| /* tc-iq2000.c -- Assembler for the Sitera IQ2000. |
| Copyright (C) 2003-2021 Free Software Foundation, Inc. |
| |
| This file is part of GAS, the GNU Assembler. |
| |
| GAS is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GAS is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GAS; see the file COPYING. If not, write to |
| the Free Software Foundation, 51 Franklin Street - Fifth Floor, |
| Boston, MA 02110-1301, USA. */ |
| |
| #include "as.h" |
| #include "safe-ctype.h" |
| #include "subsegs.h" |
| #include "symcat.h" |
| #include "opcodes/iq2000-desc.h" |
| #include "opcodes/iq2000-opc.h" |
| #include "cgen.h" |
| #include "elf/common.h" |
| #include "elf/iq2000.h" |
| #include "sb.h" |
| #include "macro.h" |
| |
| /* Structure to hold all of the different components describing |
| an individual instruction. */ |
| typedef struct |
| { |
| const CGEN_INSN * insn; |
| const CGEN_INSN * orig_insn; |
| CGEN_FIELDS fields; |
| #if CGEN_INT_INSN_P |
| CGEN_INSN_INT buffer [1]; |
| #define INSN_VALUE(buf) (*(buf)) |
| #else |
| unsigned char buffer [CGEN_MAX_INSN_SIZE]; |
| #define INSN_VALUE(buf) (buf) |
| #endif |
| char * addr; |
| fragS * frag; |
| int num_fixups; |
| fixS * fixups [GAS_CGEN_MAX_FIXUPS]; |
| int indices [MAX_OPERAND_INSTANCES]; |
| } |
| iq2000_insn; |
| |
| const char comment_chars[] = "#"; |
| const char line_comment_chars[] = "#"; |
| const char line_separator_chars[] = ";"; |
| const char EXP_CHARS[] = "eE"; |
| const char FLT_CHARS[] = "dD"; |
| |
| /* Default machine. */ |
| #define DEFAULT_MACHINE bfd_mach_iq2000 |
| #define DEFAULT_FLAGS EF_IQ2000_CPU_IQ2000 |
| |
| static unsigned long iq2000_mach = bfd_mach_iq2000; |
| static int cpu_mach = (1 << MACH_IQ2000); |
| |
| /* Flags to set in the elf header. */ |
| static flagword iq2000_flags = DEFAULT_FLAGS; |
| |
| typedef struct proc |
| { |
| symbolS *isym; |
| unsigned long reg_mask; |
| unsigned long reg_offset; |
| unsigned long fpreg_mask; |
| unsigned long fpreg_offset; |
| unsigned long frame_offset; |
| unsigned long frame_reg; |
| unsigned long pc_reg; |
| } procS; |
| |
| static procS cur_proc; |
| static procS *cur_proc_ptr; |
| static int numprocs; |
| |
| /* Relocations against symbols are done in two |
| parts, with a HI relocation and a LO relocation. Each relocation |
| has only 16 bits of space to store an addend. This means that in |
| order for the linker to handle carries correctly, it must be able |
| to locate both the HI and the LO relocation. This means that the |
| relocations must appear in order in the relocation table. |
| |
| In order to implement this, we keep track of each unmatched HI |
| relocation. We then sort them so that they immediately precede the |
| corresponding LO relocation. */ |
| |
| struct iq2000_hi_fixup |
| { |
| struct iq2000_hi_fixup * next; /* Next HI fixup. */ |
| fixS * fixp; /* This fixup. */ |
| segT seg; /* The section this fixup is in. */ |
| }; |
| |
| /* The list of unmatched HI relocs. */ |
| static struct iq2000_hi_fixup * iq2000_hi_fixup_list; |
| |
| /* Macro hash table, which we will add to. */ |
| extern struct htab *macro_hash; |
| |
| const char *md_shortopts = ""; |
| struct option md_longopts[] = |
| { |
| {NULL, no_argument, NULL, 0} |
| }; |
| size_t md_longopts_size = sizeof (md_longopts); |
| |
| int |
| md_parse_option (int c ATTRIBUTE_UNUSED, |
| const char * arg ATTRIBUTE_UNUSED) |
| { |
| return 0; |
| } |
| |
| void |
| md_show_usage (FILE * stream ATTRIBUTE_UNUSED) |
| { |
| } |
| |
| /* Automatically enter conditional branch macros. */ |
| |
| typedef struct |
| { |
| const char * mnemonic; |
| const char ** expansion; |
| const char ** args; |
| } iq2000_macro_defs_s; |
| |
