blob: dfe84c1fb8ae131213e03749430d76fc02cff890 [file] [log] [blame]
/* tc-mips.c -- assemble code for a MIPS chip.
Copyright (C) 1993-2021 Free Software Foundation, Inc.
Contributed by the OSF and Ralph Campbell.
Written by Keith Knowles and Ralph Campbell, working independently.
Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
Support.
This file is part of GAS.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include "as.h"
#include "config.h"
#include "subsegs.h"
#include "safe-ctype.h"
#include "opcode/mips.h"
#include "itbl-ops.h"
#include "dwarf2dbg.h"
#include "dw2gencfi.h"
/* Check assumptions made in this file. */
typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
#ifdef DEBUG
#define DBG(x) printf x
#else
#define DBG(x)
#endif
#define streq(a, b) (strcmp (a, b) == 0)
#define SKIP_SPACE_TABS(S) \
do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
/* Clean up namespace so we can include obj-elf.h too. */
static int mips_output_flavor (void);
static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
#undef OBJ_PROCESS_STAB
#undef OUTPUT_FLAVOR
#undef S_GET_ALIGN
#undef S_GET_SIZE
#undef S_SET_ALIGN
#undef S_SET_SIZE
#undef obj_frob_file
#undef obj_frob_file_after_relocs
#undef obj_frob_symbol
#undef obj_pop_insert
#undef obj_sec_sym_ok_for_reloc
#undef OBJ_COPY_SYMBOL_ATTRIBUTES
#include "obj-elf.h"
/* Fix any of them that we actually care about. */
#undef OUTPUT_FLAVOR
#define OUTPUT_FLAVOR mips_output_flavor()
#include "elf/mips.h"
#ifndef ECOFF_DEBUGGING
#define NO_ECOFF_DEBUGGING
#define ECOFF_DEBUGGING 0
#endif
int mips_flag_mdebug = -1;
/* Control generation of .pdr sections. Off by default on IRIX: the native
linker doesn't know about and discards them, but relocations against them
remain, leading to rld crashes. */
#ifdef TE_IRIX
int mips_flag_pdr = false;
#else
int mips_flag_pdr = true;
#endif
#include "ecoff.h"
static char *mips_regmask_frag;
static char *mips_flags_frag;
#define ZERO 0
#define ATREG 1
#define S0 16
#define S7 23
#define TREG 24
#define PIC_CALL_REG 25
#define KT0 26
#define KT1 27
#define GP 28
#define SP 29
#define FP 30
#define RA 31
#define FCSR 31
#define ILLEGAL_REG (32)
#define AT mips_opts.at
extern int target_big_endian;
/* The name of the readonly data section. */
#define RDATA_SECTION_NAME ".rodata"
/* Ways in which an instruction can be "appended" to the output. */
enum append_method {
/* Just add it normally. */
APPEND_ADD,
/* Add it normally and then add a nop. */
APPEND_ADD_WITH_NOP,
/* Turn an instruction with a delay slot into a "compact" version. */
APPEND_ADD_COMPACT,
/* Insert the instruction before the last one. */
APPEND_SWAP
};
/* Information about an instruction, including its format, operands
and fixups. */
struct mips_cl_insn
{
/* The opcode's entry in mips_opcodes or mips16_opcodes. */
const struct mips_opcode *insn_mo;
/* The 16-bit or 32-bit bitstring of the instruction itself. This is
a copy of INSN_MO->match with the operands filled in. If we have
decided to use an extended MIPS16 instruction, this includes the
extension. */
unsigned long insn_opcode;
/* The name if this is an label. */
char label[16];
/* The target label name if this is an branch. */
char target[16];
/* The frag that contains the instruction. */
struct frag *frag;
/* The offset into FRAG of the first instruction byte. */
long where;
/* The relocs associated with the instruction, if any. */
fixS *fixp[3];
/* True if this entry cannot be moved from its current position. */
unsigned int fixed_p : 1;
/* True if this instruction occurred in a .set noreorder block. */
unsigned int noreorder_p : 1;
/* True for mips16 instructions that jump to an absolute address. */
unsigned int mips16_absolute_jump_p : 1;
/* True if this instruction is complete. */
unsigned int complete_p : 1;
/* True if this instruction is cleared from history by unconditional
branch. */
unsigned int cleared_p : 1;
};
/* The ABI to use. */
enum mips_abi_level
{
NO_ABI = 0,
O32_ABI,
O64_ABI,
N32_ABI,
N64_ABI,
EABI_ABI
};
/* MIPS ABI we are using for this output file. */
static enum mips_abi_level mips_abi = NO_ABI;
/* Whether or not we have code that can call pic code. */
int mips_abicalls = false;
/* Whether or not we have code which can be put into a shared
library. */
static bool mips_in_shared = true;
/* This is the set of options which may be modified by the .set
pseudo-op. We use a struct so that .set push and .set pop are more
reliable. */
struct mips_set_options
{
/* MIPS ISA (Instruction Set Architecture) level. This is set to -1
if it has not been initialized. Changed by `.set mipsN', and the
-mipsN command line option, and the default CPU. */
int isa;
/* Enabled Application Specific Extensions (ASEs). Changed by `.set
<asename>', by command line options, and based on the default
architecture. */
int ase;
/* Whether we are assembling for the mips16 processor. 0 if we are
not, 1 if we are, and -1 if the value has not been initialized.
