| /* Renesas RX specific support for 32-bit ELF. |
| Copyright (C) 2008-2024 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf/rx.h" |
| #include "libiberty.h" |
| #include "elf32-rx.h" |
| |
| #define RX_OPCODE_BIG_ENDIAN 0 |
| |
| /* This is a meta-target that's used only with objcopy, to avoid the |
| endian-swap we would otherwise get. We check for this in |
| rx_elf_object_p(). */ |
| const bfd_target rx_elf32_be_ns_vec; |
| const bfd_target rx_elf32_be_vec; |
| |
| #ifdef DEBUG |
| char * rx_get_reloc (long); |
| void rx_dump_symtab (bfd *, void *, void *); |
| #endif |
| |
| #define RXREL(n,sz,bit,shift,complain,pcrel) \ |
| HOWTO (R_RX_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \ |
| bfd_elf_generic_reloc, "R_RX_" #n, false, 0, ~0, false) |
| |
| /* Note that the relocations around 0x7f are internal to this file; |
| feel free to move them as needed to avoid conflicts with published |
| relocation numbers. */ |
| |
| static reloc_howto_type rx_elf_howto_table [] = |
| { |
| RXREL (NONE, 0, 0, 0, dont, false), |
| RXREL (DIR32, 4, 32, 0, signed, false), |
| RXREL (DIR24S, 4, 24, 0, signed, false), |
| RXREL (DIR16, 2, 16, 0, dont, false), |
| RXREL (DIR16U, 2, 16, 0, unsigned, false), |
| RXREL (DIR16S, 2, 16, 0, signed, false), |
| RXREL (DIR8, 1, 8, 0, dont, false), |
| RXREL (DIR8U, 1, 8, 0, unsigned, false), |
| RXREL (DIR8S, 1, 8, 0, signed, false), |
| RXREL (DIR24S_PCREL, 4, 24, 0, signed, true), |
| RXREL (DIR16S_PCREL, 2, 16, 0, signed, true), |
| RXREL (DIR8S_PCREL, 1, 8, 0, signed, true), |
| RXREL (DIR16UL, 2, 16, 2, unsigned, false), |
| RXREL (DIR16UW, 2, 16, 1, unsigned, false), |
| RXREL (DIR8UL, 1, 8, 2, unsigned, false), |
| RXREL (DIR8UW, 1, 8, 1, unsigned, false), |
| RXREL (DIR32_REV, 2, 16, 0, dont, false), |
| RXREL (DIR16_REV, 2, 16, 0, dont, false), |
| RXREL (DIR3U_PCREL, 1, 3, 0, dont, true), |
| |
| EMPTY_HOWTO (0x13), |
| EMPTY_HOWTO (0x14), |
| EMPTY_HOWTO (0x15), |
| EMPTY_HOWTO (0x16), |
| EMPTY_HOWTO (0x17), |
| EMPTY_HOWTO (0x18), |
| EMPTY_HOWTO (0x19), |
| EMPTY_HOWTO (0x1a), |
| EMPTY_HOWTO (0x1b), |
| EMPTY_HOWTO (0x1c), |
| EMPTY_HOWTO (0x1d), |
| EMPTY_HOWTO (0x1e), |
| EMPTY_HOWTO (0x1f), |
| |
| RXREL (RH_3_PCREL, 1, 3, 0, signed, true), |
| RXREL (RH_16_OP, 2, 16, 0, signed, false), |
| RXREL (RH_24_OP, 4, 24, 0, signed, false), |
| RXREL (RH_32_OP, 4, 32, 0, signed, false), |
| RXREL (RH_24_UNS, 4, 24, 0, unsigned, false), |
| RXREL (RH_8_NEG, 1, 8, 0, signed, false), |
| RXREL (RH_16_NEG, 2, 16, 0, signed, false), |
| RXREL (RH_24_NEG, 4, 24, 0, signed, false), |
| RXREL (RH_32_NEG, 4, 32, 0, signed, false), |
| RXREL (RH_DIFF, 4, 32, 0, signed, false), |
| RXREL (RH_GPRELB, 2, 16, 0, unsigned, false), |
| RXREL (RH_GPRELW, 2, 16, 0, unsigned, false), |
| RXREL (RH_GPRELL, 2, 16, 0, unsigned, false), |
| RXREL (RH_RELAX, 0, 0, 0, dont, false), |
| |
| EMPTY_HOWTO (0x2e), |
| EMPTY_HOWTO (0x2f), |
| EMPTY_HOWTO (0x30), |
| EMPTY_HOWTO (0x31), |
| EMPTY_HOWTO (0x32), |
| EMPTY_HOWTO (0x33), |
| EMPTY_HOWTO (0x34), |
| EMPTY_HOWTO (0x35), |
| EMPTY_HOWTO (0x36), |
| EMPTY_HOWTO (0x37), |
| EMPTY_HOWTO (0x38), |
| EMPTY_HOWTO (0x39), |
| EMPTY_HOWTO (0x3a), |
| EMPTY_HOWTO (0x3b), |
| EMPTY_HOWTO (0x3c), |
| EMPTY_HOWTO (0x3d), |
| EMPTY_HOWTO (0x3e), |
| EMPTY_HOWTO (0x3f), |
| EMPTY_HOWTO (0x40), |
| |
| RXREL (ABS32, 4, 32, 0, dont, false), |
| RXREL (ABS24S, 4, 24, 0, signed, false), |
| RXREL (ABS16, 2, 16, 0, dont, false), |
| RXREL (ABS16U, 2, 16, 0, unsigned, false), |
| RXREL (ABS16S, 2, 16, 0, signed, false), |
| RXREL (ABS8, 1, 8, 0, dont, false), |
| RXREL (ABS8U, 1, 8, 0, unsigned, false), |
| RXREL (ABS8S, 1, 8, 0, signed, false), |
| RXREL (ABS24S_PCREL, 4, 24, 0, signed, true), |
| RXREL (ABS16S_PCREL, 2, 16, 0, signed, true), |
| RXREL (ABS8S_PCREL, 1, 8, 0, signed, true), |
| RXREL (ABS16UL, 2, 16, 0, unsigned, false), |
| RXREL (ABS16UW, 2, 16, 0, unsigned, false), |
| RXREL (ABS8UL, 1, 8, 0, unsigned, false), |
| RXREL (ABS8UW, 1, 8, 0, unsigned, false), |
| RXREL (ABS32_REV, 4, 32, 0, dont, false), |
| RXREL (ABS16_REV, 2, 16, 0, dont, false), |
| |
| #define STACK_REL_P(x) ((x) <= R_RX_ABS16_REV && (x) >= R_RX_ABS32) |
| |
| EMPTY_HOWTO (0x52), |
| EMPTY_HOWTO (0x53), |
| EMPTY_HOWTO (0x54), |
| EMPTY_HOWTO (0x55), |
| EMPTY_HOWTO (0x56), |
| EMPTY_HOWTO (0x57), |
| EMPTY_HOWTO (0x58), |
| EMPTY_HOWTO (0x59), |
| EMPTY_HOWTO (0x5a), |
| EMPTY_HOWTO (0x5b), |
| EMPTY_HOWTO (0x5c), |
| EMPTY_HOWTO (0x5d), |
| EMPTY_HOWTO (0x5e), |
| EMPTY_HOWTO (0x5f), |
| EMPTY_HOWTO (0x60), |
| EMPTY_HOWTO (0x61), |
| EMPTY_HOWTO (0x62), |
| EMPTY_HOWTO (0x63), |
| EMPTY_HOWTO (0x64), |
| EMPTY_HOWTO (0x65), |
| EMPTY_HOWTO (0x66), |
| EMPTY_HOWTO (0x67), |
| EMPTY_HOWTO (0x68), |
| EMPTY_HOWTO (0x69), |
| EMPTY_HOWTO (0x6a), |
| EMPTY_HOWTO (0x6b), |
| EMPTY_HOWTO (0x6c), |
| EMPTY_HOWTO (0x6d), |
| EMPTY_HOWTO (0x6e), |
| EMPTY_HOWTO (0x6f), |
| EMPTY_HOWTO (0x70), |
| EMPTY_HOWTO (0x71), |
| EMPTY_HOWTO (0x72), |
| EMPTY_HOWTO (0x73), |
| EMPTY_HOWTO (0x74), |
| EMPTY_HOWTO (0x75), |
| EMPTY_HOWTO (0x76), |
| EMPTY_HOWTO (0x77), |
| |
| /* These are internal. */ |
| /* A 5-bit unsigned displacement to a B/W/L address, at bit position 8/12. */ |
| /* ---- ---- 4--- 3210. */ |
| #define R_RX_RH_ABS5p8B 0x78 |
| RXREL (RH_ABS5p8B, 0, 0, 0, dont, false), |
| #define R_RX_RH_ABS5p8W 0x79 |
| RXREL (RH_ABS5p8W, 0, 0, 0, dont, false), |
| #define R_RX_RH_ABS5p8L 0x7a |
| RXREL (RH_ABS5p8L, 0, 0, 0, dont, false), |
| /* A 5-bit unsigned displacement to a B/W/L address, at bit position 5/12. */ |
| /* ---- -432 1--- 0---. */ |
| #define R_RX_RH_ABS5p5B 0x7b |
| RXREL (RH_ABS5p5B, 0, 0, 0, dont, false), |
| #define R_RX_RH_ABS5p5W 0x7c |
| RXREL (RH_ABS5p5W, 0, 0, 0, dont, false), |
| #define R_RX_RH_ABS5p5L 0x7d |
| RXREL (RH_ABS5p5L, 0, 0, 0, dont, false), |
| /* A 4-bit unsigned immediate at bit position 8. */ |
| #define R_RX_RH_UIMM4p8 0x7e |
| RXREL (RH_UIMM4p8, 0, 0, 0, dont, false), |
| /* A 4-bit negative unsigned immediate at bit position 8. */ |
| #define R_RX_RH_UNEG4p8 0x7f |
| RXREL (RH_UNEG4p8, 0, 0, 0, dont, false), |
| /* End of internal relocs. */ |
| |
| RXREL (SYM, 4, 32, 0, dont, false), |
| RXREL (OPneg, 4, 32, 0, dont, false), |
| RXREL (OPadd, 4, 32, 0, dont, false), |
| RXREL (OPsub, 4, 32, 0, dont, false), |
| RXREL (OPmul, 4, 32, 0, dont, false), |
| RXREL (OPdiv, 4, 32, 0, dont, false), |
| RXREL (OPshla, 4, 32, 0, dont, false), |
| RXREL (OPshra, 4, 32, 0, dont, false), |
| RXREL (OPsctsize, 4, 32, 0, dont, false), |
| |
| EMPTY_HOWTO (0x89), |
| EMPTY_HOWTO (0x8a), |
| EMPTY_HOWTO (0x8b), |
| EMPTY_HOWTO (0x8c), |
| |
| RXREL (OPscttop, 4, 32, 0, dont, false), |
| |
| EMPTY_HOWTO (0x8e), |
| EMPTY_HOWTO (0x8f), |
| |
| RXREL (OPand, 4, 32, 0, dont, false), |
| RXREL (OPor, 4, 32, 0, dont, false), |
| RXREL (OPxor, 4, 32, 0, dont, false), |
| RXREL (OPnot, 4, 32, 0, dont, false), |
| RXREL (OPmod, 4, 32, 0, dont, false), |
| RXREL (OPromtop, 4, 32, 0, dont, false), |
| RXREL (OPramtop, 4, 32, 0, dont, false) |
| }; |
| |
| /* Map BFD reloc types to RX ELF reloc types. */ |
| |
| struct rx_reloc_map |
| { |
| bfd_reloc_code_real_type bfd_reloc_val; |
| unsigned int rx_reloc_val; |
| }; |
| |
| static const struct rx_reloc_map rx_reloc_map [] = |
| { |
| { BFD_RELOC_NONE, R_RX_NONE }, |
| { BFD_RELOC_8, R_RX_DIR8S }, |
| { BFD_RELOC_16, R_RX_DIR16S }, |
| { BFD_RELOC_24, R_RX_DIR24S }, |
| { BFD_RELOC_32, R_RX_DIR32 }, |
| { BFD_RELOC_RX_16_OP, R_RX_DIR16 }, |
| { BFD_RELOC_RX_DIR3U_PCREL, R_RX_DIR3U_PCREL }, |
| { BFD_RELOC_8_PCREL, R_RX_DIR8S_PCREL }, |
| { BFD_RELOC_16_PCREL, R_RX_DIR16S_PCREL }, |
| { BFD_RELOC_24_PCREL, R_RX_DIR24S_PCREL }, |
| { BFD_RELOC_RX_8U, R_RX_DIR8U }, |
| { BFD_RELOC_RX_16U, R_RX_DIR16U }, |
| { BFD_RELOC_RX_24U, R_RX_RH_24_UNS }, |
| { BFD_RELOC_RX_NEG8, R_RX_RH_8_NEG }, |
| { BFD_RELOC_RX_NEG16, R_RX_RH_16_NEG }, |
| { BFD_RELOC_RX_NEG24, R_RX_RH_24_NEG }, |
| { BFD_RELOC_RX_NEG32, R_RX_RH_32_NEG }, |
| { BFD_RELOC_RX_DIFF, R_RX_RH_DIFF }, |
| { BFD_RELOC_RX_GPRELB, R_RX_RH_GPRELB }, |
| { BFD_RELOC_RX_GPRELW, R_RX_RH_GPRELW }, |
| { BFD_RELOC_RX_GPRELL, R_RX_RH_GPRELL }, |
| { BFD_RELOC_RX_RELAX, R_RX_RH_RELAX }, |
| { BFD_RELOC_RX_SYM, R_RX_SYM }, |
| { BFD_RELOC_RX_OP_SUBTRACT, R_RX_OPsub }, |
| { BFD_RELOC_RX_OP_NEG, R_RX_OPneg }, |
| { BFD_RELOC_RX_ABS8, R_RX_ABS8 }, |
| { BFD_RELOC_RX_ABS16, R_RX_ABS16 }, |
| { BFD_RELOC_RX_ABS16_REV, R_RX_ABS16_REV }, |
| { BFD_RELOC_RX_ABS32, R_RX_ABS32 }, |
| { BFD_RELOC_RX_ABS32_REV, R_RX_ABS32_REV }, |
| { BFD_RELOC_RX_ABS16UL, R_RX_ABS16UL }, |
| { BFD_RELOC_RX_ABS16UW, R_RX_ABS16UW }, |
| { BFD_RELOC_RX_ABS16U, R_RX_ABS16U } |
| }; |
| |
| #define BIGE(abfd) ((abfd)->xvec->byteorder == BFD_ENDIAN_BIG) |
| |
| static reloc_howto_type * |
| rx_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| unsigned int i; |
| |
| if (code == BFD_RELOC_RX_32_OP) |
| return rx_elf_howto_table + R_RX_DIR32; |
| |
| for (i = ARRAY_SIZE (rx_reloc_map); i--;) |
| if (rx_reloc_map [i].bfd_reloc_val == code) |
| return rx_elf_howto_table + rx_reloc_map[i].rx_reloc_val; |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| rx_reloc_name_lookup (bfd * abfd ATTRIBUTE_UNUSED, const char * r_name) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE (rx_elf_howto_table); i++) |
