| /* Target-dependent code for FT32. |
| |
| Copyright (C) 2009-2021 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "frame.h" |
| #include "frame-unwind.h" |
| #include "frame-base.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "gdbcmd.h" |
| #include "gdbcore.h" |
| #include "value.h" |
| #include "inferior.h" |
| #include "symfile.h" |
| #include "objfiles.h" |
| #include "osabi.h" |
| #include "language.h" |
| #include "arch-utils.h" |
| #include "regcache.h" |
| #include "trad-frame.h" |
| #include "dis-asm.h" |
| #include "record.h" |
| |
| #include "opcode/ft32.h" |
| |
| #include "ft32-tdep.h" |
| #include "gdb/sim-ft32.h" |
| #include <algorithm> |
| |
| #define RAM_BIAS 0x800000 /* Bias added to RAM addresses. */ |
| |
| /* Use an invalid address -1 as 'not available' marker. */ |
| enum { REG_UNAVAIL = (CORE_ADDR) (-1) }; |
| |
| struct ft32_frame_cache |
| { |
| /* Base address of the frame */ |
| CORE_ADDR base; |
| /* Function this frame belongs to */ |
| CORE_ADDR pc; |
| /* Total size of this frame */ |
| LONGEST framesize; |
| /* Saved registers in this frame */ |
| CORE_ADDR saved_regs[FT32_NUM_REGS]; |
| /* Saved SP in this frame */ |
| CORE_ADDR saved_sp; |
| /* Has the new frame been LINKed. */ |
| bfd_boolean established; |
| }; |
| |
| /* Implement the "frame_align" gdbarch method. */ |
| |
| static CORE_ADDR |
| ft32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
| { |
| /* Align to the size of an instruction (so that they can safely be |
| pushed onto the stack. */ |
| return sp & ~1; |
| } |
| |
| |
| constexpr gdb_byte ft32_break_insn[] = { 0x02, 0x00, 0x34, 0x00 }; |
| |
| typedef BP_MANIPULATION (ft32_break_insn) ft32_breakpoint; |
| |
| /* FT32 register names. */ |
| |
| static const char *const ft32_register_names[] = |
| { |
| "fp", "sp", |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "cc", |
| "pc" |
| }; |
| |
| /* Implement the "register_name" gdbarch method. */ |
| |
| static const char * |
| ft32_register_name (struct gdbarch *gdbarch, int reg_nr) |
| { |
| if (reg_nr < 0) |
| return NULL; |
| if (reg_nr >= FT32_NUM_REGS) |
| return NULL; |
| return ft32_register_names[reg_nr]; |
| } |
| |
| /* Implement the "register_type" gdbarch method. */ |
| |
| static struct type * |
| ft32_register_type (struct gdbarch *gdbarch, int reg_nr) |
| { |
| if (reg_nr == FT32_PC_REGNUM) |
| return gdbarch_tdep (gdbarch)->pc_type; |
| else if (reg_nr == FT32_SP_REGNUM || reg_nr == FT32_FP_REGNUM) |
| return builtin_type (gdbarch)->builtin_data_ptr; |
| else |
| return builtin_type (gdbarch)->builtin_int32; |
| } |
| |
| /* Write into appropriate registers a function return value |
| of type TYPE, given in virtual format. */ |
| |
| static void |
| ft32_store_return_value (struct type *type, struct regcache *regcache, |
| const gdb_byte *valbuf) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR regval; |
| int len = TYPE_LENGTH (type); |
| |
| /* Things always get returned in RET1_REGNUM, RET2_REGNUM. */ |
| regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); |
| regcache_cooked_write_unsigned (regcache, FT32_R0_REGNUM, regval); |
| if (len > 4) |
| { |
| regval = extract_unsigned_integer (valbuf + 4, |
| len - 4, byte_order); |
| regcache_cooked_write_unsigned (regcache, FT32_R1_REGNUM, regval); |
| } |
| } |
| |
| /* Fetch a single 32-bit instruction from address a. If memory contains |
| a compressed instruction pair, return the expanded instruction. */ |
| |
| static ULONGEST |
| ft32_fetch_instruction (CORE_ADDR a, int *isize, |
| enum bfd_endian byte_order) |
| { |
