blob: a6e876c3f912cdf035006283ec09d9c74575b78b [file] [log] [blame]
/* tc-m68hc11.c -- Assembler code for the Motorola 68HC11 & 68HC12.
Copyright (C) 1999-2021 Free Software Foundation, Inc.
Written by Stephane Carrez (stcarrez@nerim.fr)
XGATE and S12X added by James Murray (jsm@jsm-net.demon.co.uk)
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street - Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "as.h"
#include "safe-ctype.h"
#include "subsegs.h"
#include "opcode/m68hc11.h"
#include "dwarf2dbg.h"
#include "elf/m68hc11.h"
const char comment_chars[] = ";!";
const char line_comment_chars[] = "#*";
const char line_separator_chars[] = "";
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";
#define STATE_CONDITIONAL_BRANCH (1)
#define STATE_PC_RELATIVE (2)
#define STATE_INDEXED_OFFSET (3)
#define STATE_INDEXED_PCREL (4)
#define STATE_XBCC_BRANCH (5)
#define STATE_CONDITIONAL_BRANCH_6812 (6)
#define STATE_BYTE (0)
#define STATE_BITS5 (0)
#define STATE_WORD (1)
#define STATE_BITS9 (1)
#define STATE_LONG (2)
#define STATE_BITS16 (2)
#define STATE_UNDF (3) /* Symbol undefined in pass1 */
/* This macro has no side-effects. */
#define ENCODE_RELAX(what,length) (((what) << 2) + (length))
#define RELAX_STATE(s) ((s) >> 2)
#define RELAX_LENGTH(s) ((s) & 3)
#define IS_OPCODE(C1,C2) (((C1) & 0x0FF) == ((C2) & 0x0FF))
/* This table describes how you change sizes for the various types of variable
size expressions. This version only supports two kinds. */
/* The fields are:
How far Forward this mode will reach.
How far Backward this mode will reach.
How many bytes this mode will add to the size of the frag.
Which mode to go to if the offset won't fit in this one. */
relax_typeS md_relax_table[] =
{
{1, 1, 0, 0}, /* First entries aren't used. */
{1, 1, 0, 0}, /* For no good reason except. */
{1, 1, 0, 0}, /* that the VAX doesn't either. */
{1, 1, 0, 0},
/* Relax for bcc <L>.
These insns are translated into b!cc +3 jmp L. */
{(127), (-128), 0, ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD)},
{0, 0, 3, 0},
{1, 1, 0, 0},
{1, 1, 0, 0},
/* Relax for bsr <L> and bra <L>.
These insns are translated into jsr and jmp. */
{(127), (-128), 0, ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD)},
{0, 0, 1, 0},
{1, 1, 0, 0},
{1, 1, 0, 0},
/* Relax for indexed offset: 5-bits, 9-bits, 16-bits. */
{(15), (-16), 0, ENCODE_RELAX (STATE_INDEXED_OFFSET, STATE_BITS9)},
{(255), (-256), 1, ENCODE_RELAX (STATE_INDEXED_OFFSET, STATE_BITS16)},
{0, 0, 2, 0},
{1, 1, 0, 0},
/* Relax for PC relative offset: 5-bits, 9-bits, 16-bits.
For the 9-bit case, there will be a -1 correction to take into
account the new byte that's why the range is -255..256. */
{(15), (-16), 0, ENCODE_RELAX (STATE_INDEXED_PCREL, STATE_BITS9)},
{(256), (-255), 1, ENCODE_RELAX (STATE_INDEXED_PCREL, STATE_BITS16)},
{0, 0, 2, 0},
{1, 1, 0, 0},
/* Relax for dbeq/ibeq/tbeq r,<L>:
These insns are translated into db!cc +3 jmp L. */
{(255), (-256), 0, ENCODE_RELAX (STATE_XBCC_BRANCH, STATE_WORD)},
{0, 0, 3, 0},
{1, 1, 0, 0},
{1, 1, 0, 0},
/* Relax for bcc <L> on 68HC12.
These insns are translated into lbcc <L>. */
{(127), (-128), 0, ENCODE_RELAX (STATE_CONDITIONAL_BRANCH_6812, STATE_WORD)},
{0, 0, 2, 0},
{1, 1, 0, 0},
{1, 1, 0, 0},
};
/* 68HC11 and 68HC12 registers. They are numbered according to the 68HC12. */
typedef enum register_id
{
REG_NONE = -1,
REG_A = 0,
REG_B = 1,
REG_CCR = 2,
REG_D = 4,
REG_X = 5,
REG_Y = 6,
REG_SP = 7,
REG_PC = 8,
REG_R0 = 0,
REG_R1 = 1,
REG_R2 = 2,
REG_R3 = 3,
REG_R4 = 4,
REG_R5 = 5,
REG_R6 = 6,
REG_R7 = 7,
REG_SP_XG = 8,
REG_PC_XG = 9,
REG_CCR_XG = 10
} register_id;
typedef struct operand
{
expressionS exp;
register_id reg1;
register_id reg2;
int mode;
} operand;
struct m68hc11_opcode_def
{
long format;
int min_operands;
int max_operands;
int nb_modes;
int used;
struct m68hc11_opcode *opcode;
};
static struct m68hc11_opcode_def *m68hc11_opcode_defs = 0;
static int m68hc11_nb_opcode_defs = 0;
typedef struct alias
{
const char *name;
const char *alias;
} alias;
static alias alias_opcodes[] =
{
{"cpd", "cmpd"},
{"cpx", "cmpx"},
{"cpy", "cmpy"},
{0, 0}
};
struct m9s12xg_opcode_def
{
long format;
int min_operands;
int max_operands;
int nb_modes;
int used;
struct m9s12xg_opcode *opcode;
};
/* Local functions. */
static register_id reg_name_search (char *);
static register_id register_name (void);
static int cmp_opcode (struct m68hc11_opcode *, struct m68hc11_opcode *);
static char *print_opcode_format (struct m68hc11_opcode *, int);
static char *skip_whites (char *);
static int check_range (long, int);
static void print_opcode_list (void);
static void get_default_target (void);
static void print_insn_format (char *);
static int get_operand (operand *, int, long);
static void fixup8 (expressionS *, int, int);
static void fixup16 (expressionS *, int, int);
static void fixup24 (expressionS *, int, int);
static void fixup8_xg (expressionS *, int, int);
static unsigned char convert_branch (unsigned char);
static char *m68hc11_new_insn (int);
static void build_dbranch_insn (struct m68hc11_opcode *,
operand *, int, int);
static int build_indexed_byte (operand *, int, int);
static int build_reg_mode (operand *, int);
static struct m68hc11_opcode *find (struct m68hc11_opcode_def *,
operand *, int);
static struct m68hc11_opcode *find_opcode (struct m68hc11_opcode_def *,
operand *, int *);
static void build_jump_insn (struct m68hc11_opcode *, operand *, int, int);
static void build_insn_xg (struct m68hc11_opcode *, operand *, int);
static void build_insn (struct m68hc11_opcode *, operand *, int);
static int relaxable_symbol (symbolS *);
/* Pseudo op to indicate a relax group. */
static void s_m68hc11_relax (int);
/* Pseudo op to control the ELF flags. */
static void s_m68hc11_mode (int);
/* Process directives specified via pseudo ops. */
static void s_m68hc11_parse_pseudo_instruction (int);
/* Mark the symbols with STO_M68HC12_FAR to indicate the functions
are using 'rtc' for returning. It is necessary to use 'call'
to invoke them. This is also used by the debugger to correctly
find the stack frame. */
static void s_m68hc11_mark_symbol (int);
/* Controls whether relative branches can be turned into long branches.
When the relative offset is too large, the insn are changed:
bra -> jmp
bsr -> jsr
bcc -> b!cc +3
jmp L
dbcc -> db!cc +3
jmp L
Setting the flag forbids this. */
static short flag_fixed_branches = 0;
/* Force to use long jumps (absolute) instead of relative branches. */
static short flag_force_long_jumps = 0;
/* Change the direct addressing mode into an absolute addressing mode
when the insn does not support direct addressing.