| if (rx_elf_howto_table[i].name != NULL |
| && strcasecmp (rx_elf_howto_table[i].name, r_name) == 0) |
| return rx_elf_howto_table + i; |
| |
| return NULL; |
| } |
| |
| /* Set the howto pointer for an RX ELF reloc. */ |
| |
| static bool |
| rx_info_to_howto_rela (bfd * abfd, |
| arelent * cache_ptr, |
| Elf_Internal_Rela * dst) |
| { |
| unsigned int r_type; |
| |
| r_type = ELF32_R_TYPE (dst->r_info); |
| BFD_ASSERT (R_RX_max == ARRAY_SIZE (rx_elf_howto_table)); |
| if (r_type >= ARRAY_SIZE (rx_elf_howto_table)) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| abfd, r_type); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| cache_ptr->howto = rx_elf_howto_table + r_type; |
| if (cache_ptr->howto->name == NULL) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| abfd, r_type); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| return true; |
| } |
| |
| static bfd_vma |
| get_symbol_value (const char * name, |
| struct bfd_link_info * info, |
| bfd * input_bfd, |
| asection * input_section, |
| int offset) |
| { |
| bfd_vma value = 0; |
| struct bfd_link_hash_entry * h; |
| |
| h = bfd_link_hash_lookup (info->hash, name, false, false, true); |
| |
| if (h == NULL |
| || (h->type != bfd_link_hash_defined |
| && h->type != bfd_link_hash_defweak)) |
| (*info->callbacks->undefined_symbol) |
| (info, name, input_bfd, input_section, offset, true); |
| else |
| value = (h->u.def.value |
| + h->u.def.section->output_section->vma |
| + h->u.def.section->output_offset); |
| |
| return value; |
| } |
| |
| static bfd_vma |
| get_symbol_value_maybe (const char * name, |
| struct bfd_link_info * info) |
| { |
| bfd_vma value = 0; |
| struct bfd_link_hash_entry * h; |
| |
| h = bfd_link_hash_lookup (info->hash, name, false, false, true); |
| |
| if (h == NULL |
| || (h->type != bfd_link_hash_defined |
| && h->type != bfd_link_hash_defweak)) |
| return 0; |
| else |
| value = (h->u.def.value |
| + h->u.def.section->output_section->vma |
| + h->u.def.section->output_offset); |
| |
| return value; |
| } |
| |
| static bfd_vma |
| get_gp (struct bfd_link_info * info, |
| bfd * abfd, |
| asection * sec, |
| int offset) |
| { |
| static bool cached = false; |
| static bfd_vma cached_value = 0; |
| |
| if (!cached) |
| { |
| cached_value = get_symbol_value ("__gp", info, abfd, sec, offset); |
| cached = true; |
| } |
| return cached_value; |
| } |
| |
| static bfd_vma |
| get_romstart (struct bfd_link_info * info, |
| bfd * abfd, |
| asection * sec, |
| int offset) |
| { |
| static bool cached = false; |
| static bfd_vma cached_value = 0; |
| |
| if (!cached) |
| { |
| cached_value = get_symbol_value ("_start", info, abfd, sec, offset); |
| cached = true; |
| } |
| return cached_value; |
| } |
| |
| static bfd_vma |
| get_ramstart (struct bfd_link_info * info, |
| bfd * abfd, |
| asection * sec, |
| int offset) |
| { |
| static bool cached = false; |
| static bfd_vma cached_value = 0; |
| |
| if (!cached) |
| { |
| cached_value = get_symbol_value ("__datastart", info, abfd, sec, offset); |
| cached = true; |
| } |
| return cached_value; |
| } |
| |
| #define NUM_STACK_ENTRIES 16 |
| static int32_t rx_stack [ NUM_STACK_ENTRIES ]; |
| static unsigned int rx_stack_top; |
| |
| #define RX_STACK_PUSH(val) \ |
| do \ |
| { \ |
| if (rx_stack_top < NUM_STACK_ENTRIES) \ |
| rx_stack [rx_stack_top ++] = (val); \ |
| else \ |
| r = bfd_reloc_dangerous; \ |
| } \ |
| while (0) |
| |
| #define RX_STACK_POP(dest) \ |
| do \ |
| { \ |
| if (rx_stack_top > 0) \ |
| (dest) = rx_stack [-- rx_stack_top]; \ |
| else \ |
| (dest) = 0, r = bfd_reloc_dangerous; \ |
| } \ |
| while (0) |
| |
| /* Relocate an RX ELF section. |
| There is some attempt to make this function usable for many architectures, |
| both USE_REL and USE_RELA ['twould be nice if such a critter existed], |
| if only to serve as a learning tool. |
| |
| The RELOCATE_SECTION function is called by the new ELF backend linker |
| to handle the relocations for a section. |
| |
| The relocs are always passed as Rela structures; if the section |
| actually uses Rel structures, the r_addend field will always be |
| zero. |
| |
| This function is responsible for adjusting the section contents as |
| necessary, and (if using Rela relocs and generating a relocatable |
| output file) adjusting the reloc addend as necessary. |
| |
| This function does not have to worry about setting the reloc |
| address or the reloc symbol index. |
| |
| LOCAL_SYMS is a pointer to the swapped in local symbols. |
| |
| LOCAL_SECTIONS is an array giving the section in the input file |
| corresponding to the st_shndx field of each local symbol. |
| |
| The global hash table entry for the global symbols can be found |
| via elf_sym_hashes (input_bfd). |
| |
| When generating relocatable output, this function must handle |
| STB_LOCAL/STT_SECTION symbols specially. The output symbol is |
| going to be the section symbol corresponding to the output |
| section, which means that the addend must be adjusted |
| accordingly. */ |
| |
| static int |
| rx_elf_relocate_section |
| (bfd * output_bfd, |
| struct bfd_link_info * info, |
| bfd * input_bfd, |
| asection * input_section, |
| bfd_byte * contents, |
| Elf_Internal_Rela * relocs, |
| Elf_Internal_Sym * local_syms, |
| asection ** local_sections) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *relend; |
| bool pid_mode; |
| bool saw_subtract = false; |
| const char *table_default_cache = NULL; |
| bfd_vma table_start_cache = 0; |
| bfd_vma table_end_cache = 0; |
| |
| if (elf_elfheader (output_bfd)->e_flags & E_FLAG_RX_PID) |
| pid_mode = true; |
| else |
| pid_mode = false; |
| |
| symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (input_bfd); |
| relend = relocs + input_section->reloc_count; |
| for (rel = relocs; rel < relend; rel ++) |
| { |
| reloc_howto_type *howto; |
| unsigned long r_symndx; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| struct elf_link_hash_entry *h; |
| bfd_vma relocation; |
| bfd_reloc_status_type r; |
| const char * name = NULL; |
| bool unresolved_reloc = true; |
| int r_type; |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| |
| howto = rx_elf_howto_table + ELF32_R_TYPE (rel->r_info); |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| relocation = 0; |
| |
| if (rx_stack_top == 0) |
| saw_subtract = false; |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections [r_symndx]; |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, & sec, rel); |
| |
| name = bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, sym->st_name); |
| name = sym->st_name == 0 ? bfd_section_name (sec) : name; |
| } |
| else |
| { |
| bool warned, ignored; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, h, |
| sec, relocation, unresolved_reloc, |
| warned, ignored); |
| |
| name = h->root.root.string; |
| } |
| |
| if (startswith (name, "$tableentry$default$")) |
| { |
| bfd_vma entry_vma; |
| int idx; |
| char *buf; |
| |
| if (table_default_cache != name) |
| { |
| |
| /* All relocs for a given table should be to the same |
| (weak) default symbol) so we can use it to detect a |
| cache miss. We use the offset into the table to find |
| the "real" symbol. Calculate and store the table's |
| offset here. */ |
| |
| table_default_cache = name; |
| |
| /* We have already done error checking in rx_table_find(). */ |
| |
| buf = (char *) bfd_malloc (13 + strlen (name + 20)); |
| if (buf == NULL) |
| return false; |
| |
| sprintf (buf, "$tablestart$%s", name + 20); |
| table_start_cache = get_symbol_value (buf, |
| info, |
| input_bfd, |
| input_section, |
| rel->r_offset); |
| |
| sprintf (buf, "$tableend$%s", name + 20); |
| table_end_cache = get_symbol_value (buf, |
| info, |
| input_bfd, |
| input_section, |
| rel->r_offset); |
| |
| free (buf); |
| } |
| |
| entry_vma = (input_section->output_section->vma |
| + input_section->output_offset |
| + rel->r_offset); |
| |
| if (table_end_cache <= entry_vma || entry_vma < table_start_cache) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB:%pA: table entry %s outside table"), |
| input_bfd, input_section, |
| name); |
| } |
| else if ((int) (entry_vma - table_start_cache) % 4) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB:%pA: table entry %s not word-aligned within table"), |
| input_bfd, input_section, |
| name); |
| } |
| else |
| { |
| idx = (int) (entry_vma - table_start_cache) / 4; |
| |
| /* This will look like $tableentry$<N>$<name> */ |
| buf = (char *) bfd_malloc (12 + 20 + strlen (name + 20)); |
| if (buf == NULL) |
| return false; |
| |
| sprintf (buf, "$tableentry$%d$%s", idx, name + 20); |
| |
| h = (struct elf_link_hash_entry *) bfd_link_hash_lookup (info->hash, buf, false, false, true); |
| |
| if (h) |
| { |
| relocation = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset);; |
| } |
| |
| free (buf); |
| } |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| { |
| /* This is a relocatable link. We don't have to change |
| anything, unless the reloc is against a section symbol, |
| in which case we have to adjust according to where the |
| section symbol winds up in the output section. */ |
