_file_too_big);
goto error_return;
}
subspace_sections = bfd_malloc (amt);
if (subspace_sections == NULL)
goto error_return;
for (i = 0, section = abfd->sections; section; section = section->next)
{
if (!som_is_subspace (section))
continue;
subspace_sections[i] = section;
i++;
}
qsort (subspace_sections, total_subspaces,
sizeof (asection *), compare_subspaces);
/* subspace_sections is now sorted in the order in which the subspaces
appear in the object file. Assign an index to each one now. */
for (i = 0; i < total_subspaces; i++)
subspace_sections[i]->target_index = i;
free (space_strings);
free (subspace_sections);
return true;
error_return:
free (space_strings);
free (subspace_sections);
return false;
}
/* Read in a SOM object and make it into a BFD. */
static bfd_cleanup
som_object_p (bfd *abfd)
{
struct som_external_header ext_file_hdr;
struct som_header file_hdr;
struct som_exec_auxhdr *aux_hdr_ptr = NULL;
unsigned long current_offset = 0;
struct som_external_lst_header ext_lst_header;
struct som_external_som_entry ext_som_entry;
size_t amt;
unsigned int loc;
#define ENTRY_SIZE sizeof (struct som_external_som_entry)
amt = sizeof (struct som_external_header);
if (bfd_read (&ext_file_hdr, amt, abfd) != amt)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
som_swap_header_in (&ext_file_hdr, &file_hdr);
if (!_PA_RISC_ID (file_hdr.system_id))
{
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
switch (file_hdr.a_magic)
{
case RELOC_MAGIC:
case EXEC_MAGIC:
case SHARE_MAGIC:
case DEMAND_MAGIC:
case DL_MAGIC:
case SHL_MAGIC:
#ifdef SHARED_MAGIC_CNX
case SHARED_MAGIC_CNX:
#endif
break;
case EXECLIBMAGIC:
/* Read the lst header and determine where the SOM directory begins. */
if (bfd_seek (abfd, 0, SEEK_SET) != 0)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
amt = sizeof (struct som_external_lst_header);
if (bfd_read (&ext_lst_header, amt, abfd) != amt)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
/* Position to and read the first directory entry. */
loc = bfd_getb32 (ext_lst_header.dir_loc);
if (bfd_seek (abfd, loc, SEEK_SET) != 0)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
amt = ENTRY_SIZE;
if (bfd_read (&ext_som_entry, amt, abfd) != amt)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
/* Now position to the first SOM. */
current_offset = bfd_getb32 (ext_som_entry.location);
if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
/* And finally, re-read the som header. */
amt = sizeof (struct som_external_header);
if (bfd_read (&ext_file_hdr, amt, abfd) != amt)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
som_swap_header_in (&ext_file_hdr, &file_hdr);
break;
default:
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
if (file_hdr.version_id != OLD_VERSION_ID
&& file_hdr.version_id != NEW_VERSION_ID)
{
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
/* If the aux_header_size field in the file header is zero, then this
object is an incomplete executable (a .o file). Do not try to read
a non-existant auxiliary header. */
if (file_hdr.aux_header_size != 0)
{
struct som_external_exec_auxhdr ext_exec_auxhdr;
aux_hdr_ptr = bfd_zalloc (abfd,
(bfd_size_type) sizeof (*aux_hdr_ptr));
if (aux_hdr_ptr == NULL)
return NULL;
amt = sizeof (struct som_external_exec_auxhdr);
if (bfd_read (&ext_exec_auxhdr, amt, abfd) != amt)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
som_swap_exec_auxhdr_in (&ext_exec_auxhdr, aux_hdr_ptr);
}
if (!setup_sections (abfd, &file_hdr, current_offset))
{
/* setup_sections does not bubble up a bfd error code. */
bfd_set_error (bfd_error_bad_value);
return NULL;
}
/* This appears to be a valid SOM object. Do some initialization. */
return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset);
}
/* Create a SOM object. */
static bool
som_mkobject (bfd *abfd)
{
/* Allocate memory to hold backend information. */
abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
if (abfd->tdata.som_data == NULL)
return false;
return true;
}
/* Initialize some information in the file header. This routine makes
not attempt at doing the right thing for a full executable; it
is only meant to handle relocatable objects. */
static bool
som_prep_headers (bfd *abfd)
{
struct som_header *file_hdr;
asection *section;
size_t amt = sizeof (struct som_header);
/* Make and attach a file header to the BFD. */
file_hdr = bfd_zalloc (abfd, amt);
if (file_hdr == NULL)
return false;
obj_som_file_hdr (abfd) = file_hdr;
if (abfd->flags & (EXEC_P | DYNAMIC))
{
/* Make and attach an exec header to the BFD. */
