| /* tc-d30v.c -- Assembler code for the Mitsubishi D30V |
| Copyright (C) 1997-2021 Free Software Foundation, Inc. |
| |
| This file is part of GAS, the GNU Assembler. |
| |
| GAS is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GAS is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GAS; see the file COPYING. If not, write to |
| the Free Software Foundation, 51 Franklin Street - Fifth Floor, |
| Boston, MA 02110-1301, USA. */ |
| |
| #include "as.h" |
| #include "safe-ctype.h" |
| #include "subsegs.h" |
| #include "opcode/d30v.h" |
| #include "dwarf2dbg.h" |
| |
| const char comment_chars[] = ";"; |
| const char line_comment_chars[] = "#"; |
| const char line_separator_chars[] = ""; |
| const char *md_shortopts = "OnNcC"; |
| const char EXP_CHARS[] = "eE"; |
| const char FLT_CHARS[] = "dD"; |
| |
| #include <limits.h> |
| #ifndef CHAR_BIT |
| #define CHAR_BIT 8 |
| #endif |
| |
| #define NOP_MULTIPLY 1 |
| #define NOP_ALL 2 |
| static int warn_nops = 0; |
| static int Optimizing = 0; |
| static int warn_register_name_conflicts = 1; |
| |
| #define FORCE_SHORT 1 |
| #define FORCE_LONG 2 |
| |
| /* EXEC types. */ |
| typedef enum _exec_type |
| { |
| EXEC_UNKNOWN, /* No order specified. */ |
| EXEC_PARALLEL, /* Done in parallel (FM=00). */ |
| EXEC_SEQ, /* Sequential (FM=01). */ |
| EXEC_REVSEQ /* Reverse sequential (FM=10). */ |
| } exec_type_enum; |
| |
| /* Fixups. */ |
| #define MAX_INSN_FIXUPS 5 |
| |
| struct d30v_fixup |
| { |
| expressionS exp; |
| int operand; |
| int pcrel; |
| int size; |
| bfd_reloc_code_real_type reloc; |
| }; |
| |
| typedef struct _fixups |
| { |
| int fc; |
| struct d30v_fixup fix[MAX_INSN_FIXUPS]; |
| struct _fixups *next; |
| } Fixups; |
| |
| static Fixups FixUps[2]; |
| static Fixups *fixups; |
| |
| /* Whether current and previous instruction are word multiply insns. */ |
| static int cur_mul32_p = 0; |
| static int prev_mul32_p = 0; |
| |
| /* The flag_explicitly_parallel is true iff the instruction being assembled |
| has been explicitly written as a parallel short-instruction pair by the |
| human programmer. It is used in parallel_ok () to distinguish between |
| those dangerous parallelizations attempted by the human, which are to be |
| allowed, and those attempted by the assembler, which are not. It is set |
| from md_assemble (). */ |
| static int flag_explicitly_parallel = 0; |
| static int flag_xp_state = 0; |
| |
| /* Whether current and previous left sub-instruction disables |
| execution of right sub-instruction. */ |
| static int cur_left_kills_right_p = 0; |
| static int prev_left_kills_right_p = 0; |
| |
| /* The known current alignment of the current section. */ |
| static int d30v_current_align; |
| static segT d30v_current_align_seg; |
| |
| /* The last seen label in the current section. This is used to auto-align |
| labels preceding instructions. */ |
| static symbolS *d30v_last_label; |
| |
| /* Two nops. */ |
| #define NOP_LEFT ((long long) NOP << 32) |
| #define NOP_RIGHT ((long long) NOP) |
| #define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT) |
| |
| struct option md_longopts[] = |
| { |
| {NULL, no_argument, NULL, 0} |
| }; |
| |
| size_t md_longopts_size = sizeof (md_longopts); |
| |
| /* Opcode hash table. */ |
| static htab_t d30v_hash; |
| |
| /* Do a binary search of the pre_defined_registers array to see if |
| NAME is a valid register name. Return the register number from the |
| array on success, or -1 on failure. */ |
| |
| static int |
| reg_name_search (char *name) |
| { |
| int middle, low, high; |
| int cmp; |
| |
| low = 0; |
| high = reg_name_cnt () - 1; |
| |
| do |
| { |
| middle = (low + high) / 2; |
| cmp = strcasecmp (name, pre_defined_registers[middle].name); |
| if (cmp < 0) |
| high = middle - 1; |
| else if (cmp > 0) |
| low = middle + 1; |
| else |
| { |
| if (symbol_find (name) != NULL) |
| { |
| if (warn_register_name_conflicts) |
| as_warn (_("Register name %s conflicts with symbol of the same name"), |
| name); |
| } |
| |
| return pre_defined_registers[middle].value; |
| } |
| } |
| while (low <= high); |
| |
| return -1; |
| } |
| |
| /* Check the string at input_line_pointer to see if it is a valid |
| register name. */ |
| |
| static int |
| register_name (expressionS *expressionP) |
| { |
| int reg_number; |
| char c, *p = input_line_pointer; |
| |
| while (*p && *p != '\n' && *p != '\r' && *p != ',' && *p != ' ' && *p != ')') |
| p++; |
| |
| c = *p; |
| if (c) |
| *p++ = 0; |
| |
| /* Look to see if it's in the register table. */ |
| reg_number = reg_name_search (input_line_pointer); |
| if (reg_number >= 0) |
| { |
| expressionP->X_op = O_register; |
| /* Temporarily store a pointer to the string here. */ |
| expressionP->X_op_symbol = (symbolS *) input_line_pointer; |
| expressionP->X_add_number = reg_number; |
| input_line_pointer = p; |
| return 1; |
| } |
| if (c) |
| *(p - 1) = c; |
| return 0; |
| } |
| |
| static int |
| check_range (unsigned long num, int bits, int flags) |
| { |
| long min, max; |
| |
| /* Don't bother checking 32-bit values. */ |
| if (bits == 32) |
| { |
| if (sizeof (unsigned long) * CHAR_BIT == 32) |
| return 0; |
| |
| /* We don't record signed or unsigned for 32-bit quantities. |
| Allow either. */ |
| min = -((unsigned long) 1 << (bits - 1)); |
| max = ((unsigned long) 1 << bits) - 1; |
| return (long) num < min || (long) num > max; |
| } |
| |
| if (flags & OPERAND_SHIFT) |
| { |
| /* We know that all shifts are right by three bits. */ |
| num >>= 3; |
| |
| if (flags & OPERAND_SIGNED) |
| { |
| unsigned long sign_bit = ((unsigned long) -1L >> 4) + 1; |
| num = (num ^ sign_bit) - sign_bit; |
| } |
| } |
| |
| if (flags & OPERAND_SIGNED) |
| { |
| max = ((unsigned long) 1 << (bits - 1)) - 1; |
| min = - ((unsigned long) 1 << (bits - 1)); |
| return (long) num > max || (long) num < min; |
| } |
| else |
| { |
| max = ((unsigned long) 1 << bits) - 1; |
| return num > (unsigned long) max; |
| } |
| } |
| |
| void |
| md_show_usage (FILE *stream) |
| { |
| fprintf (stream, _("\nD30V options:\n\ |
| -O Make adjacent short instructions parallel if possible.\n\ |
| -n Warn about all NOPs inserted by the assembler.\n\ |
| -N Warn about NOPs inserted after word multiplies.\n\ |
| -c Warn about symbols whose names match register names.\n\ |
| -C Opposite of -C. -c is the default.\n")); |
| } |
| |
| int |
| md_parse_option (int c, const char *arg ATTRIBUTE_UNUSED) |
| { |
| switch (c) |
| { |
| /* Optimize. Will attempt to parallelize operations. */ |
| case 'O': |
| Optimizing = 1; |
| break; |
| |
| /* Warn about all NOPS that the assembler inserts. */ |
| case 'n': |
| warn_nops = NOP_ALL; |
| break; |
| |
| /* Warn about the NOPS that the assembler inserts because of the |
| multiply hazard. */ |
| case 'N': |
| warn_nops = NOP_MULTIPLY; |
| break; |
| |
| case 'c': |
| warn_register_name_conflicts = 1; |
| break; |
| |
| case 'C': |
| warn_register_name_conflicts = 0; |
| break; |
| |
| default: |
| return 0; |
| } |
| return 1; |
| } |
| |
| symbolS * |
| md_undefined_symbol (char *name ATTRIBUTE_UNUSED) |
| { |