| static const char * abs_args[] = { "rd", "rs", "scratch=%1", NULL }; |
| static const char * abs_expn = "\n sra \\rd,\\rs,31\n xor \\scratch,\\rd,\\rs\n sub \\rd,\\scratch,\\rd\n"; |
| static const char * la_expn = "\n lui \\reg,%hi(\\label)\n ori \\reg,\\reg,%lo(\\label)\n"; |
| static const char * la_args[] = { "reg", "label", NULL }; |
| static const char * bxx_args[] = { "rs", "rt", "label", "scratch=%1", NULL }; |
| static const char * bge_expn = "\n slt \\scratch,\\rs,\\rt\n beq %0,\\scratch,\\label\n"; |
| static const char * bgeu_expn = "\n sltu \\scratch,\\rs,\\rt\n beq %0,\\scratch,\\label\n"; |
| static const char * bgt_expn = "\n slt \\scratch,\\rt,\\rs\n bne %0,\\scratch,\\label\n"; |
| static const char * bgtu_expn = "\n sltu \\scratch,\\rt,\\rs\n bne %0,\\scratch,\\label\n"; |
| static const char * ble_expn = "\n slt \\scratch,\\rt,\\rs\n beq %0,\\scratch,\\label\n"; |
| static const char * bleu_expn = "\n sltu \\scratch,\\rt,\\rs\n beq %0,\\scratch,\\label\n"; |
| static const char * blt_expn = "\n slt \\scratch,\\rs,\\rt\n bne %0,\\scratch,\\label\n"; |
| static const char * bltu_expn = "\n sltu \\scratch,\\rs,\\rt\n bne %0,\\scratch,\\label\n"; |
| static const char * sxx_args[] = { "rd", "rs", "rt", NULL }; |
| static const char * sge_expn = "\n slt \\rd,\\rs,\\rt\n xori \\rd,\\rd,1\n"; |
| static const char * sgeu_expn = "\n sltu \\rd,\\rs,\\rt\n xori \\rd,\\rd,1\n"; |
| static const char * sle_expn = "\n slt \\rd,\\rt,\\rs\n xori \\rd,\\rd,1\n"; |
| static const char * sleu_expn = "\n sltu \\rd,\\rt,\\rs\n xori \\rd,\\rd,1\n"; |
| static const char * sgt_expn = "\n slt \\rd,\\rt,\\rs\n"; |
| static const char * sgtu_expn = "\n sltu \\rd,\\rt,\\rs\n"; |
| static const char * sne_expn = "\n xor \\rd,\\rt,\\rs\n sltu \\rd,%0,\\rd\n"; |
| static const char * seq_expn = "\n xor \\rd,\\rt,\\rs\n sltu \\rd,%0,\\rd\n xori \\rd,\\rd,1\n"; |
| static const char * ai32_args[] = { "rt", "rs", "imm", NULL }; |
| static const char * andi32_expn = "\n\ |
| .if (\\imm & 0xffff0000 == 0xffff0000)\n\ |
| andoi \\rt,\\rs,%lo(\\imm)\n\ |
| .elseif (\\imm & 0x0000ffff == 0x0000ffff)\n\ |
| andoui \\rt,\\rs,%uhi(\\imm)\n\ |
| .elseif (\\imm & 0xffff0000 == 0x00000000)\n\ |
| andi \\rt,\\rs,%lo(\\imm)\n\ |
| .else\n\ |
| andoui \\rt,\\rs,%uhi(\\imm)\n\ |
| andoi \\rt,\\rt,%lo(\\imm)\n\ |
| .endif\n"; |
| static const char * ori32_expn = "\n\ |
| .if (\\imm & 0xffff == 0)\n\ |
| orui \\rt,\\rs,%uhi(\\imm)\n\ |
| .elseif (\\imm & 0xffff0000 == 0)\n\ |
| ori \\rt,\\rs,%lo(\\imm)\n\ |
| .else\n\ |
| orui \\rt,\\rs,%uhi(\\imm)\n\ |
| ori \\rt,\\rt,%lo(\\imm)\n\ |
| .endif\n"; |
| |
| static const char * neg_args[] = { "rd", "rs", NULL }; |
| static const char * neg_expn = "\n sub \\rd,%0,\\rs\n"; |
| static const char * negu_expn = "\n subu \\rd,%0,\\rs\n"; |
| static const char * li_args[] = { "rt", "imm", NULL }; |
| static const char * li_expn = "\n\ |
| .if (\\imm & 0xffff0000 == 0x0)\n\ |
| ori \\rt,%0,\\imm\n\ |
| .elseif (\\imm & 0xffff0000 == 0xffff0000)\n\ |
| addi \\rt,%0,\\imm\n\ |
| .elseif (\\imm & 0x0000ffff == 0)\n\ |
| lui \\rt,%uhi(\\imm)\n\ |
| .else\n\ |
| lui \\rt,%uhi(\\imm)\n\ |
| ori \\rt,\\rt,%lo(\\imm)\n\ |
| .endif\n"; |
| |
| static iq2000_macro_defs_s iq2000_macro_defs[] = |
| { |
| {"abs", (const char **) & abs_expn, (const char **) & abs_args}, |
| {"la", (const char **) & la_expn, (const char **) & la_args}, |
| {"bge", (const char **) & bge_expn, (const char **) & bxx_args}, |
| {"bgeu", (const char **) & bgeu_expn, (const char **) & bxx_args}, |
| {"bgt", (const char **) & bgt_expn, (const char **) & bxx_args}, |
| {"bgtu", (const char **) & bgtu_expn, (const char **) & bxx_args}, |
| {"ble", (const char **) & ble_expn, (const char **) & bxx_args}, |
