blob: 09d868bcf826a8a5d49106fccf21e4df11bc59c5 [file] [log] [blame]
/* BFD back-end for IBM RS/6000 "XCOFF" files.
Copyright (C) 1990-2024 Free Software Foundation, Inc.
Written by Metin G. Ozisik, Mimi Phuong-Thao Vo, and John Gilmore.
Archive support from Damon A. Permezel.
Contributed by IBM Corporation and Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "libiberty.h"
#include "bfd.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "coff/internal.h"
#include "coff/xcoff.h"
#include "coff/rs6000.h"
#include "libcoff.h"
#include "libxcoff.h"
extern bool _bfd_xcoff_mkobject (bfd *);
extern bool _bfd_xcoff_copy_private_bfd_data (bfd *, bfd *);
extern bool _bfd_xcoff_is_local_label_name (bfd *, const char *);
extern reloc_howto_type *_bfd_xcoff_reloc_type_lookup
(bfd *, bfd_reloc_code_real_type);
extern bool _bfd_xcoff_slurp_armap (bfd *);
extern bfd_cleanup _bfd_xcoff_archive_p (bfd *);
extern void * _bfd_xcoff_read_ar_hdr (bfd *);
extern bfd *_bfd_xcoff_openr_next_archived_file (bfd *, bfd *);
extern int _bfd_xcoff_stat_arch_elt (bfd *, struct stat *);
extern bool _bfd_xcoff_write_armap
(bfd *, unsigned int, struct orl *, unsigned int, int);
extern bool _bfd_xcoff_write_archive_contents (bfd *);
extern int _bfd_xcoff_sizeof_headers (bfd *, struct bfd_link_info *);
extern void _bfd_xcoff_swap_sym_in (bfd *, void *, void *);
extern unsigned int _bfd_xcoff_swap_sym_out (bfd *, void *, void *);
extern void _bfd_xcoff_swap_aux_in (bfd *, void *, int, int, int, int, void *);
extern unsigned int _bfd_xcoff_swap_aux_out
(bfd *, void *, int, int, int, int, void *);
static void xcoff_swap_reloc_in (bfd *, void *, void *);
static unsigned int xcoff_swap_reloc_out (bfd *, void *, void *);
/* Forward declare xcoff_rtype2howto for coffcode.h macro. */
void xcoff_rtype2howto (arelent *, struct internal_reloc *);
/* coffcode.h needs these to be defined. */
#define RS6000COFF_C 1
#define SELECT_RELOC(internal, howto) \
{ \
internal.r_type = howto->type; \
internal.r_size = \
((howto->complain_on_overflow == complain_overflow_signed \
? 0x80 \
: 0) \
| (howto->bitsize - 1)); \
}
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (3)
#define COFF_LONG_FILENAMES
#define NO_COFF_SYMBOLS
#define RTYPE2HOWTO(cache_ptr, dst) xcoff_rtype2howto (cache_ptr, dst)
#define coff_mkobject _bfd_xcoff_mkobject
#define coff_bfd_is_local_label_name _bfd_xcoff_is_local_label_name
#ifdef AIX_CORE
extern bfd_cleanup rs6000coff_core_p (bfd *abfd);
extern bool rs6000coff_core_file_matches_executable_p
(bfd *cbfd, bfd *ebfd);
extern char *rs6000coff_core_file_failing_command (bfd *abfd);
extern int rs6000coff_core_file_failing_signal (bfd *abfd);
#define CORE_FILE_P rs6000coff_core_p
#define coff_core_file_failing_command \
rs6000coff_core_file_failing_command
#define coff_core_file_failing_signal \
rs6000coff_core_file_failing_signal
#define coff_core_file_matches_executable_p \
rs6000coff_core_file_matches_executable_p
#define coff_core_file_pid \
_bfd_nocore_core_file_pid
#else
#define CORE_FILE_P _bfd_dummy_target
#define coff_core_file_failing_command \
_bfd_nocore_core_file_failing_command
#define coff_core_file_failing_signal \
_bfd_nocore_core_file_failing_signal
#define coff_core_file_matches_executable_p \
_bfd_nocore_core_file_matches_executable_p
#define coff_core_file_pid \
_bfd_nocore_core_file_pid
#endif
#define coff_SWAP_sym_in _bfd_xcoff_swap_sym_in
#define coff_SWAP_sym_out _bfd_xcoff_swap_sym_out
#define coff_SWAP_aux_in _bfd_xcoff_swap_aux_in
#define coff_SWAP_aux_out _bfd_xcoff_swap_aux_out
#define coff_swap_reloc_in xcoff_swap_reloc_in
#define coff_swap_reloc_out xcoff_swap_reloc_out
#define NO_COFF_RELOCS
#ifndef bfd_pe_print_pdata
#define bfd_pe_print_pdata NULL
#endif
#include "coffcode.h"
/* The main body of code is in coffcode.h. */
static const char *normalize_filename (bfd *);
static bool xcoff_write_armap_old
(bfd *, unsigned int, struct orl *, unsigned int, int);
static bool xcoff_write_armap_big
(bfd *, unsigned int, struct orl *, unsigned int, int);
static bool xcoff_write_archive_contents_old (bfd *);
static bool xcoff_write_archive_contents_big (bfd *);
static void xcoff_swap_ldhdr_in (bfd *, const void *, struct internal_ldhdr *);
static void xcoff_swap_ldhdr_out (bfd *, const struct internal_ldhdr *, void *);
static void xcoff_swap_ldsym_in (bfd *, const void *, struct internal_ldsym *);
static void xcoff_swap_ldsym_out (bfd *, const struct internal_ldsym *, void *);
static void xcoff_swap_ldrel_in (bfd *, const void *, struct internal_ldrel *);
static void xcoff_swap_ldrel_out (bfd *, const struct internal_ldrel *, void *);
static bool xcoff_ppc_relocate_section
(bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
struct internal_reloc *, struct internal_syment *, asection **);
static bool _bfd_xcoff_put_ldsymbol_name
(bfd *, struct xcoff_loader_info *, struct internal_ldsym *, const char *);
static asection *xcoff_create_csect_from_smclas
(bfd *, union internal_auxent *, const char *);
static bool xcoff_is_lineno_count_overflow (bfd *, bfd_vma);
static bool xcoff_is_reloc_count_overflow (bfd *, bfd_vma);
static bfd_vma xcoff_loader_symbol_offset (bfd *, struct internal_ldhdr *);
static bfd_vma xcoff_loader_reloc_offset (bfd *, struct internal_ldhdr *);
static bool xcoff_generate_rtinit
(bfd *, const char *, const char *, bool);
static bool do_pad (bfd *, unsigned int);
static bool do_copy (bfd *, bfd *);
/* Relocation functions */
static xcoff_reloc_function xcoff_reloc_type_br;
static xcoff_complain_function xcoff_complain_overflow_dont_func;
static xcoff_complain_function xcoff_complain_overflow_bitfield_func;
static xcoff_complain_function xcoff_complain_overflow_signed_func;
static xcoff_complain_function xcoff_complain_overflow_unsigned_func;
xcoff_reloc_function *const
xcoff_calculate_relocation[XCOFF_MAX_CALCULATE_RELOCATION] =
{
xcoff_reloc_type_pos, /* R_POS (0x00) */
xcoff_reloc_type_neg, /* R_NEG (0x01) */
xcoff_reloc_type_rel, /* R_REL (0x02) */
xcoff_reloc_type_toc, /* R_TOC (0x03) */
xcoff_reloc_type_toc, /* R_TRL (0x04) */
xcoff_reloc_type_toc, /* R_GL (0x05) */
xcoff_reloc_type_toc, /* R_TCL (0x06) */
xcoff_reloc_type_fail, /* (0x07) */
xcoff_reloc_type_ba, /* R_BA (0x08) */
xcoff_reloc_type_fail, /* (0x09) */
xcoff_reloc_type_br, /* R_BR (0x0a) */
xcoff_reloc_type_fail, /* (0x0b) */
xcoff_reloc_type_pos, /* R_RL (0x0c) */
xcoff_reloc_type_pos, /* R_RLA (0x0d) */
xcoff_reloc_type_fail, /* (0x0e) */
xcoff_reloc_type_noop, /* R_REF (0x0f) */
xcoff_reloc_type_fail, /* (0x10) */
xcoff_reloc_type_fail, /* (0x11) */
xcoff_reloc_type_fail, /* (0x12) */
xcoff_reloc_type_toc, /* R_TRLA (0x13) */
xcoff_reloc_type_fail, /* R_RRTBI (0x14) */
xcoff_reloc_type_fail, /* R_RRTBA (0x15) */
xcoff_reloc_type_ba, /* R_CAI (0x16) */
xcoff_reloc_type_crel, /* R_CREL (0x17) */
xcoff_reloc_type_ba, /* R_RBA (0x18) */
xcoff_reloc_type_ba, /* R_RBAC (0x19) */
xcoff_reloc_type_br, /* R_RBR (0x1a) */
xcoff_reloc_type_ba, /* R_RBRC (0x1b) */
xcoff_reloc_type_fail, /* (0x1c) */
xcoff_reloc_type_fail, /* (0x1d) */
xcoff_reloc_type_fail, /* (0x1e) */
xcoff_reloc_type_fail, /* (0x1f) */
xcoff_reloc_type_tls, /* R_TLS (0x20) */
xcoff_reloc_type_tls, /* R_TLS_IE (0x21) */
xcoff_reloc_type_tls, /* R_TLS_LD (0x22) */
xcoff_reloc_type_tls, /* R_TLS_LE (0x23) */
xcoff_reloc_type_tls, /* R_TLSM (0x24) */
xcoff_reloc_type_tls, /* R_TLSML (0x25) */
xcoff_reloc_type_fail, /* (0x26) */
xcoff_reloc_type_fail, /* (0x27) */
xcoff_reloc_type_fail, /* (0x28) */
xcoff_reloc_type_fail, /* (0x29) */
xcoff_reloc_type_fail, /* (0x2a) */
xcoff_reloc_type_fail, /* (0x2b) */
xcoff_reloc_type_fail, /* (0x2c) */
xcoff_reloc_type_fail, /* (0x2d) */
xcoff_reloc_type_fail, /* (0x2e) */
xcoff_reloc_type_fail, /* (0x2f) */
xcoff_reloc_type_toc, /* R_TOCU (0x30) */
xcoff_reloc_type_toc, /* R_TOCL (0x31) */
};
xcoff_complain_function *const
xcoff_complain_overflow[XCOFF_MAX_COMPLAIN_OVERFLOW] =
{
xcoff_complain_overflow_dont_func,
xcoff_complain_overflow_bitfield_func,
xcoff_complain_overflow_signed_func,
xcoff_complain_overflow_unsigned_func,
};
/* Information about one member of an archive. */
struct member_layout
{
/* The archive member that this structure describes. */
bfd *member;
/* The number of bytes of padding that must be inserted before the
start of the member in order to ensure that the section contents
are correctly aligned. */
unsigned int leading_padding;
/* The offset of MEMBER from the start of the archive (i.e. the end
of the leading padding). */
file_ptr offset;
/* The normalized name of MEMBER. */
const char *name;
/* The length of NAME, without padding. */
bfd_size_type namlen;
/* The length of NAME, with padding. */
bfd_size_type padded_namlen;
/* The size of MEMBER's header, including the name and magic sequence. */
bfd_size_type header_size;
/* The size of the MEMBER's contents. */
bfd_size_type contents_size;
/* The number of bytes of padding that must be inserted after MEMBER
in order to preserve even alignment. */
bfd_size_type trailing_padding;
};
/* A structure used for iterating over the members of an archive. */
struct archive_iterator
{
/* The archive itself. */
bfd *archive;
/* Information about the current archive member. */
struct member_layout current;
/* Information about the next archive member. MEMBER is null if there
are no more archive members, in which case OFFSET is the offset of
the first unused byte. */
struct member_layout next;
};
/* Initialize INFO so that it describes member MEMBER of archive ARCHIVE.