| unsigned int sc[2]; |
| ULONGEST inst; |
| |
| CORE_ADDR a4 = a & ~3; |
| inst = read_code_unsigned_integer (a4, 4, byte_order); |
| *isize = ft32_decode_shortcode (a4, inst, sc) ? 2 : 4; |
| if (*isize == 2) |
| return sc[1 & (a >> 1)]; |
| else |
| return inst; |
| } |
| |
| /* Decode the instructions within the given address range. Decide |
| when we must have reached the end of the function prologue. If a |
| frame_info pointer is provided, fill in its saved_regs etc. |
| |
| Returns the address of the first instruction after the prologue. */ |
| |
| static CORE_ADDR |
| ft32_analyze_prologue (CORE_ADDR start_addr, CORE_ADDR end_addr, |
| struct ft32_frame_cache *cache, |
| struct gdbarch *gdbarch) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR next_addr; |
| ULONGEST inst; |
| int isize = 0; |
| int regnum, pushreg; |
| struct bound_minimal_symbol msymbol; |
| const int first_saved_reg = 13; /* The first saved register. */ |
| /* PROLOGS are addresses of the subroutine prologs, PROLOGS[n] |
| is the address of __prolog_$rN. |
| __prolog_$rN pushes registers from 13 through n inclusive. |
| So for example CALL __prolog_$r15 is equivalent to: |
| PUSH $r13 |
| PUSH $r14 |
| PUSH $r15 |
| Note that PROLOGS[0] through PROLOGS[12] are unused. */ |
| CORE_ADDR prologs[32]; |
| |
| cache->saved_regs[FT32_PC_REGNUM] = 0; |
| cache->framesize = 0; |
| |
| for (regnum = first_saved_reg; regnum < 32; regnum++) |
| { |
| char prolog_symbol[32]; |
| |
| snprintf (prolog_symbol, sizeof (prolog_symbol), "__prolog_$r%02d", |
| regnum); |
| msymbol = lookup_minimal_symbol (prolog_symbol, NULL, NULL); |
| if (msymbol.minsym) |
| prologs[regnum] = BMSYMBOL_VALUE_ADDRESS (msymbol); |
| else |
| prologs[regnum] = 0; |
| } |
| |
| if (start_addr >= end_addr) |
| return end_addr; |
| |
| cache->established = 0; |
| for (next_addr = start_addr; next_addr < end_addr; next_addr += isize) |
| { |
| inst = ft32_fetch_instruction (next_addr, &isize, byte_order); |
| |
| if (FT32_IS_PUSH (inst)) |
| { |
| pushreg = FT32_PUSH_REG (inst); |
| cache->framesize += 4; |
| cache->saved_regs[FT32_R0_REGNUM + pushreg] = cache->framesize; |
| } |
| else if (FT32_IS_CALL (inst)) |
| { |
| for (regnum = first_saved_reg; regnum < 32; regnum++) |
| { |
| if ((4 * (inst & 0x3ffff)) == prologs[regnum]) |
| { |
| for (pushreg = first_saved_reg; pushreg <= regnum; |
| pushreg++) |
| { |
| cache->framesize += 4; |
| cache->saved_regs[FT32_R0_REGNUM + pushreg] = |
| cache->framesize; |
| } |
| } |
| } |
| break; |
| } |
| else |
| break; |
| } |
| for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++) |
| { |
| if (cache->saved_regs[regnum] != REG_UNAVAIL) |
| cache->saved_regs[regnum] = |
| cache->framesize - cache->saved_regs[regnum]; |
| } |
| cache->saved_regs[FT32_PC_REGNUM] = cache->framesize; |
| |
| /* It is a LINK? */ |
| if (next_addr < end_addr) |
| { |
| inst = ft32_fetch_instruction (next_addr, &isize, byte_order); |
| if (FT32_IS_LINK (inst)) |
| { |
| cache->established = 1; |
| for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++) |
| { |
| if (cache->saved_regs[regnum] != REG_UNAVAIL) |
| cache->saved_regs[regnum] += 4; |
| } |
| cache->saved_regs[FT32_PC_REGNUM] = cache->framesize + 4; |
| cache->saved_regs[FT32_FP_REGNUM] = 0; |
| cache->framesize += FT32_LINK_SIZE (inst); |
| next_addr += isize; |
| } |
| } |
| |
| return next_addr; |
| } |
| |
| /* Find the end of function prologue. */ |
| |
| static CORE_ADDR |
| ft32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| CORE_ADDR func_addr = 0, func_end = 0; |
| const char *func_name; |
| |