| {"bleu", (const char **) & bleu_expn, (const char **) & bxx_args}, |
| {"blt", (const char **) & blt_expn, (const char **) & bxx_args}, |
| {"bltu", (const char **) & bltu_expn, (const char **) & bxx_args}, |
| {"sge", (const char **) & sge_expn, (const char **) & sxx_args}, |
| {"sgeu", (const char **) & sgeu_expn, (const char **) & sxx_args}, |
| {"sle", (const char **) & sle_expn, (const char **) & sxx_args}, |
| {"sleu", (const char **) & sleu_expn, (const char **) & sxx_args}, |
| {"sgt", (const char **) & sgt_expn, (const char **) & sxx_args}, |
| {"sgtu", (const char **) & sgtu_expn, (const char **) & sxx_args}, |
| {"seq", (const char **) & seq_expn, (const char **) & sxx_args}, |
| {"sne", (const char **) & sne_expn, (const char **) & sxx_args}, |
| {"neg", (const char **) & neg_expn, (const char **) & neg_args}, |
| {"negu", (const char **) & negu_expn, (const char **) & neg_args}, |
| {"li", (const char **) & li_expn, (const char **) & li_args}, |
| {"ori32", (const char **) & ori32_expn, (const char **) & ai32_args}, |
| {"andi32",(const char **) & andi32_expn,(const char **) & ai32_args}, |
| }; |
| |
| static void |
| iq2000_add_macro (const char * name, |
| const char * semantics, |
| const char ** arguments) |
| { |
| macro_entry *macro; |
| sb macro_name; |
| const char *namestr; |
| |
| macro = XNEW (macro_entry); |
| sb_new (& macro->sub); |
| sb_new (& macro_name); |
| |
| macro->formal_count = 0; |
| macro->formals = 0; |
| |
| sb_add_string (& macro->sub, semantics); |
| |
| if (arguments != NULL) |
| { |
| formal_entry ** p = ¯o->formals; |
| |
| macro->formal_count = 0; |
| macro->formal_hash = htab_create_alloc (7, hash_formal_entry, |
| eq_formal_entry, |
| NULL, xcalloc, free); |
| |
| |
| while (*arguments != NULL) |
| { |
| formal_entry *formal; |
| |
| formal = XNEW (formal_entry); |
| |
| sb_new (& formal->name); |
| sb_new (& formal->def); |
| sb_new (& formal->actual); |
| |
| /* chlm: Added the following to allow defaulted args. */ |
| if (strchr (*arguments,'=')) |
| { |
| char * tt_args = strdup (*arguments); |
| char * tt_dflt = strchr (tt_args,'='); |
| |
| *tt_dflt = 0; |
| sb_add_string (& formal->name, tt_args); |
| sb_add_string (& formal->def, tt_dflt + 1); |
| } |
| else |
| sb_add_string (& formal->name, *arguments); |
| |
| /* Add to macro's hash table. */ |
| htab_insert (macro->formal_hash, |
| formal_entry_alloc (sb_terminate (& formal->name), |
| formal), |
| 1); |
| formal->index = macro->formal_count; |
| macro->formal_count++; |
| *p = formal; |
| p = & formal->next; |
| *p = NULL; |
| ++arguments; |
| } |
| } |
| |
| sb_add_string (¯o_name, name); |
| namestr = sb_terminate (¯o_name); |
| htab_insert (macro_hash, macro_entry_alloc (namestr, macro), 1); |
| |
| macro_defined = 1; |
| } |
| |
| static void |
| iq2000_load_macros (void) |
| { |
| int i; |
| int mcnt = ARRAY_SIZE (iq2000_macro_defs); |
| |
| for (i = 0; i < mcnt; i++) |
| iq2000_add_macro (iq2000_macro_defs[i].mnemonic, |
| *iq2000_macro_defs[i].expansion, |
| iq2000_macro_defs[i].args); |
| } |
| |
| void |
| md_begin (void) |
| { |
| /* Initialize the `cgen' interface. */ |
| |
| /* Set the machine number and endian. */ |
| gas_cgen_cpu_desc = iq2000_cgen_cpu_open (CGEN_CPU_OPEN_MACHS, cpu_mach, |
| CGEN_CPU_OPEN_ENDIAN, |
| CGEN_ENDIAN_BIG, |
| CGEN_CPU_OPEN_END); |
| iq2000_cgen_init_asm (gas_cgen_cpu_desc); |
| |
| /* This is a callback from cgen to gas to parse operands. */ |
| cgen_set_parse_operand_fn (gas_cgen_cpu_desc, gas_cgen_parse_operand); |
| |
| /* Set the ELF flags if desired. */ |
| if (iq2000_flags) |
| bfd_set_private_flags (stdoutput, iq2000_flags); |
| |
| /* Set the machine type */ |
