blob: ed2e8a98e7ed6aa43866cbc84a6e52c453021349 [file] [log] [blame]
/* tc-alpha.c - Processor-specific code for the DEC Alpha AXP CPU.
Copyright (C) 1989-2021 Free Software Foundation, Inc.
Contributed by Carnegie Mellon University, 1993.
Written by Alessandro Forin, based on earlier gas-1.38 target CPU files.
Modified by Ken Raeburn for gas-2.x and ECOFF support.
Modified by Richard Henderson for ELF support.
Modified by Klaus K"ampf for EVAX (OpenVMS/Alpha) support.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
/* Mach Operating System
Copyright (c) 1993 Carnegie Mellon University
All Rights Reserved.
Permission to use, copy, modify and distribute this software and its
documentation is hereby granted, provided that both the copyright
notice and this permission notice appear in all copies of the
software, derivative works or modified versions, and any portions
thereof, and that both notices appear in supporting documentation.
CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS
CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
Carnegie Mellon requests users of this software to return to
Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3890
any improvements or extensions that they make and grant Carnegie the
rights to redistribute these changes. */
#include "as.h"
#include "subsegs.h"
#include "ecoff.h"
#include "opcode/alpha.h"
#ifdef OBJ_ELF
#include "elf/alpha.h"
#endif
#ifdef OBJ_EVAX
#include "vms.h"
#include "vms/egps.h"
#endif
#include "dwarf2dbg.h"
#include "dw2gencfi.h"
#include "safe-ctype.h"
/* Local types. */
#define TOKENIZE_ERROR -1
#define TOKENIZE_ERROR_REPORT -2
#define MAX_INSN_FIXUPS 2
#define MAX_INSN_ARGS 5
/* Used since new relocation types are introduced in this
file (DUMMY_RELOC_LITUSE_*) */
typedef int extended_bfd_reloc_code_real_type;
struct alpha_fixup
{
expressionS exp;
/* bfd_reloc_code_real_type reloc; */
extended_bfd_reloc_code_real_type reloc;
#ifdef OBJ_EVAX
/* The symbol of the item in the linkage section. */
symbolS *xtrasym;
/* The symbol of the procedure descriptor. */
symbolS *procsym;
#endif
};
struct alpha_insn
{
unsigned insn;
int nfixups;
struct alpha_fixup fixups[MAX_INSN_FIXUPS];
long sequence;
};
enum alpha_macro_arg
{
MACRO_EOA = 1,
MACRO_IR,
MACRO_PIR,
MACRO_OPIR,
MACRO_CPIR,
MACRO_FPR,
MACRO_EXP
};
struct alpha_macro
{
const char *name;
void (*emit) (const expressionS *, int, const void *);
const void * arg;
enum alpha_macro_arg argsets[16];
};
/* Extra expression types. */
#define O_pregister O_md1 /* O_register, in parentheses. */
#define O_cpregister O_md2 /* + a leading comma. */
/* The alpha_reloc_op table below depends on the ordering of these. */
#define O_literal O_md3 /* !literal relocation. */
#define O_lituse_addr O_md4 /* !lituse_addr relocation. */
#define O_lituse_base O_md5 /* !lituse_base relocation. */
#define O_lituse_bytoff O_md6 /* !lituse_bytoff relocation. */
#define O_lituse_jsr O_md7 /* !lituse_jsr relocation. */
#define O_lituse_tlsgd O_md8 /* !lituse_tlsgd relocation. */
#define O_lituse_tlsldm O_md9 /* !lituse_tlsldm relocation. */
#define O_lituse_jsrdirect O_md10 /* !lituse_jsrdirect relocation. */
#define O_gpdisp O_md11 /* !gpdisp relocation. */
#define O_gprelhigh O_md12 /* !gprelhigh relocation. */
#define O_gprellow O_md13 /* !gprellow relocation. */
#define O_gprel O_md14 /* !gprel relocation. */
#define O_samegp O_md15 /* !samegp relocation. */
#define O_tlsgd O_md16 /* !tlsgd relocation. */
#define O_tlsldm O_md17 /* !tlsldm relocation. */
#define O_gotdtprel O_md18 /* !gotdtprel relocation. */
#define O_dtprelhi O_md19 /* !dtprelhi relocation. */
#define O_dtprello O_md20 /* !dtprello relocation. */
#define O_dtprel O_md21 /* !dtprel relocation. */
#define O_gottprel O_md22 /* !gottprel relocation. */
#define O_tprelhi O_md23 /* !tprelhi relocation. */
#define O_tprello O_md24 /* !tprello relocation. */
#define O_tprel O_md25 /* !tprel relocation. */
#define DUMMY_RELOC_LITUSE_ADDR (BFD_RELOC_UNUSED + 1)
#define DUMMY_RELOC_LITUSE_BASE (BFD_RELOC_UNUSED + 2)
#define DUMMY_RELOC_LITUSE_BYTOFF (BFD_RELOC_UNUSED + 3)
#define DUMMY_RELOC_LITUSE_JSR (BFD_RELOC_UNUSED + 4)
#define DUMMY_RELOC_LITUSE_TLSGD (BFD_RELOC_UNUSED + 5)
#define DUMMY_RELOC_LITUSE_TLSLDM (BFD_RELOC_UNUSED + 6)
#define DUMMY_RELOC_LITUSE_JSRDIRECT (BFD_RELOC_UNUSED + 7)
#define USER_RELOC_P(R) ((R) >= O_literal && (R) <= O_tprel)
/* Macros for extracting the type and number of encoded register tokens. */
#define is_ir_num(x) (((x) & 32) == 0)
#define is_fpr_num(x) (((x) & 32) != 0)
#define regno(x) ((x) & 31)
/* Something odd inherited from the old assembler. */
#define note_gpreg(R) (alpha_gprmask |= (1 << (R)))
#define note_fpreg(R) (alpha_fprmask |= (1 << (R)))
/* Predicates for 16- and 32-bit ranges */
/* XXX: The non-shift version appears to trigger a compiler bug when
cross-assembling from x86 w/ gcc 2.7.2. */
#if 1
#define range_signed_16(x) \
(((offsetT) (x) >> 15) == 0 || ((offsetT) (x) >> 15) == -1)
#define range_signed_32(x) \
(((offsetT) (x) >> 31) == 0 || ((offsetT) (x) >> 31) == -1)
#else
#define range_signed_16(x) ((offsetT) (x) >= -(offsetT) 0x8000 && \
(offsetT) (x) <= (offsetT) 0x7FFF)
#define range_signed_32(x) ((offsetT) (x) >= -(offsetT) 0x80000000 && \
(offsetT) (x) <= (offsetT) 0x7FFFFFFF)
#endif
/* Macros for sign extending from 16- and 32-bits. */
/* XXX: The cast macros will work on all the systems that I care about,
but really a predicate should be found to use the non-cast forms. */
#if 1
#define sign_extend_16(x) ((short) (x))
#define sign_extend_32(x) ((int) (x))
#else
#define sign_extend_16(x) ((offsetT) (((x) & 0xFFFF) ^ 0x8000) - 0x8000)
#define sign_extend_32(x) ((offsetT) (((x) & 0xFFFFFFFF) \
^ 0x80000000) - 0x80000000)
#endif
/* Macros to build tokens. */
#define set_tok_reg(t, r) (memset (&(t), 0, sizeof (t)), \
(t).X_op = O_register, \
(t).X_add_number = (r))
#define set_tok_preg(t, r) (memset (&(t), 0, sizeof (t)), \
(t).X_op = O_pregister, \
(t).X_add_number = (r))
#define set_tok_cpreg(t, r) (memset (&(t), 0, sizeof (t)), \
(t).X_op = O_cpregister, \
(t).X_add_number = (r))
#define set_tok_freg(t, r) (memset (&(t), 0, sizeof (t)), \
(t).X_op = O_register, \
(t).X_add_number = (r) + 32)
#define set_tok_sym(t, s, a) (memset (&(t), 0, sizeof (t)), \
(t).X_op = O_symbol, \
(t).X_add_symbol = (s), \
(t).X_add_number = (a))
#define set_tok_const(t, n) (memset (&(t), 0, sizeof (t)), \
(t).X_op = O_constant, \
(t).X_add_number = (n))
/* Generic assembler global variables which must be defined by all
targets. */
/* Characters which always start a comment. */
const char comment_chars[] = "#";
/* Characters which start a comment at the beginning of a line. */
const char line_comment_chars[] = "#";
/* Characters which may be used to separate multiple commands on a
single line. */
const char line_separator_chars[] = ";";
/* Characters which are used to indicate an exponent in a floating
point number. */
const char EXP_CHARS[] = "eE";
/* Characters which mean that a number is a floating point constant,
as in 0d1.0. */
/* XXX: Do all of these really get used on the alpha?? */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
#ifdef OBJ_EVAX
const char *md_shortopts = "Fm:g+1h:HG:";
#else
const char *md_shortopts = "Fm:gG:";
#endif
struct option md_longopts[] =
{
#define OPTION_32ADDR (OPTION_MD_BASE)
{ "32addr", no_argument, NULL, OPTION_32ADDR },
#define OPTION_RELAX (OPTION_32ADDR + 1)
{ "relax", no_argument, NULL, OPTION_RELAX },
#ifdef OBJ_ELF
#define OPTION_MDEBUG (OPTION_RELAX + 1)
#define OPTION_NO_MDEBUG (OPTION_MDEBUG + 1)
{ "mdebug", no_argument, NULL, OPTION_MDEBUG },
{ "no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG },
#endif
#ifdef OBJ_EVAX
#define OPTION_REPLACE (OPTION_RELAX + 1)
#define OPTION_NOREPLACE (OPTION_REPLACE+1)
{ "replace", no_argument, NULL, OPTION_REPLACE },
{ "noreplace", no_argument, NULL, OPTION_NOREPLACE },
#endif
{ NULL, no_argument, NULL, 0 }
};
size_t md_longopts_size = sizeof (md_longopts);
#ifdef OBJ_EVAX
#define AXP_REG_R0 0
#define AXP_REG_R16 16
#define AXP_REG_R17 17
#undef AXP_REG_T9
#define AXP_REG_T9 22
#undef AXP_REG_T10
#define AXP_REG_T10 23
#undef AXP_REG_T11
#define AXP_REG_T11 24
#undef AXP_REG_T12
#define AXP_REG_T12 25
#define AXP_REG_AI 25
#undef AXP_REG_FP
#define AXP_REG_FP 29
#undef AXP_REG_GP
#define AXP_REG_GP AXP_REG_PV
#endif /* OBJ_EVAX */
/* The cpu for which we are generating code. */
static unsigned alpha_target = AXP_OPCODE_BASE;
static const char *alpha_target_name = "<all>";
/* The hash table of instruction opcodes. */
static htab_t alpha_opcode_hash;
/* The hash table of macro opcodes. */
static htab_t alpha_macro_hash;
#ifdef OBJ_ECOFF
/* The $gp relocation symbol. */
static symbolS *alpha_gp_symbol;
/* XXX: what is this, and why is it exported? */
valueT alpha_gp_value;
#endif
/* The current $gp register. */
static int alpha_gp_register = AXP_REG_GP;
/* A table of the register symbols. */
static symbolS *alpha_register_table[64];
/* Constant sections, or sections of constants. */
#ifdef OBJ_ECOFF
static segT alpha_lita_section;
#endif
#ifdef OBJ_EVAX
segT alpha_link_section;
#endif
#ifndef OBJ_EVAX
static segT alpha_lit8_section;
#endif
/* Symbols referring to said sections. */
#ifdef OBJ_ECOFF
static symbolS *alpha_lita_symbol;
#endif
#ifdef OBJ_EVAX
static symbolS *alpha_link_symbol;
#endif
#ifndef OBJ_EVAX
static symbolS *alpha_lit8_symbol;
#endif
/* Literal for .litX+0x8000 within .lita. */
#ifdef OBJ_ECOFF
static offsetT alpha_lit8_literal;
#endif
/* Is the assembler not allowed to use $at? */
static int alpha_noat_on = 0;
/* Are macros enabled? */
static int alpha_macros_on = 1;
/* Are floats disabled? */
static int alpha_nofloats_on = 0;
/* Are addresses 32 bit? */
static int alpha_addr32_on = 0;
/* Symbol labelling the current insn. When the Alpha gas sees
foo:
.quad 0
and the section happens to not be on an eight byte boundary, it
will align both the symbol and the .quad to an eight byte boundary. */
static symbolS *alpha_insn_label;
#if defined(OBJ_ELF) || defined (OBJ_EVAX)
static symbolS *alpha_prologue_label;
#endif
#ifdef OBJ_EVAX
/* Symbol associate with the current jsr instruction. */
static symbolS *alpha_linkage_symbol;
#endif
/* Whether we should automatically align data generation pseudo-ops.
