| /* Print values for GDB, the GNU debugger. |
| |
| Copyright (C) 1986-2021 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "value.h" |
| #include "gdbcore.h" |
| #include "gdbcmd.h" |
| #include "target.h" |
| #include "language.h" |
| #include "annotate.h" |
| #include "valprint.h" |
| #include "target-float.h" |
| #include "extension.h" |
| #include "ada-lang.h" |
| #include "gdb_obstack.h" |
| #include "charset.h" |
| #include "typeprint.h" |
| #include <ctype.h> |
| #include <algorithm> |
| #include "gdbsupport/byte-vector.h" |
| #include "cli/cli-option.h" |
| #include "gdbarch.h" |
| #include "cli/cli-style.h" |
| #include "count-one-bits.h" |
| #include "c-lang.h" |
| #include "cp-abi.h" |
| #include "inferior.h" |
| |
| /* Maximum number of wchars returned from wchar_iterate. */ |
| #define MAX_WCHARS 4 |
| |
| /* A convenience macro to compute the size of a wchar_t buffer containing X |
| characters. */ |
| #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t)) |
| |
| /* Character buffer size saved while iterating over wchars. */ |
| #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS) |
| |
| /* A structure to encapsulate state information from iterated |
| character conversions. */ |
| struct converted_character |
| { |
| /* The number of characters converted. */ |
| int num_chars; |
| |
| /* The result of the conversion. See charset.h for more. */ |
| enum wchar_iterate_result result; |
| |
| /* The (saved) converted character(s). */ |
| gdb_wchar_t chars[WCHAR_BUFLEN_MAX]; |
| |
| /* The first converted target byte. */ |
| const gdb_byte *buf; |
| |
| /* The number of bytes converted. */ |
| size_t buflen; |
| |
| /* How many times this character(s) is repeated. */ |
| int repeat_count; |
| }; |
| |
| /* Command lists for set/show print raw. */ |
| struct cmd_list_element *setprintrawlist; |
| struct cmd_list_element *showprintrawlist; |
| |
| /* Prototypes for local functions */ |
| |
| static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, |
| int len, int *errptr); |
| |
| static void set_input_radix_1 (int, unsigned); |
| |
| static void set_output_radix_1 (int, unsigned); |
| |
| static void val_print_type_code_flags (struct type *type, |
| struct value *original_value, |
| int embedded_offset, |
| struct ui_file *stream); |
| |
| #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */ |
| #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */ |
| |
| struct value_print_options user_print_options = |
| { |
| Val_prettyformat_default, /* prettyformat */ |
| 0, /* prettyformat_arrays */ |
| 0, /* prettyformat_structs */ |
| 0, /* vtblprint */ |
| 1, /* unionprint */ |
| 1, /* addressprint */ |
| 0, /* objectprint */ |
| PRINT_MAX_DEFAULT, /* print_max */ |
| 10, /* repeat_count_threshold */ |
| 0, /* output_format */ |
| 0, /* format */ |
| 1, /* memory_tag_violations */ |
| 0, /* stop_print_at_null */ |
| 0, /* print_array_indexes */ |
| 0, /* deref_ref */ |
| 1, /* static_field_print */ |
| 1, /* pascal_static_field_print */ |
| 0, /* raw */ |
| 0, /* summary */ |
| 1, /* symbol_print */ |
| PRINT_MAX_DEPTH_DEFAULT, /* max_depth */ |
| 1 /* finish_print */ |
| }; |
| |
| /* Initialize *OPTS to be a copy of the user print options. */ |
| void |
| get_user_print_options (struct value_print_options *opts) |
| { |
| *opts = user_print_options; |
| } |
| |
| /* Initialize *OPTS to be a copy of the user print options, but with |
| pretty-formatting disabled. */ |
| void |
| get_no_prettyformat_print_options (struct value_print_options *opts) |
| { |
| *opts = user_print_options; |
| opts->prettyformat = Val_no_prettyformat; |
| } |
| |
| /* Initialize *OPTS to be a copy of the user print options, but using |
| FORMAT as the formatting option. */ |
| void |
| get_formatted_print_options (struct value_print_options *opts, |
| char format) |
| { |
| *opts = user_print_options; |
| opts->format = format; |
| } |
| |
| static void |
| show_print_max (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Limit on string chars or array " |
| "elements to print is %s.\n"), |
| value); |
| } |
| |
| |
| /* Default input and output radixes, and output format letter. */ |
| |
| unsigned input_radix = 10; |
| static void |
| show_input_radix (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Default input radix for entering numbers is %s.\n"), |
| value); |
| } |
| |
| unsigned output_radix = 10; |
| static void |
| show_output_radix (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Default output radix for printing of values is %s.\n"), |
| value); |
| } |
| |
| /* By default we print arrays without printing the index of each element in |
| the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */ |
| |
| static void |
| show_print_array_indexes (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value); |
| } |
| |
| /* Print repeat counts if there are more than this many repetitions of an |
| element in an array. Referenced by the low level language dependent |
| print routines. */ |
| |
| static void |
| show_repeat_count_threshold (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"), |
| value); |
| } |
| |
| /* If nonzero, prints memory tag violations for pointers. */ |
| |
| static void |
| show_memory_tag_violations (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Printing of memory tag violations is %s.\n"), |
| value); |
| } |
| |
| /* If nonzero, stops printing of char arrays at first null. */ |
| |
| static void |
| show_stop_print_at_null (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Printing of char arrays to stop " |
| "at first null char is %s.\n"), |
| value); |
| } |
| |
| /* Controls pretty printing of structures. */ |
| |
| static void |
| show_prettyformat_structs (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value); |
| } |
| |
| /* Controls pretty printing of arrays. */ |
| |
| static void |
| show_prettyformat_arrays (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value); |
| } |
| |
| /* If nonzero, causes unions inside structures or other unions to be |
| printed. */ |
| |
| static void |
| show_unionprint (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Printing of unions interior to structures is %s.\n"), |
| value); |
| } |
| |
| /* If nonzero, causes machine addresses to be printed in certain contexts. */ |
| |
| static void |
| show_addressprint (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Printing of addresses is %s.\n"), value); |
| } |
| |
| static void |
| show_symbol_print (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Printing of symbols when printing pointers is %s.\n"), |
| value); |
| } |
| |
| |
| |
| /* A helper function for val_print. When printing in "summary" mode, |
| we want to print scalar arguments, but not aggregate arguments. |
| This function distinguishes between the two. */ |
| |
| int |
| val_print_scalar_type_p (struct type *type) |
| { |
| type = check_typedef (type); |
| while (TYPE_IS_REFERENCE (type)) |
| { |
| type = TYPE_TARGET_TYPE (type); |
| type = check_typedef (type); |
| } |
| switch (type->code ()) |
| { |
| case TYPE_CODE_ARRAY: |
| case TYPE_CODE_STRUCT: |
| case TYPE_CODE_UNION: |
| case TYPE_CODE_SET: |
| case TYPE_CODE_STRING: |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| /* A helper function for val_print. When printing with limited depth we |
| want to print string and scalar arguments, but not aggregate arguments. |
| This function distinguishes between the two. */ |
| |
| static bool |
| val_print_scalar_or_string_type_p (struct type *type, |
| const struct language_defn *language) |
| { |
| return (val_print_scalar_type_p (type) |
| || language->is_string_type_p (type)); |
| } |
| |
| /* See valprint.h. */ |
| |
| int |
| valprint_check_validity (struct ui_file *stream, |
| struct type *type, |
| LONGEST embedded_offset, |
| const struct value *val) |
| { |
| type = check_typedef (type); |
| |
| if (type_not_associated (type)) |
| { |
| val_print_not_associated (stream); |
| return 0; |
| } |
| |
| if (type_not_allocated (type)) |
| { |
| val_print_not_allocated (stream); |
| return 0; |
| } |
| |
| if (type->code () != TYPE_CODE_UNION |
| && type->code () != TYPE_CODE_STRUCT |
| && type->code () != TYPE_CODE_ARRAY) |
| { |
| if (value_bits_any_optimized_out (val, |
| TARGET_CHAR_BIT * embedded_offset, |
| TARGET_CHAR_BIT * TYPE_LENGTH (type))) |
| { |
| val_print_optimized_out (val, stream); |
| return 0; |
| } |
| |
| if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset, |
| TARGET_CHAR_BIT * TYPE_LENGTH (type))) |
| { |
| const int is_ref = type->code () == TYPE_CODE_REF; |
| int ref_is_addressable = 0; |
| |
| if (is_ref) |
| { |
| const struct value *deref_val = coerce_ref_if_computed (val); |
| |
| if (deref_val != NULL) |
| ref_is_addressable = value_lval_const (deref_val) == lval_memory; |
| } |
| |
| if (!is_ref || !ref_is_addressable) |
| fputs_styled (_("<synthetic pointer>"), metadata_style.style (), |
| stream); |
| |
| /* C++ references should be valid even if they're synthetic. */ |
| return is_ref; |
| } |
| |
| if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type))) |
| { |
| val_print_unavailable (stream); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| void |
| val_print_optimized_out (const struct value *val, struct ui_file *stream) |
| { |
| if (val != NULL && value_lval_const (val) == lval_register) |
| val_print_not_saved (stream); |
| else |
| fprintf_styled (stream, metadata_style.style (), _("<optimized out>")); |
| } |
| |
| void |
| val_print_not_saved (struct ui_file *stream) |
| { |
| fprintf_styled (stream, metadata_style.style (), _("<not saved>")); |
| } |
| |
| void |
| val_print_unavailable (struct ui_file *stream) |
| { |
| fprintf_styled (stream, metadata_style.style (), _("<unavailable>")); |
| } |
| |
| void |
| val_print_invalid_address (struct ui_file *stream) |
| { |
| fprintf_styled (stream, metadata_style.style (), _("<invalid address>")); |
| } |
| |
| /* Print a pointer based on the type of its target. |
| |
| Arguments to this functions are roughly the same as those in |
| generic_val_print. A difference is that ADDRESS is the address to print, |
| with embedded_offset already added. ELTTYPE represents |
| the pointed type after check_typedef. */ |
| |
| static void |
| print_unpacked_pointer (struct type *type, struct type *elttype, |
| CORE_ADDR address, struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| struct gdbarch *gdbarch = type->arch (); |
| |
| if (elttype->code () == TYPE_CODE_FUNC) |
| { |
| /* Try to print what function it points to. */ |
| print_function_pointer_address (options, gdbarch, address, stream); |
| return; |
| } |
| |
| if (options->symbol_print) |
| print_address_demangle (options, gdbarch, address, stream, demangle); |
| else if (options->addressprint) |
| fputs_filtered (paddress (gdbarch, address), stream); |
| } |
| |
| /* generic_val_print helper for TYPE_CODE_ARRAY. */ |
| |
| static void |
| generic_val_print_array (struct value *val, |
| struct ui_file *stream, int recurse, |
| const struct value_print_options *options, |
| const struct |
| generic_val_print_decorations *decorations) |
| { |
| struct type *type = check_typedef (value_type (val)); |
| struct type *unresolved_elttype = TYPE_TARGET_TYPE (type); |
| struct type *elttype = check_typedef (unresolved_elttype); |
| |
| if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0) |
| { |
| LONGEST low_bound, high_bound; |
| |
| if (!get_array_bounds (type, &low_bound, &high_bound)) |
| error (_("Could not determine the array high bound")); |
| |
| fputs_filtered (decorations->array_start, stream); |