| bfd_default_set_arch_mach (stdoutput, bfd_arch_iq2000, iq2000_mach); |
| |
| iq2000_load_macros (); |
| } |
| |
| void |
| md_assemble (char * str) |
| { |
| static long delayed_load_register = 0; |
| static int last_insn_had_delay_slot = 0; |
| static int last_insn_has_load_delay = 0; |
| static int last_insn_unconditional_jump = 0; |
| static int last_insn_was_ldw = 0; |
| |
| iq2000_insn insn; |
| char * errmsg; |
| |
| /* Initialize GAS's cgen interface for a new instruction. */ |
| gas_cgen_init_parse (); |
| |
| insn.insn = iq2000_cgen_assemble_insn |
| (gas_cgen_cpu_desc, str, & insn.fields, insn.buffer, & errmsg); |
| |
| if (!insn.insn) |
| { |
| as_bad ("%s", errmsg); |
| return; |
| } |
| |
| /* Doesn't really matter what we pass for RELAX_P here. */ |
| gas_cgen_finish_insn (insn.insn, insn.buffer, |
| CGEN_FIELDS_BITSIZE (& insn.fields), 1, NULL); |
| |
| /* We need to generate an error if there's a yielding instruction in the delay |
| slot of a control flow modifying instruction (jump (yes), load (no)) */ |
| if ((last_insn_had_delay_slot && !last_insn_has_load_delay) && |
| CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_YIELD_INSN)) |
| as_bad (_("the yielding instruction %s may not be in a delay slot."), |
| CGEN_INSN_NAME (insn.insn)); |
| |
| /* Warn about odd numbered base registers for paired-register |
| instructions like LDW. On iq2000, result is always rt. */ |
| if (iq2000_mach == bfd_mach_iq2000 |
| && CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_EVEN_REG_NUM) |
| && (insn.fields.f_rt % 2)) |
| as_bad (_("Register number (R%ld) for double word access must be even."), |
| insn.fields.f_rt); |
| |
| /* Warn about insns that reference the target of a previous load. */ |
| /* NOTE: R0 is a special case and is not subject to load delays (except for ldw). */ |
| if (delayed_load_register && (last_insn_has_load_delay || last_insn_was_ldw)) |
| { |
| if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RD) && |
| insn.fields.f_rd == delayed_load_register) |
| as_warn (_("operand references R%ld of previous load."), |
| insn.fields.f_rd); |
| |
| if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RS) && |
| insn.fields.f_rs == delayed_load_register) |
| as_warn (_("operand references R%ld of previous load."), |
| insn.fields.f_rs); |
| |
| if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RT) && |
| insn.fields.f_rt == delayed_load_register) |
| as_warn (_("operand references R%ld of previous load."), |
| insn.fields.f_rt); |
| |
| if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_R31) && |
| delayed_load_register == 31) |
| as_warn (_("instruction implicitly accesses R31 of previous load.")); |
| } |
| |
| /* Warn about insns that reference the (target + 1) of a previous ldw. */ |
| if (last_insn_was_ldw) |
| { |
| if ((CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RD) |
| && insn.fields.f_rd == delayed_load_register + 1) |
| || (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RS) |
| && insn.fields.f_rs == delayed_load_register + 1) |
| || (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RT) |
| && insn.fields.f_rt == delayed_load_register + 1)) |
| as_warn (_("operand references R%ld of previous load."), |
| delayed_load_register + 1); |
| } |
| |
| last_insn_had_delay_slot = |
| CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_DELAY_SLOT); |
| |
| last_insn_has_load_delay = |
| CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_LOAD_DELAY); |
| |
| if (last_insn_unconditional_jump) |
| last_insn_has_load_delay = last_insn_unconditional_jump = 0; |
| else if (! strcmp (CGEN_INSN_MNEMONIC (insn.insn), "j") |
| || ! strcmp (CGEN_INSN_MNEMONIC (insn.insn), "jal")) |
| last_insn_unconditional_jump = 1; |
| |