| /* See if we can determine the end of the prologue via the symbol table. |
| If so, then return either PC, or the PC after the prologue, whichever |
| is greater. */ |
| if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) |
| { |
| CORE_ADDR post_prologue_pc |
| = skip_prologue_using_sal (gdbarch, func_addr); |
| if (post_prologue_pc != 0) |
| return std::max (pc, post_prologue_pc); |
| else |
| { |
| /* Can't determine prologue from the symbol table, need to examine |
| instructions. */ |
| struct symtab_and_line sal; |
| struct symbol *sym; |
| struct ft32_frame_cache cache; |
| CORE_ADDR plg_end; |
| |
| memset (&cache, 0, sizeof cache); |
| |
| plg_end = ft32_analyze_prologue (func_addr, |
| func_end, &cache, gdbarch); |
| /* Found a function. */ |
| sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol; |
| /* Don't use line number debug info for assembly source files. */ |
| if ((sym != NULL) && sym->language () != language_asm) |
| { |
| sal = find_pc_line (func_addr, 0); |
| if (sal.end && sal.end < func_end) |
| { |
| /* Found a line number, use it as end of prologue. */ |
| return sal.end; |
| } |
| } |
| /* No useable line symbol. Use result of prologue parsing method. */ |
| return plg_end; |
| } |
| } |
| |
| /* No function symbol -- just return the PC. */ |
| return pc; |
| } |
| |
| /* Implementation of `pointer_to_address' gdbarch method. |
| |
| On FT32 address space zero is RAM, address space 1 is flash. |
| RAM appears at address RAM_BIAS, flash at address 0. */ |
| |
| static CORE_ADDR |
| ft32_pointer_to_address (struct gdbarch *gdbarch, |
| struct type *type, const gdb_byte *buf) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR addr |
| = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); |
| |
| if (TYPE_ADDRESS_CLASS_1 (type)) |
| return addr; |
| else |
| return addr | RAM_BIAS; |
| } |
| |
| /* Implementation of `address_class_type_flags' gdbarch method. |
| |
| This method maps DW_AT_address_class attributes to a |
| type_instance_flag_value. */ |
| |
| static type_instance_flags |
| ft32_address_class_type_flags (int byte_size, int dwarf2_addr_class) |
| { |
| /* The value 1 of the DW_AT_address_class attribute corresponds to the |
| __flash__ qualifier, meaning pointer to data in FT32 program memory. |
| */ |
| if (dwarf2_addr_class == 1) |
| return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; |
| return 0; |
| } |
| |
| /* Implementation of `address_class_type_flags_to_name' gdbarch method. |
| |
| Convert a type_instance_flag_value to an address space qualifier. */ |
| |
| static const char* |
| ft32_address_class_type_flags_to_name (struct gdbarch *gdbarch, |
| type_instance_flags type_flags) |
| { |
| if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1) |
| return "flash"; |
| else |
| return NULL; |
| } |
| |
| /* Implementation of `address_class_name_to_type_flags' gdbarch method. |
| |
| Convert an address space qualifier to a type_instance_flag_value. */ |
| |
| static bool |
| ft32_address_class_name_to_type_flags (struct gdbarch *gdbarch, |
| const char* name, |
| type_instance_flags *type_flags_ptr) |
| { |
| if (strcmp (name, "flash") == 0) |
| { |
| *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| /* Given a return value in `regbuf' with a type `valtype', |
| extract and copy its value into `valbuf'. */ |
| |
| static void |
| ft32_extract_return_value (struct type *type, struct regcache *regcache, |
| gdb_byte *dst) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| bfd_byte *valbuf = dst; |
| int len = TYPE_LENGTH (type); |
| ULONGEST tmp; |
| |