| if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
| rel->r_addend += sec->output_offset; |
| continue; |
| } |
| |
| if (h != NULL && h->root.type == bfd_link_hash_undefweak) |
| /* If the symbol is undefined and weak |
| then the relocation resolves to zero. */ |
| relocation = 0; |
| else |
| { |
| if (howto->pc_relative) |
| { |
| relocation -= (input_section->output_section->vma |
| + input_section->output_offset |
| + rel->r_offset); |
| if (r_type != R_RX_RH_3_PCREL |
| && r_type != R_RX_DIR3U_PCREL) |
| relocation ++; |
| } |
| |
| relocation += rel->r_addend; |
| } |
| |
| r = bfd_reloc_ok; |
| |
| #define RANGE(a,b) \ |
| if (a > (long) relocation || (long) relocation > b) \ |
| r = bfd_reloc_overflow |
| #define ALIGN(m) \ |
| if (relocation & m) \ |
| r = bfd_reloc_other |
| #define OP(i) \ |
| (contents[rel->r_offset + (i)]) |
| #define WARN_REDHAT(type) \ |
| /* xgettext:c-format */ \ |
| _bfd_error_handler \ |
| (_("%pB:%pA: warning: deprecated Red Hat reloc " \ |
| "%s detected against: %s"), \ |
| input_bfd, input_section, #type, name) |
| |
| /* Check for unsafe relocs in PID mode. These are any relocs where |
| an absolute address is being computed. There are special cases |
| for relocs against symbols that are known to be referenced in |
| crt0.o before the PID base address register has been initialised. */ |
| #define UNSAFE_FOR_PID \ |
| do \ |
| { \ |
| if (pid_mode \ |
| && sec != NULL \ |
| && sec->flags & SEC_READONLY \ |
| && !(input_section->flags & SEC_DEBUGGING) \ |
| && strcmp (name, "__pid_base") != 0 \ |
| && strcmp (name, "__gp") != 0 \ |
| && strcmp (name, "__romdatastart") != 0 \ |
| && !saw_subtract) \ |
| /* xgettext:c-format */ \ |
| _bfd_error_handler (_("%pB(%pA): unsafe PID relocation %s " \ |
| "at %#" PRIx64 " (against %s in %s)"), \ |
| input_bfd, input_section, howto->name, \ |
| (uint64_t) (input_section->output_section->vma \ |
| + input_section->output_offset \ |
| + rel->r_offset), \ |
| name, sec->name); \ |
| } \ |
| while (0) |
| |
| /* Opcode relocs are always big endian. Data relocs are bi-endian. */ |
| switch (r_type) |
| { |
| case R_RX_NONE: |
| break; |
| |
| case R_RX_RH_RELAX: |
| break; |
| |
| case R_RX_RH_3_PCREL: |
| WARN_REDHAT ("RX_RH_3_PCREL"); |
| RANGE (3, 10); |
| OP (0) &= 0xf8; |
| OP (0) |= relocation & 0x07; |
| break; |
| |
| case R_RX_RH_8_NEG: |
| WARN_REDHAT ("RX_RH_8_NEG"); |
| relocation = - relocation; |
| /* Fall through. */ |
| case R_RX_DIR8S_PCREL: |
| UNSAFE_FOR_PID; |
| RANGE (-128, 127); |
| OP (0) = relocation; |
| break; |
| |
| case R_RX_DIR8S: |
| UNSAFE_FOR_PID; |
| RANGE (-128, 255); |
| OP (0) = relocation; |
| break; |
| |
| case R_RX_DIR8U: |
| UNSAFE_FOR_PID; |
| RANGE (0, 255); |
| OP (0) = relocation; |
| break; |
| |
| case R_RX_RH_16_NEG: |
| WARN_REDHAT ("RX_RH_16_NEG"); |
| relocation = - relocation; |
| /* Fall through. */ |
| case R_RX_DIR16S_PCREL: |
| UNSAFE_FOR_PID; |
| RANGE (-32768, 32767); |
| #if RX_OPCODE_BIG_ENDIAN |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_RH_16_OP: |
| WARN_REDHAT ("RX_RH_16_OP"); |
| UNSAFE_FOR_PID; |
| RANGE (-32768, 32767); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_DIR16S: |
| UNSAFE_FOR_PID; |
| RANGE (-32768, 65535); |
| if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) |
| { |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| } |
| else |
| { |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| } |
| break; |
| |
| case R_RX_DIR16U: |
| UNSAFE_FOR_PID; |
| RANGE (0, 65536); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_DIR16: |
| UNSAFE_FOR_PID; |
| RANGE (-32768, 65536); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_DIR16_REV: |
| UNSAFE_FOR_PID; |
| RANGE (-32768, 65536); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #else |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_DIR3U_PCREL: |
| RANGE (3, 10); |
| OP (0) &= 0xf8; |
| OP (0) |= relocation & 0x07; |
| break; |
| |
| case R_RX_RH_24_NEG: |
| UNSAFE_FOR_PID; |
| WARN_REDHAT ("RX_RH_24_NEG"); |
| relocation = - relocation; |
| /* Fall through. */ |
| case R_RX_DIR24S_PCREL: |
| RANGE (-0x800000, 0x7fffff); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (2) = relocation; |
| OP (1) = relocation >> 8; |
| OP (0) = relocation >> 16; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| #endif |
| break; |
| |
| case R_RX_RH_24_OP: |
| UNSAFE_FOR_PID; |
| WARN_REDHAT ("RX_RH_24_OP"); |
| RANGE (-0x800000, 0x7fffff); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (2) = relocation; |
| OP (1) = relocation >> 8; |
| OP (0) = relocation >> 16; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| #endif |
| break; |
| |
| case R_RX_DIR24S: |
| UNSAFE_FOR_PID; |
| RANGE (-0x800000, 0x7fffff); |
| if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) |
| { |
| OP (2) = relocation; |
| OP (1) = relocation >> 8; |
| OP (0) = relocation >> 16; |
| } |
| else |
| { |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| } |
| break; |
| |
| case R_RX_RH_24_UNS: |
| UNSAFE_FOR_PID; |
| WARN_REDHAT ("RX_RH_24_UNS"); |
| RANGE (0, 0xffffff); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (2) = relocation; |
| OP (1) = relocation >> 8; |
| OP (0) = relocation >> 16; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| #endif |
| break; |
| |
| case R_RX_RH_32_NEG: |
| UNSAFE_FOR_PID; |
| WARN_REDHAT ("RX_RH_32_NEG"); |
| relocation = - relocation; |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (3) = relocation; |
| OP (2) = relocation >> 8; |
| OP (1) = relocation >> 16; |
| OP (0) = relocation >> 24; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| OP (3) = relocation >> 24; |
| #endif |
| break; |
| |
| case R_RX_RH_32_OP: |
| UNSAFE_FOR_PID; |
| WARN_REDHAT ("RX_RH_32_OP"); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (3) = relocation; |
| OP (2) = relocation >> 8; |
| OP (1) = relocation >> 16; |
| OP (0) = relocation >> 24; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| OP (3) = relocation >> 24; |
| #endif |
| break; |
| |
| case R_RX_DIR32: |
| if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) |
| { |
| OP (3) = relocation; |
| OP (2) = relocation >> 8; |
| OP (1) = relocation >> 16; |
| OP (0) = relocation >> 24; |
| } |
| else |
| { |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| OP (3) = relocation >> 24; |
| } |
| break; |
| |
| case R_RX_DIR32_REV: |
| if (BIGE (output_bfd)) |
| { |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| OP (3) = relocation >> 24; |
| } |
| else |
| { |
| OP (3) = relocation; |
| OP (2) = relocation >> 8; |
| OP (1) = relocation >> 16; |
| OP (0) = relocation >> 24; |
| } |
| break; |
| |
| case R_RX_RH_DIFF: |
| { |
| bfd_vma val; |
| WARN_REDHAT ("RX_RH_DIFF"); |
| val = bfd_get_32 (output_bfd, & OP (0)); |
| val -= relocation; |
| bfd_put_32 (output_bfd, val, & OP (0)); |
| } |
| break; |
| |
| case R_RX_RH_GPRELB: |
| WARN_REDHAT ("RX_RH_GPRELB"); |
| relocation -= get_gp (info, input_bfd, input_section, rel->r_offset); |
| RANGE (0, 65535); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_RH_GPRELW: |
| WARN_REDHAT ("RX_RH_GPRELW"); |
| relocation -= get_gp (info, input_bfd, input_section, rel->r_offset); |
| ALIGN (1); |
| relocation >>= 1; |
| RANGE (0, 65535); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_RH_GPRELL: |
| WARN_REDHAT ("RX_RH_GPRELL"); |
| relocation -= get_gp (info, input_bfd, input_section, rel->r_offset); |
| ALIGN (3); |
| relocation >>= 2; |
| RANGE (0, 65535); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| /* Internal relocations just for relaxation: */ |
| case R_RX_RH_ABS5p5B: |
| RX_STACK_POP (relocation); |
| RANGE (0, 31); |
| OP (0) &= 0xf8; |
| OP (0) |= relocation >> 2; |
| OP (1) &= 0x77; |
| OP (1) |= (relocation << 6) & 0x80; |
| OP (1) |= (relocation << 3) & 0x08; |
| break; |
| |
| case R_RX_RH_ABS5p5W: |
| RX_STACK_POP (relocation); |
| RANGE (0, 62); |
| ALIGN (1); |
| relocation >>= 1; |
| OP (0) &= 0xf8; |
| OP (0) |= relocation >> 2; |
| OP (1) &= 0x77; |
| OP (1) |= (relocation << 6) & 0x80; |
| OP (1) |= (relocation << 3) & 0x08; |
| break; |
| |
| case R_RX_RH_ABS5p5L: |
| RX_STACK_POP (relocation); |
| RANGE (0, 124); |
| ALIGN (3); |
| relocation >>= 2; |
| OP (0) &= 0xf8; |
| OP (0) |= relocation >> 2; |
| OP (1) &= 0x77; |
| OP (1) |= (relocation << 6) & 0x80; |
| OP (1) |= (relocation << 3) & 0x08; |
| break; |
| |
| case R_RX_RH_ABS5p8B: |
| RX_STACK_POP (relocation); |
| RANGE (0, 31); |
| OP (0) &= 0x70; |
| OP (0) |= (relocation << 3) & 0x80; |
| OP (0) |= relocation & 0x0f; |
| break; |
| |
| case R_RX_RH_ABS5p8W: |
| RX_STACK_POP (relocation); |
| RANGE (0, 62); |
| ALIGN (1); |
| relocation >>= 1; |
| OP (0) &= 0x70; |
| OP (0) |= (relocation << 3) & 0x80; |
| OP (0) |= relocation & 0x0f; |
| break; |
| |
| case R_RX_RH_ABS5p8L: |
| RX_STACK_POP (relocation); |
| RANGE (0, 124); |
| ALIGN (3); |
| relocation >>= 2; |
| OP (0) &= 0x70; |
| OP (0) |= (relocation << 3) & 0x80; |
| OP (0) |= relocation & 0x0f; |
| break; |
| |
| case R_RX_RH_UIMM4p8: |
| RANGE (0, 15); |
| OP (0) &= 0x0f; |
| OP (0) |= relocation << 4; |
| break; |
| |
| case R_RX_RH_UNEG4p8: |
| RANGE (-15, 0); |
| OP (0) &= 0x0f; |
| OP (0) |= (-relocation) << 4; |
| break; |
| |