For example, "clr *ZD0" is normally not possible and is changed
into "clr ZDO". */
static short flag_strict_direct_addressing = 1;
/* When an opcode has invalid operand, print out the syntax of the opcode
to stderr. */
static short flag_print_insn_syntax = 0;
/* Dumps the list of instructions with syntax and then exit:
1 -> Only dumps the list (sorted by name)
2 -> Generate an example (or test) that can be compiled. */
static short flag_print_opcodes = 0;
/* Opcode hash table. */
static htab_t m68hc11_hash;
/* Current cpu (either cpu6811 or cpu6812). This is determined automagically
by 'get_default_target' by looking at default BFD vector. This is overridden
with the -m<cpu> option. */
static int current_architecture = 0;
/* Default cpu determined by 'get_default_target'. */
static const char *default_cpu;
/* Number of opcodes in the sorted table (filtered by current cpu). */
static int num_opcodes;
/* The opcodes sorted by name and filtered by current cpu. */
static struct m68hc11_opcode *m68hc11_sorted_opcodes;
/* ELF flags to set in the output file header. */
static int elf_flags = E_M68HC11_F64;
/* These are the machine dependent pseudo-ops. These are included so
the assembler can work on the output from the SUN C compiler, which
generates these. */
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function. */
const pseudo_typeS md_pseudo_table[] =
{
/* The following pseudo-ops are supported for MRI compatibility. */
{"fcb", cons, 1},
{"fdb", cons, 2},
{"fqb", cons, 4},
{"fcc", stringer, 8 + 1},
{"rmb", s_space, 0},
/* Motorola ALIS. */
{"xrefb", s_ignore, 0}, /* Same as xref */
/* Gcc driven relaxation. */
{"relax", s_m68hc11_relax, 0},
/* .mode instruction (ala SH). */
{"mode", s_m68hc11_mode, 0},
/* .far instruction. */
{"far", s_m68hc11_mark_symbol, STO_M68HC12_FAR},
/* .interrupt instruction. */
{"interrupt", s_m68hc11_mark_symbol, STO_M68HC12_INTERRUPT},
/* .nobankwarning instruction. */
{"nobankwarning", s_m68hc11_parse_pseudo_instruction, E_M68HC11_NO_BANK_WARNING},
{0, 0, 0}
};
/* Options and initialization. */
const char *md_shortopts = "Sm:";
struct option md_longopts[] =
{
#define OPTION_FORCE_LONG_BRANCH (OPTION_MD_BASE)
{"force-long-branches", no_argument, NULL, OPTION_FORCE_LONG_BRANCH},
{"force-long-branchs", no_argument, NULL, OPTION_FORCE_LONG_BRANCH}, /* Misspelled version kept for backwards compatibility. */
#define OPTION_SHORT_BRANCHES (OPTION_MD_BASE + 1)
{"short-branches", no_argument, NULL, OPTION_SHORT_BRANCHES},
{"short-branchs", no_argument, NULL, OPTION_SHORT_BRANCHES}, /* Misspelled version kept for backwards compatibility. */
#define OPTION_STRICT_DIRECT_MODE (OPTION_MD_BASE + 2)
{"strict-direct-mode", no_argument, NULL, OPTION_STRICT_DIRECT_MODE},
#define OPTION_PRINT_INSN_SYNTAX (OPTION_MD_BASE + 3)
{"print-insn-syntax", no_argument, NULL, OPTION_PRINT_INSN_SYNTAX},
#define OPTION_PRINT_OPCODES (OPTION_MD_BASE + 4)
{"print-opcodes", no_argument, NULL, OPTION_PRINT_OPCODES},
#define OPTION_GENERATE_EXAMPLE (OPTION_MD_BASE + 5)
{"generate-example", no_argument, NULL, OPTION_GENERATE_EXAMPLE},
#define OPTION_MSHORT (OPTION_MD_BASE + 6)
{"mshort", no_argument, NULL, OPTION_MSHORT},
#define OPTION_MLONG (OPTION_MD_BASE + 7)
{"mlong", no_argument, NULL, OPTION_MLONG},
#define OPTION_MSHORT_DOUBLE (OPTION_MD_BASE + 8)
{"mshort-double", no_argument, NULL, OPTION_MSHORT_DOUBLE},
#define OPTION_MLONG_DOUBLE (OPTION_MD_BASE + 9)
{"mlong-double", no_argument, NULL, OPTION_MLONG_DOUBLE},
#define OPTION_XGATE_RAMOFFSET (OPTION_MD_BASE + 10)
{"xgate-ramoffset", no_argument, NULL, OPTION_XGATE_RAMOFFSET},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
/* Get the target cpu for the assembler. This is based on the configure
options and on the -m68hc11/-m68hc12 option. If no option is specified,
we must get the default. */
const char *
m68hc11_arch_format (void)
{
get_default_target ();
if (current_architecture & cpu6811)
return "elf32-m68hc11";
else
return "elf32-m68hc12";
}
enum bfd_architecture
m68hc11_arch (void)
{
get_default_target ();
if (current_architecture & cpu6811)
return bfd_arch_m68hc11;
else
return bfd_arch_m68hc12;
}
int
m68hc11_mach (void)
{
return 0;
}
/* Listing header selected according to cpu. */
const char *
m68hc11_listing_header (void)
{
if (current_architecture & cpu6811)
return "M68HC11 GAS ";
else if (current_architecture & cpuxgate)
return "XGATE GAS ";
else if (current_architecture & cpu9s12x)
return "S12X GAS ";
else
return "M68HC12 GAS ";
}
void
md_show_usage (FILE *stream)
{
get_default_target ();
fprintf (stream, _("\
Motorola 68HC11/68HC12/68HCS12 options:\n\
-m68hc11 | -m68hc12 |\n\
-m68hcs12 | -mm9s12x |\n\
-mm9s12xg specify the processor [default %s]\n\
-mshort use 16-bit int ABI (default)\n\
-mlong use 32-bit int ABI\n\
-mshort-double use 32-bit double ABI\n\
-mlong-double use 64-bit double ABI (default)\n\
--force-long-branches always turn relative branches into absolute ones\n\
-S,--short-branches do not turn relative branches into absolute ones\n\
when the offset is out of range\n\
--strict-direct-mode do not turn the direct mode into extended mode\n\
when the instruction does not support direct mode\n\
--print-insn-syntax print the syntax of instruction in case of error\n\
--print-opcodes print the list of instructions with syntax\n\
--xgate-ramoffset offset ram addresses by 0xc000\n\
--generate-example generate an example of each instruction\n\
(used for testing)\n"), default_cpu);
}
/* Try to identify the default target based on the BFD library. */
static void
get_default_target (void)
{
const bfd_target *target;
bfd abfd;
if (current_architecture != 0)
return;
default_cpu = "unknown";
target = bfd_find_target (0, &abfd);
if (target && target->name)
{
if (strcmp (target->name, "elf32-m68hc12") == 0)
{
current_architecture = cpu6812;
default_cpu = "m68hc12";
}
else if (strcmp (target->name, "elf32-m68hc11") == 0)
{
current_architecture = cpu6811;
default_cpu = "m68hc11";
}
else
{
as_bad (_("Default target `%s' is not supported."), target->name);
}
}
}
void
m68hc11_print_statistics (FILE *file)
{
int i;
struct m68hc11_opcode_def *opc;
htab_print_statistics (file, "opcode table", m68hc11_hash);
opc = m68hc11_opcode_defs;
if (opc == 0 || m68hc11_nb_opcode_defs == 0)
return;
/* Dump the opcode statistics table. */
fprintf (file, _("Name # Modes Min ops Max ops Modes mask # Used\n"));
for (i = 0; i < m68hc11_nb_opcode_defs; i++, opc++)
{
fprintf (file, "%-7.7s %5d %7d %7d 0x%08lx %7d\n",
opc->opcode->name,
opc->nb_modes,
opc->min_operands, opc->max_operands, opc->format, opc->used);
}
}
int
md_parse_option (int c, const char *arg)
{
get_default_target ();
switch (c)
{
/* -S means keep external to 2 bit offset rather than 16 bit one. */
case OPTION_SHORT_BRANCHES:
case 'S':
flag_fixed_branches = 1;
break;
case OPTION_FORCE_LONG_BRANCH:
flag_force_long_jumps = 1;
break;
case OPTION_PRINT_INSN_SYNTAX:
flag_print_insn_syntax = 1;
break;
case OPTION_PRINT_OPCODES:
flag_print_opcodes = 1;
break;
case OPTION_STRICT_DIRECT_MODE:
flag_strict_direct_addressing = 0;
break;
case OPTION_GENERATE_EXAMPLE:
flag_print_opcodes = 2;
break;
case OPTION_MSHORT:
elf_flags &= ~E_M68HC11_I32;
break;
case OPTION_MLONG:
elf_flags |= E_M68HC11_I32;
break;
case OPTION_MSHORT_DOUBLE:
elf_flags &= ~E_M68HC11_F64;
break;
case OPTION_MLONG_DOUBLE:
elf_flags |= E_M68HC11_F64;
break;
case OPTION_XGATE_RAMOFFSET:
elf_flags |= E_M68HC11_XGATE_RAMOFFSET;
break;
case 'm':
if ((strcasecmp (arg, "68hc11") == 0)
|| (strcasecmp (arg, "m68hc11") == 0))
current_architecture = cpu6811;
else if ((strcasecmp (arg, "68hc12") == 0)
|| (strcasecmp (arg, "m68hc12") == 0))
current_architecture = cpu6812;
else if ((strcasecmp (arg, "68hcs12") == 0)
|| (strcasecmp (arg, "m68hcs12") == 0))
current_architecture = cpu6812 | cpu6812s;
else if (strcasecmp (arg, "m9s12x") == 0)
current_architecture = cpu6812 | cpu6812s | cpu9s12x;
else if ((strcasecmp (arg, "m9s12xg") == 0)
|| (strcasecmp (arg, "xgate") == 0))
/* xgate for backwards compatibility */
current_architecture = cpuxgate;
else
as_bad (_("Option `%s' is not recognized."), arg);
break;
default:
return 0;
}
return 1;
}
symbolS *
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
{
return 0;
}
const char *
md_atof (int type, char *litP, int *sizeP)
{
return ieee_md_atof (type, litP, sizeP, true);
}
valueT
md_section_align (asection *seg, valueT addr)
{
int align = bfd_section_alignment (seg);
return ((addr + (1 << align) - 1) & -(1 << align));
}
static int
cmp_opcode (struct m68hc11_opcode *op1, struct m68hc11_opcode *op2)
{
return strcmp (op1->name, op2->name);
}
#define IS_CALL_SYMBOL(MODE) \
(((MODE) & (M6812_OP_PAGE|M6811_OP_IND16)) \
== ((M6812_OP_PAGE|M6811_OP_IND16)))
/* Initialize the assembler. Create the opcode hash table
(sorted on the names) with the M6811 opcode table
(from opcode library). */
void
md_begin (void)
{
const char *prev_name = "";
struct m68hc11_opcode *opcodes;
struct m68hc11_opcode_def *opc = 0;
int i, j;
get_default_target ();
m68hc11_hash = str_htab_create ();
/* Get a writable copy of the opcode table and sort it on the names. */
opcodes = XNEWVEC (struct m68hc11_opcode, m68hc11_num_opcodes);
m68hc11_sorted_opcodes = opcodes;
num_opcodes = 0;
for (i = 0; i < m68hc11_num_opcodes; i++)
{
if (m68hc11_opcodes[i].arch & current_architecture)
{
opcodes[num_opcodes] = m68hc11_opcodes[i];
if (opcodes[num_opcodes].name[0] == 'b'
&& opcodes[num_opcodes].format & M6811_OP_JUMP_REL
&& !(opcodes[num_opcodes].format & M6811_OP_BITMASK))
{
num_opcodes++;
opcodes[num_opcodes] = m68hc11_opcodes[i];
}
num_opcodes++;
for (j = 0; alias_opcodes[j].name != 0; j++)
if (strcmp (m68hc11_opcodes[i].name, alias_opcodes[j].name) == 0)
{
opcodes[num_opcodes] = m68hc11_opcodes[i];
opcodes[num_opcodes].name = alias_opcodes[j].alias;
num_opcodes++;
break;
}
}
}
qsort (opcodes, num_opcodes, sizeof (struct m68hc11_opcode),
(int (*) (const void*, const void*)) cmp_opcode);
opc = XNEWVEC (struct m68hc11_opcode_def, num_opcodes);
m68hc11_opcode_defs = opc--;
/* Insert unique names into hash table. The M6811 instruction set
has several identical opcode names that have different opcodes based
on the operands. This hash table then provides a quick index to
the first opcode with a particular name in the opcode table. */
for (i = 0; i < num_opcodes; i++, opcodes++)
{
int expect;
if (strcmp (prev_name, opcodes->name))
{
prev_name = (char *) opcodes->name;
opc++;
opc->format = 0;
opc->min_operands = 100;
opc->max_operands = 0;
opc->nb_modes = 0;
opc->opcode = opcodes;
opc->used = 0;
str_hash_insert (m68hc11_hash, opcodes->name, opc, 0);
}
opc->nb_modes++;
opc->format |= opcodes->format;
/* See how many operands this opcode needs. */
expect = 0;
if (opcodes->arch == cpuxgate)
{
if (opcodes->format & (M68XG_OP_IMM3 | M68XG_OP_R | M68XG_OP_REL9
| M68XG_OP_REL10 ))
expect = 1;
else if (opcodes->format & (M68XG_OP_R_R | M68XG_OP_R_IMM4
| M68XG_OP_R_IMM8 | M68XG_OP_R_IMM8))
expect = 2;
else if (opcodes->format & (M68XG_OP_R_R_R | M68XG_OP_R_R_OFFS5
| M68XG_OP_RD_RB_RI | M68XG_OP_RD_RB_RIp
| M68XG_OP_RD_RB_mRI))
expect = 3;
}
else
{
if (opcodes->format & M6811_OP_MASK)
expect++;
if (opcodes->format & M6811_OP_BITMASK)
expect++;
if (opcodes->format & (M6811_OP_JUMP_REL | M6812_OP_JUMP_REL16))
expect++;
if (opcodes->format & (M6812_OP_IND16_P2 | M6812_OP_IDX_P2))
expect++;
/* Special case for call instruction. */
if ((opcodes->format & M6812_OP_PAGE)
&& !(opcodes->format & M6811_OP_IND16))
expect++;
}
if (expect < opc->min_operands)
opc->min_operands = expect;
if (IS_CALL_SYMBOL (opcodes->format))
expect++;
if (expect > opc->max_operands)
opc->max_operands = expect;
}
opc++;
m68hc11_nb_opcode_defs = opc - m68hc11_opcode_defs;
if (flag_print_opcodes)
{
print_opcode_list ();
exit (EXIT_SUCCESS);
}
}
void
m68hc11_init_after_args (void)
{
}
/* Builtin help. */
/* Return a string that represents the operand format for the instruction.