.align 0 will turn this off. */
static int alpha_auto_align_on = 1;
/* The known current alignment of the current section. */
static int alpha_current_align;
/* These are exported to ECOFF code. */
unsigned long alpha_gprmask, alpha_fprmask;
/* Whether the debugging option was seen. */
static int alpha_debug;
#ifdef OBJ_ELF
/* Whether we are emitting an mdebug section. */
int alpha_flag_mdebug = -1;
#endif
#ifdef OBJ_EVAX
/* Whether to perform the VMS procedure call optimization. */
int alpha_flag_replace = 1;
#endif
/* Don't fully resolve relocations, allowing code movement in the linker. */
static int alpha_flag_relax;
/* What value to give to bfd_set_gp_size. */
static int g_switch_value = 8;
#ifdef OBJ_EVAX
/* Collect information about current procedure here. */
struct alpha_evax_procs
{
symbolS *symbol; /* Proc pdesc symbol. */
int pdsckind;
int framereg; /* Register for frame pointer. */
int framesize; /* Size of frame. */
int rsa_offset;
int ra_save;
int fp_save;
long imask;
long fmask;
int type;
int prologue;
symbolS *handler;
int handler_data;
};
/* Linked list of .linkage fixups. */
struct alpha_linkage_fixups *alpha_linkage_fixup_root;
static struct alpha_linkage_fixups *alpha_linkage_fixup_tail;
/* Current procedure descriptor. */
static struct alpha_evax_procs *alpha_evax_proc;
static struct alpha_evax_procs alpha_evax_proc_data;
static int alpha_flag_hash_long_names = 0; /* -+ */
static int alpha_flag_show_after_trunc = 0; /* -H */
/* If the -+ switch is given, then a hash is appended to any name that is
longer than 64 characters, else longer symbol names are truncated. */
#endif
#ifdef RELOC_OP_P
/* A table to map the spelling of a relocation operand into an appropriate
bfd_reloc_code_real_type type. The table is assumed to be ordered such
that op-O_literal indexes into it. */
#define ALPHA_RELOC_TABLE(op) \
(&alpha_reloc_op[ ((!USER_RELOC_P (op)) \
? (abort (), 0) \
: (int) (op) - (int) O_literal) ])
#define DEF(NAME, RELOC, REQ, ALLOW) \
{ #NAME, sizeof(#NAME)-1, O_##NAME, RELOC, REQ, ALLOW}
static const struct alpha_reloc_op_tag
{
const char *name; /* String to lookup. */
size_t length; /* Size of the string. */
operatorT op; /* Which operator to use. */
extended_bfd_reloc_code_real_type reloc;
unsigned int require_seq : 1; /* Require a sequence number. */
unsigned int allow_seq : 1; /* Allow a sequence number. */
}
alpha_reloc_op[] =
{
DEF (literal, BFD_RELOC_ALPHA_ELF_LITERAL, 0, 1),
DEF (lituse_addr, DUMMY_RELOC_LITUSE_ADDR, 1, 1),
DEF (lituse_base, DUMMY_RELOC_LITUSE_BASE, 1, 1),
DEF (lituse_bytoff, DUMMY_RELOC_LITUSE_BYTOFF, 1, 1),
DEF (lituse_jsr, DUMMY_RELOC_LITUSE_JSR, 1, 1),
DEF (lituse_tlsgd, DUMMY_RELOC_LITUSE_TLSGD, 1, 1),
DEF (lituse_tlsldm, DUMMY_RELOC_LITUSE_TLSLDM, 1, 1),
DEF (lituse_jsrdirect, DUMMY_RELOC_LITUSE_JSRDIRECT, 1, 1),
DEF (gpdisp, BFD_RELOC_ALPHA_GPDISP, 1, 1),
DEF (gprelhigh, BFD_RELOC_ALPHA_GPREL_HI16, 0, 0),
DEF (gprellow, BFD_RELOC_ALPHA_GPREL_LO16, 0, 0),
DEF (gprel, BFD_RELOC_GPREL16, 0, 0),
DEF (samegp, BFD_RELOC_ALPHA_BRSGP, 0, 0),
DEF (tlsgd, BFD_RELOC_ALPHA_TLSGD, 0, 1),
DEF (tlsldm, BFD_RELOC_ALPHA_TLSLDM, 0, 1),
DEF (gotdtprel, BFD_RELOC_ALPHA_GOTDTPREL16, 0, 0),
DEF (dtprelhi, BFD_RELOC_ALPHA_DTPREL_HI16, 0, 0),
DEF (dtprello, BFD_RELOC_ALPHA_DTPREL_LO16, 0, 0),
DEF (dtprel, BFD_RELOC_ALPHA_DTPREL16, 0, 0),
DEF (gottprel, BFD_RELOC_ALPHA_GOTTPREL16, 0, 0),
DEF (tprelhi, BFD_RELOC_ALPHA_TPREL_HI16, 0, 0),
DEF (tprello, BFD_RELOC_ALPHA_TPREL_LO16, 0, 0),
DEF (tprel, BFD_RELOC_ALPHA_TPREL16, 0, 0),
};
#undef DEF
static const int alpha_num_reloc_op
= sizeof (alpha_reloc_op) / sizeof (*alpha_reloc_op);
#endif /* RELOC_OP_P */
/* Maximum # digits needed to hold the largest sequence #. */
#define ALPHA_RELOC_DIGITS 25
/* Structure to hold explicit sequence information. */
struct alpha_reloc_tag
{
fixS *master; /* The literal reloc. */
#ifdef OBJ_EVAX
struct symbol *sym; /* Linkage section item symbol. */
struct symbol *psym; /* Pdesc symbol. */
#endif
fixS *slaves; /* Head of linked list of lituses. */
segT segment; /* Segment relocs are in or undefined_section. */
long sequence; /* Sequence #. */
unsigned n_master; /* # of literals. */
unsigned n_slaves; /* # of lituses. */
unsigned saw_tlsgd : 1; /* True if ... */
unsigned saw_tlsldm : 1;
unsigned saw_lu_tlsgd : 1;
unsigned saw_lu_tlsldm : 1;
unsigned multi_section_p : 1; /* True if more than one section was used. */
char string[1]; /* Printable form of sequence to hash with. */
};
/* Hash table to link up literals with the appropriate lituse. */
static htab_t alpha_literal_hash;
/* Sequence numbers for internal use by macros. */
static long next_sequence_num = -1;
/* A table of CPU names and opcode sets. */
static const struct cpu_type
{
const char *name;
unsigned flags;
}
cpu_types[] =
{
/* Ad hoc convention: cpu number gets palcode, process code doesn't.
This supports usage under DU 4.0b that does ".arch ev4", and
usage in MILO that does -m21064. Probably something more
specific like -m21064-pal should be used, but oh well. */
{ "21064", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
{ "21064a", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
{ "21066", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
{ "21068", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
{ "21164", AXP_OPCODE_BASE|AXP_OPCODE_EV5 },
{ "21164a", AXP_OPCODE_BASE|AXP_OPCODE_EV5|AXP_OPCODE_BWX },
{ "21164pc", (AXP_OPCODE_BASE|AXP_OPCODE_EV5|AXP_OPCODE_BWX
|AXP_OPCODE_MAX) },
{ "21264", (AXP_OPCODE_BASE|AXP_OPCODE_EV6|AXP_OPCODE_BWX
|AXP_OPCODE_MAX|AXP_OPCODE_CIX) },
{ "21264a", (AXP_OPCODE_BASE|AXP_OPCODE_EV6|AXP_OPCODE_BWX
|AXP_OPCODE_MAX|AXP_OPCODE_CIX) },
{ "21264b", (AXP_OPCODE_BASE|AXP_OPCODE_EV6|AXP_OPCODE_BWX
|AXP_OPCODE_MAX|AXP_OPCODE_CIX) },
{ "ev4", AXP_OPCODE_BASE },
{ "ev45", AXP_OPCODE_BASE },
{ "lca45", AXP_OPCODE_BASE },
{ "ev5", AXP_OPCODE_BASE },
{ "ev56", AXP_OPCODE_BASE|AXP_OPCODE_BWX },
{ "pca56", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX },
{ "ev6", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX|AXP_OPCODE_CIX },
{ "ev67", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX|AXP_OPCODE_CIX },
{ "ev68", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX|AXP_OPCODE_CIX },
{ "all", AXP_OPCODE_BASE },
{ 0, 0 }
};
/* Some instruction sets indexed by lg(size). */
static const char * const sextX_op[] = { "sextb", "sextw", "sextl", NULL };
static const char * const insXl_op[] = { "insbl", "inswl", "insll", "insql" };
static const char * const insXh_op[] = { NULL, "inswh", "inslh", "insqh" };
static const char * const extXl_op[] = { "extbl", "extwl", "extll", "extql" };
static const char * const extXh_op[] = { NULL, "extwh", "extlh", "extqh" };
static const char * const mskXl_op[] = { "mskbl", "mskwl", "mskll", "mskql" };
static const char * const mskXh_op[] = { NULL, "mskwh", "msklh", "mskqh" };
static const char * const stX_op[] = { "stb", "stw", "stl", "stq" };
static const char * const ldXu_op[] = { "ldbu", "ldwu", NULL, NULL };
static void assemble_insn (const struct alpha_opcode *, const expressionS *, int, struct alpha_insn *, extended_bfd_reloc_code_real_type);
static void emit_insn (struct alpha_insn *);
static void assemble_tokens (const char *, const expressionS *, int, int);
#ifdef OBJ_EVAX
static const char *s_alpha_section_name (void);
static symbolS *add_to_link_pool (symbolS *, offsetT);
#endif
static struct alpha_reloc_tag *
get_alpha_reloc_tag (long sequence)
{
char buffer[ALPHA_RELOC_DIGITS];
struct alpha_reloc_tag *info;
sprintf (buffer, "!%ld", sequence);
info = (struct alpha_reloc_tag *) str_hash_find (alpha_literal_hash, buffer);
if (! info)
{
size_t len = strlen (buffer);
info = (struct alpha_reloc_tag *)
xcalloc (sizeof (struct alpha_reloc_tag) + len, 1);
info->segment = now_seg;
info->sequence = sequence;
strcpy (info->string, buffer);
str_hash_insert (alpha_literal_hash, info->string, info, 0);
#ifdef OBJ_EVAX
info->sym = 0;
info->psym = 0;
#endif
}
return info;
}
#ifndef OBJ_EVAX
static void
alpha_adjust_relocs (bfd *abfd ATTRIBUTE_UNUSED,
asection *sec,
void * ptr ATTRIBUTE_UNUSED)
{
segment_info_type *seginfo = seg_info (sec);
fixS **prevP;
fixS *fixp;
fixS *next;
fixS *slave;
/* If seginfo is NULL, we did not create this section; don't do
anything with it. By using a pointer to a pointer, we can update
the links in place. */
if (seginfo == NULL)
return;
/* If there are no relocations, skip the section. */
if (! seginfo->fix_root)
return;
/* First rebuild the fixup chain without the explicit lituse and
gpdisp_lo16 relocs. */
prevP = &seginfo->fix_root;
for (fixp = seginfo->fix_root; fixp; fixp = next)
{
next = fixp->fx_next;
fixp->fx_next = (fixS *) 0;
switch (fixp->fx_r_type)
{
case BFD_RELOC_ALPHA_LITUSE:
if (fixp->tc_fix_data.info->n_master == 0)
as_bad_where (fixp->fx_file, fixp->fx_line,
_("No !literal!%ld was found"),
fixp->tc_fix_data.info->sequence);
#ifdef RELOC_OP_P
if (fixp->fx_offset == LITUSE_ALPHA_TLSGD)
{
if (! fixp->tc_fix_data.info->saw_tlsgd)
as_bad_where (fixp->fx_file, fixp->fx_line,
_("No !tlsgd!%ld was found"),
fixp->tc_fix_data.info->sequence);
}
else if (fixp->fx_offset == LITUSE_ALPHA_TLSLDM)
{
if (! fixp->tc_fix_data.info->saw_tlsldm)
as_bad_where (fixp->fx_file, fixp->fx_line,
_("No !tlsldm!%ld was found"),
fixp->tc_fix_data.info->sequence);
}
#endif
break;
case BFD_RELOC_ALPHA_GPDISP_LO16:
if (fixp->tc_fix_data.info->n_master == 0)
as_bad_where (fixp->fx_file, fixp->fx_line,
_("No ldah !gpdisp!%ld was found"),
fixp->tc_fix_data.info->sequence);
break;
case BFD_RELOC_ALPHA_ELF_LITERAL:
if (fixp->tc_fix_data.info
&& (fixp->tc_fix_data.info->saw_tlsgd
|| fixp->tc_fix_data.info->saw_tlsldm))
break;
/* FALLTHRU */
default:
*prevP = fixp;
prevP = &fixp->fx_next;
break;
}
}
/* Go back and re-chain dependent relocations. They are currently
linked through the next_reloc field in reverse order, so as we
go through the next_reloc chain, we effectively reverse the chain
once again.