| /* Complex reloc handling: */ |
| |
| case R_RX_ABS32: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (3) = relocation; |
| OP (2) = relocation >> 8; |
| OP (1) = relocation >> 16; |
| OP (0) = relocation >> 24; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| OP (3) = relocation >> 24; |
| #endif |
| break; |
| |
| case R_RX_ABS32_REV: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| OP (3) = relocation >> 24; |
| #else |
| OP (3) = relocation; |
| OP (2) = relocation >> 8; |
| OP (1) = relocation >> 16; |
| OP (0) = relocation >> 24; |
| #endif |
| break; |
| |
| case R_RX_ABS24S_PCREL: |
| case R_RX_ABS24S: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| RANGE (-0x800000, 0x7fffff); |
| if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) |
| { |
| OP (2) = relocation; |
| OP (1) = relocation >> 8; |
| OP (0) = relocation >> 16; |
| } |
| else |
| { |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| OP (2) = relocation >> 16; |
| } |
| break; |
| |
| case R_RX_ABS16: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| RANGE (-32768, 65535); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_ABS16_REV: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| RANGE (-32768, 65535); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #else |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_ABS16S_PCREL: |
| case R_RX_ABS16S: |
| RX_STACK_POP (relocation); |
| RANGE (-32768, 32767); |
| if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) |
| { |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| } |
| else |
| { |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| } |
| break; |
| |
| case R_RX_ABS16U: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| RANGE (0, 65536); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_ABS16UL: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| relocation >>= 2; |
| RANGE (0, 65536); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_ABS16UW: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| relocation >>= 1; |
| RANGE (0, 65536); |
| #if RX_OPCODE_BIG_ENDIAN |
| OP (1) = relocation; |
| OP (0) = relocation >> 8; |
| #else |
| OP (0) = relocation; |
| OP (1) = relocation >> 8; |
| #endif |
| break; |
| |
| case R_RX_ABS8: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| RANGE (-128, 255); |
| OP (0) = relocation; |
| break; |
| |
| case R_RX_ABS8U: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| RANGE (0, 255); |
| OP (0) = relocation; |
| break; |
| |
| case R_RX_ABS8UL: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| relocation >>= 2; |
| RANGE (0, 255); |
| OP (0) = relocation; |
| break; |
| |
| case R_RX_ABS8UW: |
| UNSAFE_FOR_PID; |
| RX_STACK_POP (relocation); |
| relocation >>= 1; |
| RANGE (0, 255); |
| OP (0) = relocation; |
| break; |
| |
| case R_RX_ABS8S: |
| UNSAFE_FOR_PID; |
| /* Fall through. */ |
| case R_RX_ABS8S_PCREL: |
| RX_STACK_POP (relocation); |
| RANGE (-128, 127); |
| OP (0) = relocation; |
| break; |
| |
| case R_RX_SYM: |
| if (r_symndx < symtab_hdr->sh_info) |
| RX_STACK_PUSH (sec->output_section->vma |
| + sec->output_offset |
| + sym->st_value |
| + rel->r_addend); |
| else |
| { |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak)) |
| RX_STACK_PUSH (h->root.u.def.value |
| + sec->output_section->vma |
| + sec->output_offset |
| + rel->r_addend); |
| else |
| _bfd_error_handler |
| (_("warning: RX_SYM reloc with an unknown symbol")); |
| } |
| break; |
| |
| case R_RX_OPneg: |
| { |
| int32_t tmp; |
| |
| saw_subtract = true; |
| RX_STACK_POP (tmp); |
| tmp = - tmp; |
| RX_STACK_PUSH (tmp); |
| } |
| break; |
| |
| case R_RX_OPadd: |
| { |
| int32_t tmp1, tmp2; |
| |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 += tmp2; |
| RX_STACK_PUSH (tmp1); |
| } |
| break; |
| |
| case R_RX_OPsub: |
| { |
| int32_t tmp1, tmp2; |
| |
| saw_subtract = true; |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp2 -= tmp1; |
| RX_STACK_PUSH (tmp2); |
| } |
| break; |
| |
| case R_RX_OPmul: |
| { |
| int32_t tmp1, tmp2; |
| |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 *= tmp2; |
| RX_STACK_PUSH (tmp1); |
| } |
| break; |
| |
| case R_RX_OPdiv: |
| { |
| int32_t tmp1, tmp2; |
| |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 /= tmp2; |
| RX_STACK_PUSH (tmp1); |
| } |
| break; |
| |
| case R_RX_OPshla: |
| { |
| int32_t tmp1, tmp2; |
| |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 <<= tmp2; |
| RX_STACK_PUSH (tmp1); |
| } |
| break; |
| |
| case R_RX_OPshra: |
| { |
| int32_t tmp1, tmp2; |
| |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 >>= tmp2; |
| RX_STACK_PUSH (tmp1); |
| } |
| break; |
| |
| case R_RX_OPsctsize: |
| RX_STACK_PUSH (input_section->size); |
| break; |
| |
| case R_RX_OPscttop: |
| RX_STACK_PUSH (input_section->output_section->vma); |
| break; |
| |
| case R_RX_OPand: |
| { |
| int32_t tmp1, tmp2; |
| |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 &= tmp2; |
| RX_STACK_PUSH (tmp1); |
| } |
| break; |
| |
| case R_RX_OPor: |
| { |
| int32_t tmp1, tmp2; |
| |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 |= tmp2; |
| RX_STACK_PUSH (tmp1); |
| } |
| break; |
| |
| case R_RX_OPxor: |
| { |
| int32_t tmp1, tmp2; |
| |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 ^= tmp2; |
| RX_STACK_PUSH (tmp1); |
| } |
| break; |
| |
| case R_RX_OPnot: |
| { |
| int32_t tmp; |
| |
| RX_STACK_POP (tmp); |
| tmp = ~ tmp; |
| RX_STACK_PUSH (tmp); |
| } |
| break; |
| |
| case R_RX_OPmod: |
| { |
| int32_t tmp1, tmp2; |
| |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 %= tmp2; |
| RX_STACK_PUSH (tmp1); |
| } |
| break; |
| |
| case R_RX_OPromtop: |
| RX_STACK_PUSH (get_romstart (info, input_bfd, input_section, rel->r_offset)); |
| break; |
| |
| case R_RX_OPramtop: |
| RX_STACK_PUSH (get_ramstart (info, input_bfd, input_section, rel->r_offset)); |
| break; |
| |
| default: |
| r = bfd_reloc_notsupported; |
| break; |
| } |
| |
| if (r != bfd_reloc_ok) |
| { |
| const char * msg = NULL; |
| |
| switch (r) |
| { |
| case bfd_reloc_overflow: |
| /* Catch the case of a missing function declaration |
| and emit a more helpful error message. */ |
| if (r_type == R_RX_DIR24S_PCREL) |
| /* xgettext:c-format */ |
| msg = _("%pB(%pA): error: call to undefined function '%s'"); |
| else |
| (*info->callbacks->reloc_overflow) |
| (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, |
| input_bfd, input_section, rel->r_offset); |
| break; |
| |
| case bfd_reloc_undefined: |
| (*info->callbacks->undefined_symbol) |
| (info, name, input_bfd, input_section, rel->r_offset, true); |
| break; |
| |
| case bfd_reloc_other: |
| /* xgettext:c-format */ |
| msg = _("%pB(%pA): warning: unaligned access to symbol '%s' in the small data area"); |
| break; |
| |
| case bfd_reloc_outofrange: |
| /* xgettext:c-format */ |
| msg = _("%pB(%pA): internal error: out of range error"); |
| break; |
| |
| case bfd_reloc_notsupported: |
| /* xgettext:c-format */ |
| msg = _("%pB(%pA): internal error: unsupported relocation error"); |
| break; |
| |
| case bfd_reloc_dangerous: |
| /* xgettext:c-format */ |
| msg = _("%pB(%pA): internal error: dangerous relocation"); |
| break; |
| |
| default: |
| /* xgettext:c-format */ |
| msg = _("%pB(%pA): internal error: unknown error"); |
| break; |
| } |
| |
| if (msg) |
| _bfd_error_handler (msg, input_bfd, input_section, name); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Relaxation Support. */ |
| |
| /* Progression of relocations from largest operand size to smallest |
| operand size. */ |
| |
| static int |
| next_smaller_reloc (int r) |
| { |
| switch (r) |
| { |
| case R_RX_DIR32: return R_RX_DIR24S; |
| case R_RX_DIR24S: return R_RX_DIR16S; |
| case R_RX_DIR16S: return R_RX_DIR8S; |
| case R_RX_DIR8S: return R_RX_NONE; |
| |
| case R_RX_DIR16: return R_RX_DIR8; |
| case R_RX_DIR8: return R_RX_NONE; |
| |
| case R_RX_DIR16U: return R_RX_DIR8U; |
| case R_RX_DIR8U: return R_RX_NONE; |
| |
| case R_RX_DIR24S_PCREL: return R_RX_DIR16S_PCREL; |
| case R_RX_DIR16S_PCREL: return R_RX_DIR8S_PCREL; |
| case R_RX_DIR8S_PCREL: return R_RX_DIR3U_PCREL; |
| |
| case R_RX_DIR16UL: return R_RX_DIR8UL; |
| case R_RX_DIR8UL: return R_RX_NONE; |
| case R_RX_DIR16UW: return R_RX_DIR8UW; |
| case R_RX_DIR8UW: return R_RX_NONE; |
| |
| case R_RX_RH_32_OP: return R_RX_RH_24_OP; |
| case R_RX_RH_24_OP: return R_RX_RH_16_OP; |
| case R_RX_RH_16_OP: return R_RX_DIR8; |
| |
| case R_RX_ABS32: return R_RX_ABS24S; |
| case R_RX_ABS24S: return R_RX_ABS16S; |
| case R_RX_ABS16: return R_RX_ABS8; |
| case R_RX_ABS16U: return R_RX_ABS8U; |
| case R_RX_ABS16S: return R_RX_ABS8S; |
| case R_RX_ABS8: return R_RX_NONE; |
| case R_RX_ABS8U: return R_RX_NONE; |
| case R_RX_ABS8S: return R_RX_NONE; |
| case R_RX_ABS24S_PCREL: return R_RX_ABS16S_PCREL; |
| case R_RX_ABS16S_PCREL: return R_RX_ABS8S_PCREL; |
| case R_RX_ABS8S_PCREL: return R_RX_NONE; |
| case R_RX_ABS16UL: return R_RX_ABS8UL; |
| case R_RX_ABS16UW: return R_RX_ABS8UW; |
| case R_RX_ABS8UL: return R_RX_NONE; |
| case R_RX_ABS8UW: return R_RX_NONE; |
| } |
| return r; |
| }; |
| |
| /* Delete some bytes from a section while relaxing. */ |
| |
| static bool |
| elf32_rx_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count, |