OFFSET is the even-padded offset of MEMBER, not including any leading
padding needed for section alignment. */
static void
member_layout_init (struct member_layout *info, bfd *archive,
bfd *member, file_ptr offset)
{
info->member = member;
info->leading_padding = 0;
if (member)
{
info->name = normalize_filename (member);
info->namlen = strlen (info->name);
info->padded_namlen = info->namlen + (info->namlen & 1);
if (xcoff_big_format_p (archive))
info->header_size = SIZEOF_AR_HDR_BIG;
else
info->header_size = SIZEOF_AR_HDR;
info->header_size += info->padded_namlen + SXCOFFARFMAG;
info->contents_size = arelt_size (member);
info->trailing_padding = info->contents_size & 1;
if (bfd_check_format (member, bfd_object)
&& bfd_get_flavour (member) == bfd_target_xcoff_flavour
&& (member->flags & DYNAMIC) != 0)
info->leading_padding
= (-(offset + info->header_size)
& ((1 << bfd_xcoff_text_align_power (member)) - 1));
}
info->offset = offset + info->leading_padding;
}
/* Set up ITERATOR to iterate through archive ARCHIVE. */
static void
archive_iterator_begin (struct archive_iterator *iterator,
bfd *archive)
{
iterator->archive = archive;
member_layout_init (&iterator->next, archive, archive->archive_head,
xcoff_big_format_p (archive)
? SIZEOF_AR_FILE_HDR_BIG
: SIZEOF_AR_FILE_HDR);
}
/* Make ITERATOR visit the first unvisited archive member. Return true
on success; return false if all members have been visited. */
static bool
archive_iterator_next (struct archive_iterator *iterator)
{
if (!iterator->next.member)
return false;
iterator->current = iterator->next;
member_layout_init (&iterator->next, iterator->archive,
iterator->current.member->archive_next,
iterator->current.offset
+ iterator->current.header_size
+ iterator->current.contents_size
+ iterator->current.trailing_padding);
return true;
}
/* We use our own tdata type. Its first field is the COFF tdata type,
so the COFF routines are compatible. */
bool
_bfd_xcoff_mkobject (bfd *abfd)
{
coff_data_type *coff;
size_t amt = sizeof (struct xcoff_tdata);
abfd->tdata.xcoff_obj_data = (struct xcoff_tdata *) bfd_zalloc (abfd, amt);
if (abfd->tdata.xcoff_obj_data == NULL)
return false;
coff = coff_data (abfd);
coff->symbols = (coff_symbol_type *) NULL;
coff->conversion_table = (unsigned int *) NULL;
coff->raw_syments = (struct coff_ptr_struct *) NULL;
coff->relocbase = 0;
xcoff_data (abfd)->modtype = ('1' << 8) | 'L';
/* We set cputype to -1 to indicate that it has not been
initialized. */
xcoff_data (abfd)->cputype = -1;
xcoff_data (abfd)->csects = NULL;
xcoff_data (abfd)->debug_indices = NULL;
/* text section alignment is different than the default */
bfd_xcoff_text_align_power (abfd) = 2;
return true;
}
/* Copy XCOFF data from one BFD to another. */
bool
_bfd_xcoff_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
struct xcoff_tdata *ix, *ox;
asection *sec;
if (ibfd->xvec != obfd->xvec)
return true;
ix = xcoff_data (ibfd);
ox = xcoff_data (obfd);
ox->full_aouthdr = ix->full_aouthdr;
ox->toc = ix->toc;
if (ix->sntoc == 0)
ox->sntoc = 0;
else
{
sec = coff_section_from_bfd_index (ibfd, ix->sntoc);
if (sec == NULL || sec->output_section == NULL)
ox->sntoc = 0;
else
ox->sntoc = sec->output_section->target_index;
}
if (ix->snentry == 0)
ox->snentry = 0;
else
{
sec = coff_section_from_bfd_index (ibfd, ix->snentry);
if (sec == NULL || sec->output_section == NULL)
ox->snentry = 0;
else
ox->snentry = sec->output_section->target_index;
}
bfd_xcoff_text_align_power (obfd) = bfd_xcoff_text_align_power (ibfd);
bfd_xcoff_data_align_power (obfd) = bfd_xcoff_data_align_power (ibfd);
ox->modtype = ix->modtype;
ox->cputype = ix->cputype;
ox->maxdata = ix->maxdata;
ox->maxstack = ix->maxstack;
return true;
}
/* I don't think XCOFF really has a notion of local labels based on
name. This will mean that ld -X doesn't actually strip anything.
The AIX native linker does not have a -X option, and it ignores the
-x option. */
bool
_bfd_xcoff_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
const char *name ATTRIBUTE_UNUSED)
{
return false;
}
void
_bfd_xcoff_swap_sym_in (bfd *abfd, void * ext1, void * in1)
{
SYMENT *ext = (SYMENT *)ext1;
struct internal_syment * in = (struct internal_syment *)in1;
if (ext->e.e_name[0] != 0)
{
memcpy (in->_n._n_name, ext->e.e_name, SYMNMLEN);
}
else
{
in->_n._n_n._n_zeroes = 0;
in->_n._n_n._n_offset = H_GET_32 (abfd, ext->e.e.e_offset);
}
in->n_value = H_GET_32 (abfd, ext->e_value);
in->n_scnum = (short) H_GET_16 (abfd, ext->e_scnum);
in->n_type = H_GET_16 (abfd, ext->e_type);
in->n_sclass = H_GET_8 (abfd, ext->e_sclass);
in->n_numaux = H_GET_8 (abfd, ext->e_numaux);
}
unsigned int
_bfd_xcoff_swap_sym_out (bfd *abfd, void * inp, void * extp)
{
struct internal_syment *in = (struct internal_syment *)inp;
SYMENT *ext =(SYMENT *)extp;
if (in->_n._n_name[0] != 0)
{
memcpy (ext->e.e_name, in->_n._n_name, SYMNMLEN);
}
else
{
H_PUT_32 (abfd, 0, ext->e.e.e_zeroes);
H_PUT_32 (abfd, in->_n._n_n._n_offset, ext->e.e.e_offset);
}
H_PUT_32 (abfd, in->n_value, ext->e_value);
H_PUT_16 (abfd, in->n_scnum, ext->e_scnum);
H_PUT_16 (abfd, in->n_type, ext->e_type);
H_PUT_8 (abfd, in->n_sclass, ext->e_sclass);
H_PUT_8 (abfd, in->n_numaux, ext->e_numaux);
return bfd_coff_symesz (abfd);
}
void
_bfd_xcoff_swap_aux_in (bfd *abfd, void * ext1, int type ATTRIBUTE_UNUSED,
int in_class, int indx, int numaux, void * in1)
{
AUXENT * ext = (AUXENT *)ext1;
union internal_auxent *in = (union internal_auxent *)in1;
switch (in_class)
{
default:
_bfd_error_handler
/* xgettext: c-format */
(_("%pB: unsupported swap_aux_in for storage class %#x"),
abfd, (unsigned int) in_class);
bfd_set_error (bfd_error_bad_value);
break;
case C_FILE:
if (ext->x_file.x_n.x_fname[0] == 0)
{
in->x_file.x_n.x_n.x_zeroes = 0;
in->x_file.x_n.x_n.x_offset =
H_GET_32 (abfd, ext->x_file.x_n.x_n.x_offset);
}
else
memcpy (in->x_file.x_n.x_fname, ext->x_file.x_n.x_fname, FILNMLEN);
in->x_file.x_ftype = H_GET_8 (abfd, ext->x_file.x_ftype);
break;
/* RS/6000 "csect" auxents.
There is always a CSECT auxiliary entry. But functions can
have FCN ones too. In this case, CSECT is always the last
one. */
case C_EXT:
case C_AIX_WEAKEXT:
case C_HIDEXT:
if (indx + 1 == numaux)
{
in->x_csect.x_scnlen.u64 = H_GET_32 (abfd, ext->x_csect.x_scnlen);
in->x_csect.x_parmhash = H_GET_32 (abfd, ext->x_csect.x_parmhash);
in->x_csect.x_snhash = H_GET_16 (abfd, ext->x_csect.x_snhash);
/* We don't have to hack bitfields in x_smtyp because it's
defined by shifts-and-ands, which are equivalent on all
byte orders. */
in->x_csect.x_smtyp = H_GET_8 (abfd, ext->x_csect.x_smtyp);
in->x_csect.x_smclas = H_GET_8 (abfd, ext->x_csect.x_smclas);
in->x_csect.x_stab = H_GET_32 (abfd, ext->x_csect.x_stab);
in->x_csect.x_snstab = H_GET_16 (abfd, ext->x_csect.x_snstab);
}
else
{
/* x_exptr isn't supported. */
in->x_sym.x_misc.x_fsize
= H_GET_32 (abfd, ext->x_fcn.x_fsize);
in->x_sym.x_fcnary.x_fcn.x_lnnoptr
= H_GET_32 (abfd, ext->x_fcn.x_lnnoptr);
in->x_sym.x_fcnary.x_fcn.x_endndx.u32
= H_GET_32 (abfd, ext->x_fcn.x_endndx);
}
break;
case C_STAT:
in->x_scn.x_scnlen = H_GET_32 (abfd, ext->x_scn.x_scnlen);
in->x_scn.x_nreloc = H_GET_16 (abfd, ext->x_scn.x_nreloc);
in->x_scn.x_nlinno = H_GET_16 (abfd, ext->x_scn.x_nlinno);
/* PE defines some extra fields; we zero them out for
safety. */
in->x_scn.x_checksum = 0;
in->x_scn.x_associated = 0;
in->x_scn.x_comdat = 0;
break;
case C_BLOCK:
case C_FCN:
in->x_sym.x_misc.x_lnsz.x_lnno
= H_GET_32 (abfd, ext->x_sym.x_lnno);
break;
case C_DWARF:
in->x_sect.x_scnlen = H_GET_32 (abfd, ext->x_sect.x_scnlen);
in->x_sect.x_nreloc = H_GET_32 (abfd, ext->x_sect.x_nreloc);
break;
}
}
unsigned int
_bfd_xcoff_swap_aux_out (bfd *abfd, void * inp, int type ATTRIBUTE_UNUSED,
int in_class, int indx, int numaux, void * extp)
{
union internal_auxent *in = (union internal_auxent *)inp;
AUXENT *ext = (AUXENT *)extp;
memset (ext, 0, bfd_coff_auxesz (abfd));
switch (in_class)
{
default:
_bfd_error_handler
/* xgettext: c-format */
(_("%pB: unsupported swap_aux_out for storage class %#x"),
abfd, (unsigned int) in_class);
bfd_set_error (bfd_error_bad_value);
break;
case C_FILE:
if (in->x_file.x_n.x_fname[0] == 0)
{
H_PUT_32 (abfd, 0, ext->x_file.x_n.x_n.x_zeroes);
H_PUT_32 (abfd, in->x_file.x_n.x_n.x_offset,
ext->x_file.x_n.x_n.x_offset);
}
else
memcpy (ext->x_file.x_n.x_fname, in->x_file.x_n.x_fname, FILNMLEN);
H_PUT_8 (abfd, in->x_file.x_ftype, ext->x_file.x_ftype);
break;
/* RS/6000 "csect" auxents */
case C_EXT:
case C_AIX_WEAKEXT:
case C_HIDEXT:
if (indx + 1 == numaux)
{
H_PUT_32 (abfd, in->x_csect.x_scnlen.u64, ext->x_csect.x_scnlen);
H_PUT_32 (abfd, in->x_csect.x_parmhash, ext->x_csect.x_parmhash);
H_PUT_16 (abfd, in->x_csect.x_snhash, ext->x_csect.x_snhash);
/* We don't have to hack bitfields in x_smtyp because it's
defined by shifts-and-ands, which are equivalent on all
byte orders. */
H_PUT_8 (abfd, in->x_csect.x_smtyp, ext->x_csect.x_smtyp);
H_PUT_8 (abfd, in->x_csect.x_smclas, ext->x_csect.x_smclas);
H_PUT_32 (abfd, in->x_csect.x_stab, ext->x_csect.x_stab);
H_PUT_16 (abfd, in->x_csect.x_snstab, ext->x_csect.x_snstab);
}
else
{
H_PUT_32 (abfd, in->x_sym.x_misc.x_fsize, ext->x_fcn.x_fsize);
H_PUT_32 (abfd, in->x_sym.x_fcnary.x_fcn.x_lnnoptr,
ext->x_fcn.x_lnnoptr);
H_PUT_32 (abfd, in->x_sym.x_fcnary.x_fcn.x_endndx.u32,
ext->x_fcn.x_endndx);
}
break;
case C_STAT:
H_PUT_32 (abfd, in->x_scn.x_scnlen, ext->x_scn.x_scnlen);
H_PUT_16 (abfd, in->x_scn.x_nreloc, ext->x_scn.x_nreloc);
H_PUT_16 (abfd, in->x_scn.x_nlinno, ext->x_scn.x_nlinno);
break;
case C_BLOCK:
case C_FCN:
H_PUT_32 (abfd, in->x_sym.x_misc.x_lnsz.x_lnno, ext->x_sym.x_lnno);
break;
case C_DWARF:
H_PUT_32 (abfd, in->x_sect.x_scnlen, ext->x_sect.x_scnlen);
H_PUT_32 (abfd, in->x_sect.x_nreloc, ext->x_sect.x_nreloc);
break;
}
return bfd_coff_auxesz (abfd);
}
/* The XCOFF reloc table.