Except if there is more than one !literal for a given sequence
number. In that case, the programmer and/or compiler is not sure
how control flows from literal to lituse, and we can't be sure to
get the relaxation correct.
??? Well, actually we could, if there are enough lituses such that
we can make each literal have at least one of each lituse type
present. Not implemented.
Also suppress the optimization if the !literals/!lituses are spread
in different segments. This can happen with "interesting" uses of
inline assembly; examples are present in the Linux kernel semaphores. */
for (fixp = seginfo->fix_root; fixp; fixp = next)
{
next = fixp->fx_next;
switch (fixp->fx_r_type)
{
case BFD_RELOC_ALPHA_TLSGD:
case BFD_RELOC_ALPHA_TLSLDM:
if (!fixp->tc_fix_data.info)
break;
if (fixp->tc_fix_data.info->n_master == 0)
break;
else if (fixp->tc_fix_data.info->n_master > 1)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("too many !literal!%ld for %s"),
fixp->tc_fix_data.info->sequence,
(fixp->fx_r_type == BFD_RELOC_ALPHA_TLSGD
? "!tlsgd" : "!tlsldm"));
break;
}
fixp->tc_fix_data.info->master->fx_next = fixp->fx_next;
fixp->fx_next = fixp->tc_fix_data.info->master;
fixp = fixp->fx_next;
/* Fall through. */
case BFD_RELOC_ALPHA_ELF_LITERAL:
if (fixp->tc_fix_data.info
&& fixp->tc_fix_data.info->n_master == 1
&& ! fixp->tc_fix_data.info->multi_section_p)
{
for (slave = fixp->tc_fix_data.info->slaves;
slave != (fixS *) 0;
slave = slave->tc_fix_data.next_reloc)
{
slave->fx_next = fixp->fx_next;
fixp->fx_next = slave;
}
}
break;
case BFD_RELOC_ALPHA_GPDISP_HI16:
if (fixp->tc_fix_data.info->n_slaves == 0)
as_bad_where (fixp->fx_file, fixp->fx_line,
_("No lda !gpdisp!%ld was found"),
fixp->tc_fix_data.info->sequence);
else
{
slave = fixp->tc_fix_data.info->slaves;
slave->fx_next = next;
fixp->fx_next = slave;
}
break;
default:
break;
}
}
}
/* Before the relocations are written, reorder them, so that user
supplied !lituse relocations follow the appropriate !literal
relocations, and similarly for !gpdisp relocations. */
void
alpha_before_fix (void)
{
if (alpha_literal_hash)
bfd_map_over_sections (stdoutput, alpha_adjust_relocs, NULL);
}
#endif
#ifdef DEBUG_ALPHA
static void
debug_exp (expressionS tok[], int ntok)
{
int i;
fprintf (stderr, "debug_exp: %d tokens", ntok);
for (i = 0; i < ntok; i++)
{
expressionS *t = &tok[i];
const char *name;
switch (t->X_op)
{
default: name = "unknown"; break;
case O_illegal: name = "O_illegal"; break;
case O_absent: name = "O_absent"; break;
case O_constant: name = "O_constant"; break;
case O_symbol: name = "O_symbol"; break;
case O_symbol_rva: name = "O_symbol_rva"; break;
case O_register: name = "O_register"; break;
case O_big: name = "O_big"; break;
case O_uminus: name = "O_uminus"; break;
case O_bit_not: name = "O_bit_not"; break;
case O_logical_not: name = "O_logical_not"; break;
case O_multiply: name = "O_multiply"; break;
case O_divide: name = "O_divide"; break;
case O_modulus: name = "O_modulus"; break;
case O_left_shift: name = "O_left_shift"; break;
case O_right_shift: name = "O_right_shift"; break;
case O_bit_inclusive_or: name = "O_bit_inclusive_or"; break;
case O_bit_or_not: name = "O_bit_or_not"; break;
case O_bit_exclusive_or: name = "O_bit_exclusive_or"; break;
case O_bit_and: name = "O_bit_and"; break;
case O_add: name = "O_add"; break;
case O_subtract: name = "O_subtract"; break;
case O_eq: name = "O_eq"; break;
case O_ne: name = "O_ne"; break;
case O_lt: name = "O_lt"; break;
case O_le: name = "O_le"; break;
case O_ge: name = "O_ge"; break;
case O_gt: name = "O_gt"; break;
case O_logical_and: name = "O_logical_and"; break;
case O_logical_or: name = "O_logical_or"; break;
case O_index: name = "O_index"; break;
case O_pregister: name = "O_pregister"; break;
case O_cpregister: name = "O_cpregister"; break;
case O_literal: name = "O_literal"; break;
case O_lituse_addr: name = "O_lituse_addr"; break;
case O_lituse_base: name = "O_lituse_base"; break;
case O_lituse_bytoff: name = "O_lituse_bytoff"; break;
case O_lituse_jsr: name = "O_lituse_jsr"; break;
case O_lituse_tlsgd: name = "O_lituse_tlsgd"; break;
case O_lituse_tlsldm: name = "O_lituse_tlsldm"; break;
case O_lituse_jsrdirect: name = "O_lituse_jsrdirect"; break;
case O_gpdisp: name = "O_gpdisp"; break;
case O_gprelhigh: name = "O_gprelhigh"; break;
case O_gprellow: name = "O_gprellow"; break;
case O_gprel: name = "O_gprel"; break;
case O_samegp: name = "O_samegp"; break;
case O_tlsgd: name = "O_tlsgd"; break;
case O_tlsldm: name = "O_tlsldm"; break;
case O_gotdtprel: name = "O_gotdtprel"; break;
case O_dtprelhi: name = "O_dtprelhi"; break;
case O_dtprello: name = "O_dtprello"; break;
case O_dtprel: name = "O_dtprel"; break;
case O_gottprel: name = "O_gottprel"; break;
case O_tprelhi: name = "O_tprelhi"; break;
case O_tprello: name = "O_tprello"; break;
case O_tprel: name = "O_tprel"; break;
}
fprintf (stderr, ", %s(%s, %s, %d)", name,
(t->X_add_symbol) ? S_GET_NAME (t->X_add_symbol) : "--",
(t->X_op_symbol) ? S_GET_NAME (t->X_op_symbol) : "--",
(int) t->X_add_number);
}
fprintf (stderr, "\n");
fflush (stderr);
}
#endif
/* Parse the arguments to an opcode. */
static int
tokenize_arguments (char *str,
expressionS tok[],
int ntok)
{
expressionS *end_tok = tok + ntok;
char *old_input_line_pointer;
int saw_comma = 0, saw_arg = 0;
#ifdef DEBUG_ALPHA
expressionS *orig_tok = tok;
#endif
#ifdef RELOC_OP_P
char *p;
const struct alpha_reloc_op_tag *r;
int c, i;
size_t len;
int reloc_found_p = 0;
#endif
memset (tok, 0, sizeof (*tok) * ntok);
/* Save and restore input_line_pointer around this function. */
old_input_line_pointer = input_line_pointer;
input_line_pointer = str;
#ifdef RELOC_OP_P
/* ??? Wrest control of ! away from the regular expression parser. */
is_end_of_line[(unsigned char) '!'] = 1;
#endif
while (tok < end_tok && *input_line_pointer)
{
SKIP_WHITESPACE ();
switch (*input_line_pointer)
{
case '\0':
goto fini;
#ifdef RELOC_OP_P
case '!':
/* A relocation operand can be placed after the normal operand on an
assembly language statement, and has the following form:
!relocation_type!sequence_number. */
if (reloc_found_p)
{
/* Only support one relocation op per insn. */
as_bad (_("More than one relocation op per insn"));
goto err_report;
}
if (!saw_arg)
goto err;
++input_line_pointer;
SKIP_WHITESPACE ();
c = get_symbol_name (&p);
/* Parse !relocation_type. */
len = input_line_pointer - p;
if (len == 0)
{
as_bad (_("No relocation operand"));
goto err_report;
}
r = &alpha_reloc_op[0];
for (i = alpha_num_reloc_op - 1; i >= 0; i--, r++)
if (len == r->length && memcmp (p, r->name, len) == 0)
break;
if (i < 0)
{
as_bad (_("Unknown relocation operand: !%s"), p);
goto err_report;
}
*input_line_pointer = c;
SKIP_WHITESPACE_AFTER_NAME ();
if (*input_line_pointer != '!')