| Elf_Internal_Rela *alignment_rel, int force_snip, |
| Elf_Internal_Rela *irelstart) |
| { |
| Elf_Internal_Shdr * symtab_hdr; |
| unsigned int sec_shndx; |
| bfd_byte * contents; |
| Elf_Internal_Rela * irel; |
| Elf_Internal_Rela * irelend; |
| Elf_Internal_Sym * isym; |
| Elf_Internal_Sym * isymend; |
| bfd_vma toaddr; |
| unsigned int symcount; |
| struct elf_link_hash_entry ** sym_hashes; |
| struct elf_link_hash_entry ** end_hashes; |
| |
| if (!alignment_rel) |
| force_snip = 1; |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| |
| contents = elf_section_data (sec)->this_hdr.contents; |
| |
| /* The deletion must stop at the next alignment boundary, if |
| ALIGNMENT_REL is non-NULL. */ |
| toaddr = sec->size; |
| if (alignment_rel) |
| toaddr = alignment_rel->r_offset; |
| |
| BFD_ASSERT (toaddr > addr); |
| |
| /* Actually delete the bytes. */ |
| memmove (contents + addr, contents + addr + count, |
| (size_t) (toaddr - addr - count)); |
| |
| /* If we don't have an alignment marker to worry about, we can just |
| shrink the section. Otherwise, we have to fill in the newly |
| created gap with NOP insns (0x03). */ |
| if (force_snip) |
| sec->size -= count; |
| else |
| memset (contents + toaddr - count, 0x03, count); |
| |
| irel = irelstart; |
| BFD_ASSERT (irel != NULL || sec->reloc_count == 0); |
| irelend = irel + sec->reloc_count; |
| |
| /* Adjust all the relocs. */ |
| for (; irel < irelend; irel++) |
| { |
| /* Get the new reloc address. */ |
| if (irel->r_offset > addr |
| && (irel->r_offset < toaddr |
| || (force_snip && irel->r_offset == toaddr))) |
| irel->r_offset -= count; |
| |
| /* If we see an ALIGN marker at the end of the gap, we move it |
| to the beginning of the gap, since marking these gaps is what |
| they're for. */ |
| if (irel->r_offset == toaddr |
| && ELF32_R_TYPE (irel->r_info) == R_RX_RH_RELAX |
| && irel->r_addend & RX_RELAXA_ALIGN) |
| irel->r_offset -= count; |
| } |
| |
| /* Adjust the local symbols defined in this section. */ |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| isym = (Elf_Internal_Sym *) symtab_hdr->contents; |
| isymend = isym + symtab_hdr->sh_info; |
| |
| for (; isym < isymend; isym++) |
| { |
| /* If the symbol is in the range of memory we just moved, we |
| have to adjust its value. */ |
| if (isym->st_shndx == sec_shndx |
| && isym->st_value > addr |
| && isym->st_value < toaddr) |
| isym->st_value -= count; |
| |
| /* If the symbol *spans* the bytes we just deleted (i.e. it's |
| *end* is in the moved bytes but it's *start* isn't), then we |
| must adjust its size. */ |
| if (isym->st_shndx == sec_shndx |
| && isym->st_value < addr |
| && isym->st_value + isym->st_size > addr |
| && isym->st_value + isym->st_size < toaddr) |
| isym->st_size -= count; |
| } |
| |
| /* Now adjust the global symbols defined in this section. */ |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| sym_hashes = elf_sym_hashes (abfd); |
| end_hashes = sym_hashes + symcount; |
| |
| for (; sym_hashes < end_hashes; sym_hashes++) |
| { |
| struct elf_link_hash_entry *sym_hash = *sym_hashes; |
| |
| if ((sym_hash->root.type == bfd_link_hash_defined |
| || sym_hash->root.type == bfd_link_hash_defweak) |
| && sym_hash->root.u.def.section == sec) |
| { |
| /* As above, adjust the value if needed. */ |
| if (sym_hash->root.u.def.value > addr |
| && sym_hash->root.u.def.value < toaddr) |
| sym_hash->root.u.def.value -= count; |
| |
| /* As above, adjust the size if needed. */ |
| if (sym_hash->root.u.def.value < addr |
| && sym_hash->root.u.def.value + sym_hash->size > addr |
| && sym_hash->root.u.def.value + sym_hash->size < toaddr) |
| sym_hash->size -= count; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Used to sort relocs by address. If relocs have the same address, |
| we maintain their relative order, except that R_RX_RH_RELAX |
| alignment relocs must be the first reloc for any given address. */ |
| |
| static void |
| reloc_bubblesort (Elf_Internal_Rela * r, int count) |
| { |
| int i; |
| bool again; |
| bool swappit; |
| |
| /* This is almost a classic bubblesort. It's the slowest sort, but |
| we're taking advantage of the fact that the relocations are |
| mostly in order already (the assembler emits them that way) and |
| we need relocs with the same address to remain in the same |
| relative order. */ |
| again = true; |
| while (again) |
| { |
| again = false; |
| for (i = 0; i < count - 1; i ++) |
| { |
| if (r[i].r_offset > r[i + 1].r_offset) |
| swappit = true; |
| else if (r[i].r_offset < r[i + 1].r_offset) |
| swappit = false; |
| else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RX_RH_RELAX |
| && (r[i + 1].r_addend & RX_RELAXA_ALIGN)) |
| swappit = true; |
| else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RX_RH_RELAX |
| && (r[i + 1].r_addend & RX_RELAXA_ELIGN) |
| && !(ELF32_R_TYPE (r[i].r_info) == R_RX_RH_RELAX |
| && (r[i].r_addend & RX_RELAXA_ALIGN))) |
| swappit = true; |
| else |
| swappit = false; |
| |
| if (swappit) |
| { |
| Elf_Internal_Rela tmp; |
| |
| tmp = r[i]; |
| r[i] = r[i + 1]; |
| r[i + 1] = tmp; |
| /* If we do move a reloc back, re-scan to see if it |
| needs to be moved even further back. This avoids |
| most of the O(n^2) behavior for our cases. */ |
| if (i > 0) |
| i -= 2; |
| again = true; |
| } |
| } |
| } |
| } |
| |
| |
| #define OFFSET_FOR_RELOC(rel, lrel, scale) \ |
| rx_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \ |
| lrel, abfd, sec, link_info, scale) |
| |
| static bfd_vma |
| rx_offset_for_reloc (bfd * abfd, |
| Elf_Internal_Rela * rel, |
| Elf_Internal_Shdr * symtab_hdr, |
| bfd_byte * shndx_buf ATTRIBUTE_UNUSED, |
| Elf_Internal_Sym * intsyms, |
| Elf_Internal_Rela ** lrel, |
| bfd * input_bfd, |
| asection * input_section, |
| struct bfd_link_info * info, |
| int * scale) |
| { |
| bfd_vma symval; |
| bfd_reloc_status_type r; |
| |
| *scale = 1; |
| |
| /* REL is the first of 1..N relocations. We compute the symbol |
| value for each relocation, then combine them if needed. LREL |
| gets a pointer to the last relocation used. */ |
| while (1) |
| { |
| int32_t tmp1, tmp2; |
| |
| /* Get the value of the symbol referred to by the reloc. */ |
| if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym; |
| asection *ssec; |
| |
| isym = intsyms + ELF32_R_SYM (rel->r_info); |
| |
| if (isym->st_shndx == SHN_UNDEF) |
| ssec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| ssec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| ssec = bfd_com_section_ptr; |
| else |
| ssec = bfd_section_from_elf_index (abfd, |
| isym->st_shndx); |
| |
| /* Initial symbol value. */ |
| symval = isym->st_value; |
| |
| /* GAS may have made this symbol relative to a section, in |
| which case, we have to add the addend to find the |
| symbol. */ |
| if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
| symval += rel->r_addend; |
| |
| if (ssec) |
| { |
| if ((ssec->flags & SEC_MERGE) |
| && ssec->sec_info_type == SEC_INFO_TYPE_MERGE) |
| symval = _bfd_merged_section_offset (abfd, & ssec, |
| elf_section_data (ssec)->sec_info, |
| symval); |
| } |
| |
| /* Now make the offset relative to where the linker is putting it. */ |
| if (ssec) |
| symval += |
| ssec->output_section->vma + ssec->output_offset; |
| |
| symval += rel->r_addend; |
| } |
| else |
| { |
| unsigned long indx; |
| struct elf_link_hash_entry * h; |
| |
| /* An external symbol. */ |
| indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info; |
| h = elf_sym_hashes (abfd)[indx]; |
| BFD_ASSERT (h != NULL); |
| |
| if (h->root.type != bfd_link_hash_defined |
| && h->root.type != bfd_link_hash_defweak) |
| { |
| /* This appears to be a reference to an undefined |
| symbol. Just ignore it--it will be caught by the |
| regular reloc processing. */ |
| if (lrel) |
| *lrel = rel; |
| return 0; |
| } |
| |
| symval = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| |
| symval += rel->r_addend; |
| } |
| |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_RX_SYM: |
| RX_STACK_PUSH (symval); |
| break; |
| |
| case R_RX_OPneg: |
| RX_STACK_POP (tmp1); |
| tmp1 = - tmp1; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPadd: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 += tmp2; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPsub: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp2 -= tmp1; |
| RX_STACK_PUSH (tmp2); |
| break; |
| |
| case R_RX_OPmul: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 *= tmp2; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPdiv: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 /= tmp2; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPshla: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 <<= tmp2; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPshra: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 >>= tmp2; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPsctsize: |
| RX_STACK_PUSH (input_section->size); |
| break; |
| |
| case R_RX_OPscttop: |
| RX_STACK_PUSH (input_section->output_section->vma); |
| break; |
| |