| return 0; |
| } |
| |
| const char * |
| md_atof (int type, char *litP, int *sizeP) |
| { |
| return ieee_md_atof (type, litP, sizeP, true); |
| } |
| |
| void |
| md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, |
| asection *sec ATTRIBUTE_UNUSED, |
| fragS *fragP ATTRIBUTE_UNUSED) |
| { |
| abort (); |
| } |
| |
| valueT |
| md_section_align (asection *seg, valueT addr) |
| { |
| int align = bfd_section_alignment (seg); |
| return ((addr + (1 << align) - 1) & -(1 << align)); |
| } |
| |
| void |
| md_begin (void) |
| { |
| struct d30v_opcode *opcode; |
| d30v_hash = str_htab_create (); |
| |
| /* Insert opcode names into a hash table. */ |
| for (opcode = (struct d30v_opcode *) d30v_opcode_table; opcode->name; opcode++) |
| str_hash_insert (d30v_hash, opcode->name, opcode, 0); |
| |
| fixups = &FixUps[0]; |
| FixUps[0].next = &FixUps[1]; |
| FixUps[1].next = &FixUps[0]; |
| |
| d30v_current_align_seg = now_seg; |
| } |
| |
| /* Remove the postincrement or postdecrement operator ( '+' or '-' ) |
| from an expression. */ |
| |
| static int |
| postfix (char *p) |
| { |
| while (*p != '-' && *p != '+') |
| { |
| if (*p == 0 || *p == '\n' || *p == '\r' || *p == ' ' || *p == ',') |
| break; |
| p++; |
| } |
| |
| if (*p == '-') |
| { |
| *p = ' '; |
| return -1; |
| } |
| |
| if (*p == '+') |
| { |
| *p = ' '; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static bfd_reloc_code_real_type |
| get_reloc (const struct d30v_operand *op, int rel_flag) |
| { |
| switch (op->bits) |
| { |
| case 6: |
| if (op->flags & OPERAND_SHIFT) |
| return BFD_RELOC_D30V_9_PCREL; |
| else |
| return BFD_RELOC_D30V_6; |
| break; |
| case 12: |
| if (!(op->flags & OPERAND_SHIFT)) |
| as_warn (_("unexpected 12-bit reloc type")); |
| if (rel_flag == RELOC_PCREL) |
| return BFD_RELOC_D30V_15_PCREL; |
| else |
| return BFD_RELOC_D30V_15; |
| case 18: |
| if (!(op->flags & OPERAND_SHIFT)) |
| as_warn (_("unexpected 18-bit reloc type")); |
| if (rel_flag == RELOC_PCREL) |
| return BFD_RELOC_D30V_21_PCREL; |
| else |
| return BFD_RELOC_D30V_21; |
| case 32: |
| if (rel_flag == RELOC_PCREL) |
| return BFD_RELOC_D30V_32_PCREL; |
| else |
| return BFD_RELOC_D30V_32; |
| default: |
| return 0; |
| } |
| } |
| |
| /* Parse a string of operands and return an array of expressions. */ |
| |
| static int |
| get_operands (expressionS exp[], int cmp_hack) |
| { |
| char *p = input_line_pointer; |
| int numops = 0; |
| int post = 0; |
| |
| if (cmp_hack) |
| { |
| exp[numops].X_op = O_absent; |
| exp[numops++].X_add_number = cmp_hack - 1; |
| } |
| |
| while (*p) |
| { |
| while (*p == ' ' || *p == '\t' || *p == ',') |
| p++; |
| |
| if (*p == 0 || *p == '\n' || *p == '\r') |
| break; |
| |
| if (*p == '@') |
| { |
| p++; |
| exp[numops].X_op = O_absent; |
| if (*p == '(') |
| { |
| p++; |
| exp[numops].X_add_number = OPERAND_ATPAR; |
| post = postfix (p); |
| } |
| else if (*p == '-') |
| { |
| p++; |
| exp[numops].X_add_number = OPERAND_ATMINUS; |
| } |
| else |
| { |
| exp[numops].X_add_number = OPERAND_ATSIGN; |
| post = postfix (p); |
| } |
| numops++; |
| continue; |
| } |
| |
| if (*p == ')') |
| { |
| /* Just skip the trailing paren. */ |
| p++; |
| continue; |
| } |
| |
| input_line_pointer = p; |
| |
| /* Check to see if it might be a register name. */ |
| if (!register_name (&exp[numops])) |
| { |
| /* Parse as an expression. */ |
| expression (&exp[numops]); |
| } |
| |
| if (exp[numops].X_op == O_illegal) |
| as_bad (_("illegal operand")); |
| else if (exp[numops].X_op == O_absent) |
| as_bad (_("missing operand")); |
| |
| numops++; |
| p = input_line_pointer; |
| |
| switch (post) |
| { |
| case -1: |
| /* Postdecrement mode. */ |
| exp[numops].X_op = O_absent; |
| exp[numops++].X_add_number = OPERAND_MINUS; |
| break; |
| case 1: |
| /* Postincrement mode. */ |
| exp[numops].X_op = O_absent; |
| exp[numops++].X_add_number = OPERAND_PLUS; |
| break; |
| } |
| post = 0; |
| } |
| |
| exp[numops].X_op = 0; |
| |
| return numops; |
| } |
| |
| /* Generate the instruction. |
| It does everything but write the FM bits. */ |
| |
| static long long |
| build_insn (struct d30v_insn *opcode, expressionS *opers) |
| { |
| int i, bits, shift, flags; |
| unsigned long number, id = 0; |
| long long insn; |
| struct d30v_opcode *op = opcode->op; |
| struct d30v_format *form = opcode->form; |
| |
| insn = |
| opcode->ecc << 28 | op->op1 << 25 | op->op2 << 20 | form->modifier << 18; |
| |
| for (i = 0; form->operands[i]; i++) |
| { |
| flags = d30v_operand_table[form->operands[i]].flags; |
| |
| /* Must be a register or number. */ |
| if (!(flags & OPERAND_REG) && !(flags & OPERAND_NUM) |
| && !(flags & OPERAND_NAME) && !(flags & OPERAND_SPECIAL)) |
| continue; |
| |
| bits = d30v_operand_table[form->operands[i]].bits; |
| if (flags & OPERAND_SHIFT) |
| bits += 3; |
| |
| shift = 12 - d30v_operand_table[form->operands[i]].position; |
| if (opers[i].X_op != O_symbol) |
| number = opers[i].X_add_number; |
| else |
| number = 0; |
| if (flags & OPERAND_REG) |
| { |
| /* Check for mvfsys or mvtsys control registers. */ |
| if (flags & OPERAND_CONTROL && (number & 0x7f) > MAX_CONTROL_REG) |
| { |
| /* PSWL or PSWH. */ |
| id = (number & 0x7f) - MAX_CONTROL_REG; |
| number = 0; |
| } |
| else if (number & OPERAND_FLAG) |
| /* NUMBER is a flag register. */ |
| id = 3; |
| |
| number &= 0x7F; |
| } |
| else if (flags & OPERAND_SPECIAL) |
| number = id; |
| |
| if (opers[i].X_op != O_register && opers[i].X_op != O_constant |
| && !(flags & OPERAND_NAME)) |
| { |
| /* Now create a fixup. */ |
| if (fixups->fc >= MAX_INSN_FIXUPS) |
| as_fatal (_("too many fixups")); |
| |
| fixups->fix[fixups->fc].reloc = |
| get_reloc (d30v_operand_table + form->operands[i], op->reloc_flag); |
| fixups->fix[fixups->fc].size = 4; |
| fixups->fix[fixups->fc].exp = opers[i]; |
| fixups->fix[fixups->fc].operand = form->operands[i]; |
| if (fixups->fix[fixups->fc].reloc == BFD_RELOC_D30V_9_PCREL) |
| fixups->fix[fixups->fc].pcrel = RELOC_PCREL; |
| else |
| fixups->fix[fixups->fc].pcrel = op->reloc_flag; |
| (fixups->fc)++; |
| } |
| |
| /* Truncate to the proper number of bits. */ |
| if ((opers[i].X_op == O_constant) && check_range (number, bits, flags)) |
| as_bad (_("operand out of range: %ld"), number); |
| if (bits < 31) |
| number &= 0x7FFFFFFF >> (31 - bits); |
| if (flags & OPERAND_SHIFT) |
| number >>= 3; |
| if (bits == 32) |
| { |
| /* It's a LONG instruction. */ |
| insn |= ((number & 0xffffffff) >> 26); /* Top 6 bits. */ |
| insn <<= 32; /* Shift the first word over. */ |
| insn |= ((number & 0x03FC0000) << 2); /* Next 8 bits. */ |
| insn |= number & 0x0003FFFF; /* Bottom 18 bits. */ |
| } |
| else |
| insn |= number << shift; |
| } |
| |
| return insn; |
| } |
| |
| static void |
| d30v_number_to_chars (char *buf, /* Return 'nbytes' of chars here. */ |
| long long value, /* The value of the bits. */ |
| int n) /* Number of bytes in the output. */ |
| { |
| while (n--) |
| { |
| buf[n] = value & 0xff; |
| value >>= 8; |
| } |
| } |
| |
| /* Write out a long form instruction. */ |
| |
| static void |