When example is true, this generates an example of operand. This is used
to give an example and also to generate a test. */
static char *
print_opcode_format (struct m68hc11_opcode *opcode, int example)
{
static char buf[128];
int format = opcode->format;
char *p;
p = buf;
buf[0] = 0;
if (current_architecture == cpuxgate)
{
if (format & M68XG_OP_IMM3)
{
if (example)
sprintf (p, "#%d", rand () & 0x007);
else
strcpy (p, _("imm3"));
p = &p[strlen (p)];
}
else if (format & M68XG_OP_R)
{
if (example)
sprintf (p, "R%d", rand () & 0x07);
else
strcpy (p, _("RD"));
p = &p[strlen (p)];
}
else if (format & M68XG_OP_R_R)
{
if (example)
sprintf (p, "R%d,R%d", rand () & 0x07, rand () & 0x07);
else
strcpy (p, _("RD,RS"));
p = &p[strlen (p)];
}
else if (format & M68XG_OP_R_IMM4)
{
if (example)
sprintf (p, "R%d,#%d", rand () & 0x07, rand () & 0x0f);
else
strcpy (p, _("RI, #imm4"));
p = &p[strlen (p)];
}
else if (format & M68XG_OP_R_R_R)
{
if (example)
sprintf (p, "R%d,R%d,R%d", rand () & 0x07, rand () & 0x07, rand () & 0x07);
else
strcpy (p, "RD,RS1,RS2");
p = &p[strlen (p)];
}
else if (format & M68XG_OP_REL9)
{
if (example)
sprintf (p, "%d", rand () & 0x1FF);
else
strcpy (p, "<rel9>");
p = &p[strlen (p)];
}
else if (format & M68XG_OP_REL10)
{
if (example)
sprintf (p, "%d", rand () & 0x3FF);
else
strcpy (p, "<rel10>");
p = &p[strlen (p)];
}
else if (format & M68XG_OP_R_R_OFFS5)
{
if (example)
sprintf (p, "R%d, (R%d, #0x%x)", rand () & 0x07, rand () & 0x07, rand () & 0x1f);
else
strcpy (p, _("RD, (RI,#offs5)"));
p = &p[strlen (p)];
}
else if (format & M68XG_OP_RD_RB_RI)
{
if (example)
sprintf (p, "R%d, (R%d, R%d)", rand () & 0x07, rand () & 0x07, rand () & 0x07);
else
strcpy (p, "RD, (RB, RI)");
p = &p[strlen (p)];
}
else if (format & M68XG_OP_RD_RB_RIp)
{
if (example)
sprintf (p, "R%d, (R%d, R%d+)", rand () & 0x07, rand () & 0x07, rand () & 0x07);
else
strcpy (p, "RD, (RB, RI+)");
p = &p[strlen (p)];
}
else if (format & M68XG_OP_RD_RB_mRI)
{
if (example)
sprintf (p, "R%d, (R%d, -R%d)", rand () & 0x07, rand () & 0x07, rand () & 0x07);
else
strcpy (p, "RD, (RB, -RI)");
p = &p[strlen (p)];
}
else if (format & M68XG_OP_R_IMM8)
{
if (example)
sprintf (p, "R%d, #0x%x", rand () & 0x07, rand () & 0xff);
else
strcpy (p, "RD, #imm8");
p = &p[strlen (p)];
}
else if (format & M68XG_OP_R_IMM16)
{
if (example)
sprintf (p, "R%d, #0x%x", rand () & 0x07, rand () & 0xffff);
else
strcpy (p, "RD, #imm16");
p = &p[strlen (p)];
}
}
else
{
if (format & M6811_OP_IMM8)
{
if (example)
sprintf (p, "#%d", rand () & 0x0FF);
else
strcpy (p, _("#<imm8>"));
p = &p[strlen (p)];
}
if (format & M6811_OP_IMM16)
{
if (example)
sprintf (p, "#%d", rand () & 0x0FFFF);
else
strcpy (p, _("#<imm16>"));
p = &p[strlen (p)];
}
if (format & M6811_OP_IX)
{
if (example)
sprintf (p, "%d,X", rand () & 0x0FF);
else
strcpy (p, _("<imm8>,X"));
p = &p[strlen (p)];
}
if (format & M6811_OP_IY)
{
if (example)
sprintf (p, "%d,X", rand () & 0x0FF);
else
strcpy (p, _("<imm8>,X"));
p = &p[strlen (p)];
}
if (format & M6812_OP_IDX)
{
if (example)
sprintf (p, "%d,X", rand () & 0x0FF);
else
strcpy (p, "n,r");
p = &p[strlen (p)];
}
if (format & M6812_OP_PAGE)
{
if (example)
sprintf (p, ", %d", rand () & 0x0FF);
else
strcpy (p, ", <page>");
p = &p[strlen (p)];
}
if (format & M6811_OP_DIRECT)
{
if (example)
sprintf (p, "*Z%d", rand () & 0x0FF);
else
strcpy (p, _("*<abs8>"));
p = &p[strlen (p)];
}
if (format & M6811_OP_BITMASK)
{
if (buf[0])
*p++ = ' ';
if (example)
sprintf (p, "#$%02x", rand () & 0x0FF);
else
strcpy (p, _("#<mask>"));
p = &p[strlen (p)];
if (format & M6811_OP_JUMP_REL)
*p++ = ' ';
}
if (format & M6811_OP_IND16)
{
if (example)
sprintf (p, _("symbol%d"), rand () & 0x0FF);
else
strcpy (p, _("<abs>"));
p = &p[strlen (p)];
}
if (format & (M6811_OP_JUMP_REL | M6812_OP_JUMP_REL16))
{
if (example)
{
if (format & M6811_OP_BITMASK)
{
sprintf (p, ".+%d", rand () & 0x7F);
}
else
{
sprintf (p, "L%d", rand () & 0x0FF);
}
}
else
strcpy (p, _("<label>"));
}
}
return buf;
}
/* Prints the list of instructions with the possible operands. */
static void
print_opcode_list (void)
{
int i;
const char *prev_name = "";
struct m68hc11_opcode *opcodes;
int example = flag_print_opcodes == 2;
if (example)
printf (_("# Example of `%s' instructions\n\t.sect .text\n_start:\n"),
default_cpu);
opcodes = m68hc11_sorted_opcodes;
/* Walk the list sorted on names (by md_begin). We only report
one instruction per line, and we collect the different operand
formats. */
for (i = 0; i < num_opcodes; i++, opcodes++)
{
char *fmt = print_opcode_format (opcodes, example);
if (example)
{
printf ("L%d:\t", i);
printf ("%s %s\n", opcodes->name, fmt);
}
else
{
if (strcmp (prev_name, opcodes->name))
{
if (i > 0)
printf ("\n");
printf ("%-5.5s ", opcodes->name);
prev_name = (char *) opcodes->name;
}
if (fmt[0])
printf (" [%s]", fmt);
}
}
printf ("\n");
}
/* Print the instruction format. This operation is called when some
instruction is not correct. Instruction format is printed as an
error message. */
static void
print_insn_format (char *name)
{
struct m68hc11_opcode_def *opc;
struct m68hc11_opcode *opcode;
char buf[128];
opc = (struct m68hc11_opcode_def *) str_hash_find (m68hc11_hash, name);
if (opc == NULL)
{
as_bad (_("Instruction `%s' is not recognized."), name);
return;
}
opcode = opc->opcode;
as_bad (_("Instruction formats for `%s':"), name);
do
{
char *fmt;
fmt = print_opcode_format (opcode, 0);
sprintf (buf, "\t%-5.5s %s", opcode->name, fmt);
as_bad ("%s", buf);
opcode++;
}
while (strcmp (opcode->name, name) == 0);
}
/* Analysis of 68HC11 and 68HC12 operands. */
/* reg_name_search() finds the register number given its name.
Returns the register number or REG_NONE on failure. */
static register_id
reg_name_search (char *name)
{
if (strcasecmp (name, "x") == 0 || strcasecmp (name, "ix") == 0)
return REG_X;
if (strcasecmp (name, "y") == 0 || strcasecmp (name, "iy") == 0)
return REG_Y;
if (strcasecmp (name, "a") == 0)
return REG_A;
if (strcasecmp (name, "b") == 0)
return REG_B;
if (strcasecmp (name, "d") == 0)
return REG_D;
if (strcasecmp (name, "sp") == 0)
return REG_SP;
if (strcasecmp (name, "pc") == 0)
return REG_PC;
if (strcasecmp (name, "ccr") == 0)
return REG_CCR;
/* XGATE */
if (strcasecmp (name, "r0") == 0)
return REG_R0;
if (strcasecmp (name, "r1") == 0)
return REG_R1;
if (strcasecmp (name, "r2") == 0)
return REG_R2;
if (strcasecmp (name, "r3") == 0)
return REG_R3;
if (strcasecmp (name, "r4") == 0)
return REG_R4;
if (strcasecmp (name, "r5") == 0)
return REG_R5;
if (strcasecmp (name, "r6") == 0)
return REG_R6;
if (strcasecmp (name, "r7") == 0)
return REG_R7;
if (strcasecmp (name, "sp") == 0)
return REG_SP_XG;
if (strcasecmp (name, "pc") == 0)
return REG_PC_XG;
if (strcasecmp (name, "ccr") == 0)
return REG_CCR_XG;
return REG_NONE;
}
static char *
skip_whites (char *p)
{
while (*p == ' ' || *p == '\t')
p++;
return p;
}
/* Check the string at input_line_pointer
to see if it is a valid register name. */
static register_id
register_name (void)
{
register_id reg_number;
char c, *p = input_line_pointer;
if (!is_name_beginner (*p++))
return REG_NONE;
while (is_part_of_name (*p++))
continue;
c = *--p;
if (c)
*p++ = 0;
/* Look to see if it's in the register table. */
reg_number = reg_name_search (input_line_pointer);
if (reg_number != REG_NONE)
{
if (c)
*--p = c;
input_line_pointer = p;
return reg_number;
}
if (c)
*--p = c;
return reg_number;
}
#define M6811_OP_CALL_ADDR 0x00800000
#define M6811_OP_PAGE_ADDR 0x04000000
/* Parse a string of operands and return an array of expressions.