| value_print_array_elements (val, stream, recurse, options, 0); |
| fputs_filtered (decorations->array_end, stream); |
| } |
| else |
| { |
| /* Array of unspecified length: treat like pointer to first elt. */ |
| print_unpacked_pointer (type, elttype, value_address (val), |
| stream, options); |
| } |
| |
| } |
| |
| /* generic_value_print helper for TYPE_CODE_PTR. */ |
| |
| static void |
| generic_value_print_ptr (struct value *val, struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| |
| if (options->format && options->format != 's') |
| value_print_scalar_formatted (val, options, 0, stream); |
| else |
| { |
| struct type *type = check_typedef (value_type (val)); |
| struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type)); |
| const gdb_byte *valaddr = value_contents_for_printing (val); |
| CORE_ADDR addr = unpack_pointer (type, valaddr); |
| |
| print_unpacked_pointer (type, elttype, addr, stream, options); |
| } |
| } |
| |
| |
| /* Print '@' followed by the address contained in ADDRESS_BUFFER. */ |
| |
| static void |
| print_ref_address (struct type *type, const gdb_byte *address_buffer, |
| int embedded_offset, struct ui_file *stream) |
| { |
| struct gdbarch *gdbarch = type->arch (); |
| |
| if (address_buffer != NULL) |
| { |
| CORE_ADDR address |
| = extract_typed_address (address_buffer + embedded_offset, type); |
| |
| fprintf_filtered (stream, "@"); |
| fputs_filtered (paddress (gdbarch, address), stream); |
| } |
| /* Else: we have a non-addressable value, such as a DW_AT_const_value. */ |
| } |
| |
| /* If VAL is addressable, return the value contents buffer of a value that |
| represents a pointer to VAL. Otherwise return NULL. */ |
| |
| static const gdb_byte * |
| get_value_addr_contents (struct value *deref_val) |
| { |
| gdb_assert (deref_val != NULL); |
| |
| if (value_lval_const (deref_val) == lval_memory) |
| return value_contents_for_printing_const (value_addr (deref_val)); |
| else |
| { |
| /* We have a non-addressable value, such as a DW_AT_const_value. */ |
| return NULL; |
| } |
| } |
| |
| /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */ |
| |
| static void |
| generic_val_print_ref (struct type *type, |
| int embedded_offset, struct ui_file *stream, int recurse, |
| struct value *original_value, |
| const struct value_print_options *options) |
| { |
| struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type)); |
| struct value *deref_val = NULL; |
| const int value_is_synthetic |
| = value_bits_synthetic_pointer (original_value, |
| TARGET_CHAR_BIT * embedded_offset, |
| TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
| const int must_coerce_ref = ((options->addressprint && value_is_synthetic) |
| || options->deref_ref); |
| const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF; |
| const gdb_byte *valaddr = value_contents_for_printing (original_value); |
| |
| if (must_coerce_ref && type_is_defined) |
| { |
| deref_val = coerce_ref_if_computed (original_value); |
| |
| if (deref_val != NULL) |
| { |
| /* More complicated computed references are not supported. */ |
| gdb_assert (embedded_offset == 0); |
| } |
| else |
| deref_val = value_at (TYPE_TARGET_TYPE (type), |
| unpack_pointer (type, valaddr + embedded_offset)); |
| } |
| /* Else, original_value isn't a synthetic reference or we don't have to print |
| the reference's contents. |
| |
| Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will |
| cause original_value to be a not_lval instead of an lval_computed, |
| which will make value_bits_synthetic_pointer return false. |
| This happens because if options->objectprint is true, c_value_print will |
| overwrite original_value's contents with the result of coercing |
| the reference through value_addr, and then set its type back to |
| TYPE_CODE_REF. In that case we don't have to coerce the reference again; |
| we can simply treat it as non-synthetic and move on. */ |
| |
| if (options->addressprint) |
| { |
| const gdb_byte *address = (value_is_synthetic && type_is_defined |
| ? get_value_addr_contents (deref_val) |
| : valaddr); |
| |
| print_ref_address (type, address, embedded_offset, stream); |
| |
| if (options->deref_ref) |
| fputs_filtered (": ", stream); |
| } |
| |
| if (options->deref_ref) |
| { |
| if (type_is_defined) |
| common_val_print (deref_val, stream, recurse, options, |
| current_language); |
| else |
| fputs_filtered ("???", stream); |
| } |
| } |
| |
| /* Helper function for generic_val_print_enum. |
| This is also used to print enums in TYPE_CODE_FLAGS values. */ |
| |
| static void |
| generic_val_print_enum_1 (struct type *type, LONGEST val, |
| struct ui_file *stream) |
| { |
| unsigned int i; |
| unsigned int len; |
| |
| len = type->num_fields (); |
| for (i = 0; i < len; i++) |
| { |
| QUIT; |
| if (val == TYPE_FIELD_ENUMVAL (type, i)) |
| { |
| break; |
| } |
| } |
| if (i < len) |
| { |
| fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (), |
| stream); |
| } |
| else if (type->is_flag_enum ()) |
| { |
| int first = 1; |
| |
| /* We have a "flag" enum, so we try to decompose it into pieces as |
| appropriate. The enum may have multiple enumerators representing |
| the same bit, in which case we choose to only print the first one |
| we find. */ |
| for (i = 0; i < len; ++i) |
| { |
| QUIT; |
| |
| ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i); |
| int nbits = count_one_bits_ll (enumval); |
| |
| gdb_assert (nbits == 0 || nbits == 1); |
| |
| if ((val & enumval) != 0) |
| { |
| if (first) |
| { |
| fputs_filtered ("(", stream); |
| first = 0; |
| } |
| else |
| fputs_filtered (" | ", stream); |
| |
| val &= ~TYPE_FIELD_ENUMVAL (type, i); |
| fputs_styled (TYPE_FIELD_NAME (type, i), |
| variable_name_style.style (), stream); |
| } |
| } |
| |
| if (val != 0) |
| { |
| /* There are leftover bits, print them. */ |
| if (first) |
| fputs_filtered ("(", stream); |
| else |
| fputs_filtered (" | ", stream); |
| |
| fputs_filtered ("unknown: 0x", stream); |
| print_longest (stream, 'x', 0, val); |
| fputs_filtered (")", stream); |
| } |
| else if (first) |
| { |
| /* Nothing has been printed and the value is 0, the enum value must |
| have been 0. */ |
| fputs_filtered ("0", stream); |
| } |
| else |
| { |
| /* Something has been printed, close the parenthesis. */ |
| fputs_filtered (")", stream); |
| } |
| } |
| else |
| print_longest (stream, 'd', 0, val); |
| } |
| |
| /* generic_val_print helper for TYPE_CODE_ENUM. */ |
| |
| static void |
| generic_val_print_enum (struct type *type, |
| int embedded_offset, struct ui_file *stream, |
| struct value *original_value, |
| const struct value_print_options *options) |
| { |
| LONGEST val; |
| struct gdbarch *gdbarch = type->arch (); |
| int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); |
| |
| gdb_assert (!options->format); |
| |
| const gdb_byte *valaddr = value_contents_for_printing (original_value); |
| |
| val = unpack_long (type, valaddr + embedded_offset * unit_size); |
| |
| generic_val_print_enum_1 (type, val, stream); |
| } |
| |
| /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */ |
| |
| static void |
| generic_val_print_func (struct type *type, |
| int embedded_offset, CORE_ADDR address, |
| struct ui_file *stream, |
| struct value *original_value, |
| const struct value_print_options *options) |
| { |
| struct gdbarch *gdbarch = type->arch (); |
| |
| gdb_assert (!options->format); |
| |
| /* FIXME, we should consider, at least for ANSI C language, |
| eliminating the distinction made between FUNCs and POINTERs to |
| FUNCs. */ |
| fprintf_filtered (stream, "{"); |
| type_print (type, "", stream, -1); |
| fprintf_filtered (stream, "} "); |
| /* Try to print what function it points to, and its address. */ |
| print_address_demangle (options, gdbarch, address, stream, demangle); |
| } |
| |
| /* generic_value_print helper for TYPE_CODE_BOOL. */ |
| |
| static void |
| generic_value_print_bool |
| (struct value *value, struct ui_file *stream, |
| const struct value_print_options *options, |
| const struct generic_val_print_decorations *decorations) |
| { |
| if (options->format || options->output_format) |
| { |
| struct value_print_options opts = *options; |
| opts.format = (options->format ? options->format |
| : options->output_format); |
| value_print_scalar_formatted (value, &opts, 0, stream); |
| } |
| else |
| { |
| const gdb_byte *valaddr = value_contents_for_printing (value); |
| struct type *type = check_typedef (value_type (value)); |
| LONGEST val = unpack_long (type, valaddr); |
| if (val == 0) |
| fputs_filtered (decorations->false_name, stream); |
| else if (val == 1) |
| fputs_filtered (decorations->true_name, stream); |
| else |
| print_longest (stream, 'd', 0, val); |
| } |
| } |
| |
| /* generic_value_print helper for TYPE_CODE_INT. */ |
| |
| static void |
| generic_value_print_int (struct value *val, struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| struct value_print_options opts = *options; |
| |
| opts.format = (options->format ? options->format |
| : options->output_format); |
| value_print_scalar_formatted (val, &opts, 0, stream); |
| } |
| |
| /* generic_value_print helper for TYPE_CODE_CHAR. */ |
| |
| static void |
| generic_value_print_char (struct value *value, struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| if (options->format || options->output_format) |
| { |
| struct value_print_options opts = *options; |
| |
| opts.format = (options->format ? options->format |
| : options->output_format); |
| value_print_scalar_formatted (value, &opts, 0, stream); |
| } |
| else |
| { |
| struct type *unresolved_type = value_type (value); |
| struct type *type = check_typedef (unresolved_type); |
| const gdb_byte *valaddr = value_contents_for_printing (value); |
| |
| LONGEST val = unpack_long (type, valaddr); |
| if (type->is_unsigned ()) |
| fprintf_filtered (stream, "%u", (unsigned int) val); |
| else |
| fprintf_filtered (stream, "%d", (int) val); |
| fputs_filtered (" ", stream); |
| LA_PRINT_CHAR (val, unresolved_type, stream); |
| } |
| } |
| |
| /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */ |
| |
| static void |
| generic_val_print_float (struct type *type, struct ui_file *stream, |
| struct value *original_value, |
| const struct value_print_options *options) |
| { |
| gdb_assert (!options->format); |
| |
| const gdb_byte *valaddr = value_contents_for_printing (original_value); |
| |
| print_floating (valaddr, type, stream); |
| } |
| |
| /* generic_val_print helper for TYPE_CODE_FIXED_POINT. */ |
| |
| static void |
| generic_val_print_fixed_point (struct value *val, struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| if (options->format) |
| value_print_scalar_formatted (val, options, 0, stream); |
| else |
| { |
| struct type *type = value_type (val); |
| |
| const gdb_byte *valaddr = value_contents_for_printing (val); |
| gdb_mpf f; |
| |
| f.read_fixed_point (gdb::make_array_view (valaddr, TYPE_LENGTH (type)), |
| type_byte_order (type), type->is_unsigned (), |
| type->fixed_point_scaling_factor ()); |
| |
| const char *fmt = TYPE_LENGTH (type) < 4 ? "%.11Fg" : "%.17Fg"; |
| std::string str = gmp_string_printf (fmt, f.val); |
| fprintf_filtered (stream, "%s", str.c_str ()); |
| } |
| } |
| |
| /* generic_value_print helper for TYPE_CODE_COMPLEX. */ |
| |
| static void |
| generic_value_print_complex (struct value *val, struct ui_file *stream, |
| const struct value_print_options *options, |
| const struct generic_val_print_decorations |
| *decorations) |
| { |
| fprintf_filtered (stream, "%s", decorations->complex_prefix); |
| |
| struct value *real_part = value_real_part (val); |
| value_print_scalar_formatted (real_part, options, 0, stream); |