{
if (r->require_seq)
{
as_bad (_("no sequence number after !%s"), p);
goto err_report;
}
tok->X_add_number = 0;
}
else
{
if (! r->allow_seq)
{
as_bad (_("!%s does not use a sequence number"), p);
goto err_report;
}
input_line_pointer++;
/* Parse !sequence_number. */
expression (tok);
if (tok->X_op != O_constant || tok->X_add_number <= 0)
{
as_bad (_("Bad sequence number: !%s!%s"),
r->name, input_line_pointer);
goto err_report;
}
}
tok->X_op = r->op;
reloc_found_p = 1;
++tok;
break;
#endif /* RELOC_OP_P */
case ',':
++input_line_pointer;
if (saw_comma || !saw_arg)
goto err;
saw_comma = 1;
break;
case '(':
{
char *hold = input_line_pointer++;
/* First try for parenthesized register ... */
expression (tok);
if (*input_line_pointer == ')' && tok->X_op == O_register)
{
tok->X_op = (saw_comma ? O_cpregister : O_pregister);
saw_comma = 0;
saw_arg = 1;
++input_line_pointer;
++tok;
break;
}
/* ... then fall through to plain expression. */
input_line_pointer = hold;
}
/* Fall through. */
default:
if (saw_arg && !saw_comma)
goto err;
expression (tok);
if (tok->X_op == O_illegal || tok->X_op == O_absent)
goto err;
saw_comma = 0;
saw_arg = 1;
++tok;
break;
}
}
fini:
if (saw_comma)
goto err;
input_line_pointer = old_input_line_pointer;
#ifdef DEBUG_ALPHA
debug_exp (orig_tok, ntok - (end_tok - tok));
#endif
#ifdef RELOC_OP_P
is_end_of_line[(unsigned char) '!'] = 0;
#endif
return ntok - (end_tok - tok);
err:
#ifdef RELOC_OP_P
is_end_of_line[(unsigned char) '!'] = 0;
#endif
input_line_pointer = old_input_line_pointer;
return TOKENIZE_ERROR;
#ifdef RELOC_OP_P
err_report:
is_end_of_line[(unsigned char) '!'] = 0;
#endif
input_line_pointer = old_input_line_pointer;
return TOKENIZE_ERROR_REPORT;
}
/* Search forward through all variants of an opcode looking for a
syntax match. */
static const struct alpha_opcode *
find_opcode_match (const struct alpha_opcode *first_opcode,
const expressionS *tok,
int *pntok,
int *pcpumatch)
{
const struct alpha_opcode *opcode = first_opcode;
int ntok = *pntok;
int got_cpu_match = 0;
do
{
const unsigned char *opidx;
int tokidx = 0;
/* Don't match opcodes that don't exist on this architecture. */
if (!(opcode->flags & alpha_target))
goto match_failed;
got_cpu_match = 1;
for (opidx = opcode->operands; *opidx; ++opidx)
{
const struct alpha_operand *operand = &alpha_operands[*opidx];
/* Only take input from real operands. */
if (operand->flags & AXP_OPERAND_FAKE)
continue;
/* When we expect input, make sure we have it. */
if (tokidx >= ntok)
{
if ((operand->flags & AXP_OPERAND_OPTIONAL_MASK) == 0)
goto match_failed;
continue;
}
/* Match operand type with expression type. */
switch (operand->flags & AXP_OPERAND_TYPECHECK_MASK)
{
case AXP_OPERAND_IR:
if (tok[tokidx].X_op != O_register
|| !is_ir_num (tok[tokidx].X_add_number))
goto match_failed;
break;
case AXP_OPERAND_FPR:
if (tok[tokidx].X_op != O_register
|| !is_fpr_num (tok[tokidx].X_add_number))
goto match_failed;
break;
case AXP_OPERAND_IR | AXP_OPERAND_PARENS:
if (tok[tokidx].X_op != O_pregister
|| !is_ir_num (tok[tokidx].X_add_number))
goto match_failed;
break;
case AXP_OPERAND_IR | AXP_OPERAND_PARENS | AXP_OPERAND_COMMA:
if (tok[tokidx].X_op != O_cpregister
|| !is_ir_num (tok[tokidx].X_add_number))
goto match_failed;
break;
case AXP_OPERAND_RELATIVE:
case AXP_OPERAND_SIGNED:
case AXP_OPERAND_UNSIGNED:
switch (tok[tokidx].X_op)
{
case O_illegal:
case O_absent:
case O_register:
case O_pregister:
case O_cpregister:
goto match_failed;
default:
break;
}
break;
default:
/* Everything else should have been fake. */
abort ();
}
++tokidx;
}
/* Possible match -- did we use all of our input? */
if (tokidx == ntok)
{
*pntok = ntok;
return opcode;
}
match_failed:;
}
while (++opcode - alpha_opcodes < (int) alpha_num_opcodes
&& !strcmp (opcode->name, first_opcode->name));
if (*pcpumatch)
*pcpumatch = got_cpu_match;
return NULL;
}
/* Given an opcode name and a pre-tokenized set of arguments, assemble
the insn, but do not emit it.
Note that this implies no macros allowed, since we can't store more
than one insn in an insn structure. */
static void
assemble_tokens_to_insn (const char *opname,
const expressionS *tok,
int ntok,
struct alpha_insn *insn)
{
const struct alpha_opcode *opcode;
/* Search opcodes. */
opcode = (const struct alpha_opcode *) str_hash_find (alpha_opcode_hash,
opname);
if (opcode)
{
int cpumatch;
opcode = find_opcode_match (opcode, tok, &ntok, &cpumatch);
if (opcode)
{
assemble_insn (opcode, tok, ntok, insn, BFD_RELOC_UNUSED);
return;
}
else if (cpumatch)
as_bad (_("inappropriate arguments for opcode `%s'"), opname);
else
as_bad (_("opcode `%s' not supported for target %s"), opname,
alpha_target_name);
}
else
as_bad (_("unknown opcode `%s'"), opname);
}
/* Build a BFD section with its flags set appropriately for the .lita,
.lit8, or .lit4 sections. */
static void
create_literal_section (const char *name,
segT *secp,
symbolS **symp)
{
segT current_section = now_seg;
int current_subsec = now_subseg;
segT new_sec;
*secp = new_sec = subseg_new (name, 0);
subseg_set (current_section, current_subsec);
bfd_set_section_alignment (new_sec, 4);
bfd_set_section_flags (new_sec, (SEC_RELOC | SEC_ALLOC | SEC_LOAD
| SEC_READONLY | SEC_DATA));
S_CLEAR_EXTERNAL (*symp = section_symbol (new_sec));
}
/* Load a (partial) expression into a target register.
If poffset is not null, after the call it will either contain
O_constant 0, or a 16-bit offset appropriate for any MEM format
instruction. In addition, pbasereg will be modified to point to
the base register to use in that MEM format instruction.
In any case, *pbasereg should contain a base register to add to the
expression. This will normally be either AXP_REG_ZERO or
alpha_gp_register. Symbol addresses will always be loaded via $gp,
so "foo($0)" is interpreted as adding the address of foo to $0;
i.e. "ldq $targ, LIT($gp); addq $targ, $0, $targ". Odd, perhaps,
but this is what OSF/1 does.
If explicit relocations of the form !literal!<number> are allowed,
and used, then explicit_reloc with be an expression pointer.
Finally, the return value is nonzero if the calling macro may emit
a LITUSE reloc if otherwise appropriate; the return value is the
sequence number to use. */
static long
load_expression (int targreg,
const expressionS *exp,
int *pbasereg,
expressionS *poffset,
const char *opname)
{
long emit_lituse = 0;
offsetT addend = exp->X_add_number;
int basereg = *pbasereg;
struct alpha_insn insn;
expressionS newtok[3];
switch (exp->X_op)
{
case O_symbol:
{
#ifdef OBJ_ECOFF
offsetT lit;
/* Attempt to reduce .lit load by splitting the offset from
its symbol when possible, but don't create a situation in
which we'd fail. */
if (!range_signed_32 (addend) &&
(alpha_noat_on || targreg == AXP_REG_AT))
{
lit = add_to_literal_pool (exp->X_add_symbol, addend,
alpha_lita_section, 8);
addend = 0;
}
else
lit = add_to_literal_pool (exp->X_add_symbol, 0,
alpha_lita_section, 8);
if (lit >= 0x8000)
as_fatal (_("overflow in literal (.lita) table"));
/* Emit "ldq r, lit(gp)". */
if (basereg != alpha_gp_register && targreg == basereg)
{
if (alpha_noat_on)
as_bad (_("macro requires $at register while noat in effect"));
if (targreg == AXP_REG_AT)
as_bad (_("macro requires $at while $at in use"));
set_tok_reg (newtok[0], AXP_REG_AT);
}
else
set_tok_reg (newtok[0], targreg);
set_tok_sym (newtok[1], alpha_lita_symbol, lit);
set_tok_preg (newtok[2], alpha_gp_register);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
gas_assert (insn.nfixups == 1);
insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITERAL;
insn.sequence = emit_lituse = next_sequence_num--;
#endif /* OBJ_ECOFF */
#ifdef OBJ_ELF
/* Emit "ldq r, gotoff(gp)". */
if (basereg != alpha_gp_register && targreg == basereg)
{
if (alpha_noat_on)
as_bad (_("macro requires $at register while noat in effect"));
if (targreg == AXP_REG_AT)
as_bad (_("macro requires $at while $at in use"));
set_tok_reg (newtok[0], AXP_REG_AT);
}
else
set_tok_reg (newtok[0], targreg);
/* XXX: Disable this .got minimizing optimization so that we can get
better instruction offset knowledge in the compiler. This happens
very infrequently anyway. */
if (1
|| (!range_signed_32 (addend)
&& (alpha_noat_on || targreg == AXP_REG_AT)))
{
newtok[1] = *exp;
addend = 0;
}
else
set_tok_sym (newtok[1], exp->X_add_symbol, 0);
set_tok_preg (newtok[2], alpha_gp_register);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
gas_assert (insn.nfixups == 1);
insn.fixups[0].reloc = BFD_RELOC_ALPHA_ELF_LITERAL;
insn.sequence = emit_lituse = next_sequence_num--;
#endif /* OBJ_ELF */
#ifdef OBJ_EVAX
/* Find symbol or symbol pointer in link section. */
if (exp->X_add_symbol == alpha_evax_proc->symbol)
{
/* Linkage-relative expression. */
set_tok_reg (newtok[0], targreg);
if (range_signed_16 (addend))
{
set_tok_const (newtok[1], addend);
addend = 0;
}
else
{
set_tok_const (newtok[1], 0);
}
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ("lda", newtok, 3, &insn);
}
else
{
const char *symname = S_GET_NAME (exp->X_add_symbol);
const char *ptr1, *ptr2;
int symlen = strlen (symname);
if ((symlen > 4 &&
strcmp (ptr2 = &symname [symlen - 4], "..lk") == 0))
{
/* Access to an item whose address is stored in the linkage
section. Just read the address. */
set_tok_reg (newtok[0], targreg);
newtok[1] = *exp;
newtok[1].X_op = O_subtract;
newtok[1].X_op_symbol = alpha_evax_proc->symbol;
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
alpha_linkage_symbol = exp->X_add_symbol;
if (poffset)