amt = sizeof (struct som_exec_auxhdr);
obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt);
if (obj_som_exec_hdr (abfd) == NULL)
return false;
if (abfd->flags & D_PAGED)
file_hdr->a_magic = DEMAND_MAGIC;
else if (abfd->flags & WP_TEXT)
file_hdr->a_magic = SHARE_MAGIC;
#ifdef SHL_MAGIC
else if (abfd->flags & DYNAMIC)
file_hdr->a_magic = SHL_MAGIC;
#endif
else
file_hdr->a_magic = EXEC_MAGIC;
}
else
file_hdr->a_magic = RELOC_MAGIC;
/* These fields are optional, and embedding timestamps is not always
a wise thing to do, it makes comparing objects during a multi-stage
bootstrap difficult. */
file_hdr->file_time.secs = 0;
file_hdr->file_time.nanosecs = 0;
file_hdr->entry_space = 0;
file_hdr->entry_subspace = 0;
file_hdr->entry_offset = 0;
file_hdr->presumed_dp = 0;
/* Now iterate over the sections translating information from
BFD sections to SOM spaces/subspaces. */
for (section = abfd->sections; section != NULL; section = section->next)
{
/* Ignore anything which has not been marked as a space or
subspace. */
if (!som_is_space (section) && !som_is_subspace (section))
continue;
if (som_is_space (section))
{
/* Allocate space for the space dictionary. */
amt = sizeof (struct som_space_dictionary_record);
som_section_data (section)->space_dict = bfd_zalloc (abfd, amt);
if (som_section_data (section)->space_dict == NULL)
return false;
/* Set space attributes. Note most attributes of SOM spaces
are set based on the subspaces it contains. */
som_section_data (section)->space_dict->loader_fix_index = -1;
som_section_data (section)->space_dict->init_pointer_index = -1;
/* Set more attributes that were stuffed away in private data. */
som_section_data (section)->space_dict->sort_key =
som_section_data (section)->copy_data->sort_key;
som_section_data (section)->space_dict->is_defined =
som_section_data (section)->copy_data->is_defined;
som_section_data (section)->space_dict->is_private =
som_section_data (section)->copy_data->is_private;
som_section_data (section)->space_dict->space_number =
som_section_data (section)->copy_data->space_number;
}
else
{
/* Allocate space for the subspace dictionary. */
amt = sizeof (struct som_subspace_dictionary_record);
som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt);
if (som_section_data (section)->subspace_dict == NULL)
return false;
/* Set subspace attributes. Basic stuff is done here, additional
attributes are filled in later as more information becomes
available. */
if (section->flags & SEC_ALLOC)
som_section_data (section)->subspace_dict->is_loadable = 1;
if (section->flags & SEC_CODE)
som_section_data (section)->subspace_dict->code_only = 1;
som_section_data (section)->subspace_dict->subspace_start =
section->vma;
som_section_data (section)->subspace_dict->subspace_length =
section->size;
som_section_data (section)->subspace_dict->initialization_length =
section->size;
som_section_data (section)->subspace_dict->alignment =
1 << section->alignment_power;
/* Set more attributes that were stuffed away in private data. */
som_section_data (section)->subspace_dict->sort_key =
som_section_data (section)->copy_data->sort_key;
som_section_data (section)->subspace_dict->access_control_bits =
som_section_data (section)->copy_data->access_control_bits;
som_section_data (section)->subspace_dict->quadrant =
som_section_data (section)->copy_data->quadrant;
som_section_data (section)->subspace_dict->is_comdat =
som_section_data (section)->copy_data->is_comdat;
som_section_data (section)->subspace_dict->is_common =
som_section_data (section)->copy_data->is_common;
som_section_data (section)->subspace_dict->dup_common =
som_section_data (section)->copy_data->dup_common;
}
}
return true;
}
/* Return TRUE if the given section is a SOM space, FALSE otherwise. */
static bool
som_is_space (asection *section)
{
/* If no copy data is available, then it's neither a space nor a
subspace. */
if (som_section_data (section)->copy_data == NULL)
return false;
/* If the containing space isn't the same as the given section,
then this isn't a space. */
if (som_section_data (section)->copy_data->container != section
&& (som_section_data (section)->copy_data->container->output_section
!= section))
return false;
/* OK. Must be a space. */
return true;
}
/* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
static bool
som_is_subspace (asection *section)
{
/* If no copy data is available, then it's neither a space nor a
subspace. */
if (som_section_data (section)->copy_data == NULL)
return false;
/* If the containing space is the same as the given section,