Operand mode[0] mode[1] exp[0] exp[1]
#n M6811_OP_IMM16 - O_*
*<exp> M6811_OP_DIRECT - O_*
.{+-}<exp> M6811_OP_JUMP_REL - O_*
<exp> M6811_OP_IND16 - O_*
,r N,r M6812_OP_IDX M6812_OP_REG O_constant O_register
n,-r M6812_PRE_DEC M6812_OP_REG O_constant O_register
n,+r M6812_PRE_INC " "
n,r- M6812_POST_DEC " "
n,r+ M6812_POST_INC " "
A,r B,r D,r M6811_OP_REG M6812_OP_REG O_register O_register
[D,r] M6811_OP_D_IDX M6812_OP_REG O_register O_register
[n,r] M6811_OP_D_IDX_2 M6812_OP_REG O_constant O_register */
static int
get_operand (operand *oper, int which, long opmode)
{
char *p = input_line_pointer;
int mode;
register_id reg;
oper->exp.X_op = O_absent;
oper->reg1 = REG_NONE;
oper->reg2 = REG_NONE;
mode = M6811_OP_NONE;
p = skip_whites (p);
if (*p == 0 || *p == '\n' || *p == '\r')
{
input_line_pointer = p;
return 0;
}
if (*p == '*' && (opmode & (M6811_OP_DIRECT | M6811_OP_IND16)))
{
mode = M6811_OP_DIRECT;
p++;
}
else if (*p == '#')
{
if (!(opmode & (M6811_OP_IMM8 | M6811_OP_IMM16 | M6811_OP_BITMASK)))
{
as_bad (_("Immediate operand is not allowed for operand %d."),
which);
return -1;
}
mode = M6811_OP_IMM16;
p++;
if (startswith (p, "%hi"))
{
p += 3;
mode |= M6811_OP_HIGH_ADDR;
}
else if (startswith (p, "%lo"))
{
p += 3;
mode |= M6811_OP_LOW_ADDR;
}
/* %page modifier is used to obtain only the page number
of the address of a function. */
else if (startswith (p, "%page"))
{
p += 5;
mode |= M6811_OP_PAGE_ADDR;
}
/* %addr modifier is used to obtain the physical address part
of the function (16-bit). For 68HC12 the function will be
mapped in the 16K window at 0x8000 and the value will be
within that window (although the function address may not fit
in 16-bit). See bfd/elf32-m68hc12.c for the translation. */
else if (startswith (p, "%addr"))
{
p += 5;
mode |= M6811_OP_CALL_ADDR;
}
}
else if (*p == '.' && (p[1] == '+' || p[1] == '-'))
{
p++;
mode = M6811_OP_JUMP_REL;
}
else if (*p == '[')
{
if (current_architecture & cpu6811)
as_bad (_("Indirect indexed addressing is not valid for 68HC11."));
p++;
mode = M6812_OP_D_IDX;
p = skip_whites (p);
}
else if (*p == ',') /* Special handling of ,x and ,y. */
{
p++;
input_line_pointer = p;
reg = register_name ();
if (reg != REG_NONE)
{
oper->reg1 = reg;
oper->exp.X_op = O_constant;
oper->exp.X_add_number = 0;
oper->mode = M6812_OP_IDX;
return 1;
}
as_bad (_("Spurious `,' or bad indirect register addressing mode."));
return -1;
}
/* Handle 68HC12 page specification in 'call foo,%page(bar)'. */
else if ((opmode & M6812_OP_PAGE) && startswith (p, "%page"))
{
p += 5;
mode = M6811_OP_PAGE_ADDR | M6812_OP_PAGE | M6811_OP_IND16;
}
input_line_pointer = p;
if (mode == M6811_OP_NONE || mode == M6812_OP_D_IDX)
reg = register_name ();
else
reg = REG_NONE;
if (reg != REG_NONE)
{
p = skip_whites (input_line_pointer);
if (*p == ']' && mode == M6812_OP_D_IDX)
{
as_bad
(_("Missing second register or offset for indexed-indirect mode."));
return -1;
}
oper->reg1 = reg;
oper->mode = mode | M6812_OP_REG;
if (*p != ',')
{
if (mode == M6812_OP_D_IDX)
{
as_bad (_("Missing second register for indexed-indirect mode."));
return -1;
}
return 1;
}
p++;
input_line_pointer = p;
reg = register_name ();
if (reg != REG_NONE)
{
p = skip_whites (input_line_pointer);
if (mode == M6812_OP_D_IDX)
{
if (*p != ']')
{
as_bad (_("Missing `]' to close indexed-indirect mode."));
return -1;
}
p++;
oper->mode = M6812_OP_D_IDX;
}
input_line_pointer = p;
oper->reg2 = reg;
return 1;
}
return 1;
}
/* In MRI mode, isolate the operand because we can't distinguish
operands from comments. */
if (flag_mri)
{
char c = 0;
p = skip_whites (p);
while (*p && *p != ' ' && *p != '\t')
p++;
if (*p)
{
c = *p;
*p = 0;
}
/* Parse as an expression. */
expression (&oper->exp);
if (c)
{
*p = c;
}
}
else
{
expression (&oper->exp);
}
if (oper->exp.X_op == O_illegal)
{
as_bad (_("Illegal operand."));
return -1;
}
else if (oper->exp.X_op == O_absent)
{
as_bad (_("Missing operand."));
return -1;
}
p = input_line_pointer;
if (mode == M6811_OP_NONE || mode == M6811_OP_DIRECT
|| mode == M6812_OP_D_IDX)
{
p = skip_whites (input_line_pointer);
if (*p == ',')
{
int possible_mode = M6811_OP_NONE;
char *old_input_line;
old_input_line = p;
p++;
/* 68HC12 pre increment or decrement. */
if (mode == M6811_OP_NONE)
{
if (*p == '-')
{
possible_mode = M6812_PRE_DEC;
p++;
}
else if (*p == '+')
{
possible_mode = M6812_PRE_INC;
p++;
}
p = skip_whites (p);
}
input_line_pointer = p;
reg = register_name ();
/* Backtrack if we have a valid constant expression and
it does not correspond to the offset of the 68HC12 indexed
addressing mode (as in N,x). */
if (reg == REG_NONE && mode == M6811_OP_NONE
&& possible_mode != M6811_OP_NONE)
{
oper->mode = M6811_OP_IND16 | M6811_OP_JUMP_REL;
input_line_pointer = skip_whites (old_input_line);
return 1;
}
if (possible_mode != M6811_OP_NONE)
mode = possible_mode;
if ((current_architecture & cpu6811)
&& possible_mode != M6811_OP_NONE)
as_bad (_("Pre-increment mode is not valid for 68HC11"));
/* Backtrack. */
if (which == 0 && opmode & M6812_OP_IDX_P2
&& reg != REG_X && reg != REG_Y
&& reg != REG_PC && reg != REG_SP)
{
reg = REG_NONE;
input_line_pointer = p;
}
if (reg == REG_NONE && mode != M6811_OP_DIRECT
&& !(mode == M6811_OP_NONE && opmode & M6811_OP_IND16))
{
as_bad (_("Wrong register in register indirect mode."));
return -1;
}
if (mode == M6812_OP_D_IDX)
{
p = skip_whites (input_line_pointer);
if (*p++ != ']')
{
as_bad (_("Missing `]' to close register indirect operand."));
return -1;
}
input_line_pointer = p;
oper->reg1 = reg;
oper->mode = M6812_OP_D_IDX_2;
return 1;
}
if (reg != REG_NONE)
{
oper->reg1 = reg;
if (mode == M6811_OP_NONE)
{
p = input_line_pointer;
if (*p == '-')
{
mode = M6812_POST_DEC;
p++;
if (current_architecture & cpu6811)
as_bad
(_("Post-decrement mode is not valid for 68HC11."));
}
else if (*p == '+')
{
mode = M6812_POST_INC;
p++;
if (current_architecture & cpu6811)
as_bad
(_("Post-increment mode is not valid for 68HC11."));
}
else
mode = M6812_OP_IDX;
input_line_pointer = p;
}
else
mode |= M6812_OP_IDX;
oper->mode = mode;
return 1;
}
input_line_pointer = old_input_line;
}
if (mode == M6812_OP_D_IDX_2)
{
as_bad (_("Invalid indexed indirect mode."));
return -1;
}
}
/* If the mode is not known until now, this is either a label
or an indirect address. */
if (mode == M6811_OP_NONE)
mode = M6811_OP_IND16 | M6811_OP_JUMP_REL;
p = input_line_pointer;
while (*p == ' ' || *p == '\t')
p++;
input_line_pointer = p;
oper->mode = mode;
return 1;
}
#define M6812_AUTO_INC_DEC (M6812_PRE_INC | M6812_PRE_DEC \
| M6812_POST_INC | M6812_POST_DEC)
/* Checks that the number 'num' fits for a given mode. */
static int
check_range (long num, int mode)
{
if (current_architecture == cpuxgate)
{
switch (mode)
{
case M68XG_OP_IMM3:
return (num >= 0 && num <= 7) ? 1 : 0;
case M68XG_OP_R_IMM4:
return (num >= 0 && num <= 15) ? 1 : 0;
case M68XG_OP_R_R_OFFS5:
return (num >= 0 && num <= 31) ? 1 : 0;
case M68XG_OP_R_IMM8:
return (num >= 0 && num <= 255) ? 1 : 0;
case M68XG_OP_R_IMM16:
return (num >= 0 && num <= 65535) ? 1 : 0;
case M68XG_OP_B_MARKER:
return (num >= -512 && num <= 511) ? 1 : 0;
case M68XG_OP_BRA_MARKER:
return (num >= -1024 && num <= 1023) ? 1 : 0;
default:
return 0;
}
}
else
{
/* Auto increment and decrement are ok for [-8..8] without 0. */
if (mode & M6812_AUTO_INC_DEC)
return (num != 0 && num <= 8 && num >= -8);
/* The 68HC12 supports 5, 9 and 16-bit offsets. */
if (mode & (M6812_INDEXED_IND | M6812_INDEXED | M6812_OP_IDX))
mode = M6811_OP_IND16;
if (mode & M6812_OP_JUMP_REL16)
mode = M6811_OP_IND16;
mode &= ~M6811_OP_BRANCH;
switch (mode)
{
case M6811_OP_IX:
case M6811_OP_IY:
case M6811_OP_DIRECT:
return (num >= 0 && num <= 255) ? 1 : 0;
case M6811_OP_BITMASK:
case M6811_OP_IMM8:
case M6812_OP_PAGE:
return (((num & 0xFFFFFF00) == 0) || ((num & 0xFFFFFF00) == 0xFFFFFF00))
? 1 : 0;
case M6811_OP_JUMP_REL:
return (num >= -128 && num <= 127) ? 1 : 0;
case M6811_OP_IND16:
case M6811_OP_IND16 | M6812_OP_PAGE:
case M6811_OP_IMM16:
return (((num & 0xFFFF0000) == 0) || ((num & 0xFFFF0000) == 0xFFFF0000))
? 1 : 0;
case M6812_OP_IBCC_MARKER:
case M6812_OP_TBCC_MARKER:
case M6812_OP_DBCC_MARKER:
return (num >= -256 && num <= 255) ? 1 : 0;
case M6812_OP_TRAP_ID:
return ((num >= 0x30 && num <= 0x39)
|| (num >= 0x40 && num <= 0x0ff)) ? 1 : 0;
default:
return 0;
}
}
}
/* Gas fixup generation. */
/* Put a 1 byte expression described by 'oper'. If this expression contains
unresolved symbols, generate an 8-bit fixup. */
static void
fixup8 (expressionS *oper, int mode, int opmode)
{
char *f;
f = frag_more (1);
if (oper->X_op == O_constant)
{
if (mode & M6812_OP_TRAP_ID
&& !check_range (oper->X_add_number, M6812_OP_TRAP_ID))
{
static char trap_id_warn_once = 0;
as_bad (_("Trap id `%ld' is out of range."), oper->X_add_number);
if (trap_id_warn_once == 0)
{
trap_id_warn_once = 1;
as_bad (_("Trap id must be within [0x30..0x39] or [0x40..0xff]."));
}
}
if (!(mode & M6812_OP_TRAP_ID)
&& !check_range (oper->X_add_number, mode))
{
as_bad (_("Operand out of 8-bit range: `%ld'."), oper->X_add_number);
}