set_tok_const (*poffset, 0);
if (alpha_flag_replace && targreg == 26)
{
/* Add a NOP fixup for 'ldX $26,YYY..NAME..lk'. */
char *ensymname;
symbolS *ensym;
/* Build the entry name as 'NAME..en'. */
ptr1 = strstr (symname, "..") + 2;
if (ptr1 > ptr2)
ptr1 = symname;
ensymname = XNEWVEC (char, ptr2 - ptr1 + 5);
memcpy (ensymname, ptr1, ptr2 - ptr1);
memcpy (ensymname + (ptr2 - ptr1), "..en", 5);
gas_assert (insn.nfixups + 1 <= MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = BFD_RELOC_ALPHA_NOP;
ensym = symbol_find_or_make (ensymname);
free (ensymname);
symbol_mark_used (ensym);
/* The fixup must be the same as the BFD_RELOC_ALPHA_BOH
case in emit_jsrjmp. See B.4.5.2 of the OpenVMS Linker
Utility Manual. */
insn.fixups[insn.nfixups].exp.X_op = O_symbol;
insn.fixups[insn.nfixups].exp.X_add_symbol = ensym;
insn.fixups[insn.nfixups].exp.X_add_number = 0;
insn.fixups[insn.nfixups].xtrasym = alpha_linkage_symbol;
insn.fixups[insn.nfixups].procsym = alpha_evax_proc->symbol;
insn.nfixups++;
/* ??? Force bsym to be instantiated now, as it will be
too late to do so in tc_gen_reloc. */
symbol_get_bfdsym (exp->X_add_symbol);
}
else if (alpha_flag_replace && targreg == 27)
{
/* Add a lda fixup for 'ldX $27,YYY.NAME..lk+8'. */
char *psymname;
symbolS *psym;
/* Extract NAME. */
ptr1 = strstr (symname, "..") + 2;
if (ptr1 > ptr2)
ptr1 = symname;
psymname = xmemdup0 (ptr1, ptr2 - ptr1);
gas_assert (insn.nfixups + 1 <= MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = BFD_RELOC_ALPHA_LDA;
psym = symbol_find_or_make (psymname);
free (psymname);
symbol_mark_used (psym);
insn.fixups[insn.nfixups].exp.X_op = O_subtract;
insn.fixups[insn.nfixups].exp.X_add_symbol = psym;
insn.fixups[insn.nfixups].exp.X_op_symbol = alpha_evax_proc->symbol;
insn.fixups[insn.nfixups].exp.X_add_number = 0;
insn.fixups[insn.nfixups].xtrasym = alpha_linkage_symbol;
insn.fixups[insn.nfixups].procsym = alpha_evax_proc->symbol;
insn.nfixups++;
}
emit_insn (&insn);
return 0;
}
else
{
/* Not in the linkage section. Put the value into the linkage
section. */
symbolS *linkexp;
if (!range_signed_32 (addend))
addend = sign_extend_32 (addend);
linkexp = add_to_link_pool (exp->X_add_symbol, 0);
set_tok_reg (newtok[0], targreg);
set_tok_sym (newtok[1], linkexp, 0);
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
}
}
#endif /* OBJ_EVAX */
emit_insn (&insn);
#ifndef OBJ_EVAX
if (basereg != alpha_gp_register && basereg != AXP_REG_ZERO)
{
/* Emit "addq r, base, r". */
set_tok_reg (newtok[1], basereg);
set_tok_reg (newtok[2], targreg);
assemble_tokens ("addq", newtok, 3, 0);
}
#endif
basereg = targreg;
}
break;
case O_constant:
break;
case O_subtract:
/* Assume that this difference expression will be resolved to an
absolute value and that that value will fit in 16 bits. */
set_tok_reg (newtok[0], targreg);
newtok[1] = *exp;
set_tok_preg (newtok[2], basereg);
assemble_tokens (opname, newtok, 3, 0);
if (poffset)
set_tok_const (*poffset, 0);
return 0;
case O_big:
if (exp->X_add_number > 0)
as_bad (_("bignum invalid; zero assumed"));
else
as_bad (_("floating point number invalid; zero assumed"));
addend = 0;
break;
default:
as_bad (_("can't handle expression"));
addend = 0;
break;
}
if (!range_signed_32 (addend))
{
#ifdef OBJ_EVAX
symbolS *litexp;
#else
offsetT lit;
long seq_num = next_sequence_num--;
#endif
/* For 64-bit addends, just put it in the literal pool. */
#ifdef OBJ_EVAX
/* Emit "ldq targreg, lit(basereg)". */
litexp = add_to_link_pool (section_symbol (absolute_section), addend);
set_tok_reg (newtok[0], targreg);
set_tok_sym (newtok[1], litexp, 0);
set_tok_preg (newtok[2], alpha_gp_register);
assemble_tokens ("ldq", newtok, 3, 0);
#else
if (alpha_lit8_section == NULL)
{
create_literal_section (".lit8",
&alpha_lit8_section,
&alpha_lit8_symbol);
#ifdef OBJ_ECOFF
alpha_lit8_literal = add_to_literal_pool (alpha_lit8_symbol, 0x8000,
alpha_lita_section, 8);
if (alpha_lit8_literal >= 0x8000)
as_fatal (_("overflow in literal (.lita) table"));
#endif
}
lit = add_to_literal_pool (NULL, addend, alpha_lit8_section, 8) - 0x8000;
if (lit >= 0x8000)
as_fatal (_("overflow in literal (.lit8) table"));
/* Emit "lda litreg, .lit8+0x8000". */
if (targreg == basereg)
{
if (alpha_noat_on)
as_bad (_("macro requires $at register while noat in effect"));
if (targreg == AXP_REG_AT)
as_bad (_("macro requires $at while $at in use"));
set_tok_reg (newtok[0], AXP_REG_AT);
}
else
set_tok_reg (newtok[0], targreg);
#ifdef OBJ_ECOFF
set_tok_sym (newtok[1], alpha_lita_symbol, alpha_lit8_literal);
#endif
#ifdef OBJ_ELF
set_tok_sym (newtok[1], alpha_lit8_symbol, 0x8000);
#endif
set_tok_preg (newtok[2], alpha_gp_register);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
gas_assert (insn.nfixups == 1);
#ifdef OBJ_ECOFF
insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITERAL;
#endif
#ifdef OBJ_ELF
insn.fixups[0].reloc = BFD_RELOC_ALPHA_ELF_LITERAL;
#endif
insn.sequence = seq_num;
emit_insn (&insn);
/* Emit "ldq litreg, lit(litreg)". */
set_tok_const (newtok[1], lit);
set_tok_preg (newtok[2], newtok[0].X_add_number);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = seq_num;
emit_lituse = 0;
emit_insn (&insn);
/* Emit "addq litreg, base, target". */
if (basereg != AXP_REG_ZERO)
{
set_tok_reg (newtok[1], basereg);
set_tok_reg (newtok[2], targreg);
assemble_tokens ("addq", newtok, 3, 0);
}
#endif /* !OBJ_EVAX */
if (poffset)
set_tok_const (*poffset, 0);
*pbasereg = targreg;
}
else
{
offsetT low, high, extra, tmp;
/* For 32-bit operands, break up the addend. */
low = sign_extend_16 (addend);
tmp = addend - low;
high = sign_extend_16 (tmp >> 16);
if (tmp - (high << 16))
{
extra = 0x4000;
tmp -= 0x40000000;
high = sign_extend_16 (tmp >> 16);
}
else
extra = 0;
set_tok_reg (newtok[0], targreg);
set_tok_preg (newtok[2], basereg);
if (extra)
{
/* Emit "ldah r, extra(r). */
set_tok_const (newtok[1], extra);
assemble_tokens ("ldah", newtok, 3, 0);
set_tok_preg (newtok[2], basereg = targreg);
}
if (high)
{
/* Emit "ldah r, high(r). */
set_tok_const (newtok[1], high);
assemble_tokens ("ldah", newtok, 3, 0);
basereg = targreg;
set_tok_preg (newtok[2], basereg);
}
if ((low && !poffset) || (!poffset && basereg != targreg))
{
/* Emit "lda r, low(base)". */
set_tok_const (newtok[1], low);
assemble_tokens ("lda", newtok, 3, 0);
basereg = targreg;
low = 0;
}
if (poffset)
set_tok_const (*poffset, low);
*pbasereg = basereg;
}
return emit_lituse;
}
/* The lda macro differs from the lda instruction in that it handles
most simple expressions, particularly symbol address loads and
large constants. */
static void
emit_lda (const expressionS *tok,
int ntok,
const void * unused ATTRIBUTE_UNUSED)
{
int basereg;
if (ntok == 2)
basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
else
basereg = tok[2].X_add_number;
(void) load_expression (tok[0].X_add_number, &tok[1], &basereg, NULL, "lda");
}
/* The ldah macro differs from the ldah instruction in that it has $31
as an implied base register. */
static void
emit_ldah (const expressionS *tok,
int ntok ATTRIBUTE_UNUSED,
const void * unused ATTRIBUTE_UNUSED)
{
expressionS newtok[3];
newtok[0] = tok[0];
newtok[1] = tok[1];
set_tok_preg (newtok[2], AXP_REG_ZERO);
assemble_tokens ("ldah", newtok, 3, 0);
}
/* Called internally to handle all alignment needs. This takes care
of eliding calls to frag_align if'n the cached current alignment
says we've already got it, as well as taking care of the auto-align
feature wrt labels. */
static void
alpha_align (int n,
char *pfill,
symbolS *label,
int force ATTRIBUTE_UNUSED)
{
if (alpha_current_align >= n)
return;
if (pfill == NULL)
{
if (subseg_text_p (now_seg))
frag_align_code (n, 0);
else
frag_align (n, 0, 0);
}
else
frag_align (n, *pfill, 0);
alpha_current_align = n;
if (label != NULL && S_GET_SEGMENT (label) == now_seg)
{
symbol_set_frag (label, frag_now);
S_SET_VALUE (label, (valueT) frag_now_fix ());
}
record_alignment (now_seg, n);
/* ??? If alpha_flag_relax && force && elf, record the requested alignment
in a reloc for the linker to see. */
}
/* Actually output an instruction with its fixup. */
static void
emit_insn (struct alpha_insn *insn)
{
char *f;
int i;
/* Take care of alignment duties. */
if (alpha_auto_align_on && alpha_current_align < 2)
alpha_align (2, (char *) NULL, alpha_insn_label, 0);
if (alpha_current_align > 2)
alpha_current_align = 2;
alpha_insn_label = NULL;
/* Write out the instruction. */
f = frag_more (4);
md_number_to_chars (f, insn->insn, 4);
#ifdef OBJ_ELF
dwarf2_emit_insn (4);
#endif
/* Apply the fixups in order. */
for (i = 0; i < insn->nfixups; ++i)
{
const struct alpha_operand *operand = (const struct alpha_operand *) 0;
struct alpha_fixup *fixup = &insn->fixups[i];
struct alpha_reloc_tag *info = NULL;
int size, pcrel;
fixS *fixP;
/* Some fixups are only used internally and so have no howto. */
if ((int) fixup->reloc < 0)
{
operand = &alpha_operands[-(int) fixup->reloc];
size = 4;
pcrel = ((operand->flags & AXP_OPERAND_RELATIVE) != 0);
}
else if (fixup->reloc > BFD_RELOC_UNUSED
|| fixup->reloc == BFD_RELOC_ALPHA_GPDISP_HI16
|| fixup->reloc == BFD_RELOC_ALPHA_GPDISP_LO16)
{
size = 2;
pcrel = 0;
}
else
{
reloc_howto_type *reloc_howto =
bfd_reloc_type_lookup (stdoutput,
(bfd_reloc_code_real_type) fixup->reloc);
gas_assert (reloc_howto);
size = bfd_get_reloc_size (reloc_howto);
switch (fixup->reloc)
{
#ifdef OBJ_EVAX
case BFD_RELOC_ALPHA_NOP:
case BFD_RELOC_ALPHA_BSR:
case BFD_RELOC_ALPHA_LDA:
case BFD_RELOC_ALPHA_BOH:
break;
#endif
default:
gas_assert (size >= 1 && size <= 4);