| write_long (struct d30v_insn *opcode ATTRIBUTE_UNUSED, |
| long long insn, |
| Fixups *fx) |
| { |
| int i, where; |
| char *f = frag_more (8); |
| |
| dwarf2_emit_insn (8); |
| insn |= FM11; |
| d30v_number_to_chars (f, insn, 8); |
| |
| for (i = 0; i < fx->fc; i++) |
| { |
| if (fx->fix[i].reloc) |
| { |
| where = f - frag_now->fr_literal; |
| fix_new_exp (frag_now, where, fx->fix[i].size, &(fx->fix[i].exp), |
| fx->fix[i].pcrel, fx->fix[i].reloc); |
| } |
| } |
| |
| fx->fc = 0; |
| } |
| |
| /* Write out a short form instruction by itself. */ |
| |
| static void |
| write_1_short (struct d30v_insn *opcode, |
| long long insn, |
| Fixups *fx, |
| int use_sequential) |
| { |
| char *f = frag_more (8); |
| int i, where; |
| |
| dwarf2_emit_insn (8); |
| if (warn_nops == NOP_ALL) |
| as_warn (_("%s NOP inserted"), use_sequential ? |
| _("sequential") : _("parallel")); |
| |
| /* The other container needs to be NOP. */ |
| if (use_sequential) |
| { |
| /* Use a sequential NOP rather than a parallel one, |
| as the current instruction is a FLAG_MUL32 type one |
| and the next instruction is a load. */ |
| |
| /* According to 4.3.1: for FM=01, sub-instructions performed |
| only by IU cannot be encoded in L-container. */ |
| if (opcode->op->unit == IU) |
| /* Right then left. */ |
| insn |= FM10 | NOP_LEFT; |
| else |
| /* Left then right. */ |
| insn = FM01 | (insn << 32) | NOP_RIGHT; |
| } |
| else |
| { |
| /* According to 4.3.1: for FM=00, sub-instructions performed |
| only by IU cannot be encoded in L-container. */ |
| if (opcode->op->unit == IU) |
| /* Right container. */ |
| insn |= FM00 | NOP_LEFT; |
| else |
| /* Left container. */ |
| insn = FM00 | (insn << 32) | NOP_RIGHT; |
| } |
| |
| d30v_number_to_chars (f, insn, 8); |
| |
| for (i = 0; i < fx->fc; i++) |
| { |
| if (fx->fix[i].reloc) |
| { |
| where = f - frag_now->fr_literal; |
| fix_new_exp (frag_now, |
| where, |
| fx->fix[i].size, |
| &(fx->fix[i].exp), |
| fx->fix[i].pcrel, |
| fx->fix[i].reloc); |
| } |
| } |
| |
| fx->fc = 0; |
| } |
| |
| /* Check 2 instructions and determine if they can be safely |
| executed in parallel. Return 1 if they can be. */ |
| |
| static int |
| parallel_ok (struct d30v_insn *op1, |
| unsigned long insn1, |
| struct d30v_insn *op2, |
| unsigned long insn2, |
| exec_type_enum exec_type) |
| { |
| int i, j, shift, regno, bits, ecc; |
| unsigned long flags, mask, flags_set1, flags_set2, flags_used1, flags_used2; |
| unsigned long ins, mod_reg[2][3], used_reg[2][3], flag_reg[2]; |
| struct d30v_format *f; |
| struct d30v_opcode *op; |
| |
| /* Section 4.3: Both instructions must not be IU or MU only. */ |
| if ((op1->op->unit == IU && op2->op->unit == IU) |
| || (op1->op->unit == MU && op2->op->unit == MU)) |
| return 0; |
| |
| /* First instruction must not be a jump to safely optimize, unless this |
| is an explicit parallel operation. */ |
| if (exec_type != EXEC_PARALLEL |
| && (op1->op->flags_used & (FLAG_JMP | FLAG_JSR))) |
| return 0; |
| |
| /* If one instruction is /TX or /XT and the other is /FX or /XF respectively, |
| then it is safe to allow the two to be done as parallel ops, since only |
| one will ever be executed at a time. */ |
| if ((op1->ecc == ECC_TX && op2->ecc == ECC_FX) |
| || (op1->ecc == ECC_FX && op2->ecc == ECC_TX) |
| || (op1->ecc == ECC_XT && op2->ecc == ECC_XF) |
| || (op1->ecc == ECC_XF && op2->ecc == ECC_XT)) |
| return 1; |
| |
| /* [0] r0-r31 |
| [1] r32-r63 |
| [2] a0, a1, flag registers. */ |
| for (j = 0; j < 2; j++) |
| { |
| if (j == 0) |
| { |
| f = op1->form; |
| op = op1->op; |
| ecc = op1->ecc; |
| ins = insn1; |
| } |
| else |
| { |
| f = op2->form; |
| op = op2->op; |
| ecc = op2->ecc; |
| ins = insn2; |
| } |
| |
| flag_reg[j] = 0; |
| mod_reg[j][0] = mod_reg[j][1] = 0; |
| used_reg[j][0] = used_reg[j][1] = 0; |
| |
| if (flag_explicitly_parallel) |
| { |
| /* For human specified parallel instructions we have been asked |
| to ignore the possibility that both instructions could modify |
| bits in the PSW, so we initialise the mod & used arrays to 0. |
| We have been asked, however, to refuse to allow parallel |
| instructions which explicitly set the same flag register, |
| eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test |
| for the use of a flag register and set a bit in the mod or used |
| array appropriately. */ |
| mod_reg[j][2] = 0; |
| used_reg[j][2] = 0; |
| } |
| else |
| { |
| mod_reg[j][2] = (op->flags_set & FLAG_ALL); |
| used_reg[j][2] = (op->flags_used & FLAG_ALL); |
| } |
| |
| /* BSR/JSR always sets R62. */ |
| if (op->flags_used & FLAG_JSR) |
| mod_reg[j][1] = (1L << (62 - 32)); |
| |
| /* Conditional execution affects the flags_used. */ |
| switch (ecc) |
| { |
| case ECC_TX: |
| case ECC_FX: |
| used_reg[j][2] |= flag_reg[j] = FLAG_0; |
| break; |
| |
| case ECC_XT: |
| case ECC_XF: |
| used_reg[j][2] |= flag_reg[j] = FLAG_1; |
| break; |
| |
| case ECC_TT: |
| case ECC_TF: |
| used_reg[j][2] |= flag_reg[j] = (FLAG_0 | FLAG_1); |
| break; |
| } |
| |
| for (i = 0; f->operands[i]; i++) |
| { |
| flags = d30v_operand_table[f->operands[i]].flags; |
| shift = 12 - d30v_operand_table[f->operands[i]].position; |
| bits = d30v_operand_table[f->operands[i]].bits; |
| if (bits == 32) |
| mask = 0xffffffff; |
| else |
| mask = 0x7FFFFFFF >> (31 - bits); |
| |
| if ((flags & OPERAND_PLUS) || (flags & OPERAND_MINUS)) |
| { |
| /* This is a post-increment or post-decrement. |
| The previous register needs to be marked as modified. */ |
| shift = 12 - d30v_operand_table[f->operands[i - 1]].position; |
| regno = (ins >> shift) & 0x3f; |
| if (regno >= 32) |
| mod_reg[j][1] |= 1L << (regno - 32); |
| else |
| mod_reg[j][0] |= 1L << regno; |
| } |
| else if (flags & OPERAND_REG) |
| { |
| regno = (ins >> shift) & mask; |
| /* The memory write functions don't have a destination |
| register. */ |
| if ((flags & OPERAND_DEST) && !(op->flags_set & FLAG_MEM)) |
| { |
| /* MODIFIED registers and flags. */ |
| if (flags & OPERAND_ACC) |
| { |
| if (regno == 0) |
| mod_reg[j][2] |= FLAG_A0; |
| else if (regno == 1) |
| mod_reg[j][2] |= FLAG_A1; |
| else |
| abort (); |
| } |
| else if (flags & OPERAND_FLAG) |
| mod_reg[j][2] |= 1L << regno; |
| else if (!(flags & OPERAND_CONTROL)) |
| { |
| int r, z; |
| |
| /* Need to check if there are two destination |
| registers, for example ld2w. */ |
| if (flags & OPERAND_2REG) |
| z = 1; |
| else |
| z = 0; |
| |
| for (r = regno; r <= regno + z; r++) |
| { |
| if (r >= 32) |
| mod_reg[j][1] |= 1L << (r - 32); |
| else |
| mod_reg[j][0] |= 1L << r; |
| } |
| } |
| } |
| else |
| { |
| /* USED, but not modified registers and flags. */ |
| if (flags & OPERAND_ACC) |
| { |
| if (regno == 0) |
| used_reg[j][2] |= FLAG_A0; |
| else if (regno == 1) |
| used_reg[j][2] |= FLAG_A1; |
| else |
| abort (); |
| } |
| else if (flags & OPERAND_FLAG) |
| used_reg[j][2] |= 1L << regno; |
| else if (!(flags & OPERAND_CONTROL)) |
| { |
| int r, z; |
| |
| /* Need to check if there are two source |
| registers, for example st2w. */ |
| if (flags & OPERAND_2REG) |
| z = 1; |
| else |
| z = 0; |
| |
| for (r = regno; r <= regno + z; r++) |