number_to_chars_bigendian (f, oper->X_add_number & 0x0FF, 1);
}
else if (oper->X_op != O_register)
{
if (mode & M6812_OP_TRAP_ID)
as_bad (_("The trap id must be a constant."));
if (mode == M6811_OP_JUMP_REL)
{
fix_new_exp (frag_now, f - frag_now->fr_literal, 1,
oper, true, BFD_RELOC_8_PCREL);
}
else
{
fixS *fixp;
bfd_reloc_code_real_type reloc;
/* Now create an 8-bit fixup. If there was some %hi, %lo
or %page modifier, generate the reloc accordingly. */
if (opmode & M6811_OP_HIGH_ADDR)
reloc = BFD_RELOC_M68HC11_HI8;
else if (opmode & M6811_OP_LOW_ADDR)
reloc = BFD_RELOC_M68HC11_LO8;
else if (opmode & M6811_OP_PAGE_ADDR)
reloc = BFD_RELOC_M68HC11_PAGE;
else
reloc = BFD_RELOC_8;
fixp = fix_new_exp (frag_now, f - frag_now->fr_literal, 1,
oper, false, reloc);
if (reloc != BFD_RELOC_8)
fixp->fx_no_overflow = 1;
}
number_to_chars_bigendian (f, 0, 1);
}
else
{
as_fatal (_("Operand `%x' not recognized in fixup8."), oper->X_op);
}
}
/* Put a 2 byte expression described by 'oper'. If this expression contains
unresolved symbols, generate a 16-bit fixup. */
static void
fixup16 (expressionS *oper, int mode, int opmode ATTRIBUTE_UNUSED)
{
char *f;
f = frag_more (2);
if (oper->X_op == O_constant)
{
if (!check_range (oper->X_add_number, mode))
{
as_bad (_("Operand out of 16-bit range: `%ld'."),
oper->X_add_number);
}
number_to_chars_bigendian (f, oper->X_add_number & 0x0FFFF, 2);
}
else if (oper->X_op != O_register)
{
fixS *fixp;
bfd_reloc_code_real_type reloc;
if ((opmode & M6811_OP_CALL_ADDR) && (mode & M6811_OP_IMM16))
reloc = BFD_RELOC_M68HC11_LO16;
else if (mode & M6812_OP_JUMP_REL16)
reloc = BFD_RELOC_16_PCREL;
else if (mode & M6812_OP_PAGE)
reloc = BFD_RELOC_M68HC11_LO16;
else
reloc = BFD_RELOC_16;
/* Now create a 16-bit fixup. */
fixp = fix_new_exp (frag_now, f - frag_now->fr_literal, 2,
oper,
reloc == BFD_RELOC_16_PCREL,
reloc);
number_to_chars_bigendian (f, 0, 2);
if (reloc == BFD_RELOC_M68HC11_LO16)
fixp->fx_no_overflow = 1;
}
else
{
as_fatal (_("Operand `%x' not recognized in fixup16."), oper->X_op);
}
}
/* Put a 3 byte expression described by 'oper'. If this expression contains
unresolved symbols, generate a 24-bit fixup. */
static void
fixup24 (expressionS *oper, int mode, int opmode ATTRIBUTE_UNUSED)
{
char *f;
f = frag_more (3);
if (oper->X_op == O_constant)
{
if (!check_range (oper->X_add_number, mode))
{
as_bad (_("Operand out of 16-bit range: `%ld'."),
oper->X_add_number);
}
number_to_chars_bigendian (f, oper->X_add_number & 0x0FFFFFF, 3);
}
else if (oper->X_op != O_register)
{
/* Now create a 24-bit fixup. */
fix_new_exp (frag_now, f - frag_now->fr_literal, 3,
oper, false, BFD_RELOC_M68HC11_24);
number_to_chars_bigendian (f, 0, 3);
}
else
{
as_fatal (_("Operand `%x' not recognized in fixup16."), oper->X_op);
}
}
/* XGATE Put a 1 byte expression described by 'oper'. If this expression
contains unresolved symbols, generate an 8-bit fixup. */
static void
fixup8_xg (expressionS *oper, int mode, int opmode)
{
char *f;
f = frag_more (1);
if (oper->X_op == O_constant)
{
fixS *fixp;
bfd_reloc_code_real_type reloc;
if ((opmode & M6811_OP_HIGH_ADDR) || (opmode & M6811_OP_LOW_ADDR))
{
if (opmode & M6811_OP_HIGH_ADDR)
reloc = BFD_RELOC_M68HC11_HI8;
else
reloc = BFD_RELOC_M68HC11_LO8;
fixp = fix_new_exp (frag_now, f - frag_now->fr_literal, 1,
oper, false, reloc);
fixp->fx_no_overflow = 1;
number_to_chars_bigendian (f, 0, 1);
}
else
{
if (!(check_range (oper->X_add_number, mode)))
as_bad (_("Operand out of 8-bit range: `%ld'."),
oper->X_add_number);
number_to_chars_bigendian (f, oper->X_add_number & 0x0FF, 1);
}
}
else if (oper->X_op != O_register)
{
if (mode == M68XG_OP_REL9)
{
/* Future improvement:
This fixup/reloc isn't adding on constants to symbols. */
fix_new_exp (frag_now, f - frag_now->fr_literal -1, 2,
oper, true, BFD_RELOC_M68HC12_9_PCREL);
}
else if (mode == M68XG_OP_REL10)
{
/* Future improvement:
This fixup/reloc isn't adding on constants to symbols. */
fix_new_exp (frag_now, f - frag_now->fr_literal -1, 2,
oper, true, BFD_RELOC_M68HC12_10_PCREL);
}
else
{
fixS *fixp;
bfd_reloc_code_real_type reloc;
/* Now create an 8-bit fixup. If there was some %hi, %lo
modifier, generate the reloc accordingly. */
if (opmode & M6811_OP_HIGH_ADDR)
reloc = BFD_RELOC_M68HC11_HI8;
else if (opmode & M6811_OP_LOW_ADDR)
reloc = BFD_RELOC_M68HC11_LO8;
else
reloc = BFD_RELOC_8;
fixp = fix_new_exp (frag_now, f - frag_now->fr_literal, 1,
oper, false, reloc);
if (reloc != BFD_RELOC_8)
fixp->fx_no_overflow = 1;
}
number_to_chars_bigendian (f, 0, 1);
}
else
as_fatal (_("Operand `%x' not recognized in fixup8."), oper->X_op);
}
/* 68HC11 and 68HC12 code generation. */
/* Translate the short branch/bsr instruction into a long branch. */
static unsigned char
convert_branch (unsigned char code)
{
if (IS_OPCODE (code, M6812_BSR))
return M6812_JSR;
else if (IS_OPCODE (code, M6811_BSR))
return M6811_JSR;
else if (IS_OPCODE (code, M6811_BRA))
return (current_architecture & cpu6812) ? M6812_JMP : M6811_JMP;
else
as_fatal (_("Unexpected branch conversion with `%x'"), code);
/* Keep gcc happy. */
return M6811_JSR;
}
/* Start a new insn that contains at least 'size' bytes. Record the
line information of that insn in the dwarf2 debug sections. */
static char *
m68hc11_new_insn (int size)
{
char *f;
f = frag_more (size);
dwarf2_emit_insn (size);
return f;
}
/* Builds a jump instruction (bra, bcc, bsr). */
static void
build_jump_insn (struct m68hc11_opcode *opcode, operand operands[],
int nb_operands, int jmp_mode)
{
unsigned char code;
char *f;
unsigned long n;
/* The relative branch conversion is not supported for
brclr and brset. */
gas_assert ((opcode->format & M6811_OP_BITMASK) == 0);
gas_assert (nb_operands == 1);
gas_assert (operands[0].reg1 == REG_NONE && operands[0].reg2 == REG_NONE);
code = opcode->opcode;
n = operands[0].exp.X_add_number;
/* Turn into a long branch:
- when force long branch option (and not for jbcc pseudos),
- when jbcc and the constant is out of -128..127 range,
- when branch optimization is allowed and branch out of range. */
if ((jmp_mode == 0 && flag_force_long_jumps)
|| (operands[0].exp.X_op == O_constant
&& (!check_range (n, opcode->format) &&
(jmp_mode == 1 || flag_fixed_branches == 0))))
{
fix_new (frag_now, frag_now_fix (), 0,
&abs_symbol, 0, 1, BFD_RELOC_M68HC11_RL_JUMP);
if (code == M6811_BSR || code == M6811_BRA || code == M6812_BSR)
{
code = convert_branch (code);
f = m68hc11_new_insn (1);
number_to_chars_bigendian (f, code, 1);
}
else if (current_architecture & cpu6812)
{
/* 68HC12: translate the bcc into a lbcc. */
f = m68hc11_new_insn (2);
number_to_chars_bigendian (f, M6811_OPCODE_PAGE2, 1);
number_to_chars_bigendian (f + 1, code, 1);
fixup16 (&operands[0].exp, M6812_OP_JUMP_REL16,
M6812_OP_JUMP_REL16);
return;
}
else
{
/* 68HC11: translate the bcc into b!cc +3; jmp <L>. */
f = m68hc11_new_insn (3);
code ^= 1;
number_to_chars_bigendian (f, code, 1);
number_to_chars_bigendian (f + 1, 3, 1);
number_to_chars_bigendian (f + 2, M6811_JMP, 1);
}
fixup16 (&operands[0].exp, M6811_OP_IND16, M6811_OP_IND16);
return;
}
/* Branch with a constant that must fit in 8-bits. */
if (operands[0].exp.X_op == O_constant)
{
if (!check_range (n, opcode->format))
{
as_bad (_("Operand out of range for a relative branch: `%ld'"),
n);
}
else if (opcode->format & M6812_OP_JUMP_REL16)
{
f = m68hc11_new_insn (4);
number_to_chars_bigendian (f, M6811_OPCODE_PAGE2, 1);
number_to_chars_bigendian (f + 1, code, 1);
number_to_chars_bigendian (f + 2, n & 0x0ffff, 2);
}
else
{
f = m68hc11_new_insn (2);
number_to_chars_bigendian (f, code, 1);
number_to_chars_bigendian (f + 1, n & 0x0FF, 1);
}
}
else if (opcode->format & M6812_OP_JUMP_REL16)
{
fix_new (frag_now, frag_now_fix (), 0,
&abs_symbol, 0, 1, BFD_RELOC_M68HC11_RL_JUMP);
f = m68hc11_new_insn (2);
number_to_chars_bigendian (f, M6811_OPCODE_PAGE2, 1);
number_to_chars_bigendian (f + 1, code, 1);
fixup16 (&operands[0].exp, M6812_OP_JUMP_REL16, M6812_OP_JUMP_REL16);
}
else
{
char *op;
fix_new (frag_now, frag_now_fix (), 0,
&abs_symbol, 0, 1, BFD_RELOC_M68HC11_RL_JUMP);
/* Branch offset must fit in 8-bits, don't do some relax. */
if (jmp_mode == 0 && flag_fixed_branches)
{
op = m68hc11_new_insn (1);
number_to_chars_bigendian (op, code, 1);
fixup8 (&operands[0].exp, M6811_OP_JUMP_REL, M6811_OP_JUMP_REL);
}
/* bra/bsr made be changed into jmp/jsr. */
else if (code == M6811_BSR || code == M6811_BRA || code == M6812_BSR)
{
/* Allocate worst case storage. */
op = m68hc11_new_insn (3);
number_to_chars_bigendian (op, code, 1);
number_to_chars_bigendian (op + 1, 0, 1);
frag_variant (rs_machine_dependent, 1, 1,
ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF),
operands[0].exp.X_add_symbol, (offsetT) n,
op);
}
else if (current_architecture & cpu6812)
{
op = m68hc11_new_insn (2);
number_to_chars_bigendian (op, code, 1);
number_to_chars_bigendian (op + 1, 0, 1);
frag_var (rs_machine_dependent, 2, 2,
ENCODE_RELAX (STATE_CONDITIONAL_BRANCH_6812, STATE_UNDF),
operands[0].exp.X_add_symbol, (offsetT) n, op);
}
else
{
op = m68hc11_new_insn (2);
number_to_chars_bigendian (op, code, 1);