}
pcrel = reloc_howto->pc_relative;
}
fixP = fix_new_exp (frag_now, f - frag_now->fr_literal, size,
&fixup->exp, pcrel, (bfd_reloc_code_real_type) fixup->reloc);
/* Turn off complaints that the addend is too large for some fixups,
and copy in the sequence number for the explicit relocations. */
switch (fixup->reloc)
{
case BFD_RELOC_ALPHA_HINT:
case BFD_RELOC_GPREL32:
case BFD_RELOC_GPREL16:
case BFD_RELOC_ALPHA_GPREL_HI16:
case BFD_RELOC_ALPHA_GPREL_LO16:
case BFD_RELOC_ALPHA_GOTDTPREL16:
case BFD_RELOC_ALPHA_DTPREL_HI16:
case BFD_RELOC_ALPHA_DTPREL_LO16:
case BFD_RELOC_ALPHA_DTPREL16:
case BFD_RELOC_ALPHA_GOTTPREL16:
case BFD_RELOC_ALPHA_TPREL_HI16:
case BFD_RELOC_ALPHA_TPREL_LO16:
case BFD_RELOC_ALPHA_TPREL16:
fixP->fx_no_overflow = 1;
break;
case BFD_RELOC_ALPHA_GPDISP_HI16:
fixP->fx_no_overflow = 1;
fixP->fx_addsy = section_symbol (now_seg);
fixP->fx_offset = 0;
info = get_alpha_reloc_tag (insn->sequence);
if (++info->n_master > 1)
as_bad (_("too many ldah insns for !gpdisp!%ld"), insn->sequence);
if (info->segment != now_seg)
as_bad (_("both insns for !gpdisp!%ld must be in the same section"),
insn->sequence);
fixP->tc_fix_data.info = info;
break;
case BFD_RELOC_ALPHA_GPDISP_LO16:
fixP->fx_no_overflow = 1;
info = get_alpha_reloc_tag (insn->sequence);
if (++info->n_slaves > 1)
as_bad (_("too many lda insns for !gpdisp!%ld"), insn->sequence);
if (info->segment != now_seg)
as_bad (_("both insns for !gpdisp!%ld must be in the same section"),
insn->sequence);
fixP->tc_fix_data.info = info;
info->slaves = fixP;
break;
case BFD_RELOC_ALPHA_LITERAL:
case BFD_RELOC_ALPHA_ELF_LITERAL:
fixP->fx_no_overflow = 1;
if (insn->sequence == 0)
break;
info = get_alpha_reloc_tag (insn->sequence);
info->master = fixP;
info->n_master++;
if (info->segment != now_seg)
info->multi_section_p = 1;
fixP->tc_fix_data.info = info;
break;
#ifdef RELOC_OP_P
case DUMMY_RELOC_LITUSE_ADDR:
fixP->fx_offset = LITUSE_ALPHA_ADDR;
goto do_lituse;
case DUMMY_RELOC_LITUSE_BASE:
fixP->fx_offset = LITUSE_ALPHA_BASE;
goto do_lituse;
case DUMMY_RELOC_LITUSE_BYTOFF:
fixP->fx_offset = LITUSE_ALPHA_BYTOFF;
goto do_lituse;
case DUMMY_RELOC_LITUSE_JSR:
fixP->fx_offset = LITUSE_ALPHA_JSR;
goto do_lituse;
case DUMMY_RELOC_LITUSE_TLSGD:
fixP->fx_offset = LITUSE_ALPHA_TLSGD;
goto do_lituse;
case DUMMY_RELOC_LITUSE_TLSLDM:
fixP->fx_offset = LITUSE_ALPHA_TLSLDM;
goto do_lituse;
case DUMMY_RELOC_LITUSE_JSRDIRECT:
fixP->fx_offset = LITUSE_ALPHA_JSRDIRECT;
goto do_lituse;
do_lituse:
fixP->fx_addsy = section_symbol (now_seg);
fixP->fx_r_type = BFD_RELOC_ALPHA_LITUSE;
info = get_alpha_reloc_tag (insn->sequence);
if (fixup->reloc == DUMMY_RELOC_LITUSE_TLSGD)
info->saw_lu_tlsgd = 1;
else if (fixup->reloc == DUMMY_RELOC_LITUSE_TLSLDM)
info->saw_lu_tlsldm = 1;
if (++info->n_slaves > 1)
{
if (info->saw_lu_tlsgd)
as_bad (_("too many lituse insns for !lituse_tlsgd!%ld"),
insn->sequence);
else if (info->saw_lu_tlsldm)
as_bad (_("too many lituse insns for !lituse_tlsldm!%ld"),
insn->sequence);
}
fixP->tc_fix_data.info = info;
fixP->tc_fix_data.next_reloc = info->slaves;
info->slaves = fixP;
if (info->segment != now_seg)
info->multi_section_p = 1;
break;
case BFD_RELOC_ALPHA_TLSGD:
fixP->fx_no_overflow = 1;
if (insn->sequence == 0)
break;
info = get_alpha_reloc_tag (insn->sequence);
if (info->saw_tlsgd)
as_bad (_("duplicate !tlsgd!%ld"), insn->sequence);
else if (info->saw_tlsldm)
as_bad (_("sequence number in use for !tlsldm!%ld"),
insn->sequence);
else
info->saw_tlsgd = 1;
fixP->tc_fix_data.info = info;
break;
case BFD_RELOC_ALPHA_TLSLDM:
fixP->fx_no_overflow = 1;
if (insn->sequence == 0)
break;
info = get_alpha_reloc_tag (insn->sequence);
if (info->saw_tlsldm)
as_bad (_("duplicate !tlsldm!%ld"), insn->sequence);
else if (info->saw_tlsgd)
as_bad (_("sequence number in use for !tlsgd!%ld"),
insn->sequence);
else
info->saw_tlsldm = 1;
fixP->tc_fix_data.info = info;
break;
#endif
#ifdef OBJ_EVAX
case BFD_RELOC_ALPHA_NOP:
case BFD_RELOC_ALPHA_LDA:
case BFD_RELOC_ALPHA_BSR:
case BFD_RELOC_ALPHA_BOH:
info = get_alpha_reloc_tag (next_sequence_num--);
fixP->tc_fix_data.info = info;
fixP->tc_fix_data.info->sym = fixup->xtrasym;
fixP->tc_fix_data.info->psym = fixup->procsym;
break;
#endif
default:
if ((int) fixup->reloc < 0)
{
if (operand->flags & AXP_OPERAND_NOOVERFLOW)
fixP->fx_no_overflow = 1;
}
break;
}
}
}
/* Insert an operand value into an instruction. */
static unsigned
insert_operand (unsigned insn,
const struct alpha_operand *operand,
offsetT val,
const char *file,
unsigned line)
{
if (!(operand->flags & AXP_OPERAND_NOOVERFLOW))
{
offsetT min, max;
if (operand->flags & AXP_OPERAND_SIGNED)
{
max = (1 << (operand->bits - 1)) - 1;
min = -(1 << (operand->bits - 1));
}
else
{
max = (1 << operand->bits) - 1;
min = 0;
}
if (val < min || val > max)
as_bad_value_out_of_range (_("operand"), val, min, max, file, line);
}
if (operand->insert)
{
const char *errmsg = NULL;
insn = (*operand->insert) (insn, val, &errmsg);
if (errmsg)
as_warn ("%s", errmsg);
}
else
insn |= ((val & ((1 << operand->bits) - 1)) << operand->shift);
return insn;
}
/* Turn an opcode description and a set of arguments into
an instruction and a fixup. */
static void
assemble_insn (const struct alpha_opcode *opcode,
const expressionS *tok,
int ntok,
struct alpha_insn *insn,
extended_bfd_reloc_code_real_type reloc)
{
const struct alpha_operand *reloc_operand = NULL;
const expressionS *reloc_exp = NULL;
const unsigned char *argidx;
unsigned image;
int tokidx = 0;
memset (insn, 0, sizeof (*insn));
image = opcode->opcode;
for (argidx = opcode->operands; *argidx; ++argidx)
{
const struct alpha_operand *operand = &alpha_operands[*argidx];
const expressionS *t = (const expressionS *) 0;
if (operand->flags & AXP_OPERAND_FAKE)
{
/* Fake operands take no value and generate no fixup. */
image = insert_operand (image, operand, 0, NULL, 0);
continue;
}
if (tokidx >= ntok)
{
switch (operand->flags & AXP_OPERAND_OPTIONAL_MASK)
{
case AXP_OPERAND_DEFAULT_FIRST:
t = &tok[0];
break;
case AXP_OPERAND_DEFAULT_SECOND:
t = &tok[1];
break;
case AXP_OPERAND_DEFAULT_ZERO:
{
static expressionS zero_exp;
t = &zero_exp;
zero_exp.X_op = O_constant;
zero_exp.X_unsigned = 1;
}
break;
default:
abort ();
}
}
else
t = &tok[tokidx++];
switch (t->X_op)
{
case O_register:
case O_pregister:
case O_cpregister:
image = insert_operand (image, operand, regno (t->X_add_number),
NULL, 0);
break;
case O_constant:
image = insert_operand (image, operand, t->X_add_number, NULL, 0);
gas_assert (reloc_operand == NULL);
reloc_operand = operand;
reloc_exp = t;
break;
default:
/* This is only 0 for fields that should contain registers,
which means this pattern shouldn't have matched. */
if (operand->default_reloc == 0)
abort ();
/* There is one special case for which an insn receives two
relocations, and thus the user-supplied reloc does not
override the operand reloc. */
if (operand->default_reloc == BFD_RELOC_ALPHA_HINT)
{
struct alpha_fixup *fixup;
if (insn->nfixups >= MAX_INSN_FIXUPS)
as_fatal (_("too many fixups"));
fixup = &insn->fixups[insn->nfixups++];
fixup->exp = *t;
fixup->reloc = BFD_RELOC_ALPHA_HINT;
}
else
{
if (reloc == BFD_RELOC_UNUSED)
reloc = operand->default_reloc;
gas_assert (reloc_operand == NULL);
reloc_operand = operand;
reloc_exp = t;
}
break;
}
}
if (reloc != BFD_RELOC_UNUSED)
{
struct alpha_fixup *fixup;
if (insn->nfixups >= MAX_INSN_FIXUPS)
as_fatal (_("too many fixups"));
/* ??? My but this is hacky. But the OSF/1 assembler uses the same
relocation tag for both ldah and lda with gpdisp. Choose the
correct internal relocation based on the opcode. */
if (reloc == BFD_RELOC_ALPHA_GPDISP)
{
if (strcmp (opcode->name, "ldah") == 0)
reloc = BFD_RELOC_ALPHA_GPDISP_HI16;
else if (strcmp (opcode->name, "lda") == 0)
reloc = BFD_RELOC_ALPHA_GPDISP_LO16;
else
as_bad (_("invalid relocation for instruction"));
}
/* If this is a real relocation (as opposed to a lituse hint), then
the relocation width should match the operand width.
Take care of -MDISP in operand table. */
else if (reloc < BFD_RELOC_UNUSED && reloc > 0)
{
reloc_howto_type *reloc_howto
= bfd_reloc_type_lookup (stdoutput,
(bfd_reloc_code_real_type) reloc);
if (reloc_operand == NULL
|| reloc_howto->bitsize != reloc_operand->bits)
{
as_bad (_("invalid relocation for field"));
return;
}
}
fixup = &insn->fixups[insn->nfixups++];
if (reloc_exp)
fixup->exp = *reloc_exp;
else
fixup->exp.X_op = O_absent;
fixup->reloc = reloc;
}
insn->insn = image;
}
/* Handle all "simple" integer register loads -- ldq, ldq_l, ldq_u,
etc. They differ from the real instructions in that they do simple
expressions like the lda macro. */
static void
emit_ir_load (const expressionS *tok,
int ntok,
const void * opname)
{
int basereg;
long lituse;
expressionS newtok[3];
struct alpha_insn insn;
const char *symname
= tok[1].X_add_symbol ? S_GET_NAME (tok[1].X_add_symbol): "";
int symlen = strlen (symname);
if (ntok == 2)
basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
else
basereg = tok[2].X_add_number;
lituse = load_expression (tok[0].X_add_number, &tok[1],
&basereg, &newtok[1], (const char *) opname);
if (basereg == alpha_gp_register &&
(symlen > 4 && strcmp (&symname [symlen - 4], "..lk") == 0))
return;
newtok[0] = tok[0];
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ((const char *) opname, newtok, 3, &insn);
if (lituse)
{
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = lituse;
}
emit_insn (&insn);
}
/* Handle fp register loads, and both integer and fp register stores.