| fprintf_filtered (stream, "%s", decorations->complex_infix); |
| |
| struct value *imag_part = value_imaginary_part (val); |
| value_print_scalar_formatted (imag_part, options, 0, stream); |
| fprintf_filtered (stream, "%s", decorations->complex_suffix); |
| } |
| |
| /* generic_value_print helper for TYPE_CODE_MEMBERPTR. */ |
| |
| static void |
| generic_value_print_memberptr |
| (struct value *val, struct ui_file *stream, |
| int recurse, |
| const struct value_print_options *options, |
| const struct generic_val_print_decorations *decorations) |
| { |
| if (!options->format) |
| { |
| /* Member pointers are essentially specific to C++, and so if we |
| encounter one, we should print it according to C++ rules. */ |
| struct type *type = check_typedef (value_type (val)); |
| const gdb_byte *valaddr = value_contents_for_printing (val); |
| cp_print_class_member (valaddr, type, stream, "&"); |
| } |
| else |
| generic_value_print (val, stream, recurse, options, decorations); |
| } |
| |
| /* See valprint.h. */ |
| |
| void |
| generic_value_print (struct value *val, struct ui_file *stream, int recurse, |
| const struct value_print_options *options, |
| const struct generic_val_print_decorations *decorations) |
| { |
| struct type *type = value_type (val); |
| |
| type = check_typedef (type); |
| |
| if (is_fixed_point_type (type)) |
| type = type->fixed_point_type_base_type (); |
| |
| switch (type->code ()) |
| { |
| case TYPE_CODE_ARRAY: |
| generic_val_print_array (val, stream, recurse, options, decorations); |
| break; |
| |
| case TYPE_CODE_MEMBERPTR: |
| generic_value_print_memberptr (val, stream, recurse, options, |
| decorations); |
| break; |
| |
| case TYPE_CODE_PTR: |
| generic_value_print_ptr (val, stream, options); |
| break; |
| |
| case TYPE_CODE_REF: |
| case TYPE_CODE_RVALUE_REF: |
| generic_val_print_ref (type, 0, stream, recurse, |
| val, options); |
| break; |
| |
| case TYPE_CODE_ENUM: |
| if (options->format) |
| value_print_scalar_formatted (val, options, 0, stream); |
| else |
| generic_val_print_enum (type, 0, stream, val, options); |
| break; |
| |
| case TYPE_CODE_FLAGS: |
| if (options->format) |
| value_print_scalar_formatted (val, options, 0, stream); |
| else |
| val_print_type_code_flags (type, val, 0, stream); |
| break; |
| |
| case TYPE_CODE_FUNC: |
| case TYPE_CODE_METHOD: |
| if (options->format) |
| value_print_scalar_formatted (val, options, 0, stream); |
| else |
| generic_val_print_func (type, 0, value_address (val), stream, |
| val, options); |
| break; |
| |
| case TYPE_CODE_BOOL: |
| generic_value_print_bool (val, stream, options, decorations); |
| break; |
| |
| case TYPE_CODE_RANGE: |
| case TYPE_CODE_INT: |
| generic_value_print_int (val, stream, options); |
| break; |
| |
| case TYPE_CODE_CHAR: |
| generic_value_print_char (val, stream, options); |
| break; |
| |
| case TYPE_CODE_FLT: |
| case TYPE_CODE_DECFLOAT: |
| if (options->format) |
| value_print_scalar_formatted (val, options, 0, stream); |
| else |
| generic_val_print_float (type, stream, val, options); |
| break; |
| |
| case TYPE_CODE_FIXED_POINT: |
| generic_val_print_fixed_point (val, stream, options); |
| break; |
| |
| case TYPE_CODE_VOID: |
| fputs_filtered (decorations->void_name, stream); |
| break; |
| |
| case TYPE_CODE_ERROR: |
| fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type)); |
| break; |
| |
| case TYPE_CODE_UNDEF: |
| /* This happens (without TYPE_STUB set) on systems which don't use |
| dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar" |
| and no complete type for struct foo in that file. */ |
| fprintf_styled (stream, metadata_style.style (), _("<incomplete type>")); |
| break; |
| |
| case TYPE_CODE_COMPLEX: |
| generic_value_print_complex (val, stream, options, decorations); |
| break; |
| |
| case TYPE_CODE_METHODPTR: |
| cplus_print_method_ptr (value_contents_for_printing (val), type, |
| stream); |
| break; |
| |
| case TYPE_CODE_UNION: |
| case TYPE_CODE_STRUCT: |
| default: |
| error (_("Unhandled type code %d in symbol table."), |
| type->code ()); |
| } |
| } |
| |
| /* Helper function for val_print and common_val_print that does the |
| work. Arguments are as to val_print, but FULL_VALUE, if given, is |
| the value to be printed. */ |
| |
| static void |
| do_val_print (struct value *value, struct ui_file *stream, int recurse, |
| const struct value_print_options *options, |
| const struct language_defn *language) |
| { |
| int ret = 0; |
| struct value_print_options local_opts = *options; |
| struct type *type = value_type (value); |
| struct type *real_type = check_typedef (type); |
| |
| if (local_opts.prettyformat == Val_prettyformat_default) |
| local_opts.prettyformat = (local_opts.prettyformat_structs |
| ? Val_prettyformat : Val_no_prettyformat); |
| |
| QUIT; |
| |
| /* Ensure that the type is complete and not just a stub. If the type is |
| only a stub and we can't find and substitute its complete type, then |
| print appropriate string and return. */ |
| |
| if (real_type->is_stub ()) |
| { |
| fprintf_styled (stream, metadata_style.style (), _("<incomplete type>")); |
| return; |
| } |
| |
| if (!valprint_check_validity (stream, real_type, 0, value)) |
| return; |
| |
| if (!options->raw) |
| { |
| ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options, |
| language); |
| if (ret) |
| return; |
| } |
| |
| /* Handle summary mode. If the value is a scalar, print it; |
| otherwise, print an ellipsis. */ |
| if (options->summary && !val_print_scalar_type_p (type)) |
| { |
| fprintf_filtered (stream, "..."); |
| return; |
| } |
| |
| /* If this value is too deep then don't print it. */ |
| if (!val_print_scalar_or_string_type_p (type, language) |
| && val_print_check_max_depth (stream, recurse, options, language)) |
| return; |
| |
| try |
| { |
| language->value_print_inner (value, stream, recurse, &local_opts); |
| } |
| catch (const gdb_exception_error &except) |
| { |
| fprintf_styled (stream, metadata_style.style (), |
| _("<error reading variable>")); |
| } |
| } |
| |
| /* See valprint.h. */ |
| |
| bool |
| val_print_check_max_depth (struct ui_file *stream, int recurse, |
| const struct value_print_options *options, |
| const struct language_defn *language) |
| { |
| if (options->max_depth > -1 && recurse >= options->max_depth) |
| { |
| gdb_assert (language->struct_too_deep_ellipsis () != NULL); |
| fputs_filtered (language->struct_too_deep_ellipsis (), stream); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Check whether the value VAL is printable. Return 1 if it is; |
| return 0 and print an appropriate error message to STREAM according to |
| OPTIONS if it is not. */ |
| |
| static int |
| value_check_printable (struct value *val, struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| if (val == 0) |
| { |
| fprintf_styled (stream, metadata_style.style (), |
| _("<address of value unknown>")); |
| return 0; |
| } |
| |
| if (value_entirely_optimized_out (val)) |
| { |
| if (options->summary && !val_print_scalar_type_p (value_type (val))) |
| fprintf_filtered (stream, "..."); |
| else |
| val_print_optimized_out (val, stream); |
| return 0; |
| } |
| |
| if (value_entirely_unavailable (val)) |
| { |
| if (options->summary && !val_print_scalar_type_p (value_type (val))) |
| fprintf_filtered (stream, "..."); |
| else |
| val_print_unavailable (stream); |
| return 0; |
| } |
| |
| if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION) |
| { |
| fprintf_styled (stream, metadata_style.style (), |
| _("<internal function %s>"), |
| value_internal_function_name (val)); |
| return 0; |
| } |
| |
| if (type_not_associated (value_type (val))) |
| { |
| val_print_not_associated (stream); |
| return 0; |
| } |
| |
| if (type_not_allocated (value_type (val))) |
| { |
| val_print_not_allocated (stream); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Print using the given LANGUAGE the value VAL onto stream STREAM according |
| to OPTIONS. |
| |
| This is a preferable interface to val_print, above, because it uses |
| GDB's value mechanism. */ |
| |
| void |
| common_val_print (struct value *val, struct ui_file *stream, int recurse, |
| const struct value_print_options *options, |
| const struct language_defn *language) |
| { |
| if (language->la_language == language_ada) |
| /* The value might have a dynamic type, which would cause trouble |
| below when trying to extract the value contents (since the value |
| size is determined from the type size which is unknown). So |
| get a fixed representation of our value. */ |
| val = ada_to_fixed_value (val); |
| |
| if (value_lazy (val)) |
| value_fetch_lazy (val); |
| |
| do_val_print (val, stream, recurse, options, language); |
| } |
| |
| /* See valprint.h. */ |
| |
| void |
| common_val_print_checked (struct value *val, struct ui_file *stream, |
| int recurse, |
| const struct value_print_options *options, |
| const struct language_defn *language) |
| { |
| if (!value_check_printable (val, stream, options)) |
| return; |
| common_val_print (val, stream, recurse, options, language); |
| } |
| |
| /* Print on stream STREAM the value VAL according to OPTIONS. The value |
| is printed using the current_language syntax. */ |
| |
| void |
| value_print (struct value *val, struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| scoped_value_mark free_values; |
| |
| if (!value_check_printable (val, stream, options)) |
| return; |
| |
| if (!options->raw) |
| { |
| int r |
| = apply_ext_lang_val_pretty_printer (val, stream, 0, options, |
| current_language); |
| |
| if (r) |
| return; |
| } |
| |
| current_language->value_print (val, stream, options); |
| } |
| |
| static void |
| val_print_type_code_flags (struct type *type, struct value *original_value, |
| int embedded_offset, struct ui_file *stream) |
| { |
| const gdb_byte *valaddr = (value_contents_for_printing (original_value) |
| + embedded_offset); |
| ULONGEST val = unpack_long (type, valaddr); |
| int field, nfields = type->num_fields (); |
| struct gdbarch *gdbarch = type->arch (); |
| struct type *bool_type = builtin_type (gdbarch)->builtin_bool; |
| |
| fputs_filtered ("[", stream); |
| for (field = 0; field < nfields; field++) |
| { |
| if (TYPE_FIELD_NAME (type, field)[0] != '\0') |
| { |
| struct type *field_type = type->field (field).type (); |
| |
| if (field_type == bool_type |
| /* We require boolean types here to be one bit wide. This is a |
| problematic place to notify the user of an internal error |
| though. Instead just fall through and print the field as an |
| int. */ |
| && TYPE_FIELD_BITSIZE (type, field) == 1) |
| { |
| if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field))) |
| fprintf_filtered |
| (stream, " %ps", |
| styled_string (variable_name_style.style (), |
| TYPE_FIELD_NAME (type, field))); |
| } |
| else |
| { |
| unsigned field_len = TYPE_FIELD_BITSIZE (type, field); |
| ULONGEST field_val |
| = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1); |
| |
| if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT) |
| field_val &= ((ULONGEST) 1 << field_len) - 1; |
| fprintf_filtered (stream, " %ps=", |
| styled_string (variable_name_style.style (), |
| TYPE_FIELD_NAME (type, field))); |
| if (field_type->code () == TYPE_CODE_ENUM) |
| generic_val_print_enum_1 (field_type, field_val, stream); |
| else |
| print_longest (stream, 'd', 0, field_val); |
| } |
| } |
| } |
| fputs_filtered (" ]", stream); |
| } |
| |
| /* See valprint.h. */ |
| |
| void |
| value_print_scalar_formatted (struct value *val, |
| const struct value_print_options *options, |
| int size, |
| struct ui_file *stream) |
| { |