| /* By using store_unsigned_integer we avoid having to do |
| anything special for small big-endian values. */ |
| regcache_cooked_read_unsigned (regcache, FT32_R0_REGNUM, &tmp); |
| store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp); |
| |
| /* Ignore return values more than 8 bytes in size because the ft32 |
| returns anything more than 8 bytes in the stack. */ |
| if (len > 4) |
| { |
| regcache_cooked_read_unsigned (regcache, FT32_R1_REGNUM, &tmp); |
| store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp); |
| } |
| } |
| |
| /* Implement the "return_value" gdbarch method. */ |
| |
| static enum return_value_convention |
| ft32_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *valtype, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| if (TYPE_LENGTH (valtype) > 8) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| else |
| { |
| if (readbuf != NULL) |
| ft32_extract_return_value (valtype, regcache, readbuf); |
| if (writebuf != NULL) |
| ft32_store_return_value (valtype, regcache, writebuf); |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| } |
| |
| /* Allocate and initialize a ft32_frame_cache object. */ |
| |
| static struct ft32_frame_cache * |
| ft32_alloc_frame_cache (void) |
| { |
| struct ft32_frame_cache *cache; |
| int i; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct ft32_frame_cache); |
| |
| for (i = 0; i < FT32_NUM_REGS; ++i) |
| cache->saved_regs[i] = REG_UNAVAIL; |
| |
| return cache; |
| } |
| |
| /* Populate a ft32_frame_cache object for this_frame. */ |
| |
| static struct ft32_frame_cache * |
| ft32_frame_cache (struct frame_info *this_frame, void **this_cache) |
| { |
| struct ft32_frame_cache *cache; |
| CORE_ADDR current_pc; |
| int i; |
| |
| if (*this_cache) |
| return (struct ft32_frame_cache *) *this_cache; |
| |
| cache = ft32_alloc_frame_cache (); |
| *this_cache = cache; |
| |
| cache->base = get_frame_register_unsigned (this_frame, FT32_FP_REGNUM); |
| if (cache->base == 0) |
| return cache; |
| |
| cache->pc = get_frame_func (this_frame); |
| current_pc = get_frame_pc (this_frame); |
| if (cache->pc) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| |
| ft32_analyze_prologue (cache->pc, current_pc, cache, gdbarch); |
| if (!cache->established) |
| cache->base = get_frame_register_unsigned (this_frame, FT32_SP_REGNUM); |
| } |
| |
| cache->saved_sp = cache->base - 4; |
| |
| for (i = 0; i < FT32_NUM_REGS; ++i) |
| if (cache->saved_regs[i] != REG_UNAVAIL) |
| cache->saved_regs[i] = cache->base + cache->saved_regs[i]; |
| |
| return cache; |
| } |
| |
| /* Given a GDB frame, determine the address of the calling function's |
| frame. This will be used to create a new GDB frame struct. */ |
| |
| static void |
| ft32_frame_this_id (struct frame_info *this_frame, |
| void **this_prologue_cache, struct frame_id *this_id) |
| { |
| struct ft32_frame_cache *cache = ft32_frame_cache (this_frame, |
| this_prologue_cache); |
| |
| /* This marks the outermost frame. */ |
| if (cache->base == 0) |
| return; |
| |
| *this_id = frame_id_build (cache->saved_sp, cache->pc); |
| } |
| |
| /* Get the value of register regnum in the previous stack frame. */ |
| |
| static struct value * |
| ft32_frame_prev_register (struct frame_info *this_frame, |
| void **this_prologue_cache, int regnum) |
| { |
| struct ft32_frame_cache *cache = ft32_frame_cache (this_frame, |
| this_prologue_cache); |
| |
| gdb_assert (regnum >= 0); |
| |
| if (regnum == FT32_SP_REGNUM && cache->saved_sp) |
| return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); |
| |