Changed by `.set mips16' and `.set nomips16', and the -mips16 and
-nomips16 command line options, and the default CPU. */
int mips16;
/* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
1 if we are, and -1 if the value has not been initialized. Changed
by `.set micromips' and `.set nomicromips', and the -mmicromips
and -mno-micromips command line options, and the default CPU. */
int micromips;
/* Non-zero if we should not reorder instructions. Changed by `.set
reorder' and `.set noreorder'. */
int noreorder;
/* Non-zero if we should not permit the register designated "assembler
temporary" to be used in instructions. The value is the register
number, normally $at ($1). Changed by `.set at=REG', `.set noat'
(same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
unsigned int at;
/* Non-zero if we should warn when a macro instruction expands into
more than one machine instruction. Changed by `.set nomacro' and
`.set macro'. */
int warn_about_macros;
/* Non-zero if we should not move instructions. Changed by `.set
move', `.set volatile', `.set nomove', and `.set novolatile'. */
int nomove;
/* Non-zero if we should not optimize branches by moving the target
of the branch into the delay slot. Actually, we don't perform
this optimization anyhow. Changed by `.set bopt' and `.set
nobopt'. */
int nobopt;
/* Non-zero if we should not autoextend mips16 instructions.
Changed by `.set autoextend' and `.set noautoextend'. */
int noautoextend;
/* True if we should only emit 32-bit microMIPS instructions.
Changed by `.set insn32' and `.set noinsn32', and the -minsn32
and -mno-insn32 command line options. */
bool insn32;
/* Restrict general purpose registers and floating point registers
to 32 bit. This is initially determined when -mgp32 or -mfp32
is passed but can changed if the assembler code uses .set mipsN. */
int gp;
int fp;
/* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
command line option, and the default CPU. */
int arch;
/* True if ".set sym32" is in effect. */
bool sym32;
/* True if floating-point operations are not allowed. Changed by .set
softfloat or .set hardfloat, by command line options -msoft-float or
-mhard-float. The default is false. */
bool soft_float;
/* True if only single-precision floating-point operations are allowed.
Changed by .set singlefloat or .set doublefloat, command-line options
-msingle-float or -mdouble-float. The default is false. */
bool single_float;
/* 1 if single-precision operations on odd-numbered registers are
allowed. */
int oddspreg;
/* The set of ASEs that should be enabled for the user specified
architecture. This cannot be inferred from 'arch' for all cores
as processors only have a unique 'arch' if they add architecture
specific instructions (UDI). */
int init_ase;
};
/* Specifies whether module level options have been checked yet. */
static bool file_mips_opts_checked = false;
/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
value has not been initialized. Changed by `.nan legacy' and
`.nan 2008', and the -mnan=legacy and -mnan=2008 command line
options, and the default CPU. */
static int mips_nan2008 = -1;
/* This is the struct we use to hold the module level set of options.
Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
fp fields to -1 to indicate that they have not been initialized. */
static struct mips_set_options file_mips_opts =
{
/* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
/* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
/* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ false,
/* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ false,
/* soft_float */ false, /* single_float */ false, /* oddspreg */ -1,
/* init_ase */ 0
};
/* This is similar to file_mips_opts, but for the current set of options. */
static struct mips_set_options mips_opts =
{
/* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
/* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
/* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ false,
/* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ false,
/* soft_float */ false, /* single_float */ false, /* oddspreg */ -1,
/* init_ase */ 0
};
/* Which bits of file_ase were explicitly set or cleared by ASE options. */
static unsigned int file_ase_explicit;
/* These variables are filled in with the masks of registers used.
The object format code reads them and puts them in the appropriate
place. */
unsigned long mips_gprmask;
unsigned long mips_cprmask[4];
/* True if any MIPS16 code was produced. */
static int file_ase_mips16;
#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
|| mips_opts.isa == ISA_MIPS32R2 \
|| mips_opts.isa == ISA_MIPS32R3 \
|| mips_opts.isa == ISA_MIPS32R5 \
|| mips_opts.isa == ISA_MIPS64 \
|| mips_opts.isa == ISA_MIPS64R2 \
|| mips_opts.isa == ISA_MIPS64R3 \
|| mips_opts.isa == ISA_MIPS64R5)
/* True if any microMIPS code was produced. */
static int file_ase_micromips;
/* True if we want to create R_MIPS_JALR for jalr $25. */
#ifdef TE_IRIX
#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
#else
/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
because there's no place for any addend, the only acceptable
expression is a bare symbol. */
#define MIPS_JALR_HINT_P(EXPR) \
(!HAVE_IN_PLACE_ADDENDS \
|| ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
#endif
/* The argument of the -march= flag. The architecture we are assembling. */
static const char *mips_arch_string;
/* The argument of the -mtune= flag. The architecture for which we
are optimizing. */
static int mips_tune = CPU_UNKNOWN;
static const char *mips_tune_string;
/* True when generating 32-bit code for a 64-bit processor. */
static int mips_32bitmode = 0;
/* True if the given ABI requires 32-bit registers. */
#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
/* Likewise 64-bit registers. */
#define ABI_NEEDS_64BIT_REGS(ABI) \
((ABI) == N32_ABI \
|| (ABI) == N64_ABI \
|| (ABI) == O64_ABI)
#define ISA_IS_R6(ISA) \
((ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports 64 bit wide gp registers. */
#define ISA_HAS_64BIT_REGS(ISA) \
((ISA) == ISA_MIPS3 \
|| (ISA) == ISA_MIPS4 \
|| (ISA) == ISA_MIPS5 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports 64 bit wide float registers. */
#define ISA_HAS_64BIT_FPRS(ISA) \
((ISA) == ISA_MIPS3 \
|| (ISA) == ISA_MIPS4 \
|| (ISA) == ISA_MIPS5 \
|| (ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports 64-bit right rotate (dror et al.)
instructions. */
#define ISA_HAS_DROR(ISA) \
((ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6 \
|| (mips_opts.micromips \
&& ISA_HAS_64BIT_REGS (ISA)) \
)
/* Return true if ISA supports 32-bit right rotate (ror et al.)