XCOFF relocations aren't defined only by the type field r_type.
The bitsize and whether they are signed or not, are defined by
r_size field. Thus, it's complicated to create a constant
table reference every possible relocation.
This table contains the "default" relocation and few modified
relocations what were already there. It's enough when
xcoff_rtype2howto is called.
For relocations from an input bfd to an output bfd, the default
relocation is retrieved and when manually adapted.
For now, it seems to be enought. */
reloc_howto_type xcoff_howto_table[] =
{
/* 0x00: Standard 32 bit relocation. */
HOWTO (R_POS, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_POS", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x01: 32 bit relocation, but store negative value. */
HOWTO (R_NEG, /* type */
0, /* rightshift */
-4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_NEG", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x02: 32 bit PC relative relocation. */
HOWTO (R_REL, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
0, /* special_function */
"R_REL", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x03: 16 bit TOC relative relocation. */
HOWTO (R_TOC, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TOC", /* name */
true, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x04: Same as R_TOC */
HOWTO (R_TRL, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TRL", /* name */
true, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x05: External TOC relative symbol. */
HOWTO (R_GL, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_GL", /* name */
true, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x06: Local TOC relative symbol. */
HOWTO (R_TCL, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TCL", /* name */
true, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
EMPTY_HOWTO (7),
/* 0x08: Same as R_RBA. */
HOWTO (R_BA, /* type */
0, /* rightshift */
4, /* size */
26, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_BA_26", /* name */
true, /* partial_inplace */
0x03fffffc, /* src_mask */
0x03fffffc, /* dst_mask */
false), /* pcrel_offset */
EMPTY_HOWTO (9),
/* 0x0a: Same as R_RBR. */
HOWTO (R_BR, /* type */
0, /* rightshift */
4, /* size */
26, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
0, /* special_function */
"R_BR", /* name */
true, /* partial_inplace */
0x03fffffc, /* src_mask */
0x03fffffc, /* dst_mask */
false), /* pcrel_offset */
EMPTY_HOWTO (0xb),
/* 0x0c: Same as R_POS. */
HOWTO (R_RL, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_RL", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x0d: Same as R_POS. */
HOWTO (R_RLA, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_RLA", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
EMPTY_HOWTO (0xe),
/* 0x0f: Non-relocating reference. Bitsize is 1 so that r_rsize is 0. */
HOWTO (R_REF, /* type */
0, /* rightshift */
1, /* size */
1, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
0, /* special_function */
"R_REF", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
EMPTY_HOWTO (0x10),
EMPTY_HOWTO (0x11),
EMPTY_HOWTO (0x12),
/* 0x13: Same as R_TOC. */
HOWTO (R_TRLA, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TRLA", /* name */
true, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x14: Modifiable relative branch. */
HOWTO (R_RRTBI, /* type */
1, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_RRTBI", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x15: Modifiable absolute branch. */
HOWTO (R_RRTBA, /* type */
1, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_RRTBA", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x16: Modifiable call absolute indirect. */
HOWTO (R_CAI, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_CAI", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x17: Modifiable call relative. */
HOWTO (R_CREL, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_CREL", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x18: Modifiable branch absolute. */
HOWTO (R_RBA, /* type */
0, /* rightshift */
4, /* size */
26, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_RBA", /* name */
true, /* partial_inplace */
0x03fffffc, /* src_mask */
0x03fffffc, /* dst_mask */
false), /* pcrel_offset */
/* 0x19: Modifiable branch absolute. */
HOWTO (R_RBAC, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_RBAC", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x1a: Modifiable branch relative. */
HOWTO (R_RBR, /* type */
0, /* rightshift */
4, /* size */
26, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
0, /* special_function */
"R_RBR_26", /* name */
true, /* partial_inplace */
0x03fffffc, /* src_mask */
0x03fffffc, /* dst_mask */
false), /* pcrel_offset */
/* 0x1b: Modifiable branch absolute. */
HOWTO (R_RBRC, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_RBRC", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x1c: 16 bit Non modifiable absolute branch. */
HOWTO (R_BA, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_BA_16", /* name */
true, /* partial_inplace */
0xfffc, /* src_mask */
0xfffc, /* dst_mask */
false), /* pcrel_offset */
/* 0x1d: Modifiable branch relative. */
HOWTO (R_RBR, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
0, /* special_function */
"R_RBR_16", /* name */
true, /* partial_inplace */
0xfffc, /* src_mask */
0xfffc, /* dst_mask */
false), /* pcrel_offset */
/* 0x1e: Modifiable branch relative. */
HOWTO (R_RBA, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
0, /* special_function */
"R_RBA_16", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
EMPTY_HOWTO (0x1f),
/* 0x20: General-dynamic TLS relocation. */
HOWTO (R_TLS, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TLS", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x21: Initial-exec TLS relocation. */
HOWTO (R_TLS_IE, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TLS_IE", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x22: Local-dynamic TLS relocation. */
HOWTO (R_TLS_LD, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TLS_LD", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x23: Local-exec TLS relocation. */
HOWTO (R_TLS_LE, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TLS_LE", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x24: TLS relocation. */
HOWTO (R_TLSM, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TLSM", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x25: TLS module relocation. */
HOWTO (R_TLSML, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TLSML", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
EMPTY_HOWTO(0x26),
EMPTY_HOWTO(0x27),
EMPTY_HOWTO(0x28),
EMPTY_HOWTO(0x29),
EMPTY_HOWTO(0x2a),
EMPTY_HOWTO(0x2b),
EMPTY_HOWTO(0x2c),
EMPTY_HOWTO(0x2d),
EMPTY_HOWTO(0x2e),
EMPTY_HOWTO(0x2f),
/* 0x30: High-order 16 bit TOC relative relocation. */
HOWTO (R_TOCU, /* type */
16, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
0, /* special_function */
"R_TOCU", /* name */
true, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 0x31: Low-order 16 bit TOC relative relocation. */
HOWTO (R_TOCL, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
0, /* special_function */
"R_TOCL", /* name */
true, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
};
void
xcoff_rtype2howto (arelent *relent, struct internal_reloc *internal)
{
if (internal->r_type > R_TOCL)
abort ();
/* Default howto layout works most of the time */
relent->howto = &xcoff_howto_table[internal->r_type];
/* Special case some 16 bit reloc */
if (15 == (internal->r_size & 0x1f))
{
if (R_BA == internal->r_type)
relent->howto = &xcoff_howto_table[0x1c];
else if (R_RBR == internal->r_type)
relent->howto = &xcoff_howto_table[0x1d];
else if (R_RBA == internal->r_type)
relent->howto = &xcoff_howto_table[0x1e];
}
/* The r_size field of an XCOFF reloc encodes the bitsize of the
relocation, as well as indicating whether it is signed or not.
Doublecheck that the relocation information gathered from the
type matches this information. The bitsize is not significant
for R_REF relocs. */
if (relent->howto->dst_mask != 0
&& (relent->howto->bitsize
!= ((unsigned int) internal->r_size & 0x1f) + 1))
abort ();
}
reloc_howto_type *
_bfd_xcoff_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
switch (code)
{
case BFD_RELOC_PPC_B26:
return &xcoff_howto_table[0xa];
case BFD_RELOC_PPC_BA16:
return &xcoff_howto_table[0x1c];
case BFD_RELOC_PPC_BA26:
return &xcoff_howto_table[8];
case BFD_RELOC_PPC_TOC16:
return &xcoff_howto_table[3];
case BFD_RELOC_PPC_TOC16_HI:
return &xcoff_howto_table[0x30];
case BFD_RELOC_PPC_TOC16_LO:
return &xcoff_howto_table[0x31];
case BFD_RELOC_PPC_B16:
return &xcoff_howto_table[0x1d];
case BFD_RELOC_32:
case BFD_RELOC_CTOR:
return &xcoff_howto_table[0];
case BFD_RELOC_NONE:
return &xcoff_howto_table[0xf];
case BFD_RELOC_PPC_NEG:
return &xcoff_howto_table[0x1];
case BFD_RELOC_PPC_TLSGD:
return &xcoff_howto_table[0x20];
case BFD_RELOC_PPC_TLSIE:
return &xcoff_howto_table[0x21];
case BFD_RELOC_PPC_TLSLD:
return &xcoff_howto_table[0x22];
case BFD_RELOC_PPC_TLSLE:
return &xcoff_howto_table[0x23];
case BFD_RELOC_PPC_TLSM:
return &xcoff_howto_table[0x24];
case BFD_RELOC_PPC_TLSML:
return &xcoff_howto_table[0x25];
default:
return NULL;
}
}
static reloc_howto_type *
_bfd_xcoff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0;
i < sizeof (xcoff_howto_table) / sizeof (xcoff_howto_table[0]);
i++)
if (xcoff_howto_table[i].name != NULL
&& strcasecmp (xcoff_howto_table[i].name, r_name) == 0)
return &xcoff_howto_table[i];
return NULL;
}
/* XCOFF archive support. The original version of this code was by
Damon A. Permezel. It was enhanced to permit cross support, and
writing archive files, by Ian Lance Taylor, Cygnus Support.