| { |
| if (r >= 32) |
| used_reg[j][1] |= 1UL << (r - 32); |
| else |
| used_reg[j][0] |= 1UL << r; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| flags_set1 = op1->op->flags_set; |
| flags_set2 = op2->op->flags_set; |
| flags_used1 = op1->op->flags_used; |
| flags_used2 = op2->op->flags_used; |
| |
| /* Check for illegal combinations with ADDppp/SUBppp. */ |
| if (((flags_set1 & FLAG_NOT_WITH_ADDSUBppp) != 0 |
| && (flags_used2 & FLAG_ADDSUBppp) != 0) |
| || ((flags_set2 & FLAG_NOT_WITH_ADDSUBppp) != 0 |
| && (flags_used1 & FLAG_ADDSUBppp) != 0)) |
| return 0; |
| |
| /* Load instruction combined with half-word multiply is illegal. */ |
| if (((flags_used1 & FLAG_MEM) != 0 && (flags_used2 & FLAG_MUL16)) |
| || ((flags_used2 & FLAG_MEM) != 0 && (flags_used1 & FLAG_MUL16))) |
| return 0; |
| |
| /* Specifically allow add || add by removing carry, overflow bits dependency. |
| This is safe, even if an addc follows since the IU takes the argument in |
| the right container, and it writes its results last. |
| However, don't paralellize add followed by addc or sub followed by |
| subb. */ |
| if (mod_reg[0][2] == FLAG_CVVA && mod_reg[1][2] == FLAG_CVVA |
| && (used_reg[0][2] & ~flag_reg[0]) == 0 |
| && (used_reg[1][2] & ~flag_reg[1]) == 0 |
| && op1->op->unit == EITHER && op2->op->unit == EITHER) |
| { |
| mod_reg[0][2] = mod_reg[1][2] = 0; |
| } |
| |
| for (j = 0; j < 3; j++) |
| { |
| /* If the second instruction depends on the first, we obviously |
| cannot parallelize. Note, the mod flag implies use, so |
| check that as well. */ |
| /* If flag_explicitly_parallel is set, then the case of the |
| second instruction using a register the first instruction |
| modifies is assumed to be okay; we trust the human. We |
| don't trust the human if both instructions modify the same |
| register but we do trust the human if they modify the same |
| flags. */ |
| /* We have now been requested not to trust the human if the |
| instructions modify the same flag registers either. */ |
| if (flag_explicitly_parallel) |
| { |
| if ((mod_reg[0][j] & mod_reg[1][j]) != 0) |
| return 0; |
| } |
| else |
| if ((mod_reg[0][j] & (mod_reg[1][j] | used_reg[1][j])) != 0) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Write out a short form instruction if possible. |
| Return number of instructions not written out. */ |
| |
| static int |
| write_2_short (struct d30v_insn *opcode1, |
| long long insn1, |
| struct d30v_insn *opcode2, |
| long long insn2, |
| exec_type_enum exec_type, |
| Fixups *fx) |
| { |
| long long insn = NOP2; |
| char *f; |
| int i, j, where; |
| |
| if (exec_type == EXEC_SEQ |
| && (opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR)) |
| && ((opcode1->op->flags_used & FLAG_DELAY) == 0) |
| && ((opcode1->ecc == ECC_AL) || ! Optimizing)) |
| { |
| /* Unconditional, non-delayed branches kill instructions in |
| the right bin. Conditional branches don't always but if |
| we are not optimizing, then we have been asked to produce |
| an error about such constructs. For the purposes of this |
| test, subroutine calls are considered to be branches. */ |
| write_1_short (opcode1, insn1, fx->next, false); |
| return 1; |
| } |
| |
| /* Note: we do not have to worry about subroutine calls occurring |
| in the right hand container. The return address is always |
| aligned to the next 64 bit boundary, be that 64 or 32 bit away. */ |
| switch (exec_type) |
| { |
| case EXEC_UNKNOWN: /* Order not specified. */ |
| if (Optimizing |
| && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type) |
| && ! ( (opcode1->op->unit == EITHER_BUT_PREFER_MU |
| || opcode1->op->unit == MU) |
| && |
| ( opcode2->op->unit == EITHER_BUT_PREFER_MU |
| || opcode2->op->unit == MU))) |
| { |
| /* Parallel. */ |
| exec_type = EXEC_PARALLEL; |
| |
| if (opcode1->op->unit == IU |
| || opcode2->op->unit == MU |
| || opcode2->op->unit == EITHER_BUT_PREFER_MU) |
| insn = FM00 | (insn2 << 32) | insn1; |
| else |
| { |
| insn = FM00 | (insn1 << 32) | insn2; |
| fx = fx->next; |
| } |
| } |
| else if ((opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR) |
| && ((opcode1->op->flags_used & FLAG_DELAY) == 0)) |
| || opcode1->op->flags_used & FLAG_RP) |
| { |
| /* We must emit (non-delayed) branch type instructions |
| on their own with nothing in the right container. */ |
| /* We must treat repeat instructions likewise, since the |
| following instruction has to be separate from the repeat |
| in order to be repeated. */ |
| write_1_short (opcode1, insn1, fx->next, false); |
| return 1; |
| } |
| else if (prev_left_kills_right_p) |
| { |
| /* The left instruction kills the right slot, so we |
| must leave it empty. */ |
| write_1_short (opcode1, insn1, fx->next, false); |
| return 1; |
| } |
| else if (opcode1->op->unit == IU) |
| { |
| if (opcode2->op->unit == EITHER_BUT_PREFER_MU) |
| { |
| /* Case 103810 is a request from Mitsubishi that opcodes |
| with EITHER_BUT_PREFER_MU should not be executed in |
| reverse sequential order. */ |
| write_1_short (opcode1, insn1, fx->next, false); |
| return 1; |
| } |
| |
| /* Reverse sequential. */ |
| insn = FM10 | (insn2 << 32) | insn1; |
| exec_type = EXEC_REVSEQ; |
| } |
| else |
| { |
| /* Sequential. */ |
| insn = FM01 | (insn1 << 32) | insn2; |
| fx = fx->next; |
| exec_type = EXEC_SEQ; |
| } |
| break; |
| |
| case EXEC_PARALLEL: /* Parallel. */ |
| flag_explicitly_parallel = flag_xp_state; |
| if (! parallel_ok (opcode1, insn1, opcode2, insn2, exec_type)) |
| as_bad (_("Instructions may not be executed in parallel")); |
| else if (opcode1->op->unit == IU) |
| { |
| if (opcode2->op->unit == IU) |
| as_bad (_("Two IU instructions may not be executed in parallel")); |
| as_warn (_("Swapping instruction order")); |
| insn = FM00 | (insn2 << 32) | insn1; |
| } |
| else if (opcode2->op->unit == MU) |
| { |
| if (opcode1->op->unit == MU) |
| as_bad (_("Two MU instructions may not be executed in parallel")); |
| else if (opcode1->op->unit == EITHER_BUT_PREFER_MU) |
| as_warn (_("Executing %s in IU may not work"), opcode1->op->name); |
| as_warn (_("Swapping instruction order")); |
| insn = FM00 | (insn2 << 32) | insn1; |
| } |
| else |
| { |
| if (opcode2->op->unit == EITHER_BUT_PREFER_MU) |
| as_warn (_("Executing %s in IU may not work in parallel execution"), |
| opcode2->op->name); |
| |
| insn = FM00 | (insn1 << 32) | insn2; |
| fx = fx->next; |
| } |
| flag_explicitly_parallel = 0; |
| break; |
| |
| case EXEC_SEQ: /* Sequential. */ |
| if (opcode1->op->unit == IU) |
| as_bad (_("IU instruction may not be in the left container")); |
| if (prev_left_kills_right_p) |
| as_bad (_("special left instruction `%s' kills instruction " |
| "`%s' in right container"), |
| opcode1->op->name, opcode2->op->name); |
| insn = FM01 | (insn1 << 32) | insn2; |
| fx = fx->next; |
| break; |
| |
| case EXEC_REVSEQ: /* Reverse sequential. */ |
| if (opcode2->op->unit == MU) |
| as_bad (_("MU instruction may not be in the right container")); |
| if (opcode1->op->unit == EITHER_BUT_PREFER_MU) |
| as_warn (_("Executing %s in reverse serial with %s may not work"), |
