| /* nto-tdep.c - general QNX Neutrino target functionality. |
| |
| Copyright (C) 2003-2021 Free Software Foundation, Inc. |
| |
| Contributed by QNX Software Systems Ltd. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include <sys/stat.h> |
| #include "nto-tdep.h" |
| #include "top.h" |
| #include "inferior.h" |
| #include "infrun.h" |
| #include "gdbarch.h" |
| #include "bfd.h" |
| #include "elf-bfd.h" |
| #include "solib-svr4.h" |
| #include "gdbcore.h" |
| #include "objfiles.h" |
| #include "source.h" |
| #include "gdbsupport/pathstuff.h" |
| |
| #define QNX_NOTE_NAME "QNX" |
| #define QNX_INFO_SECT_NAME "QNX_info" |
| |
| #ifdef __CYGWIN__ |
| #include <sys/cygwin.h> |
| #endif |
| |
| #ifdef __CYGWIN__ |
| static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6"; |
| #elif defined(__sun__) || defined(linux) |
| static char default_nto_target[] = "/opt/QNXsdk/target/qnx6"; |
| #else |
| static char default_nto_target[] = ""; |
| #endif |
| |
| struct nto_target_ops current_nto_target; |
| |
| static const struct inferior_key<struct nto_inferior_data> |
| nto_inferior_data_reg; |
| |
| static char * |
| nto_target (void) |
| { |
| char *p = getenv ("QNX_TARGET"); |
| |
| #ifdef __CYGWIN__ |
| static char buf[PATH_MAX]; |
| if (p) |
| cygwin_conv_path (CCP_WIN_A_TO_POSIX, p, buf, PATH_MAX); |
| else |
| cygwin_conv_path (CCP_WIN_A_TO_POSIX, default_nto_target, buf, PATH_MAX); |
| return buf; |
| #else |
| return p ? p : default_nto_target; |
| #endif |
| } |
| |
| /* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86, |
| CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h. */ |
| int |
| nto_map_arch_to_cputype (const char *arch) |
| { |
| if (!strcmp (arch, "i386") || !strcmp (arch, "x86")) |
| return CPUTYPE_X86; |
| if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc")) |
| return CPUTYPE_PPC; |
| if (!strcmp (arch, "mips")) |
| return CPUTYPE_MIPS; |
| if (!strcmp (arch, "arm")) |
| return CPUTYPE_ARM; |
| if (!strcmp (arch, "sh")) |
| return CPUTYPE_SH; |
| return CPUTYPE_UNKNOWN; |
| } |
| |
| int |
| nto_find_and_open_solib (const char *solib, unsigned o_flags, |
| gdb::unique_xmalloc_ptr<char> *temp_pathname) |
| { |
| char *buf, *arch_path, *nto_root; |
| const char *endian; |
| const char *base; |
| const char *arch; |
| int arch_len, len, ret; |
| #define PATH_FMT \ |
| "%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll" |
| |
| nto_root = nto_target (); |
| if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0) |
| { |
| arch = "x86"; |
| endian = ""; |
| } |
| else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, |
| "rs6000") == 0 |
| || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, |
| "powerpc") == 0) |
| { |
| arch = "ppc"; |
| endian = "be"; |
| } |
| else |
| { |
| arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name; |
| endian = gdbarch_byte_order (target_gdbarch ()) |
| == BFD_ENDIAN_BIG ? "be" : "le"; |
| } |
| |
| /* In case nto_root is short, add strlen(solib) |
| so we can reuse arch_path below. */ |
| |
| arch_len = (strlen (nto_root) + strlen (arch) + strlen (endian) + 2 |
| + strlen (solib)); |
| arch_path = (char *) alloca (arch_len); |
| xsnprintf (arch_path, arch_len, "%s/%s%s", nto_root, arch, endian); |
| |
| len = strlen (PATH_FMT) + strlen (arch_path) * 5 + 1; |
| buf = (char *) alloca (len); |