| /* The meaning of EVEN_REG_NUM was overloaded to also imply LDW. Since |
| that's not true for IQ10, let's make the above logic specific to LDW. */ |
| last_insn_was_ldw = ! strcmp ("ldw", CGEN_INSN_NAME (insn.insn)); |
| |
| /* The assumption here is that the target of a load is always rt. */ |
| delayed_load_register = insn.fields.f_rt; |
| } |
| |
| valueT |
| md_section_align (segT segment, valueT size) |
| { |
| int align = bfd_section_alignment (segment); |
| return ((size + (1 << align) - 1) & -(1 << align)); |
| } |
| |
| symbolS * |
| md_undefined_symbol (char * name ATTRIBUTE_UNUSED) |
| { |
| return 0; |
| } |
| |
| /* Interface to relax_segment. */ |
| |
| /* Return an initial guess of the length by which a fragment must grow to |
| hold a branch to reach its destination. |
| Also updates fr_type/fr_subtype as necessary. |
| |
| Called just before doing relaxation. |
| Any symbol that is now undefined will not become defined. |
| The guess for fr_var is ACTUALLY the growth beyond fr_fix. |
| Whatever we do to grow fr_fix or fr_var contributes to our returned value. |
| Although it may not be explicit in the frag, pretend fr_var starts with a |
| 0 value. */ |
| |
| int |
| md_estimate_size_before_relax (fragS * fragP, |
| segT segment ATTRIBUTE_UNUSED) |
| { |
| int old_fr_fix = fragP->fr_fix; |
| |
| /* The only thing we have to handle here are symbols outside of the |
| current segment. They may be undefined or in a different segment in |
| which case linker scripts may place them anywhere. |
| However, we can't finish the fragment here and emit the reloc as insn |
| alignment requirements may move the insn about. */ |
| |
| return (fragP->fr_var + fragP->fr_fix - old_fr_fix); |
| } |
| |
| /* *fragP has been relaxed to its final size, and now needs to have |
| the bytes inside it modified to conform to the new size. |
| |
| Called after relaxation is finished. |
| fragP->fr_type == rs_machine_dependent. |
| fragP->fr_subtype is the subtype of what the address relaxed to. */ |
| |
| void |
| md_convert_frag (bfd * abfd ATTRIBUTE_UNUSED, |
| segT sec ATTRIBUTE_UNUSED, |
| fragS * fragP ATTRIBUTE_UNUSED) |
| { |
| } |
| |
| |
| /* Functions concerning relocs. */ |
| |
| long |
| md_pcrel_from_section (fixS * fixP, segT sec) |
| { |
| if (fixP->fx_addsy != (symbolS *) NULL |
| && (! S_IS_DEFINED (fixP->fx_addsy) |
| || S_GET_SEGMENT (fixP->fx_addsy) != sec)) |
| { |
| /* The symbol is undefined (or is defined but not in this section). |
| Let the linker figure it out. */ |
| return 0; |
| } |
| |
| /* Return the address of the delay slot. */ |
| return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address; |
| } |
| |
| /* Return the bfd reloc type for OPERAND of INSN at fixup FIXP. |
| Returns BFD_RELOC_NONE if no reloc type can be found. |
| *FIXP may be modified if desired. */ |
| |
| bfd_reloc_code_real_type |
| md_cgen_lookup_reloc (const CGEN_INSN * insn ATTRIBUTE_UNUSED, |
| const CGEN_OPERAND * operand, |
| fixS * fixP ATTRIBUTE_UNUSED) |
| { |
| switch (operand->type) |
| { |
| case IQ2000_OPERAND_OFFSET: return BFD_RELOC_16_PCREL_S2; |
| case IQ2000_OPERAND_JMPTARG: return BFD_RELOC_IQ2000_OFFSET_16; |
| case IQ2000_OPERAND_JMPTARGQ10: return BFD_RELOC_NONE; |
| case IQ2000_OPERAND_HI16: return BFD_RELOC_HI16; |
| case IQ2000_OPERAND_LO16: return BFD_RELOC_LO16; |
| default: break; |
| } |
| |
| return BFD_RELOC_NONE; |
| } |
| |
| /* Record a HI16 reloc for later matching with its LO16 cousin. */ |
| |
| static void |
| iq2000_record_hi16 (int reloc_type, |
| fixS * fixP, |
| segT seg ATTRIBUTE_UNUSED) |
| { |
| struct iq2000_hi_fixup * hi_fixup; |
| |
| gas_assert (reloc_type == BFD_RELOC_HI16); |
| |
| hi_fixup = XNEW (struct iq2000_hi_fixup); |