| opcode1->op->name, opcode2->op->name); |
| else if (opcode2->op->unit == EITHER_BUT_PREFER_MU) |
| as_warn (_("Executing %s in IU in reverse serial may not work"), |
| opcode2->op->name); |
| insn = FM10 | (insn1 << 32) | insn2; |
| fx = fx->next; |
| break; |
| |
| default: |
| as_fatal (_("unknown execution type passed to write_2_short()")); |
| } |
| |
| f = frag_more (8); |
| dwarf2_emit_insn (8); |
| d30v_number_to_chars (f, insn, 8); |
| |
| /* If the previous instruction was a 32-bit multiply but it is put into a |
| parallel container, mark the current instruction as being a 32-bit |
| multiply. */ |
| if (prev_mul32_p && exec_type == EXEC_PARALLEL) |
| cur_mul32_p = 1; |
| |
| for (j = 0; j < 2; j++) |
| { |
| for (i = 0; i < fx->fc; i++) |
| { |
| if (fx->fix[i].reloc) |
| { |
| where = (f - frag_now->fr_literal) + 4 * j; |
| |
| fix_new_exp (frag_now, |
| where, |
| fx->fix[i].size, |
| &(fx->fix[i].exp), |
| fx->fix[i].pcrel, |
| fx->fix[i].reloc); |
| } |
| } |
| |
| fx->fc = 0; |
| fx = fx->next; |
| } |
| |
| return 0; |
| } |
| |
| /* Get a pointer to an entry in the format table. |
| It must look at all formats for an opcode and use the operands |
| to choose the correct one. Return NULL on error. */ |
| |
| static struct d30v_format * |
| find_format (struct d30v_opcode *opcode, |
| expressionS myops[], |
| int fsize, |
| int cmp_hack) |
| { |
| int match, opcode_index, i = 0, j, k; |
| struct d30v_format *fm; |
| |
| if (opcode == NULL) |
| return NULL; |
| |
| /* Get all the operands and save them as expressions. */ |
| get_operands (myops, cmp_hack); |
| |
| while ((opcode_index = opcode->format[i++]) != 0) |
| { |
| if (fsize == FORCE_SHORT && opcode_index >= LONG) |
| continue; |
| |
| if (fsize == FORCE_LONG && opcode_index < LONG) |
| continue; |
| |
| fm = (struct d30v_format *) &d30v_format_table[opcode_index]; |
| k = opcode_index; |
| while (fm->form == opcode_index) |
| { |
| match = 1; |
| /* Now check the operands for compatibility. */ |
| for (j = 0; match && fm->operands[j]; j++) |
| { |
| int flags = d30v_operand_table[fm->operands[j]].flags; |
| int bits = d30v_operand_table[fm->operands[j]].bits; |
| operatorT X_op = myops[j].X_op; |
| int num = myops[j].X_add_number; |
| |
| if (flags & OPERAND_SPECIAL) |
| break; |
| else if (X_op == O_illegal) |
| match = 0; |
| else if (flags & OPERAND_REG) |
| { |
| if (X_op != O_register |
| || ((flags & OPERAND_ACC) && !(num & OPERAND_ACC)) |
| || (!(flags & OPERAND_ACC) && (num & OPERAND_ACC)) |
| || ((flags & OPERAND_FLAG) && !(num & OPERAND_FLAG)) |
| || (!(flags & (OPERAND_FLAG | OPERAND_CONTROL)) && (num & OPERAND_FLAG)) |
| || ((flags & OPERAND_CONTROL) |
| && !(num & (OPERAND_CONTROL | OPERAND_FLAG)))) |
| match = 0; |
| } |
| else if (((flags & OPERAND_MINUS) |
| && (X_op != O_absent || num != OPERAND_MINUS)) |
| || ((flags & OPERAND_PLUS) |
| && (X_op != O_absent || num != OPERAND_PLUS)) |
| || ((flags & OPERAND_ATMINUS) |
| && (X_op != O_absent || num != OPERAND_ATMINUS)) |
| || ((flags & OPERAND_ATPAR) |
| && (X_op != O_absent || num != OPERAND_ATPAR)) |
| || ((flags & OPERAND_ATSIGN) |
| && (X_op != O_absent || num != OPERAND_ATSIGN))) |
| match = 0; |
| else if (flags & OPERAND_NUM) |
| { |
| /* A number can be a constant or symbol expression. */ |
| |
| /* If we have found a register name, but that name |
| also matches a symbol, then re-parse the name as |
| an expression. */ |
| if (X_op == O_register |
| && symbol_find ((char *) myops[j].X_op_symbol)) |
| { |
| input_line_pointer = (char *) myops[j].X_op_symbol; |
| expression (&myops[j]); |
| } |
| |
| /* Turn an expression into a symbol for later resolution. */ |
| if (X_op != O_absent && X_op != O_constant |
| && X_op != O_symbol && X_op != O_register |
| && X_op != O_big) |
| { |
| symbolS *sym = make_expr_symbol (&myops[j]); |
| myops[j].X_op = X_op = O_symbol; |
| myops[j].X_add_symbol = sym; |
| myops[j].X_add_number = num = 0; |
| } |
| |
| if (fm->form >= LONG) |
| { |
| /* If we're testing for a LONG format, either fits. */ |
| if (X_op != O_constant && X_op != O_symbol) |
| match = 0; |
| } |
| else if (fm->form < LONG |
| && ((fsize == FORCE_SHORT && X_op == O_symbol) |
| || (fm->form == SHORT_D2 && j == 0))) |
| match = 1; |
| |
| /* This is the tricky part. Will the constant or symbol |
| fit into the space in the current format? */ |
| else if (X_op == O_constant) |
| { |
| if (check_range (num, bits, flags)) |
| match = 0; |
| } |
| else if (X_op == O_symbol |
| && S_IS_DEFINED (myops[j].X_add_symbol) |
| && S_GET_SEGMENT (myops[j].X_add_symbol) == now_seg |
| && opcode->reloc_flag == RELOC_PCREL) |
| { |
| /* If the symbol is defined, see if the value will fit |
| into the form we're considering. */ |
| fragS *f; |
| long value; |
| |
| /* Calculate the current address by running through the |
| previous frags and adding our current offset. */ |
| value = frag_now_fix_octets (); |
| for (f = frchain_now->frch_root; f; f = f->fr_next) |
| value += f->fr_fix + f->fr_offset; |
| value = S_GET_VALUE (myops[j].X_add_symbol) - value; |
| if (check_range (value, bits, flags)) |
| match = 0; |
| } |
| else |
| match = 0; |
| } |
| } |
| /* We're only done if the operands matched so far AND there |
| are no more to check. */ |
| if (match && myops[j].X_op == 0) |
| { |
| /* Final check - issue a warning if an odd numbered register |
| is used as the first register in an instruction that reads |
| or writes 2 registers. */ |
| |
| for (j = 0; fm->operands[j]; j++) |
| if (myops[j].X_op == O_register |
| && (myops[j].X_add_number & 1) |
| && (d30v_operand_table[fm->operands[j]].flags & OPERAND_2REG)) |
| as_warn (_("Odd numbered register used as target of multi-register instruction")); |
| |
| return fm; |
| } |
| fm = (struct d30v_format *) &d30v_format_table[++k]; |
| } |
| } |
| return NULL; |
| } |
| |
| /* Assemble a single instruction and return an opcode. |
| Return -1 (an invalid opcode) on error. */ |
| |
| #define NAME_BUF_LEN 20 |
| |
| static long long |
| do_assemble (char *str, |
| struct d30v_insn *opcode, |
| int shortp, |
| int is_parallel) |
| { |
| char *op_start; |
| char *save; |
| char *op_end; |
| char name[NAME_BUF_LEN]; |
| int cmp_hack; |
| int nlen = 0; |
| int fsize = (shortp ? FORCE_SHORT : 0); |
| expressionS myops[6]; |
| long long insn; |
| |
| /* Drop leading whitespace. */ |
| while (*str == ' ') |
| str++; |
| |
| /* Find the opcode end. */ |
| for (op_start = op_end = str; |
| *op_end |
| && nlen < (NAME_BUF_LEN - 1) |
| && *op_end != '/' |
| && !is_end_of_line[(unsigned char) *op_end] && *op_end != ' '; |
| op_end++) |
| { |
| name[nlen] = TOLOWER (op_start[nlen]); |
| nlen++; |
| } |
| |
| if (nlen == 0) |
| return -1; |
| |
| name[nlen] = 0; |
| |
| /* If there is an execution condition code, handle it. */ |
| if (*op_end == '/') |
| { |
| int i = 0; |
| while ((i < ECC_MAX) && strncasecmp (d30v_ecc_names[i], op_end + 1, 2)) |
| i++; |
| |
| if (i == ECC_MAX) |
| { |
| char tmp[4]; |
| strncpy (tmp, op_end + 1, 2); |
| tmp[2] = 0; |
| as_bad (_("unknown condition code: %s"), tmp); |