instructions. */
#define ISA_HAS_ROR(ISA) \
((ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6 \
|| (mips_opts.ase & ASE_SMARTMIPS) \
|| mips_opts.micromips \
)
/* Return true if ISA supports single-precision floats in odd registers. */
#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
(((ISA) == ISA_MIPS32 \
|| (ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6 \
|| (CPU) == CPU_R5900) \
&& ((CPU) != CPU_GS464 \
|| (CPU) != CPU_GS464E \
|| (CPU) != CPU_GS264E))
/* Return true if ISA supports move to/from high part of a 64-bit
floating-point register. */
#define ISA_HAS_MXHC1(ISA) \
((ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports legacy NAN. */
#define ISA_HAS_LEGACY_NAN(ISA) \
((ISA) == ISA_MIPS1 \
|| (ISA) == ISA_MIPS2 \
|| (ISA) == ISA_MIPS3 \
|| (ISA) == ISA_MIPS4 \
|| (ISA) == ISA_MIPS5 \
|| (ISA) == ISA_MIPS32 \
|| (ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5)
#define GPR_SIZE \
(mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
? 32 \
: mips_opts.gp)
#define FPR_SIZE \
(mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
? 32 \
: mips_opts.fp)
#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
/* True if relocations are stored in-place. */
#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
/* The ABI-derived address size. */
#define HAVE_64BIT_ADDRESSES \
(GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
/* The size of symbolic constants (i.e., expressions of the form
"SYMBOL" or "SYMBOL + OFFSET"). */
#define HAVE_32BIT_SYMBOLS \
(HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
/* Addresses are loaded in different ways, depending on the address size
in use. The n32 ABI Documentation also mandates the use of additions
with overflow checking, but existing implementations don't follow it. */
#define ADDRESS_ADD_INSN \
(HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
#define ADDRESS_ADDI_INSN \
(HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
#define ADDRESS_LOAD_INSN \
(HAVE_32BIT_ADDRESSES ? "lw" : "ld")
#define ADDRESS_STORE_INSN \
(HAVE_32BIT_ADDRESSES ? "sw" : "sd")
/* Return true if the given CPU supports the MIPS16 ASE. */
#define CPU_HAS_MIPS16(cpu) \
(startswith (TARGET_CPU, "mips16") \
|| startswith (TARGET_CANONICAL, "mips-lsi-elf"))
/* Return true if the given CPU supports the microMIPS ASE. */
#define CPU_HAS_MICROMIPS(cpu) 0
/* True if CPU has a dror instruction. */
#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
/* True if CPU has a ror instruction. */
#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
/* True if CPU is in the Octeon family. */
#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
|| (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
/* True if CPU has seq/sne and seqi/snei instructions. */
#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
/* True, if CPU has support for ldc1 and sdc1. */
#define CPU_HAS_LDC1_SDC1(CPU) \
((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
/* True if mflo and mfhi can be immediately followed by instructions
which write to the HI and LO registers.
According to MIPS specifications, MIPS ISAs I, II, and III need
(at least) two instructions between the reads of HI/LO and
instructions which write them, and later ISAs do not. Contradicting
the MIPS specifications, some MIPS IV processor user manuals (e.g.
the UM for the NEC Vr5000) document needing the instructions between
HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
MIPS64 and later ISAs to have the interlocks, plus any specific
earlier-ISA CPUs for which CPU documentation declares that the
instructions are really interlocked. */
#define hilo_interlocks \
(mips_opts.isa == ISA_MIPS32 \
|| mips_opts.isa == ISA_MIPS32R2 \
|| mips_opts.isa == ISA_MIPS32R3 \
|| mips_opts.isa == ISA_MIPS32R5 \
|| mips_opts.isa == ISA_MIPS32R6 \
|| mips_opts.isa == ISA_MIPS64 \
|| mips_opts.isa == ISA_MIPS64R2 \
|| mips_opts.isa == ISA_MIPS64R3 \
|| mips_opts.isa == ISA_MIPS64R5 \
|| mips_opts.isa == ISA_MIPS64R6 \
|| mips_opts.arch == CPU_R4010 \
|| mips_opts.arch == CPU_R5900 \
|| mips_opts.arch == CPU_R10000 \
|| mips_opts.arch == CPU_R12000 \
|| mips_opts.arch == CPU_R14000 \
|| mips_opts.arch == CPU_R16000 \
|| mips_opts.arch == CPU_RM7000 \
|| mips_opts.arch == CPU_VR5500 \
|| mips_opts.micromips \
)
/* Whether the processor uses hardware interlocks to protect reads
from the GPRs after they are loaded from memory, and thus does not
require nops to be inserted. This applies to instructions marked
INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
level I and microMIPS mode instructions are always interlocked. */
#define gpr_interlocks \
(mips_opts.isa != ISA_MIPS1 \
|| mips_opts.arch == CPU_R3900 \
|| mips_opts.arch == CPU_R5900 \
|| mips_opts.micromips \
)
/* Whether the processor uses hardware interlocks to avoid delays
required by coprocessor instructions, and thus does not require
nops to be inserted. This applies to instructions marked
INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
instructions marked INSN_WRITE_COND_CODE and ones marked
INSN_READ_COND_CODE. These nops are only required at MIPS ISA
levels I, II, and III and microMIPS mode instructions are always
interlocked. */
/* Itbl support may require additional care here. */
#define cop_interlocks \
((mips_opts.isa != ISA_MIPS1 \
&& mips_opts.isa != ISA_MIPS2 \
&& mips_opts.isa != ISA_MIPS3) \
|| mips_opts.arch == CPU_R4300 \
|| mips_opts.micromips \
)
/* Whether the processor uses hardware interlocks to protect reads
from coprocessor registers after they are loaded from memory, and
thus does not require nops to be inserted. This applies to
instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
requires at MIPS ISA level I and microMIPS mode instructions are
always interlocked. */
#define cop_mem_interlocks \
(mips_opts.isa != ISA_MIPS1 \
|| mips_opts.micromips \
)
/* Is this a mfhi or mflo instruction? */
#define MF_HILO_INSN(PINFO) \
((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
has been selected. This implies, in particular, that addresses of text
labels have their LSB set. */
#define HAVE_CODE_COMPRESSION \
((mips_opts.mips16 | mips_opts.micromips) != 0)
/* The minimum and maximum signed values that can be stored in a GPR. */
#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
#define GPR_SMIN (-GPR_SMAX - 1)
/* MIPS PIC level. */
enum mips_pic_level mips_pic;
/* 1 if we should generate 32 bit offsets from the $gp register in
SVR4_PIC mode. Currently has no meaning in other modes. */
static int mips_big_got = 0;
/* 1 if trap instructions should used for overflow rather than break
instructions. */
static int mips_trap = 0;
/* 1 if double width floating point constants should not be constructed
by assembling two single width halves into two single width floating
point registers which just happen to alias the double width destination
register. On some architectures this aliasing can be disabled by a bit
in the status register, and the setting of this bit cannot be determined
automatically at assemble time. */
static int mips_disable_float_construction;
/* Non-zero if any .set noreorder directives were used. */
static int mips_any_noreorder;
/* Non-zero if nops should be inserted when the register referenced in
an mfhi/mflo instruction is read in the next two instructions. */
static int mips_7000_hilo_fix;
/* The size of objects in the small data section. */
static unsigned int g_switch_value = 8;
/* Whether the -G option was used. */
static int g_switch_seen = 0;
#define N_RMASK 0xc4
#define N_VFP 0xd4
/* If we can determine in advance that GP optimization won't be
possible, we can skip the relaxation stuff that tries to produce
GP-relative references. This makes delay slot optimization work
better.
This function can only provide a guess, but it seems to work for
gcc output. It needs to guess right for gcc, otherwise gcc
will put what it thinks is a GP-relative instruction in a branch
delay slot.
I don't know if a fix is needed for the SVR4_PIC mode. I've only
fixed it for the non-PIC mode. KR 95/04/07 */
static int nopic_need_relax (symbolS *, int);
/* Handle of the OPCODE hash table. */
static htab_t op_hash = NULL;
/* The opcode hash table we use for the mips16. */
static htab_t mips16_op_hash = NULL;
/* The opcode hash table we use for the microMIPS ASE. */
static htab_t micromips_op_hash = NULL;
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful. */
const char comment_chars[] = "#";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output. */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that C style comments are always supported. */
const char line_comment_chars[] = "#";
/* This array holds machine specific line separator characters. */
const char line_separator_chars[] = ";";
/* Chars that can be used to separate mant from exp in floating point nums. */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant.
As in 0f12.456
or 0d1.2345e12. */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
changed in read.c . Ideally it shouldn't have to know about it at all,
but nothing is ideal around here. */
/* Types of printf format used for instruction-related error messages.
"I" means int ("%d") and "S" means string ("%s"). */
enum mips_insn_error_format
{
ERR_FMT_PLAIN,
ERR_FMT_I,
ERR_FMT_SS,
};
/* Information about an error that was found while assembling the current
instruction. */
struct mips_insn_error
{
/* We sometimes need to match an instruction against more than one
opcode table entry. Errors found during this matching are reported
against a particular syntactic argument rather than against the
instruction as a whole. We grade these messages so that errors
against argument N have a greater priority than an error against
any argument < N, since the former implies that arguments up to N
were acceptable and that the opcode entry was therefore a closer match.