| struct type *type = check_typedef (value_type (val)); |
| |
| gdb_assert (val != NULL); |
| |
| /* If we get here with a string format, try again without it. Go |
| all the way back to the language printers, which may call us |
| again. */ |
| if (options->format == 's') |
| { |
| struct value_print_options opts = *options; |
| opts.format = 0; |
| opts.deref_ref = 0; |
| common_val_print (val, stream, 0, &opts, current_language); |
| return; |
| } |
| |
| /* value_contents_for_printing fetches all VAL's contents. They are |
| needed to check whether VAL is optimized-out or unavailable |
| below. */ |
| const gdb_byte *valaddr = value_contents_for_printing (val); |
| |
| /* A scalar object that does not have all bits available can't be |
| printed, because all bits contribute to its representation. */ |
| if (value_bits_any_optimized_out (val, 0, |
| TARGET_CHAR_BIT * TYPE_LENGTH (type))) |
| val_print_optimized_out (val, stream); |
| else if (!value_bytes_available (val, 0, TYPE_LENGTH (type))) |
| val_print_unavailable (stream); |
| else |
| print_scalar_formatted (valaddr, type, options, size, stream); |
| } |
| |
| /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g. |
| The raison d'etre of this function is to consolidate printing of |
| LONG_LONG's into this one function. The format chars b,h,w,g are |
| from print_scalar_formatted(). Numbers are printed using C |
| format. |
| |
| USE_C_FORMAT means to use C format in all cases. Without it, |
| 'o' and 'x' format do not include the standard C radix prefix |
| (leading 0 or 0x). |
| |
| Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL |
| and was intended to request formatting according to the current |
| language and would be used for most integers that GDB prints. The |
| exceptional cases were things like protocols where the format of |
| the integer is a protocol thing, not a user-visible thing). The |
| parameter remains to preserve the information of what things might |
| be printed with language-specific format, should we ever resurrect |
| that capability. */ |
| |
| void |
| print_longest (struct ui_file *stream, int format, int use_c_format, |
| LONGEST val_long) |
| { |
| const char *val; |
| |
| switch (format) |
| { |
| case 'd': |
| val = int_string (val_long, 10, 1, 0, 1); break; |
| case 'u': |
| val = int_string (val_long, 10, 0, 0, 1); break; |
| case 'x': |
| val = int_string (val_long, 16, 0, 0, use_c_format); break; |
| case 'b': |
| val = int_string (val_long, 16, 0, 2, 1); break; |
| case 'h': |
| val = int_string (val_long, 16, 0, 4, 1); break; |
| case 'w': |
| val = int_string (val_long, 16, 0, 8, 1); break; |
| case 'g': |
| val = int_string (val_long, 16, 0, 16, 1); break; |
| break; |
| case 'o': |
| val = int_string (val_long, 8, 0, 0, use_c_format); break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("failed internal consistency check")); |
| } |
| fputs_filtered (val, stream); |
| } |
| |
| /* This used to be a macro, but I don't think it is called often enough |
| to merit such treatment. */ |
| /* Convert a LONGEST to an int. This is used in contexts (e.g. number of |
| arguments to a function, number in a value history, register number, etc.) |
| where the value must not be larger than can fit in an int. */ |
| |
| int |
| longest_to_int (LONGEST arg) |
| { |
| /* Let the compiler do the work. */ |
| int rtnval = (int) arg; |
| |
| /* Check for overflows or underflows. */ |
| if (sizeof (LONGEST) > sizeof (int)) |
| { |
| if (rtnval != arg) |
| { |
| error (_("Value out of range.")); |
| } |
| } |
| return (rtnval); |
| } |
| |
| /* Print a floating point value of floating-point type TYPE, |
| pointed to in GDB by VALADDR, on STREAM. */ |
| |
| void |
| print_floating (const gdb_byte *valaddr, struct type *type, |
| struct ui_file *stream) |
| { |
| std::string str = target_float_to_string (valaddr, type); |
| fputs_filtered (str.c_str (), stream); |
| } |
| |
| void |
| print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr, |
| unsigned len, enum bfd_endian byte_order, bool zero_pad) |
| { |
| const gdb_byte *p; |
| unsigned int i; |
| int b; |
| bool seen_a_one = false; |
| |
| /* Declared "int" so it will be signed. |
| This ensures that right shift will shift in zeros. */ |
| |
| const int mask = 0x080; |
| |
| if (byte_order == BFD_ENDIAN_BIG) |
| { |
| for (p = valaddr; |
| p < valaddr + len; |
| p++) |
| { |
| /* Every byte has 8 binary characters; peel off |
| and print from the MSB end. */ |
| |
| for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++) |
| { |
| if (*p & (mask >> i)) |
| b = '1'; |
| else |
| b = '0'; |
| |
| if (zero_pad || seen_a_one || b == '1') |
| fputc_filtered (b, stream); |
| if (b == '1') |
| seen_a_one = true; |
| } |
| } |
| } |
| else |
| { |
| for (p = valaddr + len - 1; |
| p >= valaddr; |
| p--) |
| { |
| for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++) |
| { |
| if (*p & (mask >> i)) |
| b = '1'; |
| else |
| b = '0'; |
| |
| if (zero_pad || seen_a_one || b == '1') |
| fputc_filtered (b, stream); |
| if (b == '1') |
| seen_a_one = true; |
| } |
| } |
| } |
| |
| /* When not zero-padding, ensure that something is printed when the |
| input is 0. */ |
| if (!zero_pad && !seen_a_one) |
| fputc_filtered ('0', stream); |
| } |
| |
| /* A helper for print_octal_chars that emits a single octal digit, |
| optionally suppressing it if is zero and updating SEEN_A_ONE. */ |
| |
| static void |
| emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit) |
| { |
| if (*seen_a_one || digit != 0) |
| fprintf_filtered (stream, "%o", digit); |
| if (digit != 0) |
| *seen_a_one = true; |
| } |
| |
| /* VALADDR points to an integer of LEN bytes. |
| Print it in octal on stream or format it in buf. */ |
| |
| void |
| print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr, |
| unsigned len, enum bfd_endian byte_order) |
| { |
| const gdb_byte *p; |
| unsigned char octa1, octa2, octa3, carry; |
| int cycle; |
| |
| /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track |
| * the extra bits, which cycle every three bytes: |
| * |
| * Byte side: 0 1 2 3 |
| * | | | | |
| * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 | |
| * |
| * Octal side: 0 1 carry 3 4 carry ... |
| * |
| * Cycle number: 0 1 2 |
| * |
| * But of course we are printing from the high side, so we have to |
| * figure out where in the cycle we are so that we end up with no |
| * left over bits at the end. |
| */ |
| #define BITS_IN_OCTAL 3 |
| #define HIGH_ZERO 0340 |
| #define LOW_ZERO 0034 |
| #define CARRY_ZERO 0003 |
| static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff, |
| "cycle zero constants are wrong"); |
| #define HIGH_ONE 0200 |
| #define MID_ONE 0160 |
| #define LOW_ONE 0016 |
| #define CARRY_ONE 0001 |
| static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff, |
| "cycle one constants are wrong"); |
| #define HIGH_TWO 0300 |
| #define MID_TWO 0070 |
| #define LOW_TWO 0007 |
| static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff, |
| "cycle two constants are wrong"); |
| |
| /* For 32 we start in cycle 2, with two bits and one bit carry; |
| for 64 in cycle in cycle 1, with one bit and a two bit carry. */ |
| |
| cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL; |
| carry = 0; |
| |
| fputs_filtered ("0", stream); |
| bool seen_a_one = false; |
| if (byte_order == BFD_ENDIAN_BIG) |
| { |
| for (p = valaddr; |
| p < valaddr + len; |
| p++) |
| { |
| switch (cycle) |
| { |
| case 0: |
| /* No carry in, carry out two bits. */ |
| |
| octa1 = (HIGH_ZERO & *p) >> 5; |
| octa2 = (LOW_ZERO & *p) >> 2; |
| carry = (CARRY_ZERO & *p); |
| emit_octal_digit (stream, &seen_a_one, octa1); |
| emit_octal_digit (stream, &seen_a_one, octa2); |
| break; |
| |
| case 1: |
| /* Carry in two bits, carry out one bit. */ |
| |
| octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); |
| octa2 = (MID_ONE & *p) >> 4; |
| octa3 = (LOW_ONE & *p) >> 1; |
| carry = (CARRY_ONE & *p); |
| emit_octal_digit (stream, &seen_a_one, octa1); |
| emit_octal_digit (stream, &seen_a_one, octa2); |
| emit_octal_digit (stream, &seen_a_one, octa3); |
| break; |
| |
| case 2: |
| /* Carry in one bit, no carry out. */ |
| |
| octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); |
| octa2 = (MID_TWO & *p) >> 3; |
| octa3 = (LOW_TWO & *p); |
| carry = 0; |
| emit_octal_digit (stream, &seen_a_one, octa1); |
| emit_octal_digit (stream, &seen_a_one, octa2); |
| emit_octal_digit (stream, &seen_a_one, octa3); |
| break; |
| |
| default: |
| error (_("Internal error in octal conversion;")); |
| } |
| |
| cycle++; |
| cycle = cycle % BITS_IN_OCTAL; |
| } |
| } |
| else |
| { |
| for (p = valaddr + len - 1; |
| p >= valaddr; |
| p--) |
| { |
| switch (cycle) |
| { |
| case 0: |
| /* Carry out, no carry in */ |
| |
| octa1 = (HIGH_ZERO & *p) >> 5; |
| octa2 = (LOW_ZERO & *p) >> 2; |
| carry = (CARRY_ZERO & *p); |
| emit_octal_digit (stream, &seen_a_one, octa1); |
| emit_octal_digit (stream, &seen_a_one, octa2); |
| break; |
| |
| case 1: |
| /* Carry in, carry out */ |
| |
| octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); |
| octa2 = (MID_ONE & *p) >> 4; |
| octa3 = (LOW_ONE & *p) >> 1; |
| carry = (CARRY_ONE & *p); |
| emit_octal_digit (stream, &seen_a_one, octa1); |
| emit_octal_digit (stream, &seen_a_one, octa2); |
| emit_octal_digit (stream, &seen_a_one, octa3); |
| break; |
| |
| case 2: |
| /* Carry in, no carry out */ |
| |
| octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); |
| octa2 = (MID_TWO & *p) >> 3; |
| octa3 = (LOW_TWO & *p); |
| carry = 0; |
| emit_octal_digit (stream, &seen_a_one, octa1); |
| emit_octal_digit (stream, &seen_a_one, octa2); |
| emit_octal_digit (stream, &seen_a_one, octa3); |
| break; |
| |
| default: |
| error (_("Internal error in octal conversion;")); |
| } |
| |
| cycle++; |
| cycle = cycle % BITS_IN_OCTAL; |
| } |
| } |
| |
| } |
| |
| /* Possibly negate the integer represented by BYTES. It contains LEN |
| bytes in the specified byte order. If the integer is negative, |
| copy it into OUT_VEC, negate it, and return true. Otherwise, do |
| nothing and return false. */ |
| |
| static bool |
| maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len, |
| enum bfd_endian byte_order, |
| gdb::byte_vector *out_vec) |
| { |
| gdb_byte sign_byte; |
| gdb_assert (len > 0); |
| if (byte_order == BFD_ENDIAN_BIG) |
| sign_byte = bytes[0]; |
| else |
| sign_byte = bytes[len - 1]; |
| if ((sign_byte & 0x80) == 0) |
| return false; |
| |
| out_vec->resize (len); |
| |
| /* Compute -x == 1 + ~x. */ |
| if (byte_order == BFD_ENDIAN_LITTLE) |
| { |
| unsigned carry = 1; |
| for (unsigned i = 0; i < len; ++i) |
| { |
| unsigned tem = (0xff & ~bytes[i]) + carry; |
| (*out_vec)[i] = tem & 0xff; |
| carry = tem / 256; |
| } |
| } |
| else |
| { |
| unsigned carry = 1; |
| for (unsigned i = len; i > 0; --i) |
| { |
| unsigned tem = (0xff & ~bytes[i - 1]) + carry; |
| (*out_vec)[i - 1] = tem & 0xff; |
| carry = tem / 256; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* VALADDR points to an integer of LEN bytes. |
| Print it in decimal on stream or format it in buf. */ |
| |
| void |
| print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr, |
| unsigned len, bool is_signed, |
| enum bfd_endian byte_order) |
| { |
| #define TEN 10 |
| #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */ |
| #define CARRY_LEFT( x ) ((x) % TEN) |
| #define SHIFT( x ) ((x) << 4) |
| #define LOW_NIBBLE( x ) ( (x) & 0x00F) |
| #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4) |
| |
| const gdb_byte *p; |
| int carry; |
| int decimal_len; |
| int i, j, decimal_digits; |
| int dummy; |
| int flip; |
| |
| gdb::byte_vector negated_bytes; |