| xsnprintf (buf, len, PATH_FMT, arch_path, arch_path, arch_path, arch_path, |
| arch_path); |
| |
| base = lbasename (solib); |
| ret = openp (buf, OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, base, o_flags, |
| temp_pathname); |
| if (ret < 0 && base != solib) |
| { |
| xsnprintf (arch_path, arch_len, "/%s", solib); |
| ret = open (arch_path, o_flags, 0); |
| if (temp_pathname) |
| { |
| if (ret >= 0) |
| *temp_pathname = gdb_realpath (arch_path); |
| else |
| temp_pathname->reset (NULL); |
| } |
| } |
| return ret; |
| } |
| |
| void |
| nto_init_solib_absolute_prefix (void) |
| { |
| char buf[PATH_MAX * 2], arch_path[PATH_MAX]; |
| char *nto_root; |
| const char *endian; |
| const char *arch; |
| |
| nto_root = nto_target (); |
| if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0) |
| { |
| arch = "x86"; |
| endian = ""; |
| } |
| else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, |
| "rs6000") == 0 |
| || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, |
| "powerpc") == 0) |
| { |
| arch = "ppc"; |
| endian = "be"; |
| } |
| else |
| { |
| arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name; |
| endian = gdbarch_byte_order (target_gdbarch ()) |
| == BFD_ENDIAN_BIG ? "be" : "le"; |
| } |
| |
| xsnprintf (arch_path, sizeof (arch_path), "%s/%s%s", nto_root, arch, endian); |
| |
| xsnprintf (buf, sizeof (buf), "set solib-absolute-prefix %s", arch_path); |
| execute_command (buf, 0); |
| } |
| |
| char ** |
| nto_parse_redirection (char *pargv[], const char **pin, const char **pout, |
| const char **perr) |
| { |
| char **argv; |
| const char *in, *out, *err, *p; |
| int argc, i, n; |
| |
| for (n = 0; pargv[n]; n++); |
| if (n == 0) |
| return NULL; |
| in = ""; |
| out = ""; |
| err = ""; |
| |
| argv = XCNEWVEC (char *, n + 1); |
| argc = n; |
| for (i = 0, n = 0; n < argc; n++) |
| { |
| p = pargv[n]; |
| if (*p == '>') |
| { |
| p++; |
| if (*p) |
| out = p; |
| else |
| out = pargv[++n]; |
| } |
| else if (*p == '<') |
| { |
| p++; |
| if (*p) |
| in = p; |
| else |
| in = pargv[++n]; |
| } |
| else if (*p++ == '2' && *p++ == '>') |
| { |
| if (*p == '&' && *(p + 1) == '1') |
| err = out; |
| else if (*p) |
| err = p; |
| else |
| err = pargv[++n]; |
| } |
| else |
| argv[i++] = pargv[n]; |
| } |
| *pin = in; |
| *pout = out; |
| *perr = err; |
| return argv; |
| } |
| |
| static CORE_ADDR |
| lm_addr (struct so_list *so) |
| { |
| lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
| |
| return li->l_addr; |
| } |
| |
| static CORE_ADDR |
| nto_truncate_ptr (CORE_ADDR addr) |
| { |
| if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8) |
| /* We don't need to truncate anything, and the bit twiddling below |
| will fail due to overflow problems. */ |
| return addr; |
| else |
| return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1); |
| } |
| |
| static Elf_Internal_Phdr * |
| find_load_phdr (bfd *abfd) |
| { |
| Elf_Internal_Phdr *phdr; |
| unsigned int i; |
| |
| if (!elf_tdata (abfd)) |
| return NULL; |
| |
| phdr = elf_tdata (abfd)->phdr; |
| for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) |
| { |
| if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X)) |
| return phdr; |
| } |
| return NULL; |
| } |
| |
| void |
| nto_relocate_section_addresses (struct so_list *so, struct target_section *sec) |
| { |