number_to_chars_bigendian (op + 1, 0, 1);
frag_var (rs_machine_dependent, 3, 3,
ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF),
operands[0].exp.X_add_symbol, (offsetT) n, op);
}
}
}
/* Builds a dbne/dbeq/tbne/tbeq instruction. */
static void
build_dbranch_insn (struct m68hc11_opcode *opcode, operand operands[],
int nb_operands, int jmp_mode)
{
unsigned char code;
char *f;
unsigned long n;
/* The relative branch conversion is not supported for
brclr and brset. */
gas_assert ((opcode->format & M6811_OP_BITMASK) == 0);
gas_assert (nb_operands == 2);
gas_assert (operands[0].reg1 != REG_NONE);
code = opcode->opcode & 0x0FF;
f = m68hc11_new_insn (1);
number_to_chars_bigendian (f, code, 1);
n = operands[1].exp.X_add_number;
code = operands[0].reg1;
if (operands[0].reg1 == REG_NONE || operands[0].reg1 == REG_CCR
|| operands[0].reg1 == REG_PC)
as_bad (_("Invalid register for dbcc/tbcc instruction."));
if (opcode->format & M6812_OP_IBCC_MARKER)
code |= 0x80;
else if (opcode->format & M6812_OP_TBCC_MARKER)
code |= 0x40;
if (!(opcode->format & M6812_OP_EQ_MARKER))
code |= 0x20;
/* Turn into a long branch:
- when force long branch option (and not for jbcc pseudos),
- when jdbcc and the constant is out of -256..255 range,
- when branch optimization is allowed and branch out of range. */
if ((jmp_mode == 0 && flag_force_long_jumps)
|| (operands[1].exp.X_op == O_constant
&& (!check_range (n, M6812_OP_IBCC_MARKER) &&
(jmp_mode == 1 || flag_fixed_branches == 0))))
{
f = frag_more (2);
code ^= 0x20;
number_to_chars_bigendian (f, code, 1);
number_to_chars_bigendian (f + 1, M6812_JMP, 1);
fixup16 (&operands[0].exp, M6811_OP_IND16, M6811_OP_IND16);
return;
}
/* Branch with a constant that must fit in 9-bits. */
if (operands[1].exp.X_op == O_constant)
{
if (!check_range (n, M6812_OP_IBCC_MARKER))
{
as_bad (_("Operand out of range for a relative branch: `%ld'"),
n);
}
else
{
if ((long) n < 0)
code |= 0x10;
f = frag_more (2);
number_to_chars_bigendian (f, code, 1);
number_to_chars_bigendian (f + 1, n & 0x0FF, 1);
}
}
else
{
/* Branch offset must fit in 8-bits, don't do some relax. */
if (jmp_mode == 0 && flag_fixed_branches)
{
fixup8 (&operands[0].exp, M6811_OP_JUMP_REL, M6811_OP_JUMP_REL);
}
else
{
f = frag_more (2);
number_to_chars_bigendian (f, code, 1);
number_to_chars_bigendian (f + 1, 0, 1);
frag_var (rs_machine_dependent, 3, 3,
ENCODE_RELAX (STATE_XBCC_BRANCH, STATE_UNDF),
operands[1].exp.X_add_symbol, (offsetT) n, f);
}
}
}
#define OP_EXTENDED (M6811_OP_PAGE2 | M6811_OP_PAGE3 | M6811_OP_PAGE4)
/* Assemble the post index byte for 68HC12 extended addressing modes. */
static int
build_indexed_byte (operand *op, int format ATTRIBUTE_UNUSED, int move_insn)
{
unsigned char byte = 0;
char *f;
int mode;
long val;
val = op->exp.X_add_number;
mode = op->mode;
if (mode & M6812_AUTO_INC_DEC)
{
byte = 0x20;
if (mode & (M6812_POST_INC | M6812_POST_DEC))
byte |= 0x10;
if (op->exp.X_op == O_constant)
{
if (!check_range (val, mode))
as_bad (_("Increment/decrement value is out of range: `%ld'."),
val);
if (mode & (M6812_POST_INC | M6812_PRE_INC))
byte |= (val - 1) & 0x07;
else
byte |= (8 - ((val) & 7)) | 0x8;
}
switch (op->reg1)
{
case REG_NONE:
as_fatal (_("Expecting a register."));
case REG_X:
byte |= 0;
break;
case REG_Y:
byte |= 0x40;
break;
case REG_SP:
byte |= 0x80;
break;
default:
as_bad (_("Invalid register for post/pre increment."));
break;
}
f = frag_more (1);
number_to_chars_bigendian (f, byte, 1);
return 1;
}
if (mode & (M6812_OP_IDX | M6812_OP_D_IDX_2))
{
switch (op->reg1)
{
case REG_X:
byte = 0;
break;
case REG_Y:
byte = 1;
break;
case REG_SP:
byte = 2;
break;
case REG_PC:
byte = 3;
break;
default:
as_bad (_("Invalid register."));
break;
}
if (op->exp.X_op == O_constant)
{
if (!check_range (val, M6812_OP_IDX))
as_bad (_("Offset out of 16-bit range: %ld."), val);
if (move_insn && !(val >= -16 && val <= 15)
&& ((!(mode & M6812_OP_IDX) && !(mode & M6812_OP_D_IDX_2))
|| !(current_architecture & cpu9s12x)))
{
as_bad (_("Offset out of 5-bit range for movw/movb insn: %ld."),
val);
return -1;
}
if (val >= -16 && val <= 15 && !(mode & M6812_OP_D_IDX_2))
{
byte = byte << 6;
byte |= val & 0x1f;
f = frag_more (1);
number_to_chars_bigendian (f, byte, 1);
return 1;
}
else if (val >= -256 && val <= 255 && !(mode & M6812_OP_D_IDX_2))
{
byte = byte << 3;
byte |= 0xe0;
if (val < 0)
byte |= 0x1;
f = frag_more (2);
number_to_chars_bigendian (f, byte, 1);
number_to_chars_bigendian (f + 1, val & 0x0FF, 1);
return 2;
}
else
{
byte = byte << 3;
if (mode & M6812_OP_D_IDX_2)
byte |= 0xe3;
else
byte |= 0xe2;
f = frag_more (3);
number_to_chars_bigendian (f, byte, 1);
number_to_chars_bigendian (f + 1, val & 0x0FFFF, 2);
return 3;
}
}
if (mode & M6812_OP_D_IDX_2)
{
byte = (byte << 3) | 0xe3;
f = frag_more (1);
number_to_chars_bigendian (f, byte, 1);
fixup16 (&op->exp, 0, 0);
}
else if (op->reg1 != REG_PC)
{
symbolS *sym;
offsetT off;
f = frag_more (1);
number_to_chars_bigendian (f, byte, 1);
sym = op->exp.X_add_symbol;
off = op->exp.X_add_number;
if (op->exp.X_op != O_symbol)
{
sym = make_expr_symbol (&op->exp);
off = 0;
}
/* movb/movw cannot be relaxed. */
if (move_insn)
{
if ((mode & M6812_OP_IDX) && (current_architecture & cpu9s12x))
{
/* Must treat as a 16bit relocate as size of final result is unknown. */
byte <<= 3;
byte |= 0xe2;
number_to_chars_bigendian (f, byte, 1);
f = frag_more (2);
fix_new (frag_now, f - frag_now->fr_literal, 2,
sym, off, 0, BFD_RELOC_M68HC12_16B);
return 1;
}
else
{
/* Non-S12X will fail at relocate stage if offset out of range. */
byte <<= 6;
number_to_chars_bigendian (f, byte, 1);
fix_new (frag_now, f - frag_now->fr_literal, 1,
sym, off, 0, BFD_RELOC_M68HC12_5B);
return 1;
}
}
else
{
number_to_chars_bigendian (f, byte, 1);
frag_var (rs_machine_dependent, 2, 2,
ENCODE_RELAX (STATE_INDEXED_OFFSET, STATE_UNDF),
sym, off, f);
}
}
else
{
f = frag_more (1);
/* movb/movw cannot be relaxed. */
if (move_insn)
{
byte <<= 6;
number_to_chars_bigendian (f, byte, 1);
fix_new (frag_now, f - frag_now->fr_literal, 1,
op->exp.X_add_symbol, op->exp.X_add_number, 0, BFD_RELOC_M68HC12_5B);
return 1;
}
else
{
number_to_chars_bigendian (f, byte, 1);
frag_var (rs_machine_dependent, 2, 2,
ENCODE_RELAX (STATE_INDEXED_PCREL, STATE_UNDF),
op->exp.X_add_symbol,
op->exp.X_add_number, f);
}
}
return 3;
}
if (mode & (M6812_OP_REG | M6812_OP_D_IDX))
{
if (mode & M6812_OP_D_IDX)
{
if (op->reg1 != REG_D)
as_bad (_("Expecting register D for indexed indirect mode."));
if ((move_insn) && (!(current_architecture & cpu9s12x)))
as_bad (_("Indexed indirect mode is not allowed for movb/movw."));
byte = 0xE7;
}
else
{
switch (op->reg1)
{
case REG_A:
byte = 0xE4;
break;
case REG_B:
byte = 0xE5;
break;
default:
as_bad (_("Invalid accumulator register."));
/* Fall through. */
case REG_D:
byte = 0xE6;
break;
}
}
switch (op->reg2)
{
case REG_X:
break;
case REG_Y:
byte |= (1 << 3);
break;
case REG_SP:
byte |= (2 << 3);
break;
case REG_PC:
byte |= (3 << 3);
break;
default:
as_bad (_("Invalid indexed register."));
break;
}
f = frag_more (1);
number_to_chars_bigendian (f, byte, 1);
return 1;
}
fprintf (stderr, "mode = 0x%x\nop->reg1 = 0x%x\nop->reg2 = 0x%x\n",
mode, op->reg1, op->reg2);
as_fatal (_("Addressing mode not implemented yet."));
return 0;
}
/* Assemble the 68HC12 register mode byte. */
static int
build_reg_mode (operand *op, int format)
{
unsigned char byte;
char *f;
if ((format & M6812_OP_SEX_MARKER)
&& (op->reg1 != REG_A) && (op->reg1 != REG_B) && (op->reg1 != REG_CCR)
&& (!(current_architecture & cpu9s12x)))
as_bad (_("Invalid source register for this instruction, use 'tfr'."));
else if (op->reg1 == REG_NONE || op->reg1 == REG_PC)
as_bad (_("Invalid source register."));
if (format & M6812_OP_SEX_MARKER
&& op->reg2 != REG_D
&& op->reg2 != REG_X && op->reg2 != REG_Y && op->reg2 != REG_SP)
as_bad (_("Invalid destination register for this instruction, use 'tfr'."));
else if (op->reg2 == REG_NONE || op->reg2 == REG_PC)
as_bad (_("Invalid destination register."));
byte = (op->reg1 << 4) | (op->reg2);
if (format & M6812_OP_EXG_MARKER)
byte |= 0x80;
if ((format & M6812_OP_SEX_MARKER)
&& (op->reg1 == REG_D) && (current_architecture & cpu9s12x))
byte |= 0x08;
f = frag_more (1);
number_to_chars_bigendian (f, byte, 1);
return 1;
}
/* build_insn_xg takes a pointer to the opcode entry in the opcode table,
the array of operand expressions and builds the corresponding instruction. */
static void
build_insn_xg (struct m68hc11_opcode *opcode,
operand operands[],
int nb_operands ATTRIBUTE_UNUSED)
{
char *f;
long format;
/* Put the page code instruction if there is one. */
format = opcode->format;
if (!(operands[0].mode & (M6811_OP_LOW_ADDR | M6811_OP_HIGH_ADDR)))
/* Need to retain those two modes, but clear for others. */
operands[0].mode = 0;
if (format & M68XG_OP_R_IMM8)
{
/* These opcodes are byte followed by imm8. */
f = m68hc11_new_insn (1);
number_to_chars_bigendian (f, opcode->opcode >> 8, 1);
fixup8_xg (&operands[0].exp, format, operands[0].mode);
}
else if (format & M68XG_OP_R_IMM16)
{
fixS *fixp;
/* These opcodes expand into two imm8 instructions.