| case R_RX_OPand: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 &= tmp2; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPor: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 |= tmp2; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPxor: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 ^= tmp2; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPnot: |
| RX_STACK_POP (tmp1); |
| tmp1 = ~ tmp1; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPmod: |
| RX_STACK_POP (tmp1); |
| RX_STACK_POP (tmp2); |
| tmp1 %= tmp2; |
| RX_STACK_PUSH (tmp1); |
| break; |
| |
| case R_RX_OPromtop: |
| RX_STACK_PUSH (get_romstart (info, input_bfd, input_section, rel->r_offset)); |
| break; |
| |
| case R_RX_OPramtop: |
| RX_STACK_PUSH (get_ramstart (info, input_bfd, input_section, rel->r_offset)); |
| break; |
| |
| case R_RX_DIR16UL: |
| case R_RX_DIR8UL: |
| case R_RX_ABS16UL: |
| case R_RX_ABS8UL: |
| if (rx_stack_top) |
| RX_STACK_POP (symval); |
| if (lrel) |
| *lrel = rel; |
| *scale = 4; |
| return symval; |
| |
| case R_RX_DIR16UW: |
| case R_RX_DIR8UW: |
| case R_RX_ABS16UW: |
| case R_RX_ABS8UW: |
| if (rx_stack_top) |
| RX_STACK_POP (symval); |
| if (lrel) |
| *lrel = rel; |
| *scale = 2; |
| return symval; |
| |
| default: |
| if (rx_stack_top) |
| RX_STACK_POP (symval); |
| if (lrel) |
| *lrel = rel; |
| return symval; |
| } |
| |
| rel ++; |
| } |
| /* FIXME. */ |
| (void) r; |
| } |
| |
| static void |
| move_reloc (Elf_Internal_Rela * irel, Elf_Internal_Rela * srel, int delta) |
| { |
| bfd_vma old_offset = srel->r_offset; |
| |
| irel ++; |
| while (irel <= srel) |
| { |
| if (irel->r_offset == old_offset) |
| irel->r_offset += delta; |
| irel ++; |
| } |
| } |
| |
| /* Relax one section. */ |
| |
| static bool |
| elf32_rx_relax_section (bfd *abfd, |
| asection *sec, |
| struct bfd_link_info *link_info, |
| bool *again, |
| bool allow_pcrel3) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Shdr *shndx_hdr; |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *irel; |
| Elf_Internal_Rela *srel; |
| Elf_Internal_Rela *irelend; |
| Elf_Internal_Rela *next_alignment; |
| Elf_Internal_Rela *prev_alignment; |
| bfd_byte *contents = NULL; |
| bfd_byte *free_contents = NULL; |
| Elf_Internal_Sym *intsyms = NULL; |
| Elf_Internal_Sym *free_intsyms = NULL; |
| bfd_byte *shndx_buf = NULL; |
| bfd_vma pc; |
| bfd_vma sec_start; |
| bfd_vma symval = 0; |
| int pcrel = 0; |
| int code = 0; |
| int section_alignment_glue; |
| /* how much to scale the relocation by - 1, 2, or 4. */ |
| int scale; |
| |
| /* Assume nothing changes. */ |
| *again = false; |
| |
| /* We don't have to do anything for a relocatable link, if |
| this section does not have relocs, or if this is not a |
| code section. */ |
| if (bfd_link_relocatable (link_info) |
| || sec->reloc_count == 0 |
| || (sec->flags & SEC_RELOC) == 0 |
| || (sec->flags & SEC_HAS_CONTENTS) == 0 |
| || (sec->flags & SEC_CODE) == 0) |
| return true; |
| |
| symtab_hdr = & elf_symtab_hdr (abfd); |
| if (elf_symtab_shndx_list (abfd)) |
| shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; |
| else |
| shndx_hdr = NULL; |
| |
| sec_start = sec->output_section->vma + sec->output_offset; |
| |
| /* Get the section contents. */ |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| /* Go get them off disk. */ |
| else |
| { |
| if (! bfd_malloc_and_get_section (abfd, sec, &contents)) |
| goto error_return; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| |
| /* Read this BFD's symbols. */ |
| /* Get cached copy if it exists. */ |
| if (symtab_hdr->contents != NULL) |
| intsyms = (Elf_Internal_Sym *) symtab_hdr->contents; |
| else |
| { |
| intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); |
| symtab_hdr->contents = (bfd_byte *) intsyms; |
| } |
| |
| if (shndx_hdr && shndx_hdr->sh_size != 0) |
| { |
| size_t amt; |
| |
| if (_bfd_mul_overflow (symtab_hdr->sh_info, |
| sizeof (Elf_External_Sym_Shndx), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return; |
| } |
| if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0) |
| goto error_return; |
| shndx_buf = _bfd_malloc_and_read (abfd, amt, amt); |
| if (shndx_buf == NULL) |
| goto error_return; |
| shndx_hdr->contents = shndx_buf; |
| } |
| |
| /* Get a copy of the native relocations. */ |
| /* Note - we ignore the setting of link_info->keep_memory when reading |
| in these relocs. We have to maintain a permanent copy of the relocs |
| because we are going to walk over them multiple times, adjusting them |
| as bytes are deleted from the section, and with this relaxation |
| function itself being called multiple times on the same section... */ |
| internal_relocs = _bfd_elf_link_read_relocs |
| (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, true); |
| if (internal_relocs == NULL) |
| goto error_return; |
| |
| /* The RL_ relocs must be just before the operand relocs they go |
| with, so we must sort them to guarantee this. We use bubblesort |
| instead of qsort so we can guarantee that relocs with the same |
| address remain in the same relative order. */ |
| reloc_bubblesort (internal_relocs, sec->reloc_count); |
| |
| /* Walk through them looking for relaxing opportunities. */ |
| irelend = internal_relocs + sec->reloc_count; |
| |
| /* This will either be NULL or a pointer to the next alignment |
| relocation. */ |
| next_alignment = internal_relocs; |
| /* This will be the previous alignment, although at first it points |
| to the first real relocation. */ |
| prev_alignment = internal_relocs; |
| |
| /* We calculate worst case shrinkage caused by alignment directives. |
| No fool-proof, but better than either ignoring the problem or |
| doing heavy duty analysis of all the alignment markers in all |
| input sections. */ |
| section_alignment_glue = 0; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| if (ELF32_R_TYPE (irel->r_info) == R_RX_RH_RELAX |
| && irel->r_addend & RX_RELAXA_ALIGN) |
| { |
| int this_glue = 1 << (irel->r_addend & RX_RELAXA_ANUM); |
| |
| if (section_alignment_glue < this_glue) |
| section_alignment_glue = this_glue; |
| } |
| /* Worst case is all 0..N alignments, in order, causing 2*N-1 byte |
| shrinkage. */ |
| section_alignment_glue *= 2; |
| |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| unsigned char *insn; |
| int nrelocs; |
| |
| /* The insns we care about are all marked with one of these. */ |
| if (ELF32_R_TYPE (irel->r_info) != R_RX_RH_RELAX) |
| continue; |
| |
| if (irel->r_addend & RX_RELAXA_ALIGN |
| || next_alignment == internal_relocs) |
| { |
| /* When we delete bytes, we need to maintain all the alignments |
| indicated. In addition, we need to be careful about relaxing |
| jumps across alignment boundaries - these displacements |
| *grow* when we delete bytes. For now, don't shrink |
| displacements across an alignment boundary, just in case. |
| Note that this only affects relocations to the same |
| section. */ |
| prev_alignment = next_alignment; |
| next_alignment += 2; |
| while (next_alignment < irelend |
| && (ELF32_R_TYPE (next_alignment->r_info) != R_RX_RH_RELAX |
| || !(next_alignment->r_addend & RX_RELAXA_ELIGN))) |
| next_alignment ++; |
| if (next_alignment >= irelend || next_alignment->r_offset == 0) |
| next_alignment = NULL; |
| } |
| |
| /* When we hit alignment markers, see if we've shrunk enough |
| before them to reduce the gap without violating the alignment |
| requirements. */ |
| if (irel->r_addend & RX_RELAXA_ALIGN) |
| { |
| /* At this point, the next relocation *should* be the ELIGN |
| end marker. */ |
| Elf_Internal_Rela *erel = irel + 1; |
| unsigned int alignment, nbytes; |
| |
| if (ELF32_R_TYPE (erel->r_info) != R_RX_RH_RELAX) |
| continue; |
| if (!(erel->r_addend & RX_RELAXA_ELIGN)) |
| continue; |
| |
| alignment = 1 << (irel->r_addend & RX_RELAXA_ANUM); |
| |
| if (erel->r_offset - irel->r_offset < alignment) |
| continue; |
| |
| nbytes = erel->r_offset - irel->r_offset; |
| nbytes /= alignment; |
| nbytes *= alignment; |
| |
| elf32_rx_relax_delete_bytes (abfd, sec, erel->r_offset-nbytes, nbytes, next_alignment, |
| erel->r_offset == sec->size, internal_relocs); |
| *again = true; |
| |
| continue; |
| } |
| |
| if (irel->r_addend & RX_RELAXA_ELIGN) |
| continue; |
| |
| insn = contents + irel->r_offset; |
| |
| nrelocs = irel->r_addend & RX_RELAXA_RNUM; |
| |
| /* At this point, we have an insn that is a candidate for linker |
| relaxation. There are NRELOCS relocs following that may be |
| relaxed, although each reloc may be made of more than one |
| reloc entry (such as gp-rel symbols). */ |
| |
| /* Get the value of the symbol referred to by the reloc. Just |
| in case this is the last reloc in the list, use the RL's |
| addend to choose between this reloc (no addend) or the next |
| (yes addend, which means at least one following reloc). */ |
| |
| /* srel points to the "current" reloction for this insn - |
| actually the last reloc for a given operand, which is the one |
| we need to update. We check the relaxations in the same |
| order that the relocations happen, so we'll just push it |
| along as we go. */ |
| srel = irel; |
| |
| pc = sec->output_section->vma + sec->output_offset |
| + srel->r_offset; |
| |
| #define GET_RELOC \ |
| symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \ |
| pcrel = symval - pc + srel->r_addend; \ |
| nrelocs --; |
| |
| #define SNIPNR(offset, nbytes) \ |