| hi_fixup->fixp = fixP; |
| hi_fixup->seg = now_seg; |
| hi_fixup->next = iq2000_hi_fixup_list; |
| |
| iq2000_hi_fixup_list = hi_fixup; |
| } |
| |
| /* Called while parsing an instruction to create a fixup. |
| We need to check for HI16 relocs and queue them up for later sorting. */ |
| |
| fixS * |
| iq2000_cgen_record_fixup_exp (fragS * frag, |
| int where, |
| const CGEN_INSN * insn, |
| int length, |
| const CGEN_OPERAND * operand, |
| int opinfo, |
| expressionS * exp) |
| { |
| fixS * fixP = gas_cgen_record_fixup_exp (frag, where, insn, length, |
| operand, opinfo, exp); |
| |
| if (operand->type == IQ2000_OPERAND_HI16 |
| /* If low/high was used, it is recorded in `opinfo'. */ |
| && (fixP->fx_cgen.opinfo == BFD_RELOC_HI16 |
| || fixP->fx_cgen.opinfo == BFD_RELOC_LO16)) |
| iq2000_record_hi16 (fixP->fx_cgen.opinfo, fixP, now_seg); |
| |
| return fixP; |
| } |
| |
| /* Return BFD reloc type from opinfo field in a fixS. |
| It's tricky using fx_r_type in iq2000_frob_file because the values |
| are BFD_RELOC_UNUSED + operand number. */ |
| #define FX_OPINFO_R_TYPE(f) ((f)->fx_cgen.opinfo) |
| |
| /* Sort any unmatched HI16 relocs so that they immediately precede |
| the corresponding LO16 reloc. This is called before md_apply_fix and |
| tc_gen_reloc. */ |
| |
| void |
| iq2000_frob_file (void) |
| { |
| struct iq2000_hi_fixup * l; |
| |
| for (l = iq2000_hi_fixup_list; l != NULL; l = l->next) |
| { |
| segment_info_type * seginfo; |
| int pass; |
| |
| gas_assert (FX_OPINFO_R_TYPE (l->fixp) == BFD_RELOC_HI16 |
| || FX_OPINFO_R_TYPE (l->fixp) == BFD_RELOC_LO16); |
| |
| /* Check quickly whether the next fixup happens to be a matching low. */ |
| if (l->fixp->fx_next != NULL |
| && FX_OPINFO_R_TYPE (l->fixp->fx_next) == BFD_RELOC_LO16 |
| && l->fixp->fx_addsy == l->fixp->fx_next->fx_addsy |
| && l->fixp->fx_offset == l->fixp->fx_next->fx_offset) |
| continue; |
| |
| /* Look through the fixups for this segment for a matching |
| `low'. When we find one, move the high just in front of it. |
| We do this in two passes. In the first pass, we try to find |
| a unique `low'. In the second pass, we permit multiple |
| high's relocs for a single `low'. */ |
| seginfo = seg_info (l->seg); |
| for (pass = 0; pass < 2; pass++) |
| { |
| fixS * f; |
| fixS * prev; |
| |
| prev = NULL; |
| for (f = seginfo->fix_root; f != NULL; f = f->fx_next) |
| { |
| /* Check whether this is a `low' fixup which matches l->fixp. */ |
| if (FX_OPINFO_R_TYPE (f) == BFD_RELOC_LO16 |
| && f->fx_addsy == l->fixp->fx_addsy |
| && f->fx_offset == l->fixp->fx_offset |
| && (pass == 1 |
| || prev == NULL |
| || (FX_OPINFO_R_TYPE (prev) != BFD_RELOC_HI16) |
| || prev->fx_addsy != f->fx_addsy |
| || prev->fx_offset != f->fx_offset)) |
| { |
| fixS ** pf; |
| |
| /* Move l->fixp before f. */ |
| for (pf = &seginfo->fix_root; |
| * pf != l->fixp; |
| pf = & (* pf)->fx_next) |
| gas_assert (* pf != NULL); |
| |
| * pf = l->fixp->fx_next; |
| |
| l->fixp->fx_next = f; |
| if (prev == NULL) |
| seginfo->fix_root = l->fixp; |
| else |
| prev->fx_next = l->fixp; |
| |
| break; |
| } |
| |
| prev = f; |
| } |
| |
| if (f != NULL) |
| break; |
| |
| if (pass == 1) |
| as_warn_where (l->fixp->fx_file, l->fixp->fx_line, |
| _("Unmatched high relocation")); |
| } |
| } |
| } |
| |
| /* See whether we need to force a relocation into the output file. */ |
| |
| int |
| iq2000_force_relocation (fixS * fix) |
| { |
| if (fix->fx_r_type == BFD_RELOC_VTABLE_INHERIT |
| || fix->fx_r_type == BFD_RELOC_VTABLE_ENTRY) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Handle the .set pseudo-op. */ |
| |
| static void |
| s_iq2000_set (int x ATTRIBUTE_UNUSED) |
| { |
| static const char * ignored_arguments [] = |