| return -1; |
| } |
| opcode->ecc = i; |
| op_end += 3; |
| } |
| else |
| opcode->ecc = ECC_AL; |
| |
| /* CMP and CMPU change their name based on condition codes. */ |
| if (startswith (name, "cmp")) |
| { |
| int p, i; |
| char **d30v_str = (char **) d30v_cc_names; |
| |
| if (name[3] == 'u') |
| p = 4; |
| else |
| p = 3; |
| |
| for (i = 1; *d30v_str && strncmp (*d30v_str, &name[p], 2); i++, d30v_str++) |
| ; |
| |
| /* cmpu only supports some condition codes. */ |
| if (p == 4) |
| { |
| if (i < 3 || i > 6) |
| { |
| name[p + 2] = 0; |
| as_bad (_("cmpu doesn't support condition code %s"), &name[p]); |
| } |
| } |
| |
| if (!*d30v_str) |
| { |
| name[p + 2] = 0; |
| as_bad (_("unknown condition code: %s"), &name[p]); |
| } |
| |
| cmp_hack = i; |
| name[p] = 0; |
| } |
| else |
| cmp_hack = 0; |
| |
| /* Need to look for .s or .l. */ |
| if (name[nlen - 2] == '.') |
| { |
| switch (name[nlen - 1]) |
| { |
| case 's': |
| fsize = FORCE_SHORT; |
| break; |
| case 'l': |
| fsize = FORCE_LONG; |
| break; |
| } |
| name[nlen - 2] = 0; |
| } |
| |
| /* Find the first opcode with the proper name. */ |
| opcode->op = (struct d30v_opcode *) str_hash_find (d30v_hash, name); |
| if (opcode->op == NULL) |
| { |
| as_bad (_("unknown opcode: %s"), name); |
| return -1; |
| } |
| |
| save = input_line_pointer; |
| input_line_pointer = op_end; |
| while (!(opcode->form = find_format (opcode->op, myops, fsize, cmp_hack))) |
| { |
| opcode->op++; |
| if (opcode->op->name == NULL || strcmp (opcode->op->name, name)) |
| { |
| as_bad (_("operands for opcode `%s' do not match any valid format"), |
| name); |
| return -1; |
| } |
| } |
| input_line_pointer = save; |
| |
| insn = build_insn (opcode, myops); |
| |
| /* Propagate multiply status. */ |
| if (insn != -1) |
| { |
| if (is_parallel && prev_mul32_p) |
| cur_mul32_p = 1; |
| else |
| { |
| prev_mul32_p = cur_mul32_p; |
| cur_mul32_p = (opcode->op->flags_used & FLAG_MUL32) != 0; |
| } |
| } |
| |
| /* Propagate left_kills_right status. */ |
| if (insn != -1) |
| { |
| prev_left_kills_right_p = cur_left_kills_right_p; |
| |
| if (opcode->op->flags_set & FLAG_LKR) |
| { |
| cur_left_kills_right_p = 1; |
| |
| if (strcmp (opcode->op->name, "mvtsys") == 0) |
| { |
| /* Left kills right for only mvtsys only for |
| PSW/PSWH/PSWL/flags target. */ |
| if ((myops[0].X_op == O_register) && |
| ((myops[0].X_add_number == OPERAND_CONTROL) || /* psw */ |
| (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+2) || /* pswh */ |
| (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+1) || /* pswl */ |
| (myops[0].X_add_number == OPERAND_FLAG+0) || /* f0 */ |
| (myops[0].X_add_number == OPERAND_FLAG+1) || /* f1 */ |
| (myops[0].X_add_number == OPERAND_FLAG+2) || /* f2 */ |
| (myops[0].X_add_number == OPERAND_FLAG+3) || /* f3 */ |
| (myops[0].X_add_number == OPERAND_FLAG+4) || /* f4 */ |
| (myops[0].X_add_number == OPERAND_FLAG+5) || /* f5 */ |
| (myops[0].X_add_number == OPERAND_FLAG+6) || /* f6 */ |
| (myops[0].X_add_number == OPERAND_FLAG+7))) /* f7 */ |
| { |
| cur_left_kills_right_p = 1; |
| } |
| else |
| { |
| /* Other mvtsys target registers don't kill right |
| instruction. */ |
| cur_left_kills_right_p = 0; |
| } |
| } /* mvtsys */ |
| } |
| else |
| cur_left_kills_right_p = 0; |
| } |
| |
| return insn; |
| } |
| |
| /* Called internally to handle all alignment needs. This takes care |
| of eliding calls to frag_align if'n the cached current alignment |
| says we've already got it, as well as taking care of the auto-aligning |
| labels wrt code. */ |
| |
| static void |
| d30v_align (int n, char *pfill, symbolS *label) |
| { |
| /* The front end is prone to changing segments out from under us |
| temporarily when -g is in effect. */ |
| int switched_seg_p = (d30v_current_align_seg != now_seg); |
| |
| /* Do not assume that if 'd30v_current_align >= n' and |
| '! switched_seg_p' that it is safe to avoid performing |
| this alignment request. The alignment of the current frag |
| can be changed under our feet, for example by a .ascii |
| directive in the source code. cf testsuite/gas/d30v/reloc.s */ |
| d30v_cleanup (false); |
| |
| if (pfill == NULL) |
| { |
| if (n > 2 |
| && (bfd_section_flags (now_seg) & SEC_CODE) != 0) |
| { |
| static char const nop[4] = { 0x00, 0xf0, 0x00, 0x00 }; |
| |
| /* First, make sure we're on a four-byte boundary, in case |
| someone has been putting .byte values the text section. */ |
| if (d30v_current_align < 2 || switched_seg_p) |
| frag_align (2, 0, 0); |
| frag_align_pattern (n, nop, sizeof nop, 0); |
| } |
| else |
| frag_align (n, 0, 0); |
| } |
| else |
| frag_align (n, *pfill, 0); |
| |
| if (!switched_seg_p) |
| d30v_current_align = n; |
| |
| if (label != NULL) |
| { |
| symbolS *sym; |
| int label_seen = false; |
| struct frag *old_frag; |
| valueT old_value; |
| valueT new_value; |
| |
| gas_assert (S_GET_SEGMENT (label) == now_seg); |
| |
| old_frag = symbol_get_frag (label); |
| old_value = S_GET_VALUE (label); |
| new_value = (valueT) frag_now_fix (); |
| |
| /* It is possible to have more than one label at a particular |
| address, especially if debugging is enabled, so we must |
| take care to adjust all the labels at this address in this |
| fragment. To save time we search from the end of the symbol |
| list, backwards, since the symbols we are interested in are |
| almost certainly the ones that were most recently added. |
| Also to save time we stop searching once we have seen at least |
| one matching label, and we encounter a label that is no longer |
| in the target fragment. Note, this search is guaranteed to |
| find at least one match when sym == label, so no special case |
| code is necessary. */ |
| for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym)) |
| { |
| if (symbol_get_frag (sym) == old_frag |
| && S_GET_VALUE (sym) == old_value) |
| { |
| label_seen = true; |
| symbol_set_frag (sym, frag_now); |
| S_SET_VALUE (sym, new_value); |
| } |
| else if (label_seen && symbol_get_frag (sym) != old_frag) |
| break; |
| } |
| } |
| |
| record_alignment (now_seg, n); |
| } |
| |
| /* This is the main entry point for the machine-dependent assembler. |
| STR points to a machine-dependent instruction. This function is |
| supposed to emit the frags/bytes it assembles to. For the D30V, it |
| mostly handles the special VLIW parsing and packing and leaves the |
| difficult stuff to do_assemble (). */ |
| |
| static long long prev_insn = -1; |
| static struct d30v_insn prev_opcode; |
| static subsegT prev_subseg; |
| static segT prev_seg = 0; |
| |
| void |
| md_assemble (char *str) |
| { |
| struct d30v_insn opcode; |
| long long insn; |
| /* Execution type; parallel, etc. */ |
| exec_type_enum extype = EXEC_UNKNOWN; |
| /* Saved extype. Used for multiline instructions. */ |
| static exec_type_enum etype = EXEC_UNKNOWN; |
| char *str2; |
| |
| if ((prev_insn != -1) && prev_seg |
| && ((prev_seg != now_seg) || (prev_subseg != now_subseg))) |
| d30v_cleanup (false); |
| |
| if (d30v_current_align < 3) |
| d30v_align (3, NULL, d30v_last_label); |