| elf32_rx_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0, internal_relocs); |
| #define SNIP(offset, nbytes, newtype) \ |
| SNIPNR (offset, nbytes); \ |
| srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype) |
| |
| /* The order of these bit tests must match the order that the |
| relocs appear in. Since we sorted those by offset, we can |
| predict them. */ |
| |
| /* Note that the numbers in, say, DSP6 are the bit offsets of |
| the code fields that describe the operand. Bits number 0 for |
| the MSB of insn[0]. */ |
| |
| /* DSP* codes: |
| 0 00 [reg] |
| 1 01 dsp:8[reg] |
| 2 10 dsp:16[reg] |
| 3 11 reg */ |
| if (irel->r_addend & RX_RELAXA_DSP6) |
| { |
| GET_RELOC; |
| |
| code = insn[0] & 3; |
| if (code == 2 && symval/scale <= 255) |
| { |
| unsigned int newrel = ELF32_R_TYPE (srel->r_info); |
| insn[0] &= 0xfc; |
| insn[0] |= 0x01; |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| if (newrel != ELF32_R_TYPE (srel->r_info)) |
| { |
| SNIP (3, 1, newrel); |
| *again = true; |
| } |
| } |
| |
| else if (code == 1 && symval == 0) |
| { |
| insn[0] &= 0xfc; |
| SNIP (2, 1, R_RX_NONE); |
| *again = true; |
| } |
| |
| /* Special case DSP:5 format: MOV.bwl dsp:5[Rsrc],Rdst. */ |
| else if (code == 1 && symval/scale <= 31 |
| /* Decodable bits. */ |
| && (insn[0] & 0xcc) == 0xcc |
| /* Width. */ |
| && (insn[0] & 0x30) != 0x30 |
| /* Register MSBs. */ |
| && (insn[1] & 0x88) == 0x00) |
| { |
| int newrel = 0; |
| |
| insn[0] = 0x88 | (insn[0] & 0x30); |
| /* The register fields are in the right place already. */ |
| |
| /* We can't relax this new opcode. */ |
| irel->r_addend = 0; |
| |
| switch ((insn[0] & 0x30) >> 4) |
| { |
| case 0: |
| newrel = R_RX_RH_ABS5p5B; |
| break; |
| case 1: |
| newrel = R_RX_RH_ABS5p5W; |
| break; |
| case 2: |
| newrel = R_RX_RH_ABS5p5L; |
| break; |
| } |
| |
| move_reloc (irel, srel, -2); |
| SNIP (2, 1, newrel); |
| } |
| |
| /* Special case DSP:5 format: MOVU.bw dsp:5[Rsrc],Rdst. */ |
| else if (code == 1 && symval/scale <= 31 |
| /* Decodable bits. */ |
| && (insn[0] & 0xf8) == 0x58 |
| /* Register MSBs. */ |
| && (insn[1] & 0x88) == 0x00) |
| { |
| int newrel = 0; |
| |
| insn[0] = 0xb0 | ((insn[0] & 0x04) << 1); |
| /* The register fields are in the right place already. */ |
| |
| /* We can't relax this new opcode. */ |
| irel->r_addend = 0; |
| |
| switch ((insn[0] & 0x08) >> 3) |
| { |
| case 0: |
| newrel = R_RX_RH_ABS5p5B; |
| break; |
| case 1: |
| newrel = R_RX_RH_ABS5p5W; |
| break; |
| } |
| |
| move_reloc (irel, srel, -2); |
| SNIP (2, 1, newrel); |
| } |
| } |
| |
| /* A DSP4 operand always follows a DSP6 operand, even if there's |
| no relocation for it. We have to read the code out of the |
| opcode to calculate the offset of the operand. */ |
| if (irel->r_addend & RX_RELAXA_DSP4) |
| { |
| int code6, offset = 0; |
| |
| GET_RELOC; |
| |
| code6 = insn[0] & 0x03; |
| switch (code6) |
| { |
| case 0: offset = 2; break; |
| case 1: offset = 3; break; |
| case 2: offset = 4; break; |
| case 3: offset = 2; break; |
| } |
| |
| code = (insn[0] & 0x0c) >> 2; |
| |
| if (code == 2 && symval / scale <= 255) |
| { |
| unsigned int newrel = ELF32_R_TYPE (srel->r_info); |
| |
| insn[0] &= 0xf3; |
| insn[0] |= 0x04; |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| if (newrel != ELF32_R_TYPE (srel->r_info)) |
| { |
| SNIP (offset+1, 1, newrel); |
| *again = true; |
| } |
| } |
| |
| else if (code == 1 && symval == 0) |
| { |
| insn[0] &= 0xf3; |
| SNIP (offset, 1, R_RX_NONE); |
| *again = true; |
| } |
| /* Special case DSP:5 format: MOV.bwl Rsrc,dsp:5[Rdst] */ |
| else if (code == 1 && symval/scale <= 31 |
| /* Decodable bits. */ |
| && (insn[0] & 0xc3) == 0xc3 |
| /* Width. */ |
| && (insn[0] & 0x30) != 0x30 |
| /* Register MSBs. */ |
| && (insn[1] & 0x88) == 0x00) |
| { |
| int newrel = 0; |
| |
| insn[0] = 0x80 | (insn[0] & 0x30); |
| /* The register fields are in the right place already. */ |
| |
| /* We can't relax this new opcode. */ |
| irel->r_addend = 0; |
| |
| switch ((insn[0] & 0x30) >> 4) |
| { |
| case 0: |
| newrel = R_RX_RH_ABS5p5B; |
| break; |
| case 1: |
| newrel = R_RX_RH_ABS5p5W; |
| break; |
| case 2: |
| newrel = R_RX_RH_ABS5p5L; |
| break; |
| } |
| |
| move_reloc (irel, srel, -2); |
| SNIP (2, 1, newrel); |
| } |
| } |
| |
| /* These always occur alone, but the offset depends on whether |
| it's a MEMEX opcode (0x06) or not. */ |
| if (irel->r_addend & RX_RELAXA_DSP14) |
| { |
| int offset; |
| GET_RELOC; |
| |
| if (insn[0] == 0x06) |
| offset = 3; |
| else |
| offset = 4; |
| |
| code = insn[1] & 3; |
| |
| if (code == 2 && symval / scale <= 255) |
| { |
| unsigned int newrel = ELF32_R_TYPE (srel->r_info); |
| |
| insn[1] &= 0xfc; |
| insn[1] |= 0x01; |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| if (newrel != ELF32_R_TYPE (srel->r_info)) |
| { |
| SNIP (offset, 1, newrel); |
| *again = true; |
| } |
| } |
| else if (code == 1 && symval == 0) |
| { |
| insn[1] &= 0xfc; |
| SNIP (offset, 1, R_RX_NONE); |
| *again = true; |
| } |
| } |
| |
| /* IMM* codes: |
| 0 00 imm:32 |
| 1 01 simm:8 |
| 2 10 simm:16 |
| 3 11 simm:24. */ |
| |
| /* These always occur alone. */ |
| if (irel->r_addend & RX_RELAXA_IMM6) |
| { |
| long ssymval; |
| |
| GET_RELOC; |
| |
| /* These relocations sign-extend, so we must do signed compares. */ |
| ssymval = (long) symval; |
| |
| code = insn[0] & 0x03; |
| |
| if (code == 0 && ssymval <= 8388607 && ssymval >= -8388608) |
| { |
| unsigned int newrel = ELF32_R_TYPE (srel->r_info); |
| |
| insn[0] &= 0xfc; |
| insn[0] |= 0x03; |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| if (newrel != ELF32_R_TYPE (srel->r_info)) |
| { |
| SNIP (2, 1, newrel); |
| *again = true; |
| } |
| } |
| |
| else if (code == 3 && ssymval <= 32767 && ssymval >= -32768) |
| { |
| unsigned int newrel = ELF32_R_TYPE (srel->r_info); |
| |
| insn[0] &= 0xfc; |
| insn[0] |= 0x02; |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| if (newrel != ELF32_R_TYPE (srel->r_info)) |
| { |
| SNIP (2, 1, newrel); |
| *again = true; |
| } |
| } |
| |
| /* Special case UIMM8 format: CMP #uimm8,Rdst. */ |
| else if (code == 2 && ssymval <= 255 && ssymval >= 16 |
| /* Decodable bits. */ |
| && (insn[0] & 0xfc) == 0x74 |
| /* Decodable bits. */ |
| && ((insn[1] & 0xf0) == 0x00)) |
| { |
| int newrel; |
| |
| insn[0] = 0x75; |
| insn[1] = 0x50 | (insn[1] & 0x0f); |
| |
| /* We can't relax this new opcode. */ |
| irel->r_addend = 0; |
| |
| if (STACK_REL_P (ELF32_R_TYPE (srel->r_info))) |
| newrel = R_RX_ABS8U; |
| else |
| newrel = R_RX_DIR8U; |
| |
| SNIP (2, 1, newrel); |
| *again = true; |
| } |
| |
| else if (code == 2 && ssymval <= 127 && ssymval >= -128) |
| { |
| unsigned int newrel = ELF32_R_TYPE (srel->r_info); |
| |
| insn[0] &= 0xfc; |
| insn[0] |= 0x01; |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| if (newrel != ELF32_R_TYPE (srel->r_info)) |
| { |
| SNIP (2, 1, newrel); |
| *again = true; |
| } |
| } |
| |
| /* Special case UIMM4 format: CMP, MUL, AND, OR. */ |
| else if (code == 1 && ssymval <= 15 && ssymval >= 0 |
| /* Decodable bits and immediate type. */ |
| && insn[0] == 0x75 |
| /* Decodable bits. */ |
| && (insn[1] & 0xc0) == 0x00) |
| { |
| static const int newop[4] = { 1, 3, 4, 5 }; |
| |
| insn[0] = 0x60 | newop[insn[1] >> 4]; |
| /* The register number doesn't move. */ |
| |
| /* We can't relax this new opcode. */ |
| irel->r_addend = 0; |
| |
| move_reloc (irel, srel, -1); |
| |
| SNIP (2, 1, R_RX_RH_UIMM4p8); |
| *again = true; |
| } |
| |
| /* Special case UIMM4 format: ADD -> ADD/SUB. */ |
| else if (code == 1 && ssymval <= 15 && ssymval >= -15 |
| /* Decodable bits and immediate type. */ |
| && insn[0] == 0x71 |
| /* Same register for source and destination. */ |
| && ((insn[1] >> 4) == (insn[1] & 0x0f))) |
| { |
| int newrel; |
| |
| /* Note that we can't turn "add $0,Rs" into a NOP |
| because the flags need to be set right. */ |
| |
| if (ssymval < 0) |
| { |
| insn[0] = 0x60; /* Subtract. */ |
| newrel = R_RX_RH_UNEG4p8; |
| } |
| else |
| { |
| insn[0] = 0x62; /* Add. */ |
| newrel = R_RX_RH_UIMM4p8; |
| } |
| |
| /* The register number is in the right place. */ |
| |
| /* We can't relax this new opcode. */ |
| irel->r_addend = 0; |
| |
| move_reloc (irel, srel, -1); |
| |
| SNIP (2, 1, newrel); |
| *again = true; |
| } |
| } |
| |
| /* These are either matched with a DSP6 (2-byte base) or an id24 |
| (3-byte base). */ |
| if (irel->r_addend & RX_RELAXA_IMM12) |
| { |
| int dspcode, offset = 0; |
| long ssymval; |
| |
| GET_RELOC; |
| |
| if ((insn[0] & 0xfc) == 0xfc) |
| dspcode = 1; /* Just something with one byte operand. */ |
| else |
| dspcode = insn[0] & 3; |
| switch (dspcode) |
| { |
| case 0: offset = 2; break; |
| case 1: offset = 3; break; |
| case 2: offset = 4; break; |
| case 3: offset = 2; break; |
| } |
| |
| /* These relocations sign-extend, so we must do signed compares. */ |
| ssymval = (long) symval; |
| |
| code = (insn[1] >> 2) & 3; |
| if (code == 0 && ssymval <= 8388607 && ssymval >= -8388608) |
| { |
| unsigned int newrel = ELF32_R_TYPE (srel->r_info); |
| |
| insn[1] &= 0xf3; |
| insn[1] |= 0x0c; |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| if (newrel != ELF32_R_TYPE (srel->r_info)) |