Emit as low:high as per the Freescale datasheet.
The linker requires them to be adjacent to handle the upper byte. */
/* Build low byte. */
f = m68hc11_new_insn (1);
number_to_chars_bigendian (f, opcode->opcode >> 8, 1);
operands[0].mode = M6811_OP_LOW_ADDR;
f = frag_more (1);
fixp = fix_new_exp (frag_now, f - frag_now->fr_literal, 1,
&operands[0].exp, false, BFD_RELOC_M68HC12_LO8XG);
fixp->fx_no_overflow = 1;
number_to_chars_bigendian (f, 0, 1);
/* Build high byte. */
f = m68hc11_new_insn (1);
number_to_chars_bigendian (f, (opcode->opcode >> 8) | 0x08, 1);
operands[0].mode = M6811_OP_HIGH_ADDR;
f = frag_more (1);
fixp = fix_new_exp (frag_now, f - frag_now->fr_literal, 1,
&operands[0].exp, false, BFD_RELOC_M68HC12_HI8XG);
fixp->fx_no_overflow = 1;
number_to_chars_bigendian (f, 0, 1);
}
else if (format & M68XG_OP_REL9)
{
f = m68hc11_new_insn (1);
number_to_chars_bigendian (f, opcode->opcode >> 8, 1); /* High byte. */
fixup8_xg (&operands[0].exp, format, M68XG_OP_REL9);
}
else if (format & M68XG_OP_REL10)
{
f = m68hc11_new_insn (1);
number_to_chars_bigendian (f, opcode->opcode >> 8, 1); /* High byte. */
fixup8_xg (&operands[0].exp, format, M68XG_OP_REL10);
}
else
{
f = m68hc11_new_insn (2);
number_to_chars_bigendian (f, opcode->opcode, 2);
}
return;
}
/* build_insn takes a pointer to the opcode entry in the opcode table,
the array of operand expressions and builds the corresponding instruction.
This operation only deals with non relative jumps insn (need special
handling). */
static void
build_insn (struct m68hc11_opcode *opcode,
operand operands[],
int nb_operands ATTRIBUTE_UNUSED)
{
int i;
char *f;
long format;
int move_insn = 0;
/* Put the page code instruction if there is one. */
format = opcode->format;
if (format & M6811_OP_BRANCH)
fix_new (frag_now, frag_now_fix (), 0,
&abs_symbol, 0, 1, BFD_RELOC_M68HC11_RL_JUMP);
if (format & OP_EXTENDED)
{
int page_code;
f = m68hc11_new_insn (2);
if (format & M6811_OP_PAGE2)
page_code = M6811_OPCODE_PAGE2;
else if (format & M6811_OP_PAGE3)
page_code = M6811_OPCODE_PAGE3;
else
page_code = M6811_OPCODE_PAGE4;
number_to_chars_bigendian (f, page_code, 1);
f++;
}
else
f = m68hc11_new_insn (1);
number_to_chars_bigendian (f, opcode->opcode, 1);
i = 0;
/* The 68HC12 movb and movw instructions are special. We have to handle
them in a special way. */
if (format & (M6812_OP_IND16_P2 | M6812_OP_IDX_P2))
{
move_insn = 1;
if (format & M6812_OP_IDX)
{
build_indexed_byte (&operands[0], format, 1);
i = 1;
format &= ~M6812_OP_IDX;
}
if (format & M6812_OP_IDX_P2)
{
build_indexed_byte (&operands[1], format, 1);
i = 0;
format &= ~M6812_OP_IDX_P2;
}
}
if (format & (M6811_OP_DIRECT | M6811_OP_IMM8))
{
fixup8 (&operands[i].exp,
format & (M6811_OP_DIRECT | M6811_OP_IMM8 | M6812_OP_TRAP_ID),
operands[i].mode);
i++;
}
else if (IS_CALL_SYMBOL (format) && nb_operands == 1)
{
format &= ~M6812_OP_PAGE;
fixup24 (&operands[i].exp, format & M6811_OP_IND16,
operands[i].mode);
i++;
}
else if (format & (M6811_OP_IMM16 | M6811_OP_IND16))
{
fixup16 (&operands[i].exp,
format & (M6811_OP_IMM16 | M6811_OP_IND16 | M6812_OP_PAGE),
operands[i].mode);
i++;
}
else if (format & (M6811_OP_IX | M6811_OP_IY))
{
if ((format & M6811_OP_IX) && (operands[0].reg1 != REG_X))
as_bad (_("Invalid indexed register, expecting register X."));
if ((format & M6811_OP_IY) && (operands[0].reg1 != REG_Y))
as_bad (_("Invalid indexed register, expecting register Y."));
fixup8 (&operands[0].exp, M6811_OP_IX, operands[0].mode);
i = 1;
}
else if (format &
(M6812_OP_IDX | M6812_OP_IDX_2 | M6812_OP_IDX_1
| M6812_OP_D_IDX | M6812_OP_D_IDX_2))
{
build_indexed_byte (&operands[i], format, move_insn);
i++;
}
else if (format & M6812_OP_REG && current_architecture & cpu6812)
{
build_reg_mode (&operands[i], format);
i++;
}
if (format & M6811_OP_BITMASK)
{
fixup8 (&operands[i].exp, M6811_OP_BITMASK, operands[i].mode);
i++;
}
if (format & M6811_OP_JUMP_REL)
{
fixup8 (&operands[i].exp, M6811_OP_JUMP_REL, operands[i].mode);
}
else if (format & M6812_OP_IND16_P2)
{
fixup16 (&operands[1].exp, M6811_OP_IND16, operands[1].mode);
}
if (format & M6812_OP_PAGE)
{
fixup8 (&operands[i].exp, M6812_OP_PAGE, operands[i].mode);
}
}
/* Opcode identification and operand analysis. */
/* find() gets a pointer to an entry in the opcode table. It must look at all
opcodes with the same name and use the operands to choose the correct
opcode. Returns the opcode pointer if there was a match and 0 if none. */
static struct m68hc11_opcode *
find (struct m68hc11_opcode_def *opc, operand operands[], int nb_operands)
{
int i, match, pos;
struct m68hc11_opcode *opcode;
struct m68hc11_opcode *op_indirect;
op_indirect = 0;
opcode = opc->opcode;
/* Now search the opcode table table for one with operands
that matches what we've got. */
if (current_architecture & cpuxgate)
{
/* Many XGATE insns are simple enough that we get an exact match. */
for (pos = match = 0; match == 0 && pos < opc->nb_modes; pos++, opcode++)
if (opcode->format == operands[nb_operands-1].mode)
return opcode;
return 0;
}
/* Non XGATE */
/* Now search the opcode table table for one with operands
that matches what we've got. We're only done if the operands matched so
far AND there are no more to check. */
for (pos = match = 0; match == 0 && pos < opc->nb_modes; pos++, opcode++)
{
int poss_indirect = 0;
long format = opcode->format;
int expect;
expect = 0;
if (opcode->format & M6811_OP_MASK)
expect++;
if (opcode->format & M6811_OP_BITMASK)
expect++;
if (opcode->format & (M6811_OP_JUMP_REL | M6812_OP_JUMP_REL16))
expect++;
if (opcode->format & (M6812_OP_IND16_P2 | M6812_OP_IDX_P2))
expect++;
if ((opcode->format & M6812_OP_PAGE)
&& (!IS_CALL_SYMBOL (opcode->format) || nb_operands == 2))
expect++;
for (i = 0; expect == nb_operands && i < nb_operands; i++)
{
int mode = operands[i].mode;
if (mode & M6811_OP_IMM16)
{
if (format &
(M6811_OP_IMM8 | M6811_OP_IMM16 | M6811_OP_BITMASK))
continue;
break;
}
if (mode == M6811_OP_DIRECT)
{
if (format & M6811_OP_DIRECT)
continue;
/* If the operand is a page 0 operand, remember a
possible <abs-16> addressing mode. We mark
this and continue to check other operands. */
if (format & M6811_OP_IND16
&& flag_strict_direct_addressing && op_indirect == 0)
{
poss_indirect = 1;
continue;
}
break;
}
if (mode & M6811_OP_IND16)
{
if (i == 0 && (format & M6811_OP_IND16) != 0)
continue;
if (i != 0 && (format & M6812_OP_PAGE) != 0)
continue;
if (i != 0 && (format & M6812_OP_IND16_P2) != 0)
continue;
if (i == 0 && (format & M6811_OP_BITMASK))
break;
}
if (mode & (M6811_OP_JUMP_REL | M6812_OP_JUMP_REL16))
{
if (format & (M6811_OP_JUMP_REL | M6812_OP_JUMP_REL16))
continue;
}
if (mode & M6812_OP_REG)
{
if (i == 0
&& (format & M6812_OP_REG)
&& (operands[i].reg2 == REG_NONE))
continue;
if (i == 0
&& (format & M6812_OP_REG)
&& (format & M6812_OP_REG_2)
&& (operands[i].reg2 != REG_NONE))
continue;
if (i == 0
&& (format & M6812_OP_IDX)
&& (operands[i].reg2 != REG_NONE))
continue;
if (i == 0
&& (format & M6812_OP_IDX)
&& (format & (M6812_OP_IND16_P2 | M6812_OP_IDX_P2)))
continue;
if (i == 1
&& (format & M6812_OP_IDX_P2))
continue;
break;
}
if (mode & M6812_OP_IDX)
{
if (format & M6811_OP_IX && operands[i].reg1 == REG_X)
continue;
if (format & M6811_OP_IY && operands[i].reg1 == REG_Y)
continue;
if (i == 0
&& format & (M6812_OP_IDX | M6812_OP_IDX_1 | M6812_OP_IDX_2)
&& (operands[i].reg1 == REG_X
|| operands[i].reg1 == REG_Y
|| operands[i].reg1 == REG_SP
|| operands[i].reg1 == REG_PC))
continue;
if (i == 1 && (format & M6812_OP_IDX_P2))
continue;
}
if (mode & format & (M6812_OP_D_IDX | M6812_OP_D_IDX_2))
{
if (i == 0)
continue;
}
if (mode & M6812_AUTO_INC_DEC)
{
if (i == 0
&& format & (M6812_OP_IDX | M6812_OP_IDX_1 |
M6812_OP_IDX_2))
continue;
if (i == 1 && format & M6812_OP_IDX_P2)
continue;
}
break;
}
match = i == nb_operands;
/* Operands are ok but an operand uses page 0 addressing mode
while the insn supports abs-16 mode. Keep a reference to this
insns in case there is no insn supporting page 0 addressing. */
if (match && poss_indirect)
{
op_indirect = opcode;
match = 0;
}
if (match)
break;
}
/* Page 0 addressing is used but not supported by any insn.