If several matches report an error against the same argument,
we only use that error if it is the same in all cases.
min_argnum is the minimum argument number for which an error message
should be accepted. It is 0 if MSG is against the instruction as
a whole. */
int min_argnum;
/* The printf()-style message, including its format and arguments. */
enum mips_insn_error_format format;
const char *msg;
union
{
int i;
const char *ss[2];
} u;
};
/* The error that should be reported for the current instruction. */
static struct mips_insn_error insn_error;
static int auto_align = 1;
/* When outputting SVR4 PIC code, the assembler needs to know the
offset in the stack frame from which to restore the $gp register.
This is set by the .cprestore pseudo-op, and saved in this
variable. */
static offsetT mips_cprestore_offset = -1;
/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
more optimizations, it can use a register value instead of a memory-saved
offset and even an other register than $gp as global pointer. */
static offsetT mips_cpreturn_offset = -1;
static int mips_cpreturn_register = -1;
static int mips_gp_register = GP;
static int mips_gprel_offset = 0;
/* Whether mips_cprestore_offset has been set in the current function
(or whether it has already been warned about, if not). */
static int mips_cprestore_valid = 0;
/* This is the register which holds the stack frame, as set by the
.frame pseudo-op. This is needed to implement .cprestore. */
static int mips_frame_reg = SP;
/* Whether mips_frame_reg has been set in the current function
(or whether it has already been warned about, if not). */
static int mips_frame_reg_valid = 0;
/* To output NOP instructions correctly, we need to keep information
about the previous two instructions. */
/* Whether we are optimizing. The default value of 2 means to remove
unneeded NOPs and swap branch instructions when possible. A value
of 1 means to not swap branches. A value of 0 means to always
insert NOPs. */
static int mips_optimize = 2;
/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
equivalent to seeing no -g option at all. */
static int mips_debug = 0;
/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
#define MAX_VR4130_NOPS 4
/* The maximum number of NOPs needed to fill delay slots. */
#define MAX_DELAY_NOPS 2
/* The maximum number of NOPs needed for any purpose. */
#define MAX_NOPS 4
/* The maximum range of context length of ll/sc. */
#define MAX_LLSC_RANGE 20
/* A list of previous instructions, with index 0 being the most recent.
We need to look back MAX_NOPS instructions when filling delay slots
or working around processor errata. We need to look back one
instruction further if we're thinking about using history[0] to
fill a branch delay slot. */
static struct mips_cl_insn history[1 + MAX_NOPS + MAX_LLSC_RANGE];
/* The maximum number of LABELS detect for the same address. */
#define MAX_LABELS_SAME 10
/* Arrays of operands for each instruction. */
#define MAX_OPERANDS 6
struct mips_operand_array
{
const struct mips_operand *operand[MAX_OPERANDS];
};
static struct mips_operand_array *mips_operands;
static struct mips_operand_array *mips16_operands;
static struct mips_operand_array *micromips_operands;
/* Nop instructions used by emit_nop. */
static struct mips_cl_insn nop_insn;
static struct mips_cl_insn mips16_nop_insn;
static struct mips_cl_insn micromips_nop16_insn;
static struct mips_cl_insn micromips_nop32_insn;
/* Sync instructions used by insert sync. */
static struct mips_cl_insn sync_insn;
/* The appropriate nop for the current mode. */
#define NOP_INSN (mips_opts.mips16 \
? &mips16_nop_insn \
: (mips_opts.micromips \
? (mips_opts.insn32 \
? &micromips_nop32_insn \
: &micromips_nop16_insn) \
: &nop_insn))
/* The size of NOP_INSN in bytes. */
#define NOP_INSN_SIZE ((mips_opts.mips16 \
|| (mips_opts.micromips && !mips_opts.insn32)) \
? 2 : 4)
/* If this is set, it points to a frag holding nop instructions which
were inserted before the start of a noreorder section. If those
nops turn out to be unnecessary, the size of the frag can be
decreased. */
static fragS *prev_nop_frag;
/* The number of nop instructions we created in prev_nop_frag. */
static int prev_nop_frag_holds;
/* The number of nop instructions that we know we need in
prev_nop_frag. */
static int prev_nop_frag_required;
/* The number of instructions we've seen since prev_nop_frag. */
static int prev_nop_frag_since;
/* Relocations against symbols are sometimes done in two parts, with a HI
relocation and a LO relocation. Each relocation has only 16 bits of
space to store an addend. This means that in order for the linker to
handle carries correctly, it must be able to locate both the HI and
the LO relocation. This means that the relocations must appear in
order in the relocation table.