| if (is_signed |
| && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes)) |
| { |
| fputs_filtered ("-", stream); |
| valaddr = negated_bytes.data (); |
| } |
| |
| /* Base-ten number is less than twice as many digits |
| as the base 16 number, which is 2 digits per byte. */ |
| |
| decimal_len = len * 2 * 2; |
| std::vector<unsigned char> digits (decimal_len, 0); |
| |
| /* Ok, we have an unknown number of bytes of data to be printed in |
| * decimal. |
| * |
| * Given a hex number (in nibbles) as XYZ, we start by taking X and |
| * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply |
| * the nibbles by 16, add Y and re-decimalize. Repeat with Z. |
| * |
| * The trick is that "digits" holds a base-10 number, but sometimes |
| * the individual digits are > 10. |
| * |
| * Outer loop is per nibble (hex digit) of input, from MSD end to |
| * LSD end. |
| */ |
| decimal_digits = 0; /* Number of decimal digits so far */ |
| p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1; |
| flip = 0; |
| while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr)) |
| { |
| /* |
| * Multiply current base-ten number by 16 in place. |
| * Each digit was between 0 and 9, now is between |
| * 0 and 144. |
| */ |
| for (j = 0; j < decimal_digits; j++) |
| { |
| digits[j] = SHIFT (digits[j]); |
| } |
| |
| /* Take the next nibble off the input and add it to what |
| * we've got in the LSB position. Bottom 'digit' is now |
| * between 0 and 159. |
| * |
| * "flip" is used to run this loop twice for each byte. |
| */ |
| if (flip == 0) |
| { |
| /* Take top nibble. */ |
| |
| digits[0] += HIGH_NIBBLE (*p); |
| flip = 1; |
| } |
| else |
| { |
| /* Take low nibble and bump our pointer "p". */ |
| |
| digits[0] += LOW_NIBBLE (*p); |
| if (byte_order == BFD_ENDIAN_BIG) |
| p++; |
| else |
| p--; |
| flip = 0; |
| } |
| |
| /* Re-decimalize. We have to do this often enough |
| * that we don't overflow, but once per nibble is |
| * overkill. Easier this way, though. Note that the |
| * carry is often larger than 10 (e.g. max initial |
| * carry out of lowest nibble is 15, could bubble all |
| * the way up greater than 10). So we have to do |
| * the carrying beyond the last current digit. |
| */ |
| carry = 0; |
| for (j = 0; j < decimal_len - 1; j++) |
| { |
| digits[j] += carry; |
| |
| /* "/" won't handle an unsigned char with |
| * a value that if signed would be negative. |
| * So extend to longword int via "dummy". |
| */ |
| dummy = digits[j]; |
| carry = CARRY_OUT (dummy); |
| digits[j] = CARRY_LEFT (dummy); |
| |
| if (j >= decimal_digits && carry == 0) |
| { |
| /* |
| * All higher digits are 0 and we |
| * no longer have a carry. |
| * |
| * Note: "j" is 0-based, "decimal_digits" is |
| * 1-based. |
| */ |
| decimal_digits = j + 1; |
| break; |
| } |
| } |
| } |
| |
| /* Ok, now "digits" is the decimal representation, with |
| the "decimal_digits" actual digits. Print! */ |
| |
| for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i) |
| ; |
| |
| for (; i >= 0; i--) |
| { |
| fprintf_filtered (stream, "%1d", digits[i]); |
| } |
| } |
| |
| /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */ |
| |
| void |
| print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr, |
| unsigned len, enum bfd_endian byte_order, |
| bool zero_pad) |
| { |
| const gdb_byte *p; |
| |
| fputs_filtered ("0x", stream); |
| if (byte_order == BFD_ENDIAN_BIG) |
| { |
| p = valaddr; |
| |
| if (!zero_pad) |
| { |
| /* Strip leading 0 bytes, but be sure to leave at least a |
| single byte at the end. */ |
| for (; p < valaddr + len - 1 && !*p; ++p) |
| ; |
| } |
| |
| const gdb_byte *first = p; |
| for (; |
| p < valaddr + len; |
| p++) |
| { |
| /* When not zero-padding, use a different format for the |
| very first byte printed. */ |
| if (!zero_pad && p == first) |
| fprintf_filtered (stream, "%x", *p); |
| else |
| fprintf_filtered (stream, "%02x", *p); |
| } |
| } |
| else |
| { |
| p = valaddr + len - 1; |
| |
| if (!zero_pad) |
| { |
| /* Strip leading 0 bytes, but be sure to leave at least a |
| single byte at the end. */ |
| for (; p >= valaddr + 1 && !*p; --p) |
| ; |
| } |
| |
| const gdb_byte *first = p; |
| for (; |
| p >= valaddr; |
| p--) |
| { |
| /* When not zero-padding, use a different format for the |
| very first byte printed. */ |
| if (!zero_pad && p == first) |
| fprintf_filtered (stream, "%x", *p); |
| else |
| fprintf_filtered (stream, "%02x", *p); |
| } |
| } |
| } |
| |
| /* Print function pointer with inferior address ADDRESS onto stdio |
| stream STREAM. */ |
| |
| void |
| print_function_pointer_address (const struct value_print_options *options, |
| struct gdbarch *gdbarch, |
| CORE_ADDR address, |
| struct ui_file *stream) |
| { |
| CORE_ADDR func_addr = gdbarch_convert_from_func_ptr_addr |
| (gdbarch, address, current_inferior ()->top_target ()); |
| |
| /* If the function pointer is represented by a description, print |
| the address of the description. */ |
| if (options->addressprint && func_addr != address) |
| { |
| fputs_filtered ("@", stream); |
| fputs_filtered (paddress (gdbarch, address), stream); |
| fputs_filtered (": ", stream); |
| } |
| print_address_demangle (options, gdbarch, func_addr, stream, demangle); |
| } |
| |
| |
| /* Print on STREAM using the given OPTIONS the index for the element |
| at INDEX of an array whose index type is INDEX_TYPE. */ |
| |
| void |
| maybe_print_array_index (struct type *index_type, LONGEST index, |
| struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| if (!options->print_array_indexes) |
| return; |
| |
| current_language->print_array_index (index_type, index, stream, options); |
| } |
| |
| /* See valprint.h. */ |
| |
| void |
| value_print_array_elements (struct value *val, struct ui_file *stream, |
| int recurse, |
| const struct value_print_options *options, |
| unsigned int i) |
| { |
| unsigned int things_printed = 0; |
| unsigned len; |
| struct type *elttype, *index_type; |
| unsigned eltlen; |
| /* Position of the array element we are examining to see |
| whether it is repeated. */ |
| unsigned int rep1; |
| /* Number of repetitions we have detected so far. */ |
| unsigned int reps; |
| LONGEST low_bound, high_bound; |
| |
| struct type *type = check_typedef (value_type (val)); |
| |
| elttype = TYPE_TARGET_TYPE (type); |
| eltlen = type_length_units (check_typedef (elttype)); |
| index_type = type->index_type (); |
| if (index_type->code () == TYPE_CODE_RANGE) |
| index_type = TYPE_TARGET_TYPE (index_type); |
| |
| if (get_array_bounds (type, &low_bound, &high_bound)) |
| { |
| /* The array length should normally be HIGH_BOUND - LOW_BOUND + |
| 1. But we have to be a little extra careful, because some |
| languages such as Ada allow LOW_BOUND to be greater than |
| HIGH_BOUND for empty arrays. In that situation, the array |
| length is just zero, not negative! */ |
| if (low_bound > high_bound) |
| len = 0; |
| else |
| len = high_bound - low_bound + 1; |
| } |
| else |
| { |
| warning (_("unable to get bounds of array, assuming null array")); |
| low_bound = 0; |
| len = 0; |
| } |
| |
| annotate_array_section_begin (i, elttype); |
| |
| for (; i < len && things_printed < options->print_max; i++) |
| { |
| scoped_value_mark free_values; |
| |
| if (i != 0) |
| { |
| if (options->prettyformat_arrays) |
| { |
| fprintf_filtered (stream, ",\n"); |
| print_spaces_filtered (2 + 2 * recurse, stream); |
| } |
| else |
| fprintf_filtered (stream, ", "); |
| } |
| else if (options->prettyformat_arrays) |
| { |
| fprintf_filtered (stream, "\n"); |
| print_spaces_filtered (2 + 2 * recurse, stream); |
| } |
| wrap_here (n_spaces (2 + 2 * recurse)); |
| maybe_print_array_index (index_type, i + low_bound, |
| stream, options); |
| |
| rep1 = i + 1; |
| reps = 1; |
| /* Only check for reps if repeat_count_threshold is not set to |
| UINT_MAX (unlimited). */ |
| if (options->repeat_count_threshold < UINT_MAX) |
| { |
| while (rep1 < len |
| && value_contents_eq (val, i * eltlen, |
| val, rep1 * eltlen, |
| eltlen)) |
| { |
| ++reps; |
| ++rep1; |
| } |
| } |
| |
| struct value *element = value_from_component (val, elttype, eltlen * i); |
| common_val_print (element, stream, recurse + 1, options, |
| current_language); |
| |
| if (reps > options->repeat_count_threshold) |
| { |
| annotate_elt_rep (reps); |
| fprintf_filtered (stream, " %p[<repeats %u times>%p]", |
| metadata_style.style ().ptr (), reps, nullptr); |
| annotate_elt_rep_end (); |
| |
| i = rep1 - 1; |
| things_printed += options->repeat_count_threshold; |
| } |
| else |
| { |
| annotate_elt (); |
| things_printed++; |
| } |
| } |
| annotate_array_section_end (); |
| if (i < len) |
| fprintf_filtered (stream, "..."); |
| if (options->prettyformat_arrays) |
| { |
| fprintf_filtered (stream, "\n"); |
| print_spaces_filtered (2 * recurse, stream); |
| } |
| } |
| |
| /* Read LEN bytes of target memory at address MEMADDR, placing the |
| results in GDB's memory at MYADDR. Returns a count of the bytes |
| actually read, and optionally a target_xfer_status value in the |
| location pointed to by ERRPTR if ERRPTR is non-null. */ |
| |
| /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this |
| function be eliminated. */ |
| |
| static int |
| partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, |
| int len, int *errptr) |
| { |
| int nread; /* Number of bytes actually read. */ |
| int errcode; /* Error from last read. */ |
| |
| /* First try a complete read. */ |
| errcode = target_read_memory (memaddr, myaddr, len); |
| if (errcode == 0) |
| { |
| /* Got it all. */ |
| nread = len; |
| } |
| else |
| { |
| /* Loop, reading one byte at a time until we get as much as we can. */ |
| for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--) |
| { |
| errcode = target_read_memory (memaddr++, myaddr++, 1); |
| } |
| /* If an error, the last read was unsuccessful, so adjust count. */ |
| if (errcode != 0) |
| { |
| nread--; |
| } |
| } |
| if (errptr != NULL) |
| { |
| *errptr = errcode; |
| } |
| return (nread); |
| } |
| |
| /* Read a string from the inferior, at ADDR, with LEN characters of |
| WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER |
| will be set to a newly allocated buffer containing the string, and |
| BYTES_READ will be set to the number of bytes read. Returns 0 on |
| success, or a target_xfer_status on failure. |
| |
| If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters |
| (including eventual NULs in the middle or end of the string). |
| |
| If LEN is -1, stops at the first null character (not necessarily |
| the first null byte) up to a maximum of FETCHLIMIT characters. Set |
| FETCHLIMIT to UINT_MAX to read as many characters as possible from |
| the string. |
| |
| Unless an exception is thrown, BUFFER will always be allocated, even on |
| failure. In this case, some characters might have been read before the |
| failure happened. Check BYTES_READ to recognize this situation. */ |
| |
| int |
| read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit, |
| enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer, |
| int *bytes_read) |
| { |
| int errcode; /* Errno returned from bad reads. */ |
| unsigned int nfetch; /* Chars to fetch / chars fetched. */ |
| gdb_byte *bufptr; /* Pointer to next available byte in |
| buffer. */ |
| |
| /* Loop until we either have all the characters, or we encounter |
| some error, such as bumping into the end of the address space. */ |
| |
| buffer->reset (nullptr); |
| |
| if (len > 0) |
| { |
| /* We want fetchlimit chars, so we might as well read them all in |
| one operation. */ |
| unsigned int fetchlen = std::min ((unsigned) len, fetchlimit); |