| else if (d30v_current_align > 3) |
| d30v_current_align = 3; |
| d30v_last_label = NULL; |
| |
| flag_explicitly_parallel = 0; |
| flag_xp_state = 0; |
| if (etype == EXEC_UNKNOWN) |
| { |
| /* Look for the special multiple instruction separators. */ |
| str2 = strstr (str, "||"); |
| if (str2) |
| { |
| extype = EXEC_PARALLEL; |
| flag_xp_state = 1; |
| } |
| else |
| { |
| str2 = strstr (str, "->"); |
| if (str2) |
| extype = EXEC_SEQ; |
| else |
| { |
| str2 = strstr (str, "<-"); |
| if (str2) |
| extype = EXEC_REVSEQ; |
| } |
| } |
| |
| /* STR2 points to the separator, if one. */ |
| if (str2) |
| { |
| *str2 = 0; |
| |
| /* If two instructions are present and we already have one saved, |
| then first write it out. */ |
| d30v_cleanup (false); |
| |
| /* Assemble first instruction and save it. */ |
| prev_insn = do_assemble (str, &prev_opcode, 1, 0); |
| if (prev_insn == -1) |
| as_bad (_("Cannot assemble instruction")); |
| if (prev_opcode.form != NULL && prev_opcode.form->form >= LONG) |
| as_bad (_("First opcode is long. Unable to mix instructions as specified.")); |
| fixups = fixups->next; |
| str = str2 + 2; |
| prev_seg = now_seg; |
| prev_subseg = now_subseg; |
| } |
| } |
| |
| insn = do_assemble (str, &opcode, |
| (extype != EXEC_UNKNOWN || etype != EXEC_UNKNOWN), |
| extype == EXEC_PARALLEL); |
| if (insn == -1) |
| { |
| if (extype != EXEC_UNKNOWN) |
| etype = extype; |
| as_bad (_("Cannot assemble instruction")); |
| return; |
| } |
| |
| if (etype != EXEC_UNKNOWN) |
| { |
| extype = etype; |
| etype = EXEC_UNKNOWN; |
| } |
| |
| /* Word multiply instructions must not be followed by either a load or a |
| 16-bit multiply instruction in the next cycle. */ |
| if ( (extype != EXEC_REVSEQ) |
| && prev_mul32_p |
| && (opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16))) |
| { |
| /* However, load and multiply should able to be combined in a parallel |
| operation, so check for that first. */ |
| if (prev_insn != -1 |
| && (opcode.op->flags_used & FLAG_MEM) |
| && opcode.form->form < LONG |
| && (extype == EXEC_PARALLEL || (Optimizing && extype == EXEC_UNKNOWN)) |
| && parallel_ok (&prev_opcode, (long) prev_insn, |
| &opcode, (long) insn, extype) |
| && write_2_short (&prev_opcode, (long) prev_insn, |
| &opcode, (long) insn, extype, fixups) == 0) |
| { |
| /* No instructions saved. */ |
| prev_insn = -1; |
| return; |
| } |
| else |
| { |
| /* Can't parallelize, flush previous instruction and emit a |
| word of NOPS, unless the previous instruction is a NOP, |
| in which case just flush it, as this will generate a word |
| of NOPs for us. */ |
| |
| if (prev_insn != -1 && (strcmp (prev_opcode.op->name, "nop") == 0)) |
| d30v_cleanup (false); |
| else |
| { |
| char *f; |
| |
| if (prev_insn != -1) |
| d30v_cleanup (true); |
| else |
| { |
| f = frag_more (8); |
| dwarf2_emit_insn (8); |
| d30v_number_to_chars (f, NOP2, 8); |
| |
| if (warn_nops == NOP_ALL || warn_nops == NOP_MULTIPLY) |
| { |
| if (opcode.op->flags_used & FLAG_MEM) |
| as_warn (_("word of NOPs added between word multiply and load")); |
| else |
| as_warn (_("word of NOPs added between word multiply and 16-bit multiply")); |
| } |
| } |
| } |
| |
| extype = EXEC_UNKNOWN; |
| } |
| } |
| else if ( (extype == EXEC_REVSEQ) |
| && cur_mul32_p |
| && (prev_opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16))) |
| { |
| /* Can't parallelize, flush current instruction and add a |
| sequential NOP. */ |
| write_1_short (&opcode, (long) insn, fixups->next->next, true); |
| |
| /* Make the previous instruction the current one. */ |
| extype = EXEC_UNKNOWN; |
| insn = prev_insn; |
| now_seg = prev_seg; |
| now_subseg = prev_subseg; |
| prev_insn = -1; |
| cur_mul32_p = prev_mul32_p; |
| prev_mul32_p = 0; |
| memcpy (&opcode, &prev_opcode, sizeof (prev_opcode)); |
| } |
| |
| /* If this is a long instruction, write it and any previous short |
| instruction. */ |
| if (opcode.form->form >= LONG) |
| { |
| if (extype != EXEC_UNKNOWN) |
| as_bad (_("Instruction uses long version, so it cannot be mixed as specified")); |
| d30v_cleanup (false); |
| write_long (&opcode, insn, fixups); |
| prev_insn = -1; |
| } |
| else if ((prev_insn != -1) |
| && (write_2_short |
| (&prev_opcode, (long) prev_insn, &opcode, |
| (long) insn, extype, fixups) == 0)) |
| { |
| /* No instructions saved. */ |
| prev_insn = -1; |
| } |
| else |
| { |
| if (extype != EXEC_UNKNOWN) |
| as_bad (_("Unable to mix instructions as specified")); |
| |
| /* Save off last instruction so it may be packed on next pass. */ |
| memcpy (&prev_opcode, &opcode, sizeof (prev_opcode)); |
| prev_insn = insn; |
| prev_seg = now_seg; |
| prev_subseg = now_subseg; |
| fixups = fixups->next; |
| prev_mul32_p = cur_mul32_p; |
| } |
| } |
| |
| /* If while processing a fixup, a reloc really needs to be created, |
| then it is done here. */ |
| |
| arelent * |
| tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED, fixS *fixp) |
| { |
| arelent *reloc; |
| reloc = XNEW (arelent); |
| reloc->sym_ptr_ptr = XNEW (asymbol *); |
| *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); |
| reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; |
| reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); |
| if (reloc->howto == NULL) |
| { |
| as_bad_where (fixp->fx_file, fixp->fx_line, |
| _("reloc %d not supported by object file format"), |
| (int) fixp->fx_r_type); |
| return NULL; |
| } |
| |
| reloc->addend = 0; |
| return reloc; |
| } |
| |
| int |
| md_estimate_size_before_relax (fragS *fragp ATTRIBUTE_UNUSED, |
| asection *seg ATTRIBUTE_UNUSED) |
| { |
| abort (); |
| return 0; |
| } |
| |
| long |
| md_pcrel_from_section (fixS *fixp, segT sec) |
| { |
| if (fixp->fx_addsy != (symbolS *) NULL |
| && (!S_IS_DEFINED (fixp->fx_addsy) |
| || (S_GET_SEGMENT (fixp->fx_addsy) != sec))) |
| return 0; |
| return fixp->fx_frag->fr_address + fixp->fx_where; |
| } |
| |
| /* Called after the assembler has finished parsing the input file or |
| after a label is defined. Because the D30V assembler sometimes |
| saves short instructions to see if it can package them with the |
| next instruction, there may be a short instruction that still needs |
| written. */ |
| |
| int |
| d30v_cleanup (int use_sequential) |
| { |
| segT seg; |
| subsegT subseg; |
| |
| if (prev_insn != -1) |
| { |
| seg = now_seg; |
| subseg = now_subseg; |
| subseg_set (prev_seg, prev_subseg); |
| write_1_short (&prev_opcode, (long) prev_insn, fixups->next, |
| use_sequential); |
| subseg_set (seg, subseg); |
| prev_insn = -1; |
| if (use_sequential) |
| prev_mul32_p = false; |
| } |
| |
| return 1; |
| } |
| |
| /* This function is called at the start of every line. It checks to |
| see if the first character is a '.', which indicates the start of a |
| pseudo-op. If it is, then write out any unwritten instructions. */ |
| |
| void |
| d30v_start_line (void) |
| { |
| char *c = input_line_pointer; |
| |
| while (ISSPACE (*c)) |
| c++; |
| |
| if (*c == '.') |
| d30v_cleanup (false); |
| } |
| |
| static void |
| check_size (long value, int bits, const char *file, int line) |