XCOFF uses its own archive format. Everything is hooked together
with file offset links, so it is possible to rapidly update an
archive in place. Of course, we don't do that. An XCOFF archive
has a real file header, not just an ARMAG string. The structure of
the file header and of each archive header appear below.
An XCOFF archive also has a member table, which is a list of
elements in the archive (you can get that by looking through the
linked list, but you have to read a lot more of the file). The
member table has a normal archive header with an empty name. It is
normally (and perhaps must be) the second to last entry in the
archive. The member table data is almost printable ASCII. It
starts with a 12 character decimal string which is the number of
entries in the table. For each entry it has a 12 character decimal
string which is the offset in the archive of that member. These
entries are followed by a series of null terminated strings which
are the member names for each entry.
Finally, an XCOFF archive has a global symbol table, which is what
we call the armap. The global symbol table has a normal archive
header with an empty name. It is normally (and perhaps must be)
the last entry in the archive. The contents start with a four byte
binary number which is the number of entries. This is followed by
a that many four byte binary numbers; each is the file offset of an
entry in the archive. These numbers are followed by a series of
null terminated strings, which are symbol names.
AIX 4.3 introduced a new archive format which can handle larger
files and also 32- and 64-bit objects in the same archive. The
things said above remain true except that there is now more than
one global symbol table. The one is used to index 32-bit objects,
the other for 64-bit objects.
The new archives (recognizable by the new ARMAG string) has larger
field lengths so that we cannot really share any code. Also we have
to take care that we are not generating the new form of archives
on AIX 4.2 or earlier systems. */
/* PR 21786: The PE/COFF standard does not require NUL termination for any of
the ASCII fields in the archive headers. So in order to be able to extract
numerical values we provide our own versions of strtol and strtoll which
take a maximum length as an additional parameter. Also - just to save space,
we omit the endptr return parameter, since we know that it is never used. */
static unsigned long
_bfd_strntol (const char * nptr, int base, unsigned int maxlen)
{
char buf[24]; /* Should be enough. */
BFD_ASSERT (maxlen < (sizeof (buf) - 1));
memcpy (buf, nptr, maxlen);
buf[maxlen] = 0;
return strtol (buf, NULL, base);
}
static unsigned long long
_bfd_strntoll (const char * nptr, int base, unsigned int maxlen)
{
char buf[32]; /* Should be enough. */
BFD_ASSERT (maxlen < (sizeof (buf) - 1));
memcpy (buf, nptr, maxlen);
buf[maxlen] = 0;
return strtoll (buf, NULL, base);
}
/* Macro to read an ASCII value stored in an archive header field. */
#define GET_VALUE_IN_FIELD(VAR, FIELD, BASE) \
do \
{ \
(VAR) = (sizeof (VAR) > sizeof (long) \
? _bfd_strntoll (FIELD, BASE, sizeof FIELD) \
: _bfd_strntol (FIELD, BASE, sizeof FIELD)); \
} \
while (0)
#define EQ_VALUE_IN_FIELD(VAR, FIELD, BASE) \
(sizeof (VAR) > sizeof (long) \
? (VAR) == _bfd_strntoll (FIELD, BASE, sizeof FIELD) \
: (VAR) == _bfd_strntol (FIELD, BASE, sizeof FIELD))
/* Read in the armap of an XCOFF archive. */
bool
_bfd_xcoff_slurp_armap (bfd *abfd)
{
ufile_ptr off;
size_t namlen;
bfd_size_type sz;
bfd_byte *contents, *cend;
bfd_vma c, i;
carsym *arsym;
bfd_byte *p;
if (x_artdata (abfd) == NULL)
{
abfd->has_armap = false;
return true;
}
if (! xcoff_big_format_p (abfd))
{
/* This is for the old format. */
struct xcoff_ar_hdr hdr;
GET_VALUE_IN_FIELD (off, x_artdata (abfd)->u.hdr.symoff, 10);
if (off == 0)
{
abfd->has_armap = false;
return true;
}
if (bfd_seek (abfd, off, SEEK_SET) != 0)
return false;
/* The symbol table starts with a normal archive header. */
if (bfd_read (&hdr, SIZEOF_AR_HDR, abfd) != SIZEOF_AR_HDR)
return false;
/* Skip the name (normally empty). */
GET_VALUE_IN_FIELD (namlen, hdr.namlen, 10);
off = ((namlen + 1) & ~ (size_t) 1) + SXCOFFARFMAG;
if (bfd_seek (abfd, off, SEEK_CUR) != 0)
return false;
GET_VALUE_IN_FIELD (sz, hdr.size, 10);
if (sz + 1 < 5)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
/* Read in the entire symbol table. */
contents = (bfd_byte *) _bfd_alloc_and_read (abfd, sz + 1, sz);
if (contents == NULL)
return false;
/* Ensure strings are NULL terminated so we don't wander off the
end of the buffer. */
contents[sz] = 0;
/* The symbol table starts with a four byte count. */
c = H_GET_32 (abfd, contents);
if (c >= sz / 4)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
bfd_ardata (abfd)->symdefs =
((carsym *) bfd_alloc (abfd, c * sizeof (carsym)));
if (bfd_ardata (abfd)->symdefs == NULL)
return false;
/* After the count comes a list of four byte file offsets. */
for (i = 0, arsym = bfd_ardata (abfd)->symdefs, p = contents + 4;
i < c;
++i, ++arsym, p += 4)
arsym->file_offset = H_GET_32 (abfd, p);
}
else
{
/* This is for the new format. */
struct xcoff_ar_hdr_big hdr;
GET_VALUE_IN_FIELD (off, x_artdata (abfd)->u.bhdr.symoff, 10);
if (off == 0)
{
abfd->has_armap = false;
return true;
}
if (bfd_seek (abfd, off, SEEK_SET) != 0)
return false;
/* The symbol table starts with a normal archive header. */
if (bfd_read (&hdr, SIZEOF_AR_HDR_BIG, abfd) != SIZEOF_AR_HDR_BIG)
return false;
/* Skip the name (normally empty). */
GET_VALUE_IN_FIELD (namlen, hdr.namlen, 10);
off = ((namlen + 1) & ~ (size_t) 1) + SXCOFFARFMAG;
if (bfd_seek (abfd, off, SEEK_CUR) != 0)
return false;
GET_VALUE_IN_FIELD (sz, hdr.size, 10);
if (sz + 1 < 9)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
/* Read in the entire symbol table. */
contents = (bfd_byte *) _bfd_alloc_and_read (abfd, sz + 1, sz);
if (contents == NULL)
return false;
/* Ensure strings are NULL terminated so we don't wander off the
end of the buffer. */
contents[sz] = 0;
/* The symbol table starts with an eight byte count. */
c = H_GET_64 (abfd, contents);
if (c >= sz / 8)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
bfd_ardata (abfd)->symdefs =
((carsym *) bfd_alloc (abfd, c * sizeof (carsym)));
if (bfd_ardata (abfd)->symdefs == NULL)
return false;
/* After the count comes a list of eight byte file offsets. */
for (i = 0, arsym = bfd_ardata (abfd)->symdefs, p = contents + 8;
i < c;
++i, ++arsym, p += 8)
arsym->file_offset = H_GET_64 (abfd, p);
}
/* After the file offsets come null terminated symbol names. */
cend = contents + sz;
for (i = 0, arsym = bfd_ardata (abfd)->symdefs;
i < c;
++i, ++arsym, p += strlen ((char *) p) + 1)
{
if (p >= cend)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
arsym->name = (char *) p;
}
bfd_ardata (abfd)->symdef_count = c;
abfd->has_armap = true;
return true;
}
/* See if this is an XCOFF archive. */
bfd_cleanup
_bfd_xcoff_archive_p (bfd *abfd)
{
struct artdata *tdata_hold;
char magic[SXCOFFARMAG];
size_t amt = SXCOFFARMAG;
if (bfd_read (magic, amt, abfd) != amt)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
if (strncmp (magic, XCOFFARMAG, SXCOFFARMAG) != 0
&& strncmp (magic, XCOFFARMAGBIG, SXCOFFARMAG) != 0)
{
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
tdata_hold = bfd_ardata (abfd);
amt = sizeof (struct artdata);
bfd_ardata (abfd) = (struct artdata *) bfd_zalloc (abfd, amt);
if (bfd_ardata (abfd) == (struct artdata *) NULL)
goto error_ret_restore;
/* Now handle the two formats. */
if (magic[1] != 'b')
{
/* This is the old format. */
struct xcoff_ar_file_hdr hdr;
/* Copy over the magic string. */
memcpy (hdr.magic, magic, SXCOFFARMAG);
/* Now read the rest of the file header. */
amt = SIZEOF_AR_FILE_HDR - SXCOFFARMAG;
if (bfd_read (&hdr.memoff, amt, abfd) != amt)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
goto error_ret;
}
GET_VALUE_IN_FIELD (bfd_ardata (abfd)->first_file_filepos,
hdr.firstmemoff, 10);
amt = sizeof (struct xcoff_artdata);
bfd_ardata (abfd)->tdata = bfd_zalloc (abfd, amt);
if (bfd_ardata (abfd)->tdata == NULL)
goto error_ret;
memcpy (&x_artdata (abfd)->u.hdr, &hdr, SIZEOF_AR_FILE_HDR);
}
else
{
/* This is the new format. */
struct xcoff_ar_file_hdr_big hdr;
/* Copy over the magic string. */
memcpy (hdr.magic, magic, SXCOFFARMAG);
/* Now read the rest of the file header. */
amt = SIZEOF_AR_FILE_HDR_BIG - SXCOFFARMAG;
if (bfd_read (&hdr.memoff, amt, abfd) != amt)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
goto error_ret;
}
bfd_ardata (abfd)->first_file_filepos = bfd_scan_vma (hdr.firstmemoff,
(const char **) 0,
10);
amt = sizeof (struct xcoff_artdata);
bfd_ardata (abfd)->tdata = bfd_zalloc (abfd, amt);
if (bfd_ardata (abfd)->tdata == NULL)
goto error_ret;
memcpy (&x_artdata (abfd)->u.bhdr, &hdr, SIZEOF_AR_FILE_HDR_BIG);
}
if (! _bfd_xcoff_slurp_armap (abfd))
{
error_ret:
bfd_release (abfd, bfd_ardata (abfd));
error_ret_restore:
bfd_ardata (abfd) = tdata_hold;
return NULL;
}
return _bfd_no_cleanup;
}
/* Track file ranges occupied by elements. Add [START,END) to the
list of ranges and return TRUE if there is no overlap between the
new and any other element or the archive file header. This is
aimed at preventing infinite looping on malformed archives, for
"ar" and similar which typically use code like:
. for (last = bfd_openr_next_archived_file (archive, NULL);
. last;
. last = next)
. {
. do_something_with (last);
. next = bfd_openr_next_archived_file (archive, last);
. bfd_close (last);
. }
The check implemented here is only possible due to the fact that
for XCOFF archives bfd_openr_next_archived_file is the only code
path leading to _bfd_read_ar_hdr. _bfd_read_ar_hdr is not called
when reading the armap, nor do XCOFF archives use the extended name
scheme implemented in archive.c.