| |
| buffer->reset ((gdb_byte *) xmalloc (fetchlen * width)); |
| bufptr = buffer->get (); |
| |
| nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode) |
| / width; |
| addr += nfetch * width; |
| bufptr += nfetch * width; |
| } |
| else if (len == -1) |
| { |
| unsigned long bufsize = 0; |
| unsigned int chunksize; /* Size of each fetch, in chars. */ |
| int found_nul; /* Non-zero if we found the nul char. */ |
| gdb_byte *limit; /* First location past end of fetch buffer. */ |
| |
| found_nul = 0; |
| /* We are looking for a NUL terminator to end the fetching, so we |
| might as well read in blocks that are large enough to be efficient, |
| but not so large as to be slow if fetchlimit happens to be large. |
| So we choose the minimum of 8 and fetchlimit. We used to use 200 |
| instead of 8 but 200 is way too big for remote debugging over a |
| serial line. */ |
| chunksize = std::min (8u, fetchlimit); |
| |
| do |
| { |
| QUIT; |
| nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize); |
| |
| if (*buffer == NULL) |
| buffer->reset ((gdb_byte *) xmalloc (nfetch * width)); |
| else |
| buffer->reset ((gdb_byte *) xrealloc (buffer->release (), |
| (nfetch + bufsize) * width)); |
| |
| bufptr = buffer->get () + bufsize * width; |
| bufsize += nfetch; |
| |
| /* Read as much as we can. */ |
| nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode) |
| / width; |
| |
| /* Scan this chunk for the null character that terminates the string |
| to print. If found, we don't need to fetch any more. Note |
| that bufptr is explicitly left pointing at the next character |
| after the null character, or at the next character after the end |
| of the buffer. */ |
| |
| limit = bufptr + nfetch * width; |
| while (bufptr < limit) |
| { |
| unsigned long c; |
| |
| c = extract_unsigned_integer (bufptr, width, byte_order); |
| addr += width; |
| bufptr += width; |
| if (c == 0) |
| { |
| /* We don't care about any error which happened after |
| the NUL terminator. */ |
| errcode = 0; |
| found_nul = 1; |
| break; |
| } |
| } |
| } |
| while (errcode == 0 /* no error */ |
| && bufptr - buffer->get () < fetchlimit * width /* no overrun */ |
| && !found_nul); /* haven't found NUL yet */ |
| } |
| else |
| { /* Length of string is really 0! */ |
| /* We always allocate *buffer. */ |
| buffer->reset ((gdb_byte *) xmalloc (1)); |
| bufptr = buffer->get (); |
| errcode = 0; |
| } |
| |
| /* bufptr and addr now point immediately beyond the last byte which we |
| consider part of the string (including a '\0' which ends the string). */ |
| *bytes_read = bufptr - buffer->get (); |
| |
| QUIT; |
| |
| return errcode; |
| } |
| |
| /* Return true if print_wchar can display W without resorting to a |
| numeric escape, false otherwise. */ |
| |
| static int |
| wchar_printable (gdb_wchar_t w) |
| { |
| return (gdb_iswprint (w) |
| || w == LCST ('\a') || w == LCST ('\b') |
| || w == LCST ('\f') || w == LCST ('\n') |
| || w == LCST ('\r') || w == LCST ('\t') |
| || w == LCST ('\v')); |
| } |
| |
| /* A helper function that converts the contents of STRING to wide |
| characters and then appends them to OUTPUT. */ |
| |
| static void |
| append_string_as_wide (const char *string, |
| struct obstack *output) |
| { |
| for (; *string; ++string) |
| { |
| gdb_wchar_t w = gdb_btowc (*string); |
| obstack_grow (output, &w, sizeof (gdb_wchar_t)); |
| } |
| } |
| |
| /* Print a wide character W to OUTPUT. ORIG is a pointer to the |
| original (target) bytes representing the character, ORIG_LEN is the |
| number of valid bytes. WIDTH is the number of bytes in a base |
| characters of the type. OUTPUT is an obstack to which wide |
| characters are emitted. QUOTER is a (narrow) character indicating |
| the style of quotes surrounding the character to be printed. |
| NEED_ESCAPE is an in/out flag which is used to track numeric |
| escapes across calls. */ |
| |
| static void |
| print_wchar (gdb_wint_t w, const gdb_byte *orig, |
| int orig_len, int width, |
| enum bfd_endian byte_order, |
| struct obstack *output, |
| int quoter, int *need_escapep) |
| { |
| int need_escape = *need_escapep; |
| |
| *need_escapep = 0; |
| |
| /* iswprint implementation on Windows returns 1 for tab character. |
| In order to avoid different printout on this host, we explicitly |
| use wchar_printable function. */ |
| switch (w) |
| { |
| case LCST ('\a'): |
| obstack_grow_wstr (output, LCST ("\\a")); |
| break; |
| case LCST ('\b'): |
| obstack_grow_wstr (output, LCST ("\\b")); |
| break; |
| case LCST ('\f'): |
| obstack_grow_wstr (output, LCST ("\\f")); |
| break; |
| case LCST ('\n'): |
| obstack_grow_wstr (output, LCST ("\\n")); |
| break; |
| case LCST ('\r'): |
| obstack_grow_wstr (output, LCST ("\\r")); |
| break; |
| case LCST ('\t'): |
| obstack_grow_wstr (output, LCST ("\\t")); |
| break; |
| case LCST ('\v'): |
| obstack_grow_wstr (output, LCST ("\\v")); |
| break; |
| default: |
| { |
| if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w) |
| && w != LCST ('8') |
| && w != LCST ('9')))) |
| { |
| gdb_wchar_t wchar = w; |
| |
| if (w == gdb_btowc (quoter) || w == LCST ('\\')) |
| obstack_grow_wstr (output, LCST ("\\")); |
| obstack_grow (output, &wchar, sizeof (gdb_wchar_t)); |
| } |
| else |
| { |
| int i; |
| |
| for (i = 0; i + width <= orig_len; i += width) |
| { |
| char octal[30]; |
| ULONGEST value; |
| |
| value = extract_unsigned_integer (&orig[i], width, |
| byte_order); |
| /* If the value fits in 3 octal digits, print it that |
| way. Otherwise, print it as a hex escape. */ |
| if (value <= 0777) |
| xsnprintf (octal, sizeof (octal), "\\%.3o", |
| (int) (value & 0777)); |
| else |
| xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value); |
| append_string_as_wide (octal, output); |
| } |
| /* If we somehow have extra bytes, print them now. */ |
| while (i < orig_len) |
| { |
| char octal[5]; |
| |
| xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff); |
| append_string_as_wide (octal, output); |
| ++i; |
| } |
| |
| *need_escapep = 1; |
| } |
| break; |
| } |
| } |
| } |
| |
| /* Print the character C on STREAM as part of the contents of a |
| literal string whose delimiter is QUOTER. ENCODING names the |
| encoding of C. */ |
| |
| void |
| generic_emit_char (int c, struct type *type, struct ui_file *stream, |
| int quoter, const char *encoding) |
| { |
| enum bfd_endian byte_order |
| = type_byte_order (type); |
| gdb_byte *c_buf; |
| int need_escape = 0; |
| |
| c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type)); |
| pack_long (c_buf, type, c); |
| |
| wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type)); |
| |
| /* This holds the printable form of the wchar_t data. */ |
| auto_obstack wchar_buf; |
| |
| while (1) |
| { |
| int num_chars; |
| gdb_wchar_t *chars; |
| const gdb_byte *buf; |
| size_t buflen; |
| int print_escape = 1; |
| enum wchar_iterate_result result; |
| |
| num_chars = iter.iterate (&result, &chars, &buf, &buflen); |
| if (num_chars < 0) |
| break; |
| if (num_chars > 0) |
| { |
| /* If all characters are printable, print them. Otherwise, |
| we're going to have to print an escape sequence. We |
| check all characters because we want to print the target |
| bytes in the escape sequence, and we don't know character |
| boundaries there. */ |
| int i; |
| |
| print_escape = 0; |
| for (i = 0; i < num_chars; ++i) |
| if (!wchar_printable (chars[i])) |
| { |
| print_escape = 1; |
| break; |
| } |
| |
| if (!print_escape) |
| { |
| for (i = 0; i < num_chars; ++i) |
| print_wchar (chars[i], buf, buflen, |
| TYPE_LENGTH (type), byte_order, |
| &wchar_buf, quoter, &need_escape); |
| } |
| } |
| |
| /* This handles the NUM_CHARS == 0 case as well. */ |
| if (print_escape) |
| print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type), |
| byte_order, &wchar_buf, quoter, &need_escape); |
| } |
| |
| /* The output in the host encoding. */ |
| auto_obstack output; |
| |
| convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (), |
| (gdb_byte *) obstack_base (&wchar_buf), |
| obstack_object_size (&wchar_buf), |
| sizeof (gdb_wchar_t), &output, translit_char); |
| obstack_1grow (&output, '\0'); |
| |
| fputs_filtered ((const char *) obstack_base (&output), stream); |
| } |
| |
| /* Return the repeat count of the next character/byte in ITER, |
| storing the result in VEC. */ |
| |
| static int |
| count_next_character (wchar_iterator *iter, |
| std::vector<converted_character> *vec) |
| { |
| struct converted_character *current; |
| |
| if (vec->empty ()) |
| { |
| struct converted_character tmp; |
| gdb_wchar_t *chars; |
| |
| tmp.num_chars |
| = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen); |
| if (tmp.num_chars > 0) |
| { |
| gdb_assert (tmp.num_chars < MAX_WCHARS); |
| memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t)); |
| } |
| vec->push_back (tmp); |
| } |
| |
| current = &vec->back (); |
| |
| /* Count repeated characters or bytes. */ |
| current->repeat_count = 1; |
| if (current->num_chars == -1) |
| { |
| /* EOF */ |
| return -1; |
| } |
| else |
| { |
| gdb_wchar_t *chars; |
| struct converted_character d; |
| int repeat; |
| |
| d.repeat_count = 0; |
| |
| while (1) |
| { |
| /* Get the next character. */ |
| d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen); |
| |
| /* If a character was successfully converted, save the character |
| into the converted character. */ |
| if (d.num_chars > 0) |
| { |
| gdb_assert (d.num_chars < MAX_WCHARS); |
| memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars)); |
| } |
| |
| /* Determine if the current character is the same as this |
| new character. */ |
| if (d.num_chars == current->num_chars && d.result == current->result) |
| { |
| /* There are two cases to consider: |
| |
| 1) Equality of converted character (num_chars > 0) |
| 2) Equality of non-converted character (num_chars == 0) */ |
| if ((current->num_chars > 0 |
| && memcmp (current->chars, d.chars, |
| WCHAR_BUFLEN (current->num_chars)) == 0) |
| || (current->num_chars == 0 |
| && current->buflen == d.buflen |
| && memcmp (current->buf, d.buf, current->buflen) == 0)) |
| ++current->repeat_count; |
| else |
| break; |
| } |
| else |
| break; |
| } |
| |
| /* Push this next converted character onto the result vector. */ |
| repeat = current->repeat_count; |
| vec->push_back (d); |
| return repeat; |
| } |
| } |
| |
| /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote |
| character to use with string output. WIDTH is the size of the output |
| character type. BYTE_ORDER is the target byte order. OPTIONS |
| is the user's print options. */ |
| |
| static void |
| print_converted_chars_to_obstack (struct obstack *obstack, |
| const std::vector<converted_character> &chars, |
| int quote_char, int width, |
| enum bfd_endian byte_order, |
| const struct value_print_options *options) |
| { |
| unsigned int idx; |
| const converted_character *elem; |
| enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last; |
| gdb_wchar_t wide_quote_char = gdb_btowc (quote_char); |
| int need_escape = 0; |
| |
| /* Set the start state. */ |
| idx = 0; |
| last = state = START; |
| elem = NULL; |
| |
| while (1) |
| { |
| switch (state) |
| { |
| case START: |
| /* Nothing to do. */ |
| break; |
| |
| case SINGLE: |
| { |
| int j; |
| |
| /* We are outputting a single character |
| (< options->repeat_count_threshold). */ |
| |
| if (last != SINGLE) |
| { |
| /* We were outputting some other type of content, so we |
| must output and a comma and a quote. */ |
| if (last != START) |
| obstack_grow_wstr (obstack, LCST (", ")); |
| obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); |
| } |
| /* Output the character. */ |