then this isn't a subspace. */
if (som_section_data (section)->copy_data->container == section
|| (som_section_data (section)->copy_data->container->output_section
== section))
return false;
/* OK. Must be a subspace. */
return true;
}
/* Return TRUE if the given space contains the given subspace. It
is safe to assume space really is a space, and subspace really
is a subspace. */
static bool
som_is_container (asection *space, asection *subspace)
{
return (som_section_data (subspace)->copy_data->container == space)
|| (som_section_data (subspace)->copy_data->container->output_section
== space);
}
/* Count and return the number of spaces attached to the given BFD. */
static unsigned long
som_count_spaces (bfd *abfd)
{
int count = 0;
asection *section;
for (section = abfd->sections; section != NULL; section = section->next)
count += som_is_space (section);
return count;
}
/* Count the number of subspaces attached to the given BFD. */
static unsigned long
som_count_subspaces (bfd *abfd)
{
int count = 0;
asection *section;
for (section = abfd->sections; section != NULL; section = section->next)
count += som_is_subspace (section);
return count;
}
/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
We desire symbols to be ordered starting with the symbol with the
highest relocation count down to the symbol with the lowest relocation
count. Doing so compacts the relocation stream. */
static int
compare_syms (const void *arg1, const void *arg2)
{
asymbol **sym1 = (asymbol **) arg1;
asymbol **sym2 = (asymbol **) arg2;
unsigned int count1, count2;
/* Get relocation count for each symbol. Note that the count
is stored in the udata pointer for section symbols! */
if ((*sym1)->flags & BSF_SECTION_SYM)
count1 = (*sym1)->udata.i;
else
count1 = som_symbol_data (*sym1)->reloc_count;
if ((*sym2)->flags & BSF_SECTION_SYM)
count2 = (*sym2)->udata.i;
else
count2 = som_symbol_data (*sym2)->reloc_count;
/* Return the appropriate value. */
if (count1 < count2)
return 1;
else if (count1 > count2)
return -1;
return 0;
}
/* Return -1, 0, 1 indicating the relative ordering of subspace1
and subspace. */
static int
compare_subspaces (const void *arg1, const void *arg2)
{
asection **subspace1 = (asection **) arg1;
asection **subspace2 = (asection **) arg2;
if ((*subspace1)->target_index < (*subspace2)->target_index)
return -1;
else if ((*subspace2)->target_index < (*subspace1)->target_index)
return 1;
else
return 0;
}
/* Perform various work in preparation for emitting the fixup stream. */
static bool
som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms)
{
unsigned long i;
asection *section;
asymbol **sorted_syms;
size_t amt;
if (num_syms == 0)
return true;
/* Most SOM relocations involving a symbol have a length which is
dependent on the index of the symbol. So symbols which are
used often in relocations should have a small index. */
/* First initialize the counters for each symbol. */
for (i = 0; i < num_syms; i++)
{
/* Handle a section symbol; these have no pointers back to the
SOM symbol info. So we just use the udata field to hold the
relocation count. */
if (som_symbol_data (syms[i]) == NULL
|| syms[i]->flags & BSF_SECTION_SYM)
{
syms[i]->flags |= BSF_SECTION_SYM;
syms[i]->udata.i = 0;
}
else
som_symbol_data (syms[i])->reloc_count = 0;
}
/* Now that the counters are initialized, make a weighted count
of how often a given symbol is used in a relocation. */
for (section = abfd->sections; section != NULL; section = section->next)
{
int j;
/* Does this section have any relocations? */
if ((int) section->reloc_count <= 0)
continue;
/* Walk through each relocation for this section. */
for (j = 1; j < (int) section->reloc_count; j++)
{
arelent *reloc = section->orelocation[j];
int scale;
/* A relocation against a symbol in the *ABS* section really
does not have a symbol. Likewise if the symbol isn't associated
with any section. */
if (reloc->sym_ptr_ptr == NULL
|| bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
continue;
/* Scaling to encourage symbols involved in R_DP_RELATIVE
and R_CODE_ONE_SYMBOL relocations to come first. These
two relocations have single byte versions if the symbol
index is very small. */
if (reloc->howto->type == R_DP_RELATIVE
|| reloc->howto->type == R_CODE_ONE_SYMBOL)
scale = 2;
else
scale = 1;
/* Handle section symbols by storing the count in the udata
field. It will not be used and the count is very important
for these symbols. */
if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
{
(*reloc->sym_ptr_ptr)->udata.i =
(*reloc