| /* Neutrino treats the l_addr base address field in link.h as different than |
| the base address in the System V ABI and so the offset needs to be |
| calculated and applied to relocations. */ |
| Elf_Internal_Phdr *phdr = find_load_phdr (sec->the_bfd_section->owner); |
| unsigned vaddr = phdr ? phdr->p_vaddr : 0; |
| |
| sec->addr = nto_truncate_ptr (sec->addr + lm_addr (so) - vaddr); |
| sec->endaddr = nto_truncate_ptr (sec->endaddr + lm_addr (so) - vaddr); |
| } |
| |
| /* This is cheating a bit because our linker code is in libc.so. If we |
| ever implement lazy linking, this may need to be re-examined. */ |
| int |
| nto_in_dynsym_resolve_code (CORE_ADDR pc) |
| { |
| if (in_plt_section (pc)) |
| return 1; |
| return 0; |
| } |
| |
| void |
| nto_dummy_supply_regset (struct regcache *regcache, char *regs) |
| { |
| /* Do nothing. */ |
| } |
| |
| static void |
| nto_sniff_abi_note_section (bfd *abfd, asection *sect, void *obj) |
| { |
| const char *sectname; |
| unsigned int sectsize; |
| /* Buffer holding the section contents. */ |
| char *note; |
| unsigned int namelen; |
| const char *name; |
| const unsigned sizeof_Elf_Nhdr = 12; |
| |
| sectname = bfd_section_name (sect); |
| sectsize = bfd_section_size (sect); |
| |
| if (sectsize > 128) |
| sectsize = 128; |
| |
| if (sectname != NULL && strstr (sectname, QNX_INFO_SECT_NAME) != NULL) |
| *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO; |
| else if (sectname != NULL && strstr (sectname, "note") != NULL |
| && sectsize > sizeof_Elf_Nhdr) |
| { |
| note = XNEWVEC (char, sectsize); |
| bfd_get_section_contents (abfd, sect, note, 0, sectsize); |
| namelen = (unsigned int) bfd_h_get_32 (abfd, note); |
| name = note + sizeof_Elf_Nhdr; |
| if (sectsize >= namelen + sizeof_Elf_Nhdr |
| && namelen == sizeof (QNX_NOTE_NAME) |
| && 0 == strcmp (name, QNX_NOTE_NAME)) |
| *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO; |
| |
| XDELETEVEC (note); |
| } |
| } |
| |
| enum gdb_osabi |
| nto_elf_osabi_sniffer (bfd *abfd) |
| { |
| enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
| |
| bfd_map_over_sections (abfd, |
| nto_sniff_abi_note_section, |
| &osabi); |
| |
| return osabi; |
| } |
| |
| static const char * const nto_thread_state_str[] = |
| { |
| "DEAD", /* 0 0x00 */ |
| "RUNNING", /* 1 0x01 */ |
| "READY", /* 2 0x02 */ |
| "STOPPED", /* 3 0x03 */ |
| "SEND", /* 4 0x04 */ |
| "RECEIVE", /* 5 0x05 */ |
| "REPLY", /* 6 0x06 */ |
| "STACK", /* 7 0x07 */ |
| "WAITTHREAD", /* 8 0x08 */ |
| "WAITPAGE", /* 9 0x09 */ |
| "SIGSUSPEND", /* 10 0x0a */ |
| "SIGWAITINFO", /* 11 0x0b */ |
| "NANOSLEEP", /* 12 0x0c */ |
| "MUTEX", /* 13 0x0d */ |
| "CONDVAR", /* 14 0x0e */ |
| "JOIN", /* 15 0x0f */ |
| "INTR", /* 16 0x10 */ |
| "SEM", /* 17 0x11 */ |
| "WAITCTX", /* 18 0x12 */ |
| "NET_SEND", /* 19 0x13 */ |
| "NET_REPLY" /* 20 0x14 */ |
| }; |
| |
| const char * |
| nto_extra_thread_info (struct target_ops *self, struct thread_info *ti) |
| { |
| if (ti != NULL && ti->priv != NULL) |
| { |
| nto_thread_info *priv = get_nto_thread_info (ti); |
| |
| if (priv->state < ARRAY_SIZE (nto_thread_state_str)) |
| return nto_thread_state_str [priv->state]; |
| } |
| return ""; |
| } |
| |
| void |
| nto_initialize_signals (void) |
| { |
| /* We use SIG45 for pulses, or something, so nostop, noprint |
| and pass them. */ |
| signal_stop_update (gdb_signal_from_name ("SIG45"), 0); |