Note that the check relies on the previous element being closed,
and there is one case where add_range might fail but I think it is
sufficently unusual that it doesn't warrant fixing:
If the loop body above called bfd_openr_next_archived_file twice
with the same arguments and the element returned is bfd_close'd
between those calls then we'll return false here for the second
call. (For why this is so see _bfd_look_for_bfd_in_cache in
_bfd_get_elt_at_filepos, and know that bfd_close removes elements
from the cache.) */
static bool
add_range (bfd *abfd, ufile_ptr start, ufile_ptr end)
{
if (end <= start)
{
err:
bfd_set_error (bfd_error_malformed_archive);
return false;
}
/* This list is kept sorted by address. Find the highest address
range on the list that ends before the new range starts. Exit
the loop with that range in LO, and the mext higher range in HI. */
struct ar_ranges *hi = &x_artdata (abfd)->ranges;
struct ar_ranges *lo = NULL;
while (hi && hi->end <= start)
{
lo = hi;
hi = hi->next;
}
if (lo == NULL)
/* Start overlaps the file header or elements adjacent to it. */
goto err;
if (hi && hi->start < end)
/* Overlap with another element. */
goto err;
/* A zero size element with a one char name is this big. */
unsigned min_elt = x_artdata (abfd)->ar_hdr_size + 2 + SXCOFFARFMAG;
if (start - lo->end < min_elt)
{
/* Merge into an existing range. */
lo->end = end;
if (hi && hi->start - end < min_elt)
{
/* In fact, we can merge two ranges. */
lo->end = hi->end;
lo->next = hi->next;
/* The list uses bfd_alloc so don't free HI. */
}
return true;
}
if (hi && hi->start - end < min_elt)
{
/* Merge into an existing range. */
hi->start = start;
return true;
}
struct ar_ranges *newr = bfd_alloc (abfd, sizeof (*newr));
if (newr == NULL)
return false;
newr->start = start;
newr->end = end;
newr->next = hi;
lo->next = newr;
return true;
}
/* Read the archive header in an XCOFF archive. */
void *
_bfd_xcoff_read_ar_hdr (bfd *abfd)
{
bfd_size_type namlen;
struct areltdata *ret;
bfd_size_type amt;
ufile_ptr start = abfd->where;
if (! xcoff_big_format_p (abfd))
{
struct xcoff_ar_hdr hdr;
struct xcoff_ar_hdr *hdrp;
if (bfd_read (&hdr, SIZEOF_AR_HDR, abfd) != SIZEOF_AR_HDR)
return NULL;
GET_VALUE_IN_FIELD (namlen, hdr.namlen, 10);
if (namlen > bfd_get_file_size (abfd))
return NULL;
amt = sizeof (struct areltdata) + SIZEOF_AR_HDR + namlen + 1;
ret = (struct areltdata *) bfd_malloc (amt);
if (ret == NULL)
return ret;
hdrp = (struct xcoff_ar_hdr *) (ret + 1);
memcpy (hdrp, &hdr, SIZEOF_AR_HDR);
if (bfd_read ((char *) hdrp + SIZEOF_AR_HDR, namlen, abfd) != namlen)
{
free (ret);
return NULL;
}
((char *) hdrp)[SIZEOF_AR_HDR + namlen] = '\0';
ret->arch_header = (char *) hdrp;
GET_VALUE_IN_FIELD (ret->parsed_size, hdr.size, 10);
ret->filename = (char *) hdrp + SIZEOF_AR_HDR;
}
else
{
struct xcoff_ar_hdr_big hdr;
struct xcoff_ar_hdr_big *hdrp;
if (bfd_read (&hdr, SIZEOF_AR_HDR_BIG, abfd) != SIZEOF_AR_HDR_BIG)
return NULL;
GET_VALUE_IN_FIELD (namlen, hdr.namlen, 10);
if (namlen > bfd_get_file_size (abfd))
return NULL;
amt = sizeof (struct areltdata) + SIZEOF_AR_HDR_BIG + namlen + 1;
ret = (struct areltdata *) bfd_malloc (amt);
if (ret == NULL)
return ret;
hdrp = (struct xcoff_ar_hdr_big *) (ret + 1);
memcpy (hdrp, &hdr, SIZEOF_AR_HDR_BIG);
if (bfd_read ((char *) hdrp + SIZEOF_AR_HDR_BIG, namlen, abfd) != namlen)
{
free (ret);
return NULL;
}
((char *) hdrp)[SIZEOF_AR_HDR_BIG + namlen] = '\0';
ret->arch_header = (char *) hdrp;
GET_VALUE_IN_FIELD (ret->parsed_size, hdr.size, 10);
ret->filename = (char *) hdrp + SIZEOF_AR_HDR_BIG;
}
/* Size occupied by the header above that covered in the fixed
SIZEOF_AR_HDR or SIZEOF_AR_HDR_BIG. */
ret->extra_size = namlen + (namlen & 1) + SXCOFFARFMAG;
/* Skip over the XCOFFARFMAG at the end of the file name. */
if (bfd_seek (abfd, (namlen & 1) + SXCOFFARFMAG, SEEK_CUR) != 0
|| !add_range (abfd, start, abfd->where + ret->parsed_size))
{
free (ret);
return NULL;
}
return ret;
}
/* Open the next element in an XCOFF archive. */
bfd *
_bfd_xcoff_openr_next_archived_file (bfd *archive, bfd *last_file)
{
ufile_ptr filestart;
if (x_artdata (archive) == NULL)
{
bfd_set_error (bfd_error_invalid_operation);
return NULL;
}
if (! xcoff_big_format_p (archive))
{
if (last_file == NULL)
{
/* If we are scanning over elements twice in an open archive,
which can happen in gdb after a fork, ensure we start the
second scan with clean ranges. */
x_artdata (archive)->ranges.start = 0;
x_artdata (archive)->ranges.end = SIZEOF_AR_FILE_HDR;
x_artdata (archive)->ranges.next = NULL;
x_artdata (archive)->ar_hdr_size = SIZEOF_AR_HDR;
filestart = bfd_ardata (archive)->first_file_filepos;
}
else
GET_VALUE_IN_FIELD (filestart, arch_xhdr (last_file)->nextoff, 10);
if (filestart == 0
|| EQ_VALUE_IN_FIELD (filestart,
x_artdata (archive)->u.hdr.memoff, 10)
|| EQ_VALUE_IN_FIELD (filestart,
x_artdata (archive)->u.hdr.symoff, 10))
{
bfd_set_error (bfd_error_no_more_archived_files);
return NULL;
}
}
else
{
if (last_file == NULL)
{
x_artdata (archive)->ranges.start = 0;
x_artdata (archive)->ranges.end = SIZEOF_AR_FILE_HDR_BIG;
x_artdata (archive)->ranges.next = NULL;
x_artdata (archive)->ar_hdr_size = SIZEOF_AR_HDR_BIG;
filestart = bfd_ardata (archive)->first_file_filepos;
}
else
GET_VALUE_IN_FIELD (filestart, arch_xhdr_big (last_file)->nextoff, 10);
if (filestart == 0
|| EQ_VALUE_IN_FIELD (filestart,
x_artdata (archive)->u.bhdr.memoff, 10)
|| EQ_VALUE_IN_FIELD (filestart,
x_artdata (archive)->u.bhdr.symoff, 10))
{
bfd_set_error (bfd_error_no_more_archived_files);
return NULL;
}
}
/* Check that we aren't pointing back at the last element. This is
necessary depite the add_range checking in _bfd_xcoff_read_ar_hdr
because archive.c leaves the last element open and thus in the
archive element cache until the next element is opened. */
if (last_file != NULL)
{
ufile_ptr laststart = last_file->proxy_origin;
laststart -= x_artdata (archive)->ar_hdr_size;
laststart -= arch_eltdata (last_file)->extra_size;
if (filestart == laststart)
{
bfd_set_error (bfd_error_malformed_archive);
return NULL;
}
}
return _bfd_get_elt_at_filepos (archive, filestart, NULL);
}
/* Stat an element in an XCOFF archive. */
int
_bfd_xcoff_stat_arch_elt (bfd *abfd, struct stat *s)
{
if (abfd->arelt_data == NULL)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
if (! xcoff_big_format_p (abfd->my_archive))
{
struct xcoff_ar_hdr *hdrp = arch_xhdr (abfd);
GET_VALUE_IN_FIELD (s->st_mtime, hdrp->date, 10);
GET_VALUE_IN_FIELD (s->st_uid, hdrp->uid, 10);
GET_VALUE_IN_FIELD (s->st_gid, hdrp->gid, 10);
GET_VALUE_IN_FIELD (s->st_mode, hdrp->mode, 8);
s->st_size = arch_eltdata (abfd)->parsed_size;
}
else
{
struct xcoff_ar_hdr_big *hdrp = arch_xhdr_big (abfd);
GET_VALUE_IN_FIELD (s->st_mtime, hdrp->date, 10);
GET_VALUE_IN_FIELD (s->st_uid, hdrp->uid, 10);
GET_VALUE_IN_FIELD (s->st_gid, hdrp->gid, 10);
GET_VALUE_IN_FIELD (s->st_mode, hdrp->mode, 8);
s->st_size = arch_eltdata (abfd)->parsed_size;
}
return 0;
}
/* Normalize a file name for inclusion in an archive. */
static const char *
normalize_filename (bfd *abfd)
{
const char *file;
const char *filename;
file = bfd_get_filename (abfd);
filename = strrchr (file, '/');
if (filename != NULL)
filename++;
else
filename = file;
return filename;
}
/* Write out an XCOFF armap. */
static bool
xcoff_write_armap_old (bfd *abfd, unsigned int elength ATTRIBUTE_UNUSED,
struct orl *map, unsigned int orl_count, int stridx)
{
struct archive_iterator iterator;
struct xcoff_ar_hdr hdr;
char *p;
unsigned char buf[4];
unsigned int i;
memset (&hdr, 0, sizeof hdr);
sprintf (hdr.size, "%ld", (long) (4 + orl_count * 4 + stridx));
sprintf (hdr.nextoff, "%d", 0);
memcpy (hdr.prevoff, x_artdata (abfd)->u.hdr.memoff,
XCOFFARMAG_ELEMENT_SIZE);
sprintf (hdr.date, "%d", 0);
sprintf (hdr.uid, "%d", 0);
sprintf (hdr.gid, "%d", 0);
sprintf (hdr.mode, "%d", 0);
sprintf (hdr.namlen, "%d", 0);
/* We need spaces, not null bytes, in the header. */
for (p = (char *) &hdr; p < (char *) &hdr + SIZEOF_AR_HDR; p++)
if (*p == '\0')
*p = ' ';
if (bfd_write (&hdr, SIZEOF_AR_HDR, abfd) != SIZEOF_AR_HDR
|| bfd_write (XCOFFARFMAG, SXCOFFARFMAG, abfd) != SXCOFFARFMAG)
return false;
H_PUT_32 (abfd, orl_count, buf);
if (bfd_write (buf, 4, abfd) != 4)
return false;
i = 0;
archive_iterator_begin (&iterator, abfd);