| { |
| "reorder", |
| "noreorder", |
| "at", |
| "noat", |
| "macro", |
| "nomacro", |
| "move", |
| "novolatile", |
| "nomove", |
| "volatile", |
| "bopt", |
| "nobopt", |
| NULL |
| }; |
| const char ** ignored; |
| char *name = input_line_pointer, ch; |
| char *save_ILP = input_line_pointer; |
| |
| while (!is_end_of_line[(unsigned char) *input_line_pointer]) |
| input_line_pointer++; |
| ch = *input_line_pointer; |
| *input_line_pointer = '\0'; |
| |
| for (ignored = ignored_arguments; * ignored; ignored ++) |
| if (strcmp (* ignored, name) == 0) |
| break; |
| if (* ignored == NULL) |
| { |
| /* We'd like to be able to use .set symbol, expn */ |
| input_line_pointer = save_ILP; |
| s_set (0); |
| return; |
| } |
| *input_line_pointer = ch; |
| demand_empty_rest_of_line (); |
| } |
| |
| /* Write a value out to the object file, using the appropriate endianness. */ |
| |
| void |
| md_number_to_chars (char * buf, valueT val, int n) |
| { |
| number_to_chars_bigendian (buf, val, n); |
| } |
| |
| void |
| md_operand (expressionS * exp) |
| { |
| /* In case of a syntax error, escape back to try next syntax combo. */ |
| if (exp->X_op == O_absent) |
| gas_cgen_md_operand (exp); |
| } |
| |
| const char * |
| md_atof (int type, char * litP, int * sizeP) |
| { |
| return ieee_md_atof (type, litP, sizeP, true); |
| } |
| |
| bool |
| iq2000_fix_adjustable (fixS * fixP) |
| { |
| bfd_reloc_code_real_type reloc_type; |
| |
| if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED) |
| { |
| const CGEN_INSN *insn = NULL; |
| int opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED; |
| const CGEN_OPERAND *operand = cgen_operand_lookup_by_num(gas_cgen_cpu_desc, opindex); |
| |
| reloc_type = md_cgen_lookup_reloc (insn, operand, fixP); |
| } |
| else |
| reloc_type = fixP->fx_r_type; |
| |
| if (fixP->fx_addsy == NULL) |
| return true; |
| |
| /* Prevent all adjustments to global symbols. */ |
| if (S_IS_EXTERNAL (fixP->fx_addsy)) |
| return false; |
| |
| if (S_IS_WEAK (fixP->fx_addsy)) |
| return false; |
| |
| /* We need the symbol name for the VTABLE entries. */ |
| if ( reloc_type == BFD_RELOC_VTABLE_INHERIT |
| || reloc_type == BFD_RELOC_VTABLE_ENTRY) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| s_change_sec (int sec) |
| { |
| #ifdef OBJ_ELF |
| /* The ELF backend needs to know that we are changing sections, so |
| that .previous works correctly. We could do something like check |
| for a obj_section_change_hook macro, but that might be confusing |
| as it would not be appropriate to use it in the section changing |
| functions in read.c, since obj-elf.c intercepts those. FIXME: |
| This should be cleaner, somehow. */ |
| obj_elf_section_change_hook (); |
| #endif |
| |
| switch (sec) |
| { |
| case 't': |
| s_text (0); |
| break; |
| case 'd': |
| case 'r': |
| s_data (0); |
| break; |
| } |
| } |
| |
| static symbolS * |
| get_symbol (void) |
| { |
| int c; |
| char *name; |
| symbolS *p; |
| |
| c = get_symbol_name (&name); |
| p = (symbolS *) symbol_find_or_make (name); |
| (void) restore_line_pointer (c); |
| return p; |
| } |
| |
| /* The .end directive. */ |
| |
| static void |
| s_iq2000_end (int x ATTRIBUTE_UNUSED) |
| { |
| symbolS *p; |
| int maybe_text; |
| |
| if (!is_end_of_line[(unsigned char) *input_line_pointer]) |
| { |
| p = get_symbol (); |
| demand_empty_rest_of_line (); |
| } |
| else |
| p = NULL; |
| |
| if ((bfd_section_flags (now_seg) & SEC_CODE) != 0) |
| maybe_text = 1; |
| else |
| maybe_text = 0; |
| |
| if (!maybe_text) |
| as_warn (_(".end not in text section")); |
| |
| if (!cur_proc_ptr) |
| { |
| as_warn (_(".end directive without a preceding .ent directive.")); |
| demand_empty_rest_of_line (); |