Again, we handle simple expressions. */
static void
emit_loadstore (const expressionS *tok,
int ntok,
const void * opname)
{
int basereg;
long lituse;
expressionS newtok[3];
struct alpha_insn insn;
if (ntok == 2)
basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
else
basereg = tok[2].X_add_number;
if (tok[1].X_op != O_constant || !range_signed_16 (tok[1].X_add_number))
{
if (alpha_noat_on)
as_bad (_("macro requires $at register while noat in effect"));
lituse = load_expression (AXP_REG_AT, &tok[1],
&basereg, &newtok[1], (const char *) opname);
}
else
{
newtok[1] = tok[1];
lituse = 0;
}
newtok[0] = tok[0];
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ((const char *) opname, newtok, 3, &insn);
if (lituse)
{
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = lituse;
}
emit_insn (&insn);
}
/* Load a half-word or byte as an unsigned value. */
static void
emit_ldXu (const expressionS *tok,
int ntok,
const void * vlgsize)
{
if (alpha_target & AXP_OPCODE_BWX)
emit_ir_load (tok, ntok, ldXu_op[(long) vlgsize]);
else
{
expressionS newtok[3];
struct alpha_insn insn;
int basereg;
long lituse;
if (alpha_noat_on)
as_bad (_("macro requires $at register while noat in effect"));
if (ntok == 2)
basereg = (tok[1].X_op == O_constant
? AXP_REG_ZERO : alpha_gp_register);
else
basereg = tok[2].X_add_number;
/* Emit "lda $at, exp". */
lituse = load_expression (AXP_REG_AT, &tok[1], &basereg, NULL, "lda");
/* Emit "ldq_u targ, 0($at)". */
newtok[0] = tok[0];
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ("ldq_u", newtok, 3, &insn);
if (lituse)
{
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = lituse;
}
emit_insn (&insn);
/* Emit "extXl targ, $at, targ". */
set_tok_reg (newtok[1], basereg);
newtok[2] = newtok[0];
assemble_tokens_to_insn (extXl_op[(long) vlgsize], newtok, 3, &insn);
if (lituse)
{
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BYTOFF;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = lituse;
}
emit_insn (&insn);
}
}
/* Load a half-word or byte as a signed value. */
static void
emit_ldX (const expressionS *tok,
int ntok,
const void * vlgsize)
{
emit_ldXu (tok, ntok, vlgsize);
assemble_tokens (sextX_op[(long) vlgsize], tok, 1, 1);
}
/* Load an integral value from an unaligned address as an unsigned
value. */
static void
emit_uldXu (const expressionS *tok,
int ntok,
const void * vlgsize)
{
long lgsize = (long) vlgsize;
expressionS newtok[3];
if (alpha_noat_on)
as_bad (_("macro requires $at register while noat in effect"));
/* Emit "lda $at, exp". */
memcpy (newtok, tok, sizeof (expressionS) * ntok);
newtok[0].X_add_number = AXP_REG_AT;
assemble_tokens ("lda", newtok, ntok, 1);
/* Emit "ldq_u $t9, 0($at)". */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* Emit "ldq_u $t10, size-1($at)". */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_const (newtok[1], (1 << lgsize) - 1);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* Emit "extXl $t9, $at, $t9". */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_reg (newtok[1], AXP_REG_AT);
set_tok_reg (newtok[2], AXP_REG_T9);
assemble_tokens (extXl_op[lgsize], newtok, 3, 1);
/* Emit "extXh $t10, $at, $t10". */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_reg (newtok[2], AXP_REG_T10);
assemble_tokens (extXh_op[lgsize], newtok, 3, 1);
/* Emit "or $t9, $t10, targ". */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_reg (newtok[1], AXP_REG_T10);
newtok[2] = tok[0];
assemble_tokens ("or", newtok, 3, 1);
}
/* Load an integral value from an unaligned address as a signed value.
Note that quads should get funneled to the unsigned load since we
don't have to do the sign extension. */
static void
emit_uldX (const expressionS *tok,
int ntok,
const void * vlgsize)
{
emit_uldXu (tok, ntok, vlgsize);
assemble_tokens (sextX_op[(long) vlgsize], tok, 1, 1);
}
/* Implement the ldil macro. */
static void
emit_ldil (const expressionS *tok,
int ntok,
const void * unused ATTRIBUTE_UNUSED)
{
expressionS newtok[2];
memcpy (newtok, tok, sizeof (newtok));
newtok[1].X_add_number = sign_extend_32 (tok[1].X_add_number);
assemble_tokens ("lda", newtok, ntok, 1);
}
/* Store a half-word or byte. */
static void
emit_stX (const expressionS *tok,
int ntok,
const void * vlgsize)
{
int lgsize = (int) (long) vlgsize;
if (alpha_target & AXP_OPCODE_BWX)
emit_loadstore (tok, ntok, stX_op[lgsize]);
else
{
expressionS newtok[3];
struct alpha_insn insn;
int basereg;
long lituse;
if (alpha_noat_on)
as_bad (_("macro requires $at register while noat in effect"));
if (ntok == 2)
basereg = (tok[1].X_op == O_constant
? AXP_REG_ZERO : alpha_gp_register);
else
basereg = tok[2].X_add_number;
/* Emit "lda $at, exp". */
lituse = load_expression (AXP_REG_AT, &tok[1], &basereg, NULL, "lda");
/* Emit "ldq_u $t9, 0($at)". */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ("ldq_u", newtok, 3, &insn);
if (lituse)
{
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = lituse;
}
emit_insn (&insn);
/* Emit "insXl src, $at, $t10". */
newtok[0] = tok[0];
set_tok_reg (newtok[1], basereg);
set_tok_reg (newtok[2], AXP_REG_T10);
assemble_tokens_to_insn (insXl_op[lgsize], newtok, 3, &insn);
if (lituse)
{
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BYTOFF;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = lituse;
}
emit_insn (&insn);
/* Emit "mskXl $t9, $at, $t9". */
set_tok_reg (newtok[0], AXP_REG_T9);
newtok[2] = newtok[0];
assemble_tokens_to_insn (mskXl_op[lgsize], newtok, 3, &insn);
if (lituse)
{
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BYTOFF;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = lituse;
}
emit_insn (&insn);
/* Emit "or $t9, $t10, $t9". */
set_tok_reg (newtok[1], AXP_REG_T10);
assemble_tokens ("or", newtok, 3, 1);
/* Emit "stq_u $t9, 0($at). */
set_tok_const(newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens_to_insn ("stq_u", newtok, 3, &insn);
if (lituse)
{
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = lituse;
}
emit_insn (&insn);
}
}
/* Store an integer to an unaligned address. */
static void
emit_ustX (const expressionS *tok,
int ntok,
const void * vlgsize)
{
int lgsize = (int) (long) vlgsize;
expressionS newtok[3];
/* Emit "lda $at, exp". */
memcpy (newtok, tok, sizeof (expressionS) * ntok);
newtok[0].X_add_number = AXP_REG_AT;
assemble_tokens ("lda", newtok, ntok, 1);
/* Emit "ldq_u $9, 0($at)". */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* Emit "ldq_u $10, size-1($at)". */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_const (newtok[1], (1 << lgsize) - 1);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* Emit "insXl src, $at, $t11". */
newtok[0] = tok[0];
set_tok_reg (newtok[1], AXP_REG_AT);
set_tok_reg (newtok[2], AXP_REG_T11);
assemble_tokens (insXl_op[lgsize], newtok, 3, 1);
/* Emit "insXh src, $at, $t12". */
set_tok_reg (newtok[2], AXP_REG_T12);
assemble_tokens (insXh_op[lgsize], newtok, 3, 1);
/* Emit "mskXl $t9, $at, $t9". */
set_tok_reg (newtok[0], AXP_REG_T9);
newtok[2] = newtok[0];
assemble_tokens (mskXl_op[lgsize], newtok, 3, 1);
/* Emit "mskXh $t10, $at, $t10". */
set_tok_reg (newtok[0], AXP_REG_T10);
newtok[2] = newtok[0];
assemble_tokens (mskXh_op[lgsize], newtok, 3, 1);
/* Emit "or $t9, $t11, $t9". */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_reg (newtok[1], AXP_REG_T11);
newtok[2] = newtok[0];
assemble_tokens ("or", newtok, 3, 1);
/* Emit "or $t10, $t12, $t10". */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_reg (newtok[1], AXP_REG_T12);
newtok[2] = newtok[0];
assemble_tokens ("or", newtok, 3, 1);
/* Emit "stq_u $t10, size-1($at)". */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_const (newtok[1], (1 << lgsize) - 1);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens ("stq_u", newtok, 3, 1);
/* Emit "stq_u $t9, 0($at)". */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_const (newtok[1], 0);
assemble_tokens ("stq_u", newtok, 3, 1);
}
/* Sign extend a half-word or byte. The 32-bit sign extend is
implemented as "addl $31, $r, $t" in the opcode table. */
static void
emit_sextX (const expressionS *tok,
int ntok,
const void * vlgsize)
{
long lgsize = (long) vlgsize;
if (alpha_target & AXP_OPCODE_BWX)
assemble_tokens (sextX_op[lgsize], tok, ntok, 0);
else
{
int bitshift = 64 - 8 * (1 << lgsize);
expressionS newtok[3];
/* Emit "sll src,bits,dst". */
newtok[0] = tok[0];
set_tok_const (newtok[1], bitshift);
newtok[2] = tok[ntok - 1];
assemble_tokens ("sll", newtok, 3, 1);
/* Emit "sra dst,bits,dst". */
newtok[0] = newtok[2];
assemble_tokens ("sra", newtok, 3, 1);
}
}
/* Implement the division and modulus macros. */
#ifdef OBJ_EVAX
/* Make register usage like in normal procedure call.
Don't clobber PV and RA. */
static void
emit_division (const expressionS *tok,
int ntok,
const void * symname)
{
/* DIVISION and MODULUS. Yech.