| if (regnum < FT32_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL) |
| return frame_unwind_got_memory (this_frame, regnum, |
| RAM_BIAS | cache->saved_regs[regnum]); |
| |
| return frame_unwind_got_register (this_frame, regnum, regnum); |
| } |
| |
| static const struct frame_unwind ft32_frame_unwind = |
| { |
| "ft32 prologue", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| ft32_frame_this_id, |
| ft32_frame_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| /* Return the base address of this_frame. */ |
| |
| static CORE_ADDR |
| ft32_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| { |
| struct ft32_frame_cache *cache = ft32_frame_cache (this_frame, |
| this_cache); |
| |
| return cache->base; |
| } |
| |
| static const struct frame_base ft32_frame_base = |
| { |
| &ft32_frame_unwind, |
| ft32_frame_base_address, |
| ft32_frame_base_address, |
| ft32_frame_base_address |
| }; |
| |
| /* Allocate and initialize the ft32 gdbarch object. */ |
| |
| static struct gdbarch * |
| ft32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| { |
| struct gdbarch *gdbarch; |
| struct gdbarch_tdep *tdep; |
| struct type *void_type; |
| struct type *func_void_type; |
| |
| /* If there is already a candidate, use it. */ |
| arches = gdbarch_list_lookup_by_info (arches, &info); |
| if (arches != NULL) |
| return arches->gdbarch; |
| |
| /* Allocate space for the new architecture. */ |
| tdep = XCNEW (struct gdbarch_tdep); |
| gdbarch = gdbarch_alloc (&info, tdep); |
| |
| /* Create a type for PC. We can't use builtin types here, as they may not |
| be defined. */ |
| void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); |
| func_void_type = make_function_type (void_type, NULL); |
| tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL, |
| func_void_type); |
| tdep->pc_type->set_instance_flags (tdep->pc_type->instance_flags () |
| | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1); |
| |
| set_gdbarch_num_regs (gdbarch, FT32_NUM_REGS); |
| set_gdbarch_sp_regnum (gdbarch, FT32_SP_REGNUM); |
| set_gdbarch_pc_regnum (gdbarch, FT32_PC_REGNUM); |
| set_gdbarch_register_name (gdbarch, ft32_register_name); |
| set_gdbarch_register_type (gdbarch, ft32_register_type); |
| |
| set_gdbarch_return_value (gdbarch, ft32_return_value); |
| |
| set_gdbarch_pointer_to_address (gdbarch, ft32_pointer_to_address); |
| |
| set_gdbarch_skip_prologue (gdbarch, ft32_skip_prologue); |
| set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| set_gdbarch_breakpoint_kind_from_pc (gdbarch, ft32_breakpoint::kind_from_pc); |
| set_gdbarch_sw_breakpoint_from_kind (gdbarch, ft32_breakpoint::bp_from_kind); |
| set_gdbarch_frame_align (gdbarch, ft32_frame_align); |
| |
| frame_base_set_default (gdbarch, &ft32_frame_base); |
| |
| /* Hook in ABI-specific overrides, if they have been registered. */ |
| gdbarch_init_osabi (info, gdbarch); |
| |
| /* Hook in the default unwinders. */ |
| frame_unwind_append_unwinder (gdbarch, &ft32_frame_unwind); |
| |
| /* Support simple overlay manager. */ |
| set_gdbarch_overlay_update (gdbarch, simple_overlay_update); |
| |
| set_gdbarch_address_class_type_flags (gdbarch, ft32_address_class_type_flags); |
| set_gdbarch_address_class_name_to_type_flags |
| (gdbarch, ft32_address_class_name_to_type_flags); |
| set_gdbarch_address_class_type_flags_to_name |
| (gdbarch, ft32_address_class_type_flags_to_name); |
| |
| return gdbarch; |
| } |
| |
| /* Register this machine's init routine. */ |
| |
| void _initialize_ft32_tdep (); |
| void |
| _initialize_ft32_tdep () |
| { |
| register_gdbarch_init (bfd_arch_ft32, ft32_gdbarch_init); |
| } |