while (i < orl_count && archive_iterator_next (&iterator))
while (map[i].u.abfd == iterator.current.member)
{
H_PUT_32 (abfd, iterator.current.offset, buf);
if (bfd_write (buf, 4, abfd) != 4)
return false;
++i;
}
for (i = 0; i < orl_count; i++)
{
const char *name;
size_t namlen;
name = *map[i].name;
namlen = strlen (name);
if (bfd_write (name, namlen + 1, abfd) != namlen + 1)
return false;
}
if ((stridx & 1) != 0)
{
char b;
b = '\0';
if (bfd_write (&b, 1, abfd) != 1)
return false;
}
return true;
}
static char buff20[XCOFFARMAGBIG_ELEMENT_SIZE + 1];
#define FMT20 "%-20" PRId64
#define FMT12 "%-12d"
#define FMT12_OCTAL "%-12o"
#define FMT4 "%-4d"
#define PRINT20(d, v) \
sprintf (buff20, FMT20, (uint64_t) (v)), \
memcpy ((void *) (d), buff20, 20)
#define PRINT12(d, v) \
sprintf (buff20, FMT12, (int)(v)), \
memcpy ((void *) (d), buff20, 12)
#define PRINT12_OCTAL(d, v) \
sprintf (buff20, FMT12_OCTAL, (unsigned int)(v)), \
memcpy ((void *) (d), buff20, 12)
#define PRINT4(d, v) \
sprintf (buff20, FMT4, (int)(v)), \
memcpy ((void *) (d), buff20, 4)
#define READ20(d, v) \
buff20[20] = 0, \
memcpy (buff20, (d), 20), \
(v) = bfd_scan_vma (buff20, (const char **) NULL, 10)
static bool
do_pad (bfd *abfd, unsigned int number)
{
bfd_byte b = 0;
/* Limit pad to <= 4096. */
if (number > 4096)
return false;
while (number--)
if (bfd_write (&b, 1, abfd) != 1)
return false;
return true;
}
static bool
do_copy (bfd *out_bfd, bfd *in_bfd)
{
bfd_size_type remaining;
bfd_byte buffer[8 * 1024];
if (bfd_seek (in_bfd, 0, SEEK_SET) != 0)
return false;
remaining = arelt_size (in_bfd);
while (remaining >= sizeof (buffer))
{
if (bfd_read (buffer, sizeof (buffer), in_bfd) != sizeof (buffer)
|| bfd_write (buffer, sizeof (buffer), out_bfd) != sizeof (buffer))
return false;
remaining -= sizeof (buffer);
}
if (remaining)
{
if (bfd_read (buffer, remaining, in_bfd) != remaining
|| bfd_write (buffer, remaining, out_bfd) != remaining)
return false;
}
return true;
}
static bool
xcoff_write_armap_big (bfd *abfd, unsigned int elength ATTRIBUTE_UNUSED,
struct orl *map, unsigned int orl_count, int stridx)
{
struct archive_iterator iterator;
struct xcoff_ar_file_hdr_big *fhdr;
bfd_vma i, sym_32, sym_64, str_32, str_64;
const bfd_arch_info_type *arch_info;
bfd *current_bfd;
size_t string_length;
file_ptr nextoff, prevoff;
/* First, we look through the symbols and work out which are
from 32-bit objects and which from 64-bit ones. */
sym_32 = sym_64 = str_32 = str_64 = 0;
i = 0;
for (current_bfd = abfd->archive_head;
current_bfd != NULL && i < orl_count;
current_bfd = current_bfd->archive_next)
{
arch_info = bfd_get_arch_info (current_bfd);
while (map[i].u.abfd == current_bfd)
{
string_length = strlen (*map[i].name) + 1;
if (arch_info->bits_per_address == 64)
{
sym_64++;
str_64 += string_length;
}
else
{
sym_32++;
str_32 += string_length;
}
i++;
}
}
/* A quick sanity check... */
BFD_ASSERT (sym_64 + sym_32 == orl_count);
/* Explicit cast to int for compiler. */
BFD_ASSERT ((int)(str_64 + str_32) == stridx);
fhdr = &x_artdata (abfd)->u.bhdr;
/* xcoff_write_archive_contents_big passes nextoff in symoff. */
READ20 (fhdr->memoff, prevoff);
READ20 (fhdr->symoff, nextoff);
BFD_ASSERT (nextoff == bfd_tell (abfd));
/* Write out the symbol table.
Layout :
standard big archive header
0x0000 ar_size [0x14]
0x0014 ar_nxtmem [0x14]
0x0028 ar_prvmem [0x14]
0x003C ar_date [0x0C]
0x0048 ar_uid [0x0C]
0x0054 ar_gid [0x0C]
0x0060 ar_mod [0x0C]
0x006C ar_namelen[0x04]
0x0070 ar_fmag [SXCOFFARFMAG]
Symbol table
0x0072 num_syms [0x08], binary
0x0078 offsets [0x08 * num_syms], binary
0x0086 + 0x08 * num_syms names [??]
?? pad to even bytes.
*/
if (sym_32)
{
struct xcoff_ar_hdr_big *hdr;
char *symbol_table;
char *st;
bfd_vma symbol_table_size =
SIZEOF_AR_HDR_BIG
+ SXCOFFARFMAG
+ 8
+ 8 * sym_32
+ str_32 + (str_32 & 1);
symbol_table = bfd_zmalloc (symbol_table_size);
if (symbol_table == NULL)
return false;
hdr = (struct xcoff_ar_hdr_big *) symbol_table;
PRINT20 (hdr->size, 8 + 8 * sym_32 + str_32 + (str_32 & 1));
if (sym_64)
PRINT20 (hdr->nextoff, nextoff + symbol_table_size);
else
PRINT20 (hdr->nextoff, 0);
PRINT20 (hdr->prevoff, prevoff);
PRINT12 (hdr->date, 0);
PRINT12 (hdr->uid, 0);
PRINT12 (hdr->gid, 0);
PRINT12 (hdr->mode, 0);
PRINT4 (hdr->namlen, 0) ;
st = symbol_table + SIZEOF_AR_HDR_BIG;
memcpy (st, XCOFFARFMAG, SXCOFFARFMAG);
st += SXCOFFARFMAG;
bfd_h_put_64 (abfd, sym_32, st);
st += 8;
/* loop over the 32 bit offsets */
i = 0;
archive_iterator_begin (&iterator, abfd);
while (i < orl_count && archive_iterator_next (&iterator))
{
arch_info = bfd_get_arch_info (iterator.current.member);
while (map[i].u.abfd == iterator.current.member)
{
if (arch_info->bits_per_address == 32)
{
bfd_h_put_64 (abfd, iterator.current.offset, st);
st += 8;
}
i++;
}
}
/* loop over the 32 bit symbol names */
i = 0;
for (current_bfd = abfd->archive_head;
current_bfd != NULL && i < orl_count;
current_bfd = current_bfd->archive_next)
{
arch_info = bfd_get_arch_info (current_bfd);
while (map[i].u.abfd == current_bfd)
{
if (arch_info->bits_per_address == 32)
{
string_length = sprintf (st, "%s", *map[i].name);
st += string_length + 1;
}
i++;
}
}
if (bfd_write (symbol_table, symbol_table_size, abfd)
!= symbol_table_size)
{
free (symbol_table);
return false;
}
free (symbol_table);
prevoff = nextoff;
nextoff = nextoff + symbol_table_size;
}
else
PRINT20 (fhdr->symoff, 0);
if (sym_64)
{
struct xcoff_ar_hdr_big *hdr;
char *symbol_table;
char *st;
bfd_vma symbol_table_size =
SIZEOF_AR_HDR_BIG
+ SXCOFFARFMAG
+ 8
+ 8 * sym_64
+ str_64 + (str_64 & 1);
symbol_table = bfd_zmalloc (symbol_table_size);
if (symbol_table == NULL)
return false;
hdr = (struct xcoff_ar_hdr_big *) symbol_table;
PRINT20 (hdr->size, 8 + 8 * sym_64 + str_64 + (str_64 & 1));
PRINT20 (hdr->nextoff, 0);
PRINT20 (hdr->prevoff, prevoff);
PRINT12 (hdr->date, 0);
PRINT12 (hdr->uid, 0);
PRINT12 (hdr->gid, 0);
PRINT12 (hdr->mode, 0);
PRINT4 (hdr->namlen, 0);
st = symbol_table + SIZEOF_AR_HDR_BIG;
memcpy (st, XCOFFARFMAG, SXCOFFARFMAG);
st += SXCOFFARFMAG;
bfd_h_put_64 (abfd, sym_64, st);
st += 8;
/* loop over the 64 bit offsets */
i = 0;
archive_iterator_begin (&iterator, abfd);
while (i < orl_count && archive_iterator_next (&iterator))
{
arch_info = bfd_get_arch_info (iterator.current.member);
while (map[i].u.abfd == iterator.current.member)
{
if (arch_info->bits_per_address == 64)
{
bfd_h_put_64 (abfd, iterator.current.offset, st);
st += 8;
}
i++;
}
}
/* loop over the 64 bit symbol names */
i = 0;
for (current_bfd = abfd->archive_head;
current_bfd != NULL && i < orl_count;
current_bfd = current_bfd->archive_next)
{
arch_info = bfd_get_arch_info (current_bfd);
while (map[i].u.abfd == current_bfd)
{
if (arch_info->bits_per_address == 64)
{
string_length = sprintf (st, "%s", *map[i].name);
st += string_length + 1;
}
i++;
}
}
if (bfd_write (symbol_table, symbol_table_size, abfd)
!= symbol_table_size)
{
free (symbol_table);
return false;
}
free (symbol_table);
PRINT20 (fhdr->symoff64, nextoff);
}
else
PRINT20 (fhdr->symoff64, 0);
return true;
}
bool
_bfd_xcoff_write_armap (bfd *abfd, unsigned int elength ATTRIBUTE_UNUSED,
struct orl *map, unsigned int orl_count, int stridx)
{
if (! xcoff_big_format_p (abfd))
return xcoff_write_armap_old (abfd, elength, map, orl_count, stridx);
else
return xcoff_write_armap_big (abfd, elength, map, orl_count, stridx);
}
/* Write out an XCOFF archive. We always write an entire archive,
rather than fussing with the freelist and so forth. */
static bool
xcoff_write_archive_contents_old (bfd *abfd)
{
struct archive_iterator iterator;
struct xcoff_artdata xtdata;
struct xcoff_ar_file_hdr *fhdr = &xtdata.u.hdr;
bfd_size_type count;
bfd_size_type total_namlen;
file_ptr *offsets;
bool makemap;
bool hasobjects;
file_ptr prevoff, nextoff;
bfd *sub;
size_t i;
struct xcoff_ar_hdr ahdr;
bfd_size_type size;
char *p;
char decbuf[XCOFFARMAG_ELEMENT_SIZE + 1];
memset (&xtdata, 0, sizeof (xtdata));
memcpy (fhdr->magic, XCOFFARMAG, SXCOFFARMAG);
sprintf (fhdr->firstmemoff, "%zu", SIZEOF_AR_FILE_HDR);
sprintf (fhdr->freeoff, "%d", 0);
count = 0;
total_namlen = 0;
for (sub = abfd->archive_head; sub != NULL; sub = sub->archive_next)
{
++count;
total_namlen += strlen (normalize_filename (sub)) + 1;
if (sub->arelt_data == NULL)
{
sub->arelt_data = bfd_zmalloc (sizeof (struct areltdata));