Convert
OP x,y,result
to
mov x,R16 # if x != R16
mov y,R17 # if y != R17
lda AT,__OP
jsr AT,(AT),0
mov R0,result
with appropriate optimizations if R0,R16,R17 are the registers
specified by the compiler. */
int xr, yr, rr;
symbolS *sym;
expressionS newtok[3];
xr = regno (tok[0].X_add_number);
yr = regno (tok[1].X_add_number);
if (ntok < 3)
rr = xr;
else
rr = regno (tok[2].X_add_number);
/* Move the operands into the right place. */
if (yr == AXP_REG_R16 && xr == AXP_REG_R17)
{
/* They are in exactly the wrong order -- swap through AT. */
if (alpha_noat_on)
as_bad (_("macro requires $at register while noat in effect"));
set_tok_reg (newtok[0], AXP_REG_R16);
set_tok_reg (newtok[1], AXP_REG_AT);
assemble_tokens ("mov", newtok, 2, 1);
set_tok_reg (newtok[0], AXP_REG_R17);
set_tok_reg (newtok[1], AXP_REG_R16);
assemble_tokens ("mov", newtok, 2, 1);
set_tok_reg (newtok[0], AXP_REG_AT);
set_tok_reg (newtok[1], AXP_REG_R17);
assemble_tokens ("mov", newtok, 2, 1);
}
else
{
if (yr == AXP_REG_R16)
{
set_tok_reg (newtok[0], AXP_REG_R16);
set_tok_reg (newtok[1], AXP_REG_R17);
assemble_tokens ("mov", newtok, 2, 1);
}
if (xr != AXP_REG_R16)
{
set_tok_reg (newtok[0], xr);
set_tok_reg (newtok[1], AXP_REG_R16);
assemble_tokens ("mov", newtok, 2, 1);
}
if (yr != AXP_REG_R16 && yr != AXP_REG_R17)
{
set_tok_reg (newtok[0], yr);
set_tok_reg (newtok[1], AXP_REG_R17);
assemble_tokens ("mov", newtok, 2, 1);
}
}
sym = symbol_find_or_make ((const char *) symname);
set_tok_reg (newtok[0], AXP_REG_AT);
set_tok_sym (newtok[1], sym, 0);
assemble_tokens ("lda", newtok, 2, 1);
/* Call the division routine. */
set_tok_reg (newtok[0], AXP_REG_AT);
set_tok_cpreg (newtok[1], AXP_REG_AT);
set_tok_const (newtok[2], 0);
assemble_tokens ("jsr", newtok, 3, 1);
/* Move the result to the right place. */
if (rr != AXP_REG_R0)
{
set_tok_reg (newtok[0], AXP_REG_R0);
set_tok_reg (newtok[1], rr);
assemble_tokens ("mov", newtok, 2, 1);
}
}
#else /* !OBJ_EVAX */
static void
emit_division (const expressionS *tok,
int ntok,
const void * symname)
{
/* DIVISION and MODULUS. Yech.
Convert
OP x,y,result
to
lda pv,__OP
mov x,t10
mov y,t11
jsr t9,(pv),__OP
mov t12,result
with appropriate optimizations if t10,t11,t12 are the registers
specified by the compiler. */
int xr, yr, rr;
symbolS *sym;
expressionS newtok[3];
xr = regno (tok[0].X_add_number);
yr = regno (tok[1].X_add_number);
if (ntok < 3)
rr = xr;
else
rr = regno (tok[2].X_add_number);
sym = symbol_find_or_make ((const char *) symname);
/* Move the operands into the right place. */
if (yr == AXP_REG_T10 && xr == AXP_REG_T11)
{
/* They are in exactly the wrong order -- swap through AT. */
if (alpha_noat_on)
as_bad (_("macro requires $at register while noat in effect"));
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_reg (newtok[1], AXP_REG_AT);
assemble_tokens ("mov", newtok, 2, 1);
set_tok_reg (newtok[0], AXP_REG_T11);
set_tok_reg (newtok[1], AXP_REG_T10);
assemble_tokens ("mov", newtok, 2, 1);
set_tok_reg (newtok[0], AXP_REG_AT);
set_tok_reg (newtok[1], AXP_REG_T11);
assemble_tokens ("mov", newtok, 2, 1);
}
else
{
if (yr == AXP_REG_T10)
{
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_reg (newtok[1], AXP_REG_T11);
assemble_tokens ("mov", newtok, 2, 1);
}
if (xr != AXP_REG_T10)
{
set_tok_reg (newtok[0], xr);
set_tok_reg (newtok[1], AXP_REG_T10);
assemble_tokens ("mov", newtok, 2, 1);
}
if (yr != AXP_REG_T10 && yr != AXP_REG_T11)
{
set_tok_reg (newtok[0], yr);
set_tok_reg (newtok[1], AXP_REG_T11);
assemble_tokens ("mov", newtok, 2, 1);
}
}
/* Call the division routine. */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_sym (newtok[1], sym, 0);
assemble_tokens ("jsr", newtok, 2, 1);
/* Reload the GP register. */
#ifdef OBJ_AOUT
FIXME
#endif
#if defined(OBJ_ECOFF) || defined(OBJ_ELF)
set_tok_reg (newtok[0], alpha_gp_register);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_T9);
assemble_tokens ("ldgp", newtok, 3, 1);
#endif
/* Move the result to the right place. */
if (rr != AXP_REG_T12)
{
set_tok_reg (newtok[0], AXP_REG_T12);
set_tok_reg (newtok[1], rr);
assemble_tokens ("mov", newtok, 2, 1);
}
}
#endif /* !OBJ_EVAX */
/* The jsr and jmp macros differ from their instruction counterparts
in that they can load the target address and default most
everything. */
static void
emit_jsrjmp (const expressionS *tok,
int ntok,
const void * vopname)
{
const char *opname = (const char *) vopname;
struct alpha_insn insn;
expressionS newtok[3];
int r, tokidx = 0;
long lituse = 0;
if (tokidx < ntok && tok[tokidx].X_op == O_register)
r = regno (tok[tokidx++].X_add_number);
else
r = strcmp (opname, "jmp") == 0 ? AXP_REG_ZERO : AXP_REG_RA;
set_tok_reg (newtok[0], r);
if (tokidx < ntok &&
(tok[tokidx].X_op == O_pregister || tok[tokidx].X_op == O_cpregister))
r = regno (tok[tokidx++].X_add_number);
#ifdef OBJ_EVAX
/* Keep register if jsr $n.<sym>. */
#else
else
{
int basereg = alpha_gp_register;
lituse = load_expression (r = AXP_REG_PV, &tok[tokidx],
&basereg, NULL, opname);
}
#endif
set_tok_cpreg (newtok[1], r);
#ifndef OBJ_EVAX
if (tokidx < ntok)
newtok[2] = tok[tokidx];
else
#endif
set_tok_const (newtok[2], 0);
assemble_tokens_to_insn (opname, newtok, 3, &insn);
if (lituse)
{
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_JSR;
insn.fixups[insn.nfixups].exp.X_op = O_absent;
insn.nfixups++;
insn.sequence = lituse;
}
#ifdef OBJ_EVAX
if (alpha_flag_replace
&& r == AXP_REG_RA
&& tok[tokidx].X_add_symbol
&& alpha_linkage_symbol)
{
/* Create a BOH reloc for 'jsr $27,NAME'. */
const char *symname = S_GET_NAME (tok[tokidx].X_add_symbol);
int symlen = strlen (symname);
char *ensymname;
/* Build the entry name as 'NAME..en'. */
ensymname = XNEWVEC (char, symlen + 5);
memcpy (ensymname, symname, symlen);
memcpy (ensymname + symlen, "..en", 5);
gas_assert (insn.nfixups < MAX_INSN_FIXUPS);
if (insn.nfixups > 0)
{
memmove (&insn.fixups[1], &insn.fixups[0],
sizeof(struct alpha_fixup) * insn.nfixups);
}
/* The fixup must be the same as the BFD_RELOC_ALPHA_NOP
case in load_expression. See B.4.5.2 of the OpenVMS
Linker Utility Manual. */
insn.fixups[0].reloc = BFD_RELOC_ALPHA_BOH;
insn.fixups[0].exp.X_op = O_symbol;
insn.fixups[0].exp.X_add_symbol = symbol_find_or_make (ensymname);
insn.fixups[0].exp.X_add_number = 0;
insn.fixups[0].xtrasym = alpha_linkage_symbol;
insn.fixups[0].procsym = alpha_evax_proc->symbol;
insn.nfixups++;
alpha_linkage_symbol = 0;
free (ensymname);
}
#endif
emit_insn (&insn);
}
/* The ret and jcr instructions differ from their instruction
counterparts in that everything can be defaulted. */
static void
emit_retjcr (const expressionS *tok,
int ntok,
const void * vopname)
{
const char *opname = (const char *) vopname;
expressionS newtok[3];
int r, tokidx = 0;
if (tokidx < ntok && tok[tokidx].X_op == O_register)
r = regno (tok[tokidx++].X_add_number);
else
r = AXP_REG_ZERO;
set_tok_reg (newtok[0], r);
if (tokidx < ntok &&
(tok[tokidx].X_op == O_pregister || tok[tokidx].X_op == O_cpregister))
r = regno (tok[tokidx++].X_add_number);
else
r = AXP_REG_RA;
set_tok_cpreg (newtok[1], r);
if (tokidx < ntok)
newtok[2] = tok[tokidx];
else
set_tok_const (newtok[2], strcmp (opname, "ret") == 0);
assemble_tokens (opname, newtok, 3, 0);
}
/* Implement the ldgp macro. */
static void
emit_ldgp (const expressionS *tok ATTRIBUTE_UNUSED,
int ntok ATTRIBUTE_UNUSED,
const void * unused ATTRIBUTE_UNUSED)
{
#ifdef OBJ_AOUT
FIXME
#endif
#if defined(OBJ_ECOFF) || defined(OBJ_ELF)
/* from "ldgp r1,n(r2)", generate "ldah r1,X(R2); lda r1,Y(r1)"
with appropriate constants and relocations. */
struct alpha_insn insn;
expressionS newtok[3];
expressionS addend;
#ifdef OBJ_ECOFF
if (regno (tok[2].X_add_number) == AXP_REG_PV)
ecoff_set_gp_prolog_size (0);
#endif
newtok[0] = tok[0];
set_tok_const (newtok[1], 0);
newtok[2] = tok[2];
assemble_tokens_to_insn ("ldah", newtok, 3, &insn);
addend = tok[1];
#ifdef OBJ_ECOFF
if (addend.X_op != O_constant)
as_bad (_("can not resolve expression"));
addend.X_op = O_symbol;
addend.X_add_symbol = alpha_gp_symbol;
#endif
insn.nfixups = 1;
insn.fixups[0].exp = addend;
insn.fixups[0].reloc = BFD_RELOC_ALPHA_GPDISP_HI16;
insn.sequence = next_sequence_num;
emit_insn (&insn);
set_tok_preg (newtok[2], tok[0].X_add_number);
assemble_tokens_to_insn ("lda", newtok, 3, &insn);
#ifdef OBJ_ECOFF
addend.X_add_number += 4;
#endif
insn.nfixups = 1;
insn.fixups[0].exp = addend;
insn.fixups[0].reloc = BFD_RELOC_ALPHA_GPDISP_LO16;
insn.sequence = next_sequence_num--;
emit_insn (&insn);
#endif /* OBJ_ECOFF || OBJ_ELF */
}
/* The macro table. */
static const struct alpha_macro alpha_macros[] =
{
/* Load/Store macros. */
{ "lda", emit_lda, NULL,
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldah", emit_ldah, NULL,
{ MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldl", emit_ir_load, "ldl",
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldl_l", emit_ir_load, "ldl_l",
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldq", emit_ir_load, "ldq",
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldq_l", emit_ir_load, "ldq_l",
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldq_u", emit_ir_load, "ldq_u",
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldf", emit_loadstore, "ldf",
{ MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldg", emit_loadstore, "ldg",
{ MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "lds", emit_loadstore, "lds",
{ MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldt", emit_loadstore, "ldt",
{ MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldb", emit_ldX, (void *) 0,
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldbu", emit_ldXu, (void *) 0,
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldw", emit_ldX, (void *) 1,
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "ldwu", emit_ldXu, (void *) 1,
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "uldw", emit_uldX, (void *) 1,
{ MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
{ "uldwu", emit_uldXu, (void *)</