| { |
| SNIP (offset, 1, newrel); |
| *again = true; |
| } |
| } |
| |
| else if (code == 3 && ssymval <= 32767 && ssymval >= -32768) |
| { |
| unsigned int newrel = ELF32_R_TYPE (srel->r_info); |
| |
| insn[1] &= 0xf3; |
| insn[1] |= 0x08; |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| if (newrel != ELF32_R_TYPE (srel->r_info)) |
| { |
| SNIP (offset, 1, newrel); |
| *again = true; |
| } |
| } |
| |
| /* Special case UIMM8 format: MOV #uimm8,Rdst. */ |
| else if (code == 2 && ssymval <= 255 && ssymval >= 16 |
| /* Decodable bits. */ |
| && insn[0] == 0xfb |
| /* Decodable bits. */ |
| && ((insn[1] & 0x03) == 0x02)) |
| { |
| int newrel; |
| |
| insn[0] = 0x75; |
| insn[1] = 0x40 | (insn[1] >> 4); |
| |
| /* We can't relax this new opcode. */ |
| irel->r_addend = 0; |
| |
| if (STACK_REL_P (ELF32_R_TYPE (srel->r_info))) |
| newrel = R_RX_ABS8U; |
| else |
| newrel = R_RX_DIR8U; |
| |
| SNIP (2, 1, newrel); |
| *again = true; |
| } |
| |
| else if (code == 2 && ssymval <= 127 && ssymval >= -128) |
| { |
| unsigned int newrel = ELF32_R_TYPE(srel->r_info); |
| |
| insn[1] &= 0xf3; |
| insn[1] |= 0x04; |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| if (newrel != ELF32_R_TYPE(srel->r_info)) |
| { |
| SNIP (offset, 1, newrel); |
| *again = true; |
| } |
| } |
| |
| /* Special case UIMM4 format: MOV #uimm4,Rdst. */ |
| else if (code == 1 && ssymval <= 15 && ssymval >= 0 |
| /* Decodable bits. */ |
| && insn[0] == 0xfb |
| /* Decodable bits. */ |
| && ((insn[1] & 0x03) == 0x02)) |
| { |
| insn[0] = 0x66; |
| insn[1] = insn[1] >> 4; |
| |
| /* We can't relax this new opcode. */ |
| irel->r_addend = 0; |
| |
| move_reloc (irel, srel, -1); |
| |
| SNIP (2, 1, R_RX_RH_UIMM4p8); |
| *again = true; |
| } |
| } |
| |
| if (irel->r_addend & RX_RELAXA_BRA) |
| { |
| unsigned int newrel = ELF32_R_TYPE (srel->r_info); |
| int max_pcrel3 = 4; |
| int alignment_glue = 0; |
| |
| GET_RELOC; |
| |
| /* Branches over alignment chunks are problematic, as |
| deleting bytes here makes the branch *further* away. We |
| can be agressive with branches within this alignment |
| block, but not branches outside it. */ |
| if ((prev_alignment == NULL |
| || symval < (bfd_vma)(sec_start + prev_alignment->r_offset)) |
| && (next_alignment == NULL |
| || symval > (bfd_vma)(sec_start + next_alignment->r_offset))) |
| alignment_glue = section_alignment_glue; |
| |
| if (ELF32_R_TYPE(srel[1].r_info) == R_RX_RH_RELAX |
| && srel[1].r_addend & RX_RELAXA_BRA |
| && srel[1].r_offset < irel->r_offset + pcrel) |
| max_pcrel3 ++; |
| |
| newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); |
| |
| /* The values we compare PCREL with are not what you'd |
| expect; they're off by a little to compensate for (1) |
| where the reloc is relative to the insn, and (2) how much |
| the insn is going to change when we relax it. */ |
| |
| /* These we have to decode. */ |
| switch (insn[0]) |
| { |
| case 0x04: /* BRA pcdsp:24 */ |
| if (-32768 + alignment_glue <= pcrel |
| && pcrel <= 32765 - alignment_glue) |
| { |
| insn[0] = 0x38; |
| SNIP (3, 1, newrel); |
| *again = true; |
| } |
| break; |
| |
| case 0x38: /* BRA pcdsp:16 */ |
| if (-128 + alignment_glue <= pcrel |
| && pcrel <= 127 - alignment_glue) |
| { |
| insn[0] = 0x2e; |
| SNIP (2, 1, newrel); |
| *again = true; |
| } |
| break; |
| |
| case 0x2e: /* BRA pcdsp:8 */ |
| /* Note that there's a risk here of shortening things so |
| much that we no longer fit this reloc; it *should* |
| only happen when you branch across a branch, and that |
| branch also devolves into BRA.S. "Real" code should |
| be OK. */ |
| if (max_pcrel3 + alignment_glue <= pcrel |
| && pcrel <= 10 - alignment_glue |
| && allow_pcrel3) |
| { |
| insn[0] = 0x08; |
| SNIP (1, 1, newrel); |
| move_reloc (irel, srel, -1); |
| *again = true; |
| } |
| break; |
| |
| case 0x05: /* BSR pcdsp:24 */ |
| if (-32768 + alignment_glue <= pcrel |
| && pcrel <= 32765 - alignment_glue) |
| { |
| insn[0] = 0x39; |
| SNIP (1, 1, newrel); |
| *again = true; |
| } |
| break; |
| |
| case 0x3a: /* BEQ.W pcdsp:16 */ |
| case 0x3b: /* BNE.W pcdsp:16 */ |
| if (-128 + alignment_glue <= pcrel |
| && pcrel <= 127 - alignment_glue) |
| { |
| insn[0] = 0x20 | (insn[0] & 1); |
| SNIP (1, 1, newrel); |
| *again = true; |
| } |
| break; |
| |
| case 0x20: /* BEQ.B pcdsp:8 */ |
| case 0x21: /* BNE.B pcdsp:8 */ |
| if (max_pcrel3 + alignment_glue <= pcrel |
| && pcrel - alignment_glue <= 10 |
| && allow_pcrel3) |
| { |
| insn[0] = 0x10 | ((insn[0] & 1) << 3); |
| SNIP (1, 1, newrel); |
| move_reloc (irel, srel, -1); |
| *again = true; |
| } |
| break; |
| |
| case 0x16: /* synthetic BNE dsp24 */ |
| case 0x1e: /* synthetic BEQ dsp24 */ |
| if (-32767 + alignment_glue <= pcrel |
| && pcrel <= 32766 - alignment_glue |
| && insn[1] == 0x04) |
| { |
| if (insn[0] == 0x16) |
| insn[0] = 0x3b; |
| else |
| insn[0] = 0x3a; |
| /* We snip out the bytes at the end else the reloc |
| will get moved too, and too much. */ |
| SNIP (3, 2, newrel); |
| move_reloc (irel, srel, -1); |
| *again = true; |
| } |
| break; |
| } |
| |
| /* Special case - synthetic conditional branches, pcrel24. |
| Note that EQ and NE have been handled above. */ |
| if ((insn[0] & 0xf0) == 0x20 |
| && insn[1] == 0x06 |
| && insn[2] == 0x04 |
| && srel->r_offset != irel->r_offset + 1 |
| && -32767 + alignment_glue <= pcrel |
| && pcrel <= 32766 - alignment_glue) |
| { |
| insn[1] = 0x05; |
| insn[2] = 0x38; |
| SNIP (5, 1, newrel); |
| *again = true; |
| } |
| |
| /* Special case - synthetic conditional branches, pcrel16 */ |
| if ((insn[0] & 0xf0) == 0x20 |
| && insn[1] == 0x05 |
| && insn[2] == 0x38 |
| && srel->r_offset != irel->r_offset + 1 |
| && -127 + alignment_glue <= pcrel |
| && pcrel <= 126 - alignment_glue) |
| { |
| int cond = (insn[0] & 0x0f) ^ 0x01; |
| |
| insn[0] = 0x20 | cond; |
| /* By moving the reloc first, we avoid having |
| delete_bytes move it also. */ |
| move_reloc (irel, srel, -2); |
| SNIP (2, 3, newrel); |
| *again = true; |
| } |
| } |
| |
| BFD_ASSERT (nrelocs == 0); |
| |
| /* Special case - check MOV.bwl #IMM, dsp[reg] and see if we can |
| use MOV.bwl #uimm:8, dsp:5[r7] format. This is tricky |
| because it may have one or two relocations. */ |
| if ((insn[0] & 0xfc) == 0xf8 |
| && (insn[1] & 0x80) == 0x00 |
| && (insn[0] & 0x03) != 0x03) |
| { |
| int dcode, icode, reg, ioff, dscale, ilen; |
| bfd_vma disp_val = 0; |
| long imm_val = 0; |
| Elf_Internal_Rela * disp_rel = 0; |
| Elf_Internal_Rela * imm_rel = 0; |
| |
| /* Reset this. */ |
| srel = irel; |
| |
| dcode = insn[0] & 0x03; |
| icode = (insn[1] >> 2) & 0x03; |
| reg = (insn[1] >> 4) & 0x0f; |
| |
| ioff = dcode == 1 ? 3 : dcode == 2 ? 4 : 2; |
| |
| /* Figure out what the dispacement is. */ |
| if (dcode == 1 || dcode == 2) |
| { |
| /* There's a displacement. See if there's a reloc for it. */ |
| if (srel[1].r_offset == irel->r_offset + 2) |
| { |
| GET_RELOC; |
| disp_val = symval; |
| disp_rel = srel; |
| } |
| else |
| { |
| if (dcode == 1) |
| disp_val = insn[2]; |
| else |
| { |
| #if RX_OPCODE_BIG_ENDIAN |
| disp_val = insn[2] * 256 + insn[3]; |
| #else |
| disp_val = insn[2] + insn[3] * 256; |
| #endif |
| } |
| switch (insn[1] & 3) |
| { |
| case 1: |
| disp_val *= 2; |
| scale = 2; |
| break; |
| case 2: |
| disp_val *= 4; |
| scale = 4; |
| break; |
| } |
| } |
| } |
| |
| dscale = scale; |
| |
| /* Figure out what the immediate is. */ |
| if (srel[1].r_offset == irel->r_offset + ioff) |
| { |
| GET_RELOC; |
| imm_val = (long) symval; |
| imm_rel = srel; |
| } |
| else |
| { |
| unsigned char * ip = insn + ioff; |
| |
| switch (icode) |
| { |
| case 1: |
| /* For byte writes, we don't sign extend. Makes the math easier later. */ |
| if (scale == 1) |
| imm_val = ip[0]; |
| else |
| imm_val = (char) ip[0]; |
| break; |
| case 2: |
| #if RX_OPCODE_BIG_ENDIAN |
| imm_val = ((char) ip[0] << 8) | ip[1]; |
| #else |
| imm_val = ((char) ip[1] << 8) | ip[0]; |
| #endif |
| break; |
| case 3: |
| #if RX_OPCODE_BIG_ENDIAN |
| imm_val = ((char) ip[0] << 16) | (ip[1] << 8) | ip[2]; |
| #else |
| imm_val = ((char) ip[2] << 16) | (ip[1] << 8) | ip[0]; |
| #endif |
| break; |
| case 0: |
| #if RX_OPCODE_BIG_ENDIAN |
| imm_val = ((unsigned) ip[0] << 24) | (ip[1] << 16) | (ip[2] << 8) | ip[3]; |
| #else |
| imm_val = ((unsigned) ip[3] << 24) | (ip[2] << 16) | (ip[1] << 8) | ip[0]; |
| #endif |
| break; |
| } |
| } |
| |
| ilen = 2; |
| |
| switch (dcode) |
| { |
| case 1: |
| ilen += 1; |
| break; |
| case 2: |
| ilen += 2; |
| break; |
| } |
| |
| switch (icode) |
| { |
| case 1: |
| ilen += 1; |
| break; |
| case 2: |
| ilen += 2; |
| break; |
| case 3: |
| ilen += 3; |
| break; |
| case 4: |
| ilen += 4; |
| break; |
| } |
| |
| /* The shortcut happens when the immediate is 0..255, |
| register r0 to r7, and displacement (scaled) 0..31. */ |
| |
| if (0 <= imm_val && imm_val <= 255 |
| && 0 <= reg && reg <= 7 |
| && disp_val / dscale <= 31) |
| { |
| insn[0] = 0x3c | (insn[1] & 0x03); |
| insn[1] = (((disp_val / dscale) << 3) & 0x80) | (reg << 4) | ((disp_val/dscale) & 0x0f); |
| insn[2] = imm_val; |
| |
| if (disp_rel) |
| { |
| int newrel = R_RX_NONE; |
| |
| switch (dscale) |
| { |
| case 1: |
| newrel = R_RX_RH_ABS5p8B; |
| break; |
|