| signal_print_update (gdb_signal_from_name ("SIG45"), 0); |
| signal_pass_update (gdb_signal_from_name ("SIG45"), 1); |
| |
| /* By default we don't want to stop on these two, but we do want to pass. */ |
| #if defined(SIGSELECT) |
| signal_stop_update (SIGSELECT, 0); |
| signal_print_update (SIGSELECT, 0); |
| signal_pass_update (SIGSELECT, 1); |
| #endif |
| |
| #if defined(SIGPHOTON) |
| signal_stop_update (SIGPHOTON, 0); |
| signal_print_update (SIGPHOTON, 0); |
| signal_pass_update (SIGPHOTON, 1); |
| #endif |
| } |
| |
| /* Read AUXV from initial_stack. */ |
| LONGEST |
| nto_read_auxv_from_initial_stack (CORE_ADDR initial_stack, gdb_byte *readbuf, |
| LONGEST len, size_t sizeof_auxv_t) |
| { |
| gdb_byte targ32[4]; /* For 32 bit target values. */ |
| gdb_byte targ64[8]; /* For 64 bit target values. */ |
| CORE_ADDR data_ofs = 0; |
| ULONGEST anint; |
| LONGEST len_read = 0; |
| gdb_byte *buff; |
| enum bfd_endian byte_order; |
| int ptr_size; |
| |
| if (sizeof_auxv_t == 16) |
| ptr_size = 8; |
| else |
| ptr_size = 4; |
| |
| /* Skip over argc, argv and envp... Comment from ldd.c: |
| |
| The startup frame is set-up so that we have: |
| auxv |
| NULL |
| ... |
| envp2 |
| envp1 <----- void *frame + (argc + 2) * sizeof(char *) |
| NULL |
| ... |
| argv2 |
| argv1 |
| argc <------ void * frame |
| |
| On entry to ldd, frame gives the address of argc on the stack. */ |
| /* Read argc. 4 bytes on both 64 and 32 bit arches and luckily little |
| * endian. So we just read first 4 bytes. */ |
| if (target_read_memory (initial_stack + data_ofs, targ32, 4) != 0) |
| return 0; |
| |
| byte_order = gdbarch_byte_order (target_gdbarch ()); |
| |
| anint = extract_unsigned_integer (targ32, sizeof (targ32), byte_order); |
| |
| /* Size of pointer is assumed to be 4 bytes (32 bit arch.) */ |
| data_ofs += (anint + 2) * ptr_size; /* + 2 comes from argc itself and |
| NULL terminating pointer in |
| argv. */ |
| |
| /* Now loop over env table: */ |
| anint = 0; |
| while (target_read_memory (initial_stack + data_ofs, targ64, ptr_size) |
| == 0) |
| { |
| if (extract_unsigned_integer (targ64, ptr_size, byte_order) == 0) |
| anint = 1; /* Keep looping until non-null entry is found. */ |
| else if (anint) |
| break; |
| data_ofs += ptr_size; |
| } |
| initial_stack += data_ofs; |
| |
| memset (readbuf, 0, len); |
| buff = readbuf; |
| while (len_read <= len-sizeof_auxv_t) |
| { |
| if (target_read_memory (initial_stack + len_read, buff, sizeof_auxv_t) |
| == 0) |
| { |
| /* Both 32 and 64 bit structures have int as the first field. */ |
| const ULONGEST a_type |
| = extract_unsigned_integer (buff, sizeof (targ32), byte_order); |
| |
| if (a_type == AT_NULL) |
| break; |
| buff += sizeof_auxv_t; |
| len_read += sizeof_auxv_t; |
| } |
| else |
| break; |
| } |
| return len_read; |
| } |
| |
| /* Return nto_inferior_data for the given INFERIOR. If not yet created, |
| construct it. */ |
| |
| struct nto_inferior_data * |
| nto_inferior_data (struct inferior *const inferior) |
| { |
| struct inferior *const inf = inferior ? inferior : current_inferior (); |
| struct nto_inferior_data *inf_data; |
| |
| gdb_assert (inf != NULL); |
| |
| inf_data = nto_inferior_data_reg.get (inf); |
| if (inf_data == NULL) |
| inf_data = nto_inferior_data_reg.emplace (inf); |
| |
| return inf_data; |
| } |