if (sub->arelt_data == NULL)
return false;
}
if (arch_xhdr (sub) == NULL)
{
struct xcoff_ar_hdr *ahdrp;
struct stat s;
if ((sub->flags & BFD_IN_MEMORY) != 0)
{
/* Assume we just "made" the member, and fake it. */
struct bfd_in_memory *bim
= (struct bfd_in_memory *) sub->iostream;
time (&s.st_mtime);
s.st_uid = getuid ();
s.st_gid = getgid ();
s.st_mode = 0644;
s.st_size = bim->size;
}
else if (stat (bfd_get_filename (sub), &s) != 0)
{
bfd_set_input_error (sub, bfd_error_system_call);
return false;
}
if ((abfd->flags & BFD_DETERMINISTIC_OUTPUT) != 0)
{
s.st_mtime = 0;
s.st_uid = 0;
s.st_gid = 0;
s.st_mode = 0644;
}
ahdrp = bfd_zalloc (sub, sizeof (*ahdrp));
if (ahdrp == NULL)
return false;
sprintf (ahdrp->size, "%ld", (long) s.st_size);
sprintf (ahdrp->date, "%ld", (long) s.st_mtime);
sprintf (ahdrp->uid, "%ld", (long) s.st_uid);
sprintf (ahdrp->gid, "%ld", (long) s.st_gid);
sprintf (ahdrp->mode, "%o", (unsigned int) s.st_mode);
arch_eltdata (sub)->arch_header = (char *) ahdrp;
arch_eltdata (sub)->parsed_size = s.st_size;
}
}
offsets = (file_ptr *) bfd_alloc (abfd, count * sizeof (file_ptr));
if (offsets == NULL)
return false;
if (bfd_seek (abfd, SIZEOF_AR_FILE_HDR, SEEK_SET) != 0)
return false;
makemap = bfd_has_map (abfd);
hasobjects = false;
prevoff = 0;
for (archive_iterator_begin (&iterator, abfd), i = 0;
archive_iterator_next (&iterator);
i++)
{
bfd_size_type namlen;
struct xcoff_ar_hdr *ahdrp;
if (makemap && ! hasobjects)
{
if (bfd_check_format (iterator.current.member, bfd_object))
hasobjects = true;
}
ahdrp = arch_xhdr (iterator.current.member);
sprintf (ahdrp->prevoff, "%ld", (long) prevoff);
sprintf (ahdrp->namlen, "%ld", (long) iterator.current.namlen);
sprintf (ahdrp->nextoff, "%ld", (long) iterator.next.offset);
/* We need spaces, not null bytes, in the header. */
for (p = (char *) ahdrp; p < (char *) ahdrp + SIZEOF_AR_HDR; p++)
if (*p == '\0')
*p = ' ';
if (!do_pad (abfd, iterator.current.leading_padding))
return false;
BFD_ASSERT (iterator.current.offset == bfd_tell (abfd));
namlen = iterator.current.padded_namlen;
if (bfd_write (ahdrp, SIZEOF_AR_HDR, abfd) != SIZEOF_AR_HDR
|| bfd_write (iterator.current.name, namlen, abfd) != namlen
|| bfd_write (XCOFFARFMAG, SXCOFFARFMAG, abfd) != SXCOFFARFMAG
|| bfd_seek (iterator.current.member, 0, SEEK_SET) != 0
|| !do_copy (abfd, iterator.current.member)
|| !do_pad (abfd, iterator.current.trailing_padding))
return false;
offsets[i] = iterator.current.offset;
prevoff = iterator.current.offset;
}
sprintf (fhdr->lastmemoff, "%ld", (long) prevoff);
/* Write out the member table. */
nextoff = iterator.next.offset;
BFD_ASSERT (nextoff == bfd_tell (abfd));
sprintf (fhdr->memoff, "%ld", (long) nextoff);
memset (&ahdr, 0, sizeof ahdr);
sprintf (ahdr.size, "%ld", (long) (XCOFFARMAG_ELEMENT_SIZE
+ count * XCOFFARMAG_ELEMENT_SIZE
+ total_namlen));
sprintf (ahdr.prevoff, "%ld", (long) prevoff);
sprintf (ahdr.date, "%d", 0);
sprintf (ahdr.uid, "%d", 0);
sprintf (ahdr.gid, "%d", 0);
sprintf (ahdr.mode, "%d", 0);
sprintf (ahdr.namlen, "%d", 0);
size = (SIZEOF_AR_HDR
+ XCOFFARMAG_ELEMENT_SIZE
+ count * XCOFFARMAG_ELEMENT_SIZE
+ total_namlen
+ SXCOFFARFMAG);
prevoff = nextoff;
nextoff += size + (size & 1);
if (makemap && hasobjects)
sprintf (ahdr.nextoff, "%ld", (long) nextoff);
else
sprintf (ahdr.nextoff, "%d", 0);
/* We need spaces, not null bytes, in the header. */
for (p = (char *) &ahdr; p < (char *) &ahdr + SIZEOF_AR_HDR; p++)
if (*p == '\0')
*p = ' ';
if ((bfd_write (&ahdr, SIZEOF_AR_HDR, abfd) != SIZEOF_AR_HDR)
|| bfd_write (XCOFFARFMAG, SXCOFFARFMAG, abfd) != SXCOFFARFMAG)
return false;
sprintf (decbuf, "%-12ld", (long) count);
if (bfd_write (decbuf, XCOFFARMAG_ELEMENT_SIZE, abfd)
!= XCOFFARMAG_ELEMENT_SIZE)
return false;
for (i = 0; i < (size_t) count; i++)
{
sprintf (decbuf, "%-12ld", (long) offsets[i]);
if (bfd_write (decbuf, XCOFFARMAG_ELEMENT_SIZE, abfd)
!= XCOFFARMAG_ELEMENT_SIZE)
return false;
}
for (sub = abfd->archive_head; sub != NULL; sub = sub->archive_next)
{
const char *name;
bfd_size_type namlen;
name = normalize_filename (sub);
namlen = strlen (name);
if (bfd_write (name, namlen + 1, abfd) != namlen + 1)
return false;
}
if (! do_pad (abfd, size & 1))
return false;
/* Write out the armap, if appropriate. */
if (! makemap || ! hasobjects)
sprintf (fhdr->symoff, "%d", 0);
else
{
BFD_ASSERT (nextoff == bfd_tell (abfd));
sprintf (fhdr->symoff, "%ld", (long) nextoff);
bfd_ardata (abfd)->tdata = &xtdata;
bool ret = _bfd_compute_and_write_armap (abfd, 0);
bfd_ardata (abfd)->tdata = NULL;
if (!ret)
return false;
}
/* Write out the archive file header. */
/* We need spaces, not null bytes, in the header. */
for (p = (char *) fhdr; p < (char *) fhdr + SIZEOF_AR_FILE_HDR; p++)
if (*p == '\0')
*p = ' ';
if (bfd_seek (abfd, 0, SEEK_SET) != 0
|| (bfd_write (fhdr, SIZEOF_AR_FILE_HDR, abfd) != SIZEOF_AR_FILE_HDR))
return false;
return true;
}
static bool
xcoff_write_archive_contents_big (bfd *abfd)
{
struct xcoff_artdata xtdata;
struct xcoff_ar_file_hdr_big *fhdr = &xtdata.u.bhdr;
bfd_size_type count;
bfd_size_type total_namlen;
file_ptr *offsets;
bool makemap;
bool hasobjects;
file_ptr prevoff, nextoff;
bfd *current_bfd;
size_t i;
struct xcoff_ar_hdr_big *hdr;
bfd_size_type size;
char *member_table, *mt;
bfd_vma member_table_size;
struct archive_iterator iterator;
memset (&xtdata, 0, sizeof (xtdata));
memcpy (fhdr->magic, XCOFFARMAGBIG, SXCOFFARMAG);
if (bfd_seek (abfd, SIZEOF_AR_FILE_HDR_BIG, SEEK_SET) != 0)
return false;
/* Calculate count and total_namlen. */
makemap = bfd_has_map (abfd);
hasobjects = false;
for (current_bfd = abfd->archive_head, count = 0, total_namlen = 0;
current_bfd != NULL;
current_bfd = current_bfd->archive_next, count++)
{
total_namlen += strlen (normalize_filename (current_bfd)) + 1;
if (makemap
&& ! hasobjects
&& bfd_check_format (current_bfd, bfd_object))
hasobjects = true;
if (current_bfd->arelt_data == NULL)
{
size = sizeof (struct areltdata);
current_bfd->arelt_data = bfd_zmalloc (size);
if (current_bfd->arelt_data == NULL)
return false;
}
if (arch_xhdr_big (current_bfd) == NULL)
{
struct xcoff_ar_hdr_big *ahdrp;
struct stat s;
if ((current_bfd->flags & BFD_IN_MEMORY) != 0)
{
/* Assume we just "made" the member, and fake it. */
struct bfd_in_memory *bim
= (struct bfd_in_memory *) current_bfd->iostream;
time (&s.st_mtime);
s.st_uid = getuid ();
s.st_gid = getgid ();
s.st_mode = 0644;
s.st_size = bim->size;
}
else if (stat (bfd_get_filename (current_bfd), &s) != 0)
{
bfd_set_input_error (current_bfd, bfd_error_system_call);
return false;
}
if ((abfd->flags & BFD_DETERMINISTIC_OUTPUT) != 0)
{
s.st_mtime = 0;
s.st_uid = 0;
s.st_gid = 0;
s.st_mode = 0644;
}
ahdrp = bfd_zalloc (current_bfd, sizeof (*ahdrp));
if (ahdrp == NULL)
return false;
PRINT20 (ahdrp->size, s.st_size);
PRINT12 (ahdrp->date, s.st_mtime);
PRINT12 (ahdrp->uid, s.st_uid);
PRINT12 (ahdrp->gid, s.st_gid);
PRINT12_OCTAL (ahdrp->mode, s.st_mode);
arch_eltdata (current_bfd)->arch_header = (char *) ahdrp;
arch_eltdata (current_bfd)->parsed_size = s.st_size;
}
}
offsets = NULL;
if (count)
{
offsets = (file_ptr *) bfd_malloc (count * sizeof (file_ptr));
if (offsets == NULL)
return false;
}
prevoff = 0;
for (archive_iterator_begin (&iterator, abfd), i = 0;
archive_iterator_next (&iterator);
i++)
{
bfd_size_type namlen;
struct xcoff_ar_hdr_big *ahdrp;
ahdrp = arch_xhdr_big (iterator.current.member);
PRINT20 (ahdrp->prevoff, prevoff);
PRINT4 (ahdrp->namlen, iterator.current.namlen);
PRINT20 (ahdrp->nextoff, iterator.next.offset);
if (!do_pad (abfd, iterator.current.leading_padding))
{
free (offsets);
return false;
}
BFD_ASSERT (iterator.current.offset == bfd_tell (abfd));
namlen = iterator.current.padded_namlen;
if (bfd_write (ahdrp, SIZEOF_AR_HDR_BIG, abfd) != SIZEOF_AR_HDR_BIG
|| bfd_write (iterator.current.name, namlen, abfd) != namlen
|| bfd_write (XCOFFARFMAG, SXCOFFARFMAG, abfd) != SXCOFFARFMAG
|| bfd_seek (iterator.current.member, 0, SEEK_SET) != 0
|| !do_copy (abfd, iterator.current.member)
|| !do_pad (abfd, iterator.current.trailing_padding))
{
free (offsets);
return false;
}
offsets[i] = iterator.current.offset;
prevoff = iterator.current.offset;
}
if (count)
{
PRINT20 (fhdr->firstmemoff, offsets[0]);
PRINT20 (fhdr->lastmemoff, prevoff);
}
/* Write out the member table.