| for (j = 0; j < elem->repeat_count; ++j) |
| { |
| if (elem->result == wchar_iterate_ok) |
| print_wchar (elem->chars[0], elem->buf, elem->buflen, width, |
| byte_order, obstack, quote_char, &need_escape); |
| else |
| print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, |
| byte_order, obstack, quote_char, &need_escape); |
| } |
| } |
| break; |
| |
| case REPEAT: |
| { |
| int j; |
| |
| /* We are outputting a character with a repeat count |
| greater than options->repeat_count_threshold. */ |
| |
| if (last == SINGLE) |
| { |
| /* We were outputting a single string. Terminate the |
| string. */ |
| obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); |
| } |
| if (last != START) |
| obstack_grow_wstr (obstack, LCST (", ")); |
| |
| /* Output the character and repeat string. */ |
| obstack_grow_wstr (obstack, LCST ("'")); |
| if (elem->result == wchar_iterate_ok) |
| print_wchar (elem->chars[0], elem->buf, elem->buflen, width, |
| byte_order, obstack, quote_char, &need_escape); |
| else |
| print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, |
| byte_order, obstack, quote_char, &need_escape); |
| obstack_grow_wstr (obstack, LCST ("'")); |
| std::string s = string_printf (_(" <repeats %u times>"), |
| elem->repeat_count); |
| for (j = 0; s[j]; ++j) |
| { |
| gdb_wchar_t w = gdb_btowc (s[j]); |
| obstack_grow (obstack, &w, sizeof (gdb_wchar_t)); |
| } |
| } |
| break; |
| |
| case INCOMPLETE: |
| /* We are outputting an incomplete sequence. */ |
| if (last == SINGLE) |
| { |
| /* If we were outputting a string of SINGLE characters, |
| terminate the quote. */ |
| obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); |
| } |
| if (last != START) |
| obstack_grow_wstr (obstack, LCST (", ")); |
| |
| /* Output the incomplete sequence string. */ |
| obstack_grow_wstr (obstack, LCST ("<incomplete sequence ")); |
| print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order, |
| obstack, 0, &need_escape); |
| obstack_grow_wstr (obstack, LCST (">")); |
| |
| /* We do not attempt to output anything after this. */ |
| state = FINISH; |
| break; |
| |
| case FINISH: |
| /* All done. If we were outputting a string of SINGLE |
| characters, the string must be terminated. Otherwise, |
| REPEAT and INCOMPLETE are always left properly terminated. */ |
| if (last == SINGLE) |
| obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); |
| |
| return; |
| } |
| |
| /* Get the next element and state. */ |
| last = state; |
| if (state != FINISH) |
| { |
| elem = &chars[idx++]; |
| switch (elem->result) |
| { |
| case wchar_iterate_ok: |
| case wchar_iterate_invalid: |
| if (elem->repeat_count > options->repeat_count_threshold) |
| state = REPEAT; |
| else |
| state = SINGLE; |
| break; |
| |
| case wchar_iterate_incomplete: |
| state = INCOMPLETE; |
| break; |
| |
| case wchar_iterate_eof: |
| state = FINISH; |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Print the character string STRING, printing at most LENGTH |
| characters. LENGTH is -1 if the string is nul terminated. TYPE is |
| the type of each character. OPTIONS holds the printing options; |
| printing stops early if the number hits print_max; repeat counts |
| are printed as appropriate. Print ellipses at the end if we had to |
| stop before printing LENGTH characters, or if FORCE_ELLIPSES. |
| QUOTE_CHAR is the character to print at each end of the string. If |
| C_STYLE_TERMINATOR is true, and the last character is 0, then it is |
| omitted. */ |
| |
| void |
| generic_printstr (struct ui_file *stream, struct type *type, |
| const gdb_byte *string, unsigned int length, |
| const char *encoding, int force_ellipses, |
| int quote_char, int c_style_terminator, |
| const struct value_print_options *options) |
| { |
| enum bfd_endian byte_order = type_byte_order (type); |
| unsigned int i; |
| int width = TYPE_LENGTH (type); |
| int finished = 0; |
| struct converted_character *last; |
| |
| if (length == -1) |
| { |
| unsigned long current_char = 1; |
| |
| for (i = 0; current_char; ++i) |
| { |
| QUIT; |
| current_char = extract_unsigned_integer (string + i * width, |
| width, byte_order); |
| } |
| length = i; |
| } |
| |
| /* If the string was not truncated due to `set print elements', and |
| the last byte of it is a null, we don't print that, in |
| traditional C style. */ |
| if (c_style_terminator |
| && !force_ellipses |
| && length > 0 |
| && (extract_unsigned_integer (string + (length - 1) * width, |
| width, byte_order) == 0)) |
| length--; |
| |
| if (length == 0) |
| { |
| fputs_filtered ("\"\"", stream); |
| return; |
| } |
| |
| /* Arrange to iterate over the characters, in wchar_t form. */ |
| wchar_iterator iter (string, length * width, encoding, width); |
| std::vector<converted_character> converted_chars; |
| |
| /* Convert characters until the string is over or the maximum |
| number of printed characters has been reached. */ |
| i = 0; |
| while (i < options->print_max) |
| { |
| int r; |
| |
| QUIT; |
| |
| /* Grab the next character and repeat count. */ |
| r = count_next_character (&iter, &converted_chars); |
| |
| /* If less than zero, the end of the input string was reached. */ |
| if (r < 0) |
| break; |
| |
| /* Otherwise, add the count to the total print count and get |
| the next character. */ |
| i += r; |
| } |
| |
| /* Get the last element and determine if the entire string was |
| processed. */ |
| last = &converted_chars.back (); |
| finished = (last->result == wchar_iterate_eof); |
| |
| /* Ensure that CONVERTED_CHARS is terminated. */ |
| last->result = wchar_iterate_eof; |
| |
| /* WCHAR_BUF is the obstack we use to represent the string in |
| wchar_t form. */ |
| auto_obstack wchar_buf; |
| |
| /* Print the output string to the obstack. */ |
| print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char, |
| width, byte_order, options); |
| |
| if (force_ellipses || !finished) |
| obstack_grow_wstr (&wchar_buf, LCST ("...")); |
| |
| /* OUTPUT is where we collect `char's for printing. */ |
| auto_obstack output; |
| |
| convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (), |
| (gdb_byte *) obstack_base (&wchar_buf), |
| obstack_object_size (&wchar_buf), |
| sizeof (gdb_wchar_t), &output, translit_char); |
| obstack_1grow (&output, '\0'); |
| |
| fputs_filtered ((const char *) obstack_base (&output), stream); |
| } |
| |
| /* Print a string from the inferior, starting at ADDR and printing up to LEN |
| characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing |
| stops at the first null byte, otherwise printing proceeds (including null |
| bytes) until either print_max or LEN characters have been printed, |
| whichever is smaller. ENCODING is the name of the string's |
| encoding. It can be NULL, in which case the target encoding is |
| assumed. */ |
| |
| int |
| val_print_string (struct type *elttype, const char *encoding, |
| CORE_ADDR addr, int len, |
| struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */ |
| int err; /* Non-zero if we got a bad read. */ |
| int found_nul; /* Non-zero if we found the nul char. */ |
| unsigned int fetchlimit; /* Maximum number of chars to print. */ |
| int bytes_read; |
| gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */ |
| struct gdbarch *gdbarch = elttype->arch (); |
| enum bfd_endian byte_order = type_byte_order (elttype); |
| int width = TYPE_LENGTH (elttype); |
| |
| /* First we need to figure out the limit on the number of characters we are |
| going to attempt to fetch and print. This is actually pretty simple. If |
| LEN >= zero, then the limit is the minimum of LEN and print_max. If |
| LEN is -1, then the limit is print_max. This is true regardless of |
| whether print_max is zero, UINT_MAX (unlimited), or something in between, |
| because finding the null byte (or available memory) is what actually |
| limits the fetch. */ |
| |
| fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len, |
| options->print_max)); |
| |
| err = read_string (addr, len, width, fetchlimit, byte_order, |
| &buffer, &bytes_read); |
| |
| addr += bytes_read; |
| |
| /* We now have either successfully filled the buffer to fetchlimit, |
| or terminated early due to an error or finding a null char when |
| LEN is -1. */ |
| |
| /* Determine found_nul by looking at the last character read. */ |
| found_nul = 0; |
| if (bytes_read >= width) |
| found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width, |
| width, byte_order) == 0; |
| if (len == -1 && !found_nul) |
| { |
| gdb_byte *peekbuf; |
| |
| /* We didn't find a NUL terminator we were looking for. Attempt |
| to peek at the next character. If not successful, or it is not |
| a null byte, then force ellipsis to be printed. */ |
| |
| peekbuf = (gdb_byte *) alloca (width); |
| |
| if (target_read_memory (addr, peekbuf, width) == 0 |
| && extract_unsigned_integer (peekbuf, width, byte_order) != 0) |
| force_ellipsis = 1; |
| } |
| else if ((len >= 0 && err != 0) || (len > bytes_read / width)) |
| { |
| /* Getting an error when we have a requested length, or fetching less |
| than the number of characters actually requested, always make us |
| print ellipsis. */ |
| force_ellipsis = 1; |
| } |
| |
| /* If we get an error before fetching anything, don't print a string. |
| But if we fetch something and then get an error, print the string |
| and then the error message. */ |
| if (err == 0 || bytes_read > 0) |
| { |
| LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width, |
| encoding, force_ellipsis, options); |
| } |
| |
| if (err != 0) |
| { |
| std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr); |
| |
| fprintf_filtered (stream, _("<error: %ps>"), |
| styled_string (metadata_style.style (), |
| str.c_str ())); |
| } |
| |
| return (bytes_read / width); |
| } |
| |
| /* Handle 'show print max-depth'. */ |
| |
| static void |
| show_print_max_depth (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Maximum print depth is %s.\n"), value); |
| } |
| |
| |
| /* The 'set input-radix' command writes to this auxiliary variable. |
| If the requested radix is valid, INPUT_RADIX is updated; otherwise, |
| it is left unchanged. */ |
| |
| static unsigned input_radix_1 = 10; |
| |
| /* Validate an input or output radix setting, and make sure the user |
| knows what they really did here. Radix setting is confusing, e.g. |
| setting the input radix to "10" never changes it! */ |
| |
| static void |
| set_input_radix (const char *args, int from_tty, struct cmd_list_element *c) |
| { |
| set_input_radix_1 (from_tty, input_radix_1); |
| } |
| |
| static void |
| set_input_radix_1 (int from_tty, unsigned radix) |
| { |
| /* We don't currently disallow any input radix except 0 or 1, which don't |
| make any mathematical sense. In theory, we can deal with any input |
| radix greater than 1, even if we don't have unique digits for every |
| value from 0 to radix-1, but in practice we lose on large radix values. |
| We should either fix the lossage or restrict the radix range more. |
| (FIXME). */ |
| |
| if (radix < 2) |
| { |
| input_radix_1 = input_radix; |
| error (_("Nonsense input radix ``decimal %u''; input radix unchanged."), |
| radix); |
| } |
| input_radix_1 = input_radix = radix; |
| if (from_tty) |
| { |
| printf_filtered (_("Input radix now set to " |
| "decimal %u, hex %x, octal %o.\n"), |
| radix, radix, radix); |
| } |
| } |
| |
| /* The 'set output-radix' command writes to this auxiliary variable. |
| If the requested radix is valid, OUTPUT_RADIX is updated, |
| otherwise, it is left unchanged. */ |
| |
| static unsigned output_radix_1 = 10; |
| |
| static void |
| set_output_radix (const char *args, int from_tty, struct cmd_list_element *c) |