If absolute addresses are supported, we use that insn. */
if (match == 0 && op_indirect)
{
opcode = op_indirect;
match = 1;
}
return match ? opcode : 0;
}
/* Find the real opcode and its associated operands. We use a progressive
approach here. On entry, 'opc' points to the first opcode in the
table that matches the opcode name in the source line. We try to
isolate an operand, find a possible match in the opcode table.
We isolate another operand if no match were found. The table 'operands'
is filled while operands are recognized.
Returns the opcode pointer that matches the opcode name in the
source line and the associated operands. */
static struct m68hc11_opcode *
find_opcode (struct m68hc11_opcode_def *opc, operand operands[],
int *nb_operands)
{
struct m68hc11_opcode *opcode;
int i;
if (opc->max_operands == 0)
{
*nb_operands = 0;
return opc->opcode;
}
for (i = 0; i < opc->max_operands;)
{
int result;
result = get_operand (&operands[i], i, opc->format);
if (result <= 0)
return 0;
/* Special case where the bitmask of the bclr/brclr
instructions is not introduced by #.
Example: bclr 3,x $80. */
if (i == 1 && (opc->format & M6811_OP_BITMASK)
&& (operands[i].mode & M6811_OP_IND16))
{
operands[i].mode = M6811_OP_IMM16;
}
i += result;
*nb_operands = i;
if (i >= opc->min_operands)
{
opcode = find (opc, operands, i);
/* Another special case for 'call foo,page' instructions.
Since we support 'call foo' and 'call foo,page' we must look
if the optional page specification is present otherwise we will
assemble immediately and treat the page spec as garbage. */
if (opcode && !(opcode->format & M6812_OP_PAGE))
return opcode;
if (opcode && *input_line_pointer != ',')
return opcode;
}
if (*input_line_pointer == ',')
input_line_pointer++;
}
return 0;
}
#define M6812_XBCC_MARKER (M6812_OP_TBCC_MARKER \
| M6812_OP_DBCC_MARKER \
| M6812_OP_IBCC_MARKER)
/* Gas line assembler entry point. */
/* This is the main entry point for the machine-dependent assembler. str
points to a machine-dependent instruction. This function is supposed to
emit the frags/bytes it assembles to. */
void
md_assemble (char *str)
{
struct m68hc11_opcode_def *opc;
struct m68hc11_opcode *opcode;
struct m68hc11_opcode opcode_local;
unsigned char *op_start, *op_end;
char *save;
char name[20];
int nlen = 0;
operand operands[M6811_MAX_OPERANDS];
int nb_operands = 0;
int branch_optimize = 0;
int alias_id = -1;
/* Drop leading whitespace. */
while (*str == ' ')
str++;
/* Find the opcode end and get the opcode in 'name'. The opcode is forced
lower case (the opcode table only has lower case op-codes). */
for (op_start = op_end = (unsigned char *) str;
*op_end && !is_end_of_line[*op_end] && *op_end != ' ';
op_end++)
{
name[nlen] = TOLOWER (op_start[nlen]);
nlen++;
if (nlen == sizeof (name) - 1)
break;
}
name[nlen] = 0;
if (nlen == 0)
{
as_bad (_("No instruction or missing opcode."));
return;
}
if (current_architecture == cpuxgate)
{
/* Find the opcode definition given its name. */
opc = (struct m68hc11_opcode_def *) str_hash_find (m68hc11_hash, name);
if (opc == NULL)
{
as_bad (_("Opcode `%s' is not recognized."), name);
return;
}
/* Grab a local copy. */
opcode_local.name = opc->opcode->name;
/* These will be incomplete where multiple variants exist. */
opcode_local.opcode = opc->opcode->opcode;
opcode_local.format = opc->opcode->format;
save = input_line_pointer;
input_line_pointer = (char *) op_end;
if (opc->format == M68XG_OP_NONE)
{
/* No special handling required. */
opcode_local.format = M68XG_OP_NONE;
build_insn_xg (opc->opcode, operands, 0);
return;
}
/* Special handling of TFR. */
if (startswith (opc->opcode->name, "tfr"))
{
/* There must be two operands with a comma. */
input_line_pointer = skip_whites (input_line_pointer);
operands[0].reg1 = register_name ();
if (operands[0].reg1 == REG_NONE)
{
as_bad ("Invalid register\n");
return;
}
input_line_pointer = skip_whites (input_line_pointer);
if (*input_line_pointer != ',')
{
as_bad ("Missing comma.\n");
return;
}
input_line_pointer++;
input_line_pointer = skip_whites (input_line_pointer);
operands[1].reg1 = register_name ();
if (operands[1].reg1 == REG_NONE)
{
as_bad ("Invalid register\n");
return;
}
input_line_pointer = skip_whites (input_line_pointer);
if (*input_line_pointer != '\n' && *input_line_pointer)
{
as_bad (_("Garbage at end of instruction: `%s'."),
input_line_pointer);
return;
}
if (operands[1].reg1 == REG_CCR) /* ,CCR */
opc->opcode->opcode = 0x00f8 | ( operands[0].reg1 << 8);
else if (operands[0].reg1 == REG_CCR) /* CCR, */
opc->opcode->opcode = 0x00f9 | ( operands[1].reg1 << 8);
else if (operands[1].reg1 == REG_PC) /* ,PC */
opc->opcode->opcode = 0x00fa | ( operands[0].reg1 << 8);
else
{
as_bad ("Invalid operand to TFR\n");
return;
}
/* no special handling required */
opcode_local.format = M68XG_OP_NONE;
opcode_local.opcode = opc->opcode->opcode;
build_insn_xg (&opcode_local, operands, 0);
return;
}
/* CSEM, SSEM */
if (opc->format & M68XG_OP_IMM3)
{
/* Either IMM3 or R */
input_line_pointer = skip_whites (input_line_pointer);
if ((*input_line_pointer == 'R') || (*input_line_pointer == 'r'))
{
operands[0].reg1 = register_name ();
if (operands[0].reg1 == REG_NONE)
{
as_bad ("Invalid register\n");
return;
}
operands[0].mode = M68XG_OP_R;
/* One opcode has multiple modes, so find right one. */
opcode = find (opc, operands, 1);
if (opcode)
{
opcode_local.opcode = opcode->opcode
| (operands[0].reg1 << 8);
opcode_local.format = M68XG_OP_NONE;
build_insn_xg (&opcode_local, operands, 1);
}
else
as_bad ("No opcode found\n");
return;
}
else
{
if (*input_line_pointer == '#')
input_line_pointer++;
expression (&operands[0].exp);
if (operands[0].exp.X_op == O_illegal)
{
as_bad (_("Illegal operand."));
return;
}
else if (operands[0].exp.X_op == O_absent)
{
as_bad (_("Missing operand."));
return;
}
if (check_range (operands[0].exp.X_add_number,M68XG_OP_IMM3))
{
opcode_local.opcode |= (operands[0].exp.X_add_number);
operands[0].mode = M68XG_OP_IMM3;
opcode = find (opc, operands, 1);
if (opcode)
{
opcode_local.opcode = opcode->opcode;
opcode_local.opcode
|= (operands[0].exp.X_add_number) << 8;
opcode_local.format = M68XG_OP_NONE;
build_insn_xg (&opcode_local, operands, 1);
}
else
as_bad ("No opcode found\n");
return;
}
else
{
as_bad ("Number out of range for IMM3\n");
return;
}
}
}
/* Special handling of SIF. */
if (startswith (opc->opcode->name, "sif"))
{
/* Either OP_NONE or OP_RS. */
if (*input_line_pointer != '\n')
input_line_pointer = skip_whites (input_line_pointer);
if ((*input_line_pointer == '\n') || (*input_line_pointer == '\r')
|| (*input_line_pointer == '\0'))
opc->opcode->opcode = 0x0300;
else
{
operands[0].reg1 = register_name ();
if (operands[0].reg1 == REG_NONE)
{
as_bad ("Invalid register\n");
return;
}
opcode_local.opcode = 0x00f7 | (operands[0].reg1 << 8);
}
opcode_local.format = M68XG_OP_NONE;
build_insn_xg (&opcode_local, operands, 0);
return;
}
/* SEX, PAR, JAL plus aliases NEG, TST, COM */
if (opc->format & M68XG_OP_R)
{
input_line_pointer = skip_whites (input_line_pointer);
operands[0].reg1 = register_name ();