| return; |
| } |
| |
| if (p != NULL) |
| { |
| gas_assert (S_GET_NAME (p)); |
| if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->isym))) |
| as_warn (_(".end symbol does not match .ent symbol.")); |
| } |
| else |
| as_warn (_(".end directive missing or unknown symbol")); |
| |
| cur_proc_ptr = NULL; |
| } |
| |
| static int |
| get_number (void) |
| { |
| int negative = 0; |
| long val = 0; |
| |
| if (*input_line_pointer == '-') |
| { |
| ++input_line_pointer; |
| negative = 1; |
| } |
| |
| if (! ISDIGIT (*input_line_pointer)) |
| as_bad (_("Expected simple number.")); |
| |
| if (input_line_pointer[0] == '0') |
| { |
| if (input_line_pointer[1] == 'x') |
| { |
| input_line_pointer += 2; |
| while (ISXDIGIT (*input_line_pointer)) |
| { |
| val <<= 4; |
| val |= hex_value (*input_line_pointer++); |
| } |
| return negative ? -val : val; |
| } |
| else |
| { |
| ++input_line_pointer; |
| |
| while (ISDIGIT (*input_line_pointer)) |
| { |
| val <<= 3; |
| val |= *input_line_pointer++ - '0'; |
| } |
| return negative ? -val : val; |
| } |
| } |
| |
| if (! ISDIGIT (*input_line_pointer)) |
| { |
| printf (_(" *input_line_pointer == '%c' 0x%02x\n"), |
| *input_line_pointer, *input_line_pointer); |
| as_warn (_("Invalid number")); |
| return -1; |
| } |
| |
| while (ISDIGIT (*input_line_pointer)) |
| { |
| val *= 10; |
| val += *input_line_pointer++ - '0'; |
| } |
| |
| return negative ? -val : val; |
| } |
| |
| /* The .aent and .ent directives. */ |
| |
| static void |
| s_iq2000_ent (int aent) |
| { |
| symbolS *symbolP; |
| int maybe_text; |
| |
| symbolP = get_symbol (); |
| if (*input_line_pointer == ',') |
| input_line_pointer++; |
| SKIP_WHITESPACE (); |
| if (ISDIGIT (*input_line_pointer) || *input_line_pointer == '-') |
| get_number (); |
| |
| if ((bfd_section_flags (now_seg) & SEC_CODE) != 0) |
| maybe_text = 1; |
| else |
| maybe_text = 0; |
| |
| if (!maybe_text) |
| as_warn (_(".ent or .aent not in text section.")); |
| |
| if (!aent && cur_proc_ptr) |
| as_warn (_("missing `.end'")); |
| |
| if (!aent) |
| { |
| cur_proc_ptr = &cur_proc; |
| memset (cur_proc_ptr, '\0', sizeof (procS)); |
| |
| cur_proc_ptr->isym = symbolP; |
| |
| symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION; |
| |
| numprocs++; |
| } |
| |
| demand_empty_rest_of_line (); |
| } |
| |
| /* The .frame directive. If the mdebug section is present (IRIX 5 native) |
| then ecoff.c (ecoff_directive_frame) is used. For embedded targets, |
| s_iq2000_frame is used so that we can set the PDR information correctly. |
| We can't use the ecoff routines because they make reference to the ecoff |
| symbol table (in the mdebug section). */ |
| |
| static void |
| s_iq2000_frame (int ignore) |
| { |
| s_ignore (ignore); |
| } |
| |
| /* The .fmask and .mask directives. If the mdebug section is present |
| (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For |
| embedded targets, s_iq2000_mask is used so that we can set the PDR |
| information correctly. We can't use the ecoff routines because they |
| make reference to the ecoff symbol table (in the mdebug section). */ |
| |
| static void |
| s_iq2000_mask (int reg_type) |
| { |
| s_ignore (reg_type); |
| } |
| |
| /* The target specific pseudo-ops which we support. */ |
| const pseudo_typeS md_pseudo_table[] = |
| { |
| { "align", s_align_bytes, 0 }, |
| { "word", cons, 4 }, |
| { "rdata", s_change_sec, 'r'}, |
| { "sdata", s_change_sec, 's'}, |
| { "set", s_iq2000_set, 0 }, |
| { "ent", s_iq2000_ent, 0 }, |
| { "end", s_iq2000_end, 0 }, |
| { "frame", s_iq2000_frame, 0 }, |
| { "fmask", s_iq2000_mask, 'F'}, |
| { "mask", s_iq2000_mask, 'R'}, |
| { "dword", cons, 8 }, |
| { "half", cons, 2 }, |
| { NULL, NULL, 0 } |
| }; |