| { |
| set_output_radix_1 (from_tty, output_radix_1); |
| } |
| |
| static void |
| set_output_radix_1 (int from_tty, unsigned radix) |
| { |
| /* Validate the radix and disallow ones that we aren't prepared to |
| handle correctly, leaving the radix unchanged. */ |
| switch (radix) |
| { |
| case 16: |
| user_print_options.output_format = 'x'; /* hex */ |
| break; |
| case 10: |
| user_print_options.output_format = 0; /* decimal */ |
| break; |
| case 8: |
| user_print_options.output_format = 'o'; /* octal */ |
| break; |
| default: |
| output_radix_1 = output_radix; |
| error (_("Unsupported output radix ``decimal %u''; " |
| "output radix unchanged."), |
| radix); |
| } |
| output_radix_1 = output_radix = radix; |
| if (from_tty) |
| { |
| printf_filtered (_("Output radix now set to " |
| "decimal %u, hex %x, octal %o.\n"), |
| radix, radix, radix); |
| } |
| } |
| |
| /* Set both the input and output radix at once. Try to set the output radix |
| first, since it has the most restrictive range. An radix that is valid as |
| an output radix is also valid as an input radix. |
| |
| It may be useful to have an unusual input radix. If the user wishes to |
| set an input radix that is not valid as an output radix, he needs to use |
| the 'set input-radix' command. */ |
| |
| static void |
| set_radix (const char *arg, int from_tty) |
| { |
| unsigned radix; |
| |
| radix = (arg == NULL) ? 10 : parse_and_eval_long (arg); |
| set_output_radix_1 (0, radix); |
| set_input_radix_1 (0, radix); |
| if (from_tty) |
| { |
| printf_filtered (_("Input and output radices now set to " |
| "decimal %u, hex %x, octal %o.\n"), |
| radix, radix, radix); |
| } |
| } |
| |
| /* Show both the input and output radices. */ |
| |
| static void |
| show_radix (const char *arg, int from_tty) |
| { |
| if (from_tty) |
| { |
| if (input_radix == output_radix) |
| { |
| printf_filtered (_("Input and output radices set to " |
| "decimal %u, hex %x, octal %o.\n"), |
| input_radix, input_radix, input_radix); |
| } |
| else |
| { |
| printf_filtered (_("Input radix set to decimal " |
| "%u, hex %x, octal %o.\n"), |
| input_radix, input_radix, input_radix); |
| printf_filtered (_("Output radix set to decimal " |
| "%u, hex %x, octal %o.\n"), |
| output_radix, output_radix, output_radix); |
| } |
| } |
| } |
| |
| |
| /* Controls printing of vtbl's. */ |
| static void |
| show_vtblprint (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("\ |
| Printing of C++ virtual function tables is %s.\n"), |
| value); |
| } |
| |
| /* Controls looking up an object's derived type using what we find in |
| its vtables. */ |
| static void |
| show_objectprint (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, |
| const char *value) |
| { |
| fprintf_filtered (file, _("\ |
| Printing of object's derived type based on vtable info is %s.\n"), |
| value); |
| } |
| |
| static void |
| show_static_field_print (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, |
| const char *value) |
| { |
| fprintf_filtered (file, |
| _("Printing of C++ static members is %s.\n"), |
| value); |
| } |
| |
| |
| |
| /* A couple typedefs to make writing the options a bit more |
| convenient. */ |
| using boolean_option_def |
| = gdb::option::boolean_option_def<value_print_options>; |
| using uinteger_option_def |
| = gdb::option::uinteger_option_def<value_print_options>; |
| using zuinteger_unlimited_option_def |
| = gdb::option::zuinteger_unlimited_option_def<value_print_options>; |
| |
| /* Definitions of options for the "print" and "compile print" |
| commands. */ |
| static const gdb::option::option_def value_print_option_defs[] = { |
| |
| boolean_option_def { |
| "address", |
| [] (value_print_options *opt) { return &opt->addressprint; }, |
| show_addressprint, /* show_cmd_cb */ |
| N_("Set printing of addresses."), |
| N_("Show printing of addresses."), |
| NULL, /* help_doc */ |
| }, |
| |
| boolean_option_def { |
| "array", |
| [] (value_print_options *opt) { return &opt->prettyformat_arrays; }, |
| show_prettyformat_arrays, /* show_cmd_cb */ |
| N_("Set pretty formatting of arrays."), |
| N_("Show pretty formatting of arrays."), |
| NULL, /* help_doc */ |
| }, |
| |
| boolean_option_def { |
| "array-indexes", |
| [] (value_print_options *opt) { return &opt->print_array_indexes; }, |
| show_print_array_indexes, /* show_cmd_cb */ |
| N_("Set printing of array indexes."), |
| N_("Show printing of array indexes."), |
| NULL, /* help_doc */ |
| }, |
| |
| uinteger_option_def { |
| "elements", |
| [] (value_print_options *opt) { return &opt->print_max; }, |
| show_print_max, /* show_cmd_cb */ |
| N_("Set limit on string chars or array elements to print."), |
| N_("Show limit on string chars or array elements to print."), |
| N_("\"unlimited\" causes there to be no limit."), |
| }, |
| |
| zuinteger_unlimited_option_def { |
| "max-depth", |
| [] (value_print_options *opt) { return &opt->max_depth; }, |
| show_print_max_depth, /* show_cmd_cb */ |
| N_("Set maximum print depth for nested structures, unions and arrays."), |
| N_("Show maximum print depth for nested structures, unions, and arrays."), |
| N_("When structures, unions, or arrays are nested beyond this depth then they\n\ |
| will be replaced with either '{...}' or '(...)' depending on the language.\n\ |
| Use \"unlimited\" to print the complete structure.") |
| }, |
| |
| boolean_option_def { |
| "memory-tag-violations", |
| [] (value_print_options *opt) { return &opt->memory_tag_violations; }, |
| show_memory_tag_violations, /* show_cmd_cb */ |
| N_("Set printing of memory tag violations for pointers."), |
| N_("Show printing of memory tag violations for pointers."), |
| N_("Issue a warning when the printed value is a pointer\n\ |
| whose logical tag doesn't match the allocation tag of the memory\n\ |
| location it points to."), |
| }, |
| |
| boolean_option_def { |
| "null-stop", |
| [] (value_print_options *opt) { return &opt->stop_print_at_null; }, |
| show_stop_print_at_null, /* show_cmd_cb */ |
| N_("Set printing of char arrays to stop at first null char."), |
| N_("Show printing of char arrays to stop at first null char."), |
| NULL, /* help_doc */ |
| }, |
| |
| boolean_option_def { |
| "object", |
| [] (value_print_options *opt) { return &opt->objectprint; }, |
| show_objectprint, /* show_cmd_cb */ |
| _("Set printing of C++ virtual function tables."), |
| _("Show printing of C++ virtual function tables."), |
| NULL, /* help_doc */ |
| }, |
| |
| boolean_option_def { |
| "pretty", |
| [] (value_print_options *opt) { return &opt->prettyformat_structs; }, |
| show_prettyformat_structs, /* show_cmd_cb */ |
| N_("Set pretty formatting of structures."), |
| N_("Show pretty formatting of structures."), |
| NULL, /* help_doc */ |
| }, |
| |
| boolean_option_def { |
| "raw-values", |
| [] (value_print_options *opt) { return &opt->raw; }, |
| NULL, /* show_cmd_cb */ |
| N_("Set whether to print values in raw form."), |
| N_("Show whether to print values in raw form."), |
| N_("If set, values are printed in raw form, bypassing any\n\ |
| pretty-printers for that value.") |
| }, |
| |
| uinteger_option_def { |
| "repeats", |
| [] (value_print_options *opt) { return &opt->repeat_count_threshold; }, |
| show_repeat_count_threshold, /* show_cmd_cb */ |
| N_("Set threshold for repeated print elements."), |
| N_("Show threshold for repeated print elements."), |
| N_("\"unlimited\" causes all elements to be individually printed."), |
| }, |
| |
| boolean_option_def { |
| "static-members", |
| [] (value_print_options *opt) { return &opt->static_field_print; }, |
| show_static_field_print, /* show_cmd_cb */ |
| N_("Set printing of C++ static members."), |
| N_("Show printing of C++ static members."), |
| NULL, /* help_doc */ |
| }, |
| |
| boolean_option_def { |
| "symbol", |
| [] (value_print_options *opt) { return &opt->symbol_print; }, |
| show_symbol_print, /* show_cmd_cb */ |
| N_("Set printing of symbol names when printing pointers."), |
| N_("Show printing of symbol names when printing pointers."), |
| NULL, /* help_doc */ |
| }, |
| |
| boolean_option_def { |
| "union", |
| [] (value_print_options *opt) { return &opt->unionprint; }, |
| show_unionprint, /* show_cmd_cb */ |
| N_("Set printing of unions interior to structures."), |
| N_("Show printing of unions interior to structures."), |
| NULL, /* help_doc */ |
| }, |
| |
| boolean_option_def { |
| "vtbl", |
| [] (value_print_options *opt) { return &opt->vtblprint; }, |
| show_vtblprint, /* show_cmd_cb */ |
| N_("Set printing of C++ virtual function tables."), |
| N_("Show printing of C++ virtual function tables."), |
| NULL, /* help_doc */ |
| }, |
| }; |
| |
| /* See valprint.h. */ |
| |
| gdb::option::option_def_group |
| make_value_print_options_def_group (value_print_options *opts) |
| { |
| return {{value_print_option_defs}, opts}; |
| } |
| |
| void _initialize_valprint (); |
| void |
| _initialize_valprint () |
| { |
| cmd_list_element *cmd; |
| |
| cmd_list_element *set_print_cmd |
| = add_basic_prefix_cmd ("print", no_class, |
| _("Generic command for setting how things print."), |
| &setprintlist, 0, &setlist); |
| add_alias_cmd ("p", set_print_cmd, no_class, 1, &setlist); |
| /* Prefer set print to set prompt. */ |
| add_alias_cmd ("pr", set_print_cmd, no_class, 1, &setlist); |
| |
| cmd_list_element *show_print_cmd |
| = add_show_prefix_cmd ("print", no_class, |
| _("Generic command for showing print settings."), |
| &showprintlist, 0, &showlist); |
| add_alias_cmd ("p", show_print_cmd, no_class, 1, &showlist); |
| add_alias_cmd ("pr", show_print_cmd, no_class, 1, &showlist); |
| |
| cmd = add_basic_prefix_cmd ("raw", no_class, |
| _("\ |
| Generic command for setting what things to print in \"raw\" mode."), |
| &setprintrawlist, 0, &setprintlist); |
| deprecate_cmd (cmd, nullptr); |
| |
| cmd = add_show_prefix_cmd ("raw", no_class, |
| _("Generic command for showing \"print raw\" settings."), |
| &showprintrawlist, 0, &showprintlist); |
| deprecate_cmd (cmd, nullptr); |
| |
| gdb::option::add_setshow_cmds_for_options |
| (class_support, &user_print_options, value_print_option_defs, |
| &setprintlist, &showprintlist); |
| |
| add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1, |
| _("\ |
| Set default input radix for entering numbers."), _("\ |
| Show default input radix for entering numbers."), NULL, |
| set_input_radix, |
| show_input_radix, |
| &setlist, &showlist); |
| |
| add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1, |
| _("\ |
| Set default output radix for printing of values."), _("\ |
| Show default output radix for printing of values."), NULL, |
| set_output_radix, |
| show_output_radix, |
| &setlist, &showlist); |
| |
| /* The "set radix" and "show radix" commands are special in that |
| they are like normal set and show commands but allow two normally |
| independent variables to be either set or shown with a single |
| command. So the usual deprecated_add_set_cmd() and [deleted] |
| add_show_from_set() commands aren't really appropriate. */ |
| /* FIXME: i18n: With the new add_setshow_integer command, that is no |
| longer true - show can display anything. */ |
| add_cmd ("radix", class_support, set_radix, _("\ |
| Set default input and output number radices.\n\ |
| Use 'set input-radix' or 'set output-radix' to independently set each.\n\ |
| Without an argument, sets both radices back to the default value of 10."), |
| &setlist); |
| add_cmd ("radix", class_support, show_radix, _("\ |
| Show the default input and output number radices.\n\ |
| Use 'show input-radix' or 'show output-radix' to independently show each."), |
| &showlist); |
| } |