| { |
| int tmp, max; |
| |
| if (value < 0) |
| tmp = ~value; |
| else |
| tmp = value; |
| |
| max = (1 << (bits - 1)) - 1; |
| |
| if (tmp > max) |
| as_bad_where (file, line, _("value too large to fit in %d bits"), bits); |
| } |
| |
| /* d30v_frob_label() is called when after a label is recognized. */ |
| |
| void |
| d30v_frob_label (symbolS *lab) |
| { |
| /* Emit any pending instructions. */ |
| d30v_cleanup (false); |
| |
| /* Update the label's address with the current output pointer. */ |
| symbol_set_frag (lab, frag_now); |
| S_SET_VALUE (lab, (valueT) frag_now_fix ()); |
| |
| /* Record this label for future adjustment after we find out what |
| kind of data it references, and the required alignment therewith. */ |
| d30v_last_label = lab; |
| |
| dwarf2_emit_label (lab); |
| } |
| |
| /* Hook into cons for capturing alignment changes. */ |
| |
| void |
| d30v_cons_align (int size) |
| { |
| int log_size; |
| |
| /* Don't specially align anything in debug sections. */ |
| if ((now_seg->flags & SEC_ALLOC) == 0 |
| || strcmp (now_seg->name, ".eh_frame") == 0) |
| return; |
| |
| log_size = 0; |
| while ((size >>= 1) != 0) |
| ++log_size; |
| |
| if (d30v_current_align < log_size) |
| d30v_align (log_size, (char *) NULL, NULL); |
| else if (d30v_current_align > log_size) |
| d30v_current_align = log_size; |
| d30v_last_label = NULL; |
| } |
| |
| void |
| md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED) |
| { |
| char *where; |
| unsigned long insn, insn2; |
| long value = *valP; |
| |
| if (fixP->fx_addsy == (symbolS *) NULL) |
| fixP->fx_done = 1; |
| |
| /* We don't support subtracting a symbol. */ |
| if (fixP->fx_subsy != (symbolS *) NULL) |
| as_bad_subtract (fixP); |
| |
| /* Fetch the instruction, insert the fully resolved operand |
| value, and stuff the instruction back again. */ |
| where = fixP->fx_frag->fr_literal + fixP->fx_where; |
| insn = bfd_getb32 ((unsigned char *) where); |
| |
| switch (fixP->fx_r_type) |
| { |
| case BFD_RELOC_8: |
| *(unsigned char *) where = value; |
| break; |
| |
| case BFD_RELOC_16: |
| bfd_putb16 ((bfd_vma) value, (unsigned char *) where); |
| break; |
| |
| case BFD_RELOC_64: |
| bfd_putb32 ((bfd_vma) value, (unsigned char *) where); |
| bfd_putb32 (0, ((unsigned char *) where) + 4); |
| break; |
| |
| case BFD_RELOC_D30V_6: |
| check_size (value, 6, fixP->fx_file, fixP->fx_line); |
| insn |= value & 0x3F; |
| bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); |
| break; |
| |
| case BFD_RELOC_D30V_9_PCREL: |
| if (fixP->fx_where & 0x7) |
| { |
| if (fixP->fx_done) |
| value += 4; |
| else |
| fixP->fx_r_type = BFD_RELOC_D30V_9_PCREL_R; |
| } |
| check_size (value, 9, fixP->fx_file, fixP->fx_line); |
| insn |= ((value >> 3) & 0x3F) << 12; |
| bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); |
| break; |
| |
| case BFD_RELOC_D30V_15: |
| check_size (value, 15, fixP->fx_file, fixP->fx_line); |
| insn |= (value >> 3) & 0xFFF; |
| bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); |
| break; |
| |
| case BFD_RELOC_D30V_15_PCREL: |
| if (fixP->fx_where & 0x7) |
| { |
| if (fixP->fx_done) |
| value += 4; |
| else |
| fixP->fx_r_type = BFD_RELOC_D30V_15_PCREL_R; |
| } |
| check_size (value, 15, fixP->fx_file, fixP->fx_line); |
| insn |= (value >> 3) & 0xFFF; |
| bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); |
| break; |
| |
| case BFD_RELOC_D30V_21: |
| check_size (value, 21, fixP->fx_file, fixP->fx_line); |
| insn |= (value >> 3) & 0x3FFFF; |
| bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); |
| break; |
| |
| case BFD_RELOC_D30V_21_PCREL: |
| if (fixP->fx_where & 0x7) |
| { |
| if (fixP->fx_done) |
| value += 4; |
| else |
| fixP->fx_r_type = BFD_RELOC_D30V_21_PCREL_R; |
| } |
| check_size (value, 21, fixP->fx_file, fixP->fx_line); |
| insn |= (value >> 3) & 0x3FFFF; |
| bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); |
| break; |
| |
| case BFD_RELOC_D30V_32: |
| insn2 = bfd_getb32 ((unsigned char *) where + 4); |
| insn |= (value >> 26) & 0x3F; /* Top 6 bits. */ |
| insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */ |
| insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */ |
| bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); |
| bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4); |
| break; |
| |
| case BFD_RELOC_D30V_32_PCREL: |
| insn2 = bfd_getb32 ((unsigned char *) where + 4); |
| insn |= (value >> 26) & 0x3F; /* Top 6 bits. */ |
| insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */ |
| insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */ |
| bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); |
| bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4); |
| break; |
| |
| case BFD_RELOC_32: |
| bfd_putb32 ((bfd_vma) value, (unsigned char *) where); |
| break; |
| |
| default: |
| as_bad (_("line %d: unknown relocation type: 0x%x"), |
| fixP->fx_line, fixP->fx_r_type); |
| } |
| } |
| |
| /* Handle the .align pseudo-op. This aligns to a power of two. We |
| hook here to latch the current alignment. */ |
| |
| static void |
| s_d30v_align (int ignore ATTRIBUTE_UNUSED) |
| { |
| int align; |
| char fill, *pfill = NULL; |
| long max_alignment = 15; |
| |
| align = get_absolute_expression (); |
| if (align > max_alignment) |
| { |
| align = max_alignment; |
| as_warn (_("Alignment too large: %d assumed"), align); |
| } |
| else if (align < 0) |
| { |
| as_warn (_("Alignment negative: 0 assumed")); |
| align = 0; |
| } |
| |
| if (*input_line_pointer == ',') |
| { |
| input_line_pointer++; |
| fill = get_absolute_expression (); |
| pfill = &fill; |
| } |
| |
| d30v_last_label = NULL; |
| d30v_align (align, pfill, NULL); |
| |
| demand_empty_rest_of_line (); |
| } |
| |
| /* Handle the .text pseudo-op. This is like the usual one, but it |
| clears the saved last label and resets known alignment. */ |
| |
| static void |
| s_d30v_text (int i) |
| |
| { |
| s_text (i); |
| d30v_last_label = NULL; |
| d30v_current_align = 0; |
| d30v_current_align_seg = now_seg; |
| } |
| |
| /* Handle the .data pseudo-op. This is like the usual one, but it |
| clears the saved last label and resets known alignment. */ |
| |
| static void |
| s_d30v_data (int i) |
| { |
| s_data (i); |
| d30v_last_label = NULL; |
| d30v_current_align = 0; |
| d30v_current_align_seg = now_seg; |
| } |
| |
| /* Handle the .section pseudo-op. This is like the usual one, but it |
| clears the saved last label and resets known alignment. */ |
| |
| static void |
| s_d30v_section (int ignore) |
| { |
| obj_elf_section (ignore); |
| d30v_last_label = NULL; |
| d30v_current_align = 0; |
| d30v_current_align_seg = now_seg; |
| } |
| |
| /* The target specific pseudo-ops which we support. */ |
| const pseudo_typeS md_pseudo_table[] = |
| { |
| { "word", cons, 4 }, |
| { "hword", cons, 2 }, |
| { "align", s_d30v_align, 0 }, |
| { "text", s_d30v_text, 0 }, |
| { "data", s_d30v_data, 0 }, |
| { "section", s_d30v_section, 0 }, |
| { "section.s", s_d30v_section, 0 }, |
| { "sect", s_d30v_section, 0 }, |
| { "sect.s", s_d30v_section, 0 }, |
| { NULL, NULL, 0 } |
| }; |