Layout :
standard big archive header
0x0000 ar_size [0x14]
0x0014 ar_nxtmem [0x14]
0x0028 ar_prvmem [0x14]
0x003C ar_date [0x0C]
0x0048 ar_uid [0x0C]
0x0054 ar_gid [0x0C]
0x0060 ar_mod [0x0C]
0x006C ar_namelen[0x04]
0x0070 ar_fmag [0x02]
Member table
0x0072 count [0x14]
0x0086 offsets [0x14 * counts]
0x0086 + 0x14 * counts names [??]
?? pad to even bytes.
*/
nextoff = iterator.next.offset;
BFD_ASSERT (nextoff == bfd_tell (abfd));
member_table_size = (SIZEOF_AR_HDR_BIG
+ SXCOFFARFMAG
+ XCOFFARMAGBIG_ELEMENT_SIZE
+ count * XCOFFARMAGBIG_ELEMENT_SIZE
+ total_namlen);
member_table_size += member_table_size & 1;
member_table = bfd_zmalloc (member_table_size);
if (member_table == NULL)
{
free (offsets);
return false;
}
hdr = (struct xcoff_ar_hdr_big *) member_table;
PRINT20 (hdr->size, (XCOFFARMAGBIG_ELEMENT_SIZE
+ count * XCOFFARMAGBIG_ELEMENT_SIZE
+ total_namlen + (total_namlen & 1)));
if (makemap && hasobjects)
PRINT20 (hdr->nextoff, nextoff + member_table_size);
else
PRINT20 (hdr->nextoff, 0);
PRINT20 (hdr->prevoff, prevoff);
PRINT12 (hdr->date, 0);
PRINT12 (hdr->uid, 0);
PRINT12 (hdr->gid, 0);
PRINT12 (hdr->mode, 0);
PRINT4 (hdr->namlen, 0);
mt = member_table + SIZEOF_AR_HDR_BIG;
memcpy (mt, XCOFFARFMAG, SXCOFFARFMAG);
mt += SXCOFFARFMAG;
PRINT20 (mt, count);
mt += XCOFFARMAGBIG_ELEMENT_SIZE;
for (i = 0; i < (size_t) count; i++)
{
PRINT20 (mt, offsets[i]);
mt += XCOFFARMAGBIG_ELEMENT_SIZE;
}
if (count)
{
free (offsets);
offsets = NULL;
}
for (current_bfd = abfd->archive_head;
current_bfd != NULL;
current_bfd = current_bfd->archive_next)
{
const char *name;
size_t namlen;
name = normalize_filename (current_bfd);
namlen = sprintf (mt, "%s", name);
mt += namlen + 1;
}
if (bfd_write (member_table, member_table_size, abfd) != member_table_size)
return false;
free (member_table);
PRINT20 (fhdr->memoff, nextoff);
prevoff = nextoff;
nextoff += member_table_size;
/* Write out the armap, if appropriate. */
if (! makemap || ! hasobjects)
PRINT20 (fhdr->symoff, 0);
else
{
BFD_ASSERT (nextoff == bfd_tell (abfd));
/* Save nextoff in fhdr->symoff so the armap routine can use it. */
PRINT20 (fhdr->symoff, nextoff);
bfd_ardata (abfd)->tdata = &xtdata;
bool ret = _bfd_compute_and_write_armap (abfd, 0);
bfd_ardata (abfd)->tdata = NULL;
if (!ret)
return false;
}
/* Write out the archive file header. */
if (bfd_seek (abfd, 0, SEEK_SET) != 0
|| (bfd_write (fhdr, SIZEOF_AR_FILE_HDR_BIG, abfd)
!= SIZEOF_AR_FILE_HDR_BIG))
return false;
return true;
}
bool
_bfd_xcoff_write_archive_contents (bfd *abfd)
{
if (! xcoff_big_format_p (abfd))
return xcoff_write_archive_contents_old (abfd);
else
return xcoff_write_archive_contents_big (abfd);
}
/* We can't use the usual coff_sizeof_headers routine, because AIX
always uses an a.out header. */
int
_bfd_xcoff_sizeof_headers (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
int size;
size = FILHSZ;
if (xcoff_data (abfd)->full_aouthdr)
size += AOUTSZ;
else
size += SMALL_AOUTSZ;
size += abfd->section_count * SCNHSZ;
if (info->strip != strip_all)
{
/* There can be additional sections just for dealing with overflow in
reloc and lineno counts. But the numbers of relocs and lineno aren't
known when bfd_sizeof_headers is called, so we compute them by
summing the numbers from input sections. */
struct nbr_reloc_lineno
{
unsigned int reloc_count;
unsigned int lineno_count;
};
struct nbr_reloc_lineno *n_rl;
bfd *sub;
unsigned int max_index;
asection *s;
/* Although the number of sections is known, the maximum value of
section->index isn't (because some sections may have been removed).
Don't try to renumber sections, just compute the upper bound. */
max_index = 0;
for (s = abfd->sections; s != NULL; s = s->next)
if (s->index > max_index)
max_index = s->index;
/* Allocate the per section counters. It could be possible to use a
preallocated array as the number of sections is limited on XCOFF,
but this creates a maintainance issue. */
n_rl = bfd_zmalloc ((max_index + 1) * sizeof (*n_rl));
if (n_rl == NULL)
return -1;
/* Sum. */
for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
for (s = sub->sections; s != NULL; s = s->next)
if (s->output_section->owner == abfd
&& !bfd_section_removed_from_list (abfd, s->output_section))
{
struct nbr_reloc_lineno *e = &n_rl[s->output_section->index];
e->reloc_count += s->reloc_count;
e->lineno_count += s->lineno_count;
}
/* Add the size of a section for each section with an overflow. */
for (s = abfd->sections; s != NULL; s = s->next)
{
struct nbr_reloc_lineno *e = &n_rl[s->index];
if (e->reloc_count >= 0xffff
|| (e->lineno_count >= 0xffff && info->strip != strip_debugger))
size += SCNHSZ;
}
free (n_rl);
}
return size;
}
/* Routines to swap information in the XCOFF .loader section. If we
ever need to write an XCOFF loader, this stuff will need to be
moved to another file shared by the linker (which XCOFF calls the
``binder'') and the loader. */
/* Swap in the ldhdr structure. */
static void
xcoff_swap_ldhdr_in (bfd *abfd, const void * s, struct internal_ldhdr *dst)
{
const struct external_ldhdr *src = (const struct external_ldhdr *) s;
dst->l_version = bfd_get_32 (abfd, src->l_version);
dst->l_nsyms = bfd_get_32 (abfd, src->l_nsyms);
dst->l_nreloc = bfd_get_32 (abfd, src->l_nreloc);
dst->l_istlen = bfd_get_32 (abfd, src->l_istlen);
dst->l_nimpid = bfd_get_32 (abfd, src->l_nimpid);
dst->l_impoff = bfd_get_32 (abfd, src->l_impoff);
dst->l_stlen = bfd_get_32 (abfd, src->l_stlen);
dst->l_stoff = bfd_get_32 (abfd, src->l_stoff);
}
/* Swap out the ldhdr structure. */
static void
xcoff_swap_ldhdr_out (bfd *abfd, const struct internal_ldhdr *src, void * d)
{
struct external_ldhdr *dst = (struct external_ldhdr *) d;
bfd_put_32 (abfd, (bfd_vma) src->l_version, dst->l_version);
bfd_put_32 (abfd, src->l_nsyms, dst->l_nsyms);
bfd_put_32 (abfd, src->l_nreloc, dst->l_nreloc);
bfd_put_32 (abfd, src->l_istlen, dst->l_istlen);
bfd_put_32 (abfd, src->l_nimpid, dst->l_nimpid);
bfd_put_32 (abfd, src->l_impoff, dst->l_impoff);
bfd_put_32 (abfd, src->l_stlen, dst->l_stlen);
bfd_put_32 (abfd, src->l_stoff, dst->l_stoff);
}
/* Swap in the ldsym structure. */
static void
xcoff_swap_ldsym_in (bfd *abfd, const void * s, struct internal_ldsym *dst)
{
const struct external_ldsym *src = (const struct external_ldsym *) s;
if (bfd_get_32 (abfd, src->_l._l_l._l_zeroes) != 0) {
memcpy (dst->_l._l_name, src->_l._l_name, SYMNMLEN);
} else {
dst->_l._l_l._l_zeroes = 0;
dst->_l._l_l._l_offset = bfd_get_32 (abfd, src->_l._l_l._l_offset);
}
dst->l_value = bfd_get_32 (abfd, src->l_value);
dst->l_scnum = bfd_get_16 (abfd, src->l_scnum);
dst->l_smtype = bfd_get_8 (abfd, src->l_smtype);
dst->l_smclas = bfd_get_8 (abfd, src->l_smclas);
dst->l_ifile = bfd_get_32 (abfd, src->l_ifile);
dst->l_parm = bfd_get_32 (abfd, src->l_parm);
}
/* Swap out the ldsym structure. */
static void
xcoff_swap_ldsym_out (bfd *abfd, const struct internal_ldsym *src, void * d)
{
struct external_ldsym *dst = (struct external_ldsym *) d;
if (src->_l._l_l._l_zeroes != 0)
memcpy (dst->_l._l_name, src->_l._l_name, SYMNMLEN);
else
{
bfd_put_32 (abfd, (bfd_vma) 0, dst->_l._l_l._l_zeroes);
bfd_put_32 (abfd, (bfd_vma) src->_l._l_l._l_offset,
dst->_l._l_l._l_offset);
}
bfd_put_32 (abfd, src->l_value, dst->l_value);
bfd_put_16 (abfd, (bfd_vma) src->l_scnum, dst->l_scnum);
bfd_put_8 (abfd, src->l_smtype, dst->l_smtype);
bfd_put_8 (abfd, src->l_smclas, dst->l_smclas);
bfd_put_32 (abfd, src->l_ifile, dst->l_ifile);
bfd_put_32 (abfd, src->l_parm, dst->l_parm);
}
static void
xcoff_swap_reloc_in (bfd *abfd, void * s, void * d)
{
struct external_reloc *src = (struct external_reloc *) s;
struct internal_reloc *dst = (struct internal_reloc *) d;
memset (dst, 0, sizeof (struct internal_reloc));
dst->r_vaddr = bfd_get_32 (abfd, src->r_vaddr);
dst->r_symndx = bfd_get_32 (abfd, src->r_symndx);
dst->r_size = bfd_get_8 (abfd, src->r_size);
dst->r_type = bfd_get_8 (abfd, src->r_type);
}