In order to implement this, we keep track of each unmatched HI
relocation. We then sort them so that they immediately precede the
corresponding LO relocation. */
struct mips_hi_fixup
{
/* Next HI fixup. */
struct mips_hi_fixup *next;
/* This fixup. */
fixS *fixp;
/* The section this fixup is in. */
segT seg;
};
/* The list of unmatched HI relocs. */
static struct mips_hi_fixup *mips_hi_fixup_list;
/* Map mips16 register numbers to normal MIPS register numbers. */
static const unsigned int mips16_to_32_reg_map[] =
{
16, 17, 2, 3, 4, 5, 6, 7
};
/* Map microMIPS register numbers to normal MIPS register numbers. */
#define micromips_to_32_reg_d_map mips16_to_32_reg_map
/* The microMIPS registers with type h. */
static const unsigned int micromips_to_32_reg_h_map1[] =
{
5, 5, 6, 4, 4, 4, 4, 4
};
static const unsigned int micromips_to_32_reg_h_map2[] =
{
6, 7, 7, 21, 22, 5, 6, 7
};
/* The microMIPS registers with type m. */
static const unsigned int micromips_to_32_reg_m_map[] =
{
0, 17, 2, 3, 16, 18, 19, 20
};
#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
/* Classifies the kind of instructions we're interested in when
implementing -mfix-vr4120. */
enum fix_vr4120_class
{
FIX_VR4120_MACC,
FIX_VR4120_DMACC,
FIX_VR4120_MULT,
FIX_VR4120_DMULT,
FIX_VR4120_DIV,
FIX_VR4120_MTHILO,
NUM_FIX_VR4120_CLASSES
};
/* ...likewise -mfix-loongson2f-jump. */
static bool mips_fix_loongson2f_jump;
/* ...likewise -mfix-loongson2f-nop. */
static bool mips_fix_loongson2f_nop;
/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
static bool mips_fix_loongson2f;
/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
there must be at least one other instruction between an instruction
of type X and an instruction of type Y. */
static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
/* True if -mfix-vr4120 is in force. */
static int mips_fix_vr4120;
/* ...likewise -mfix-vr4130. */
static int mips_fix_vr4130;
/* ...likewise -mfix-24k. */
static int mips_fix_24k;
/* ...likewise -mfix-rm7000 */
static int mips_fix_rm7000;
/* ...likewise -mfix-cn63xxp1 */
static bool mips_fix_cn63xxp1;
/* ...likewise -mfix-r5900 */
static bool mips_fix_r5900;
static bool mips_fix_r5900_explicit;
/* ...likewise -mfix-loongson3-llsc. */
static bool mips_fix_loongson3_llsc = DEFAULT_MIPS_FIX_LOONGSON3_LLSC;
/* We don't relax branches by default, since this causes us to expand
`la .l2 - .l1' if there's a branch between .l1 and .l2, because we
fail to compute the offset before expanding the macro to the most
efficient expansion. */
static int mips_relax_branch;
/* TRUE if checks are suppressed for invalid branches between ISA modes.
Needed for broken assembly produced by some GCC versions and some
sloppy code out there, where branches to data labels are present. */
static bool mips_ignore_branch_isa;
/* The expansion of many macros depends on the type of symbol that
they refer to. For example, when generating position-dependent code,
a macro that refers to a symbol may have two different expansions,
one which uses GP-relative addresses and one which uses absolute
addresses. When generating SVR4-style PIC, a macro may have
different expansions for local and global symbols.
We handle these situations by generating both sequences and putting
them in variant frags. In position-dependent code, the first sequence
will be the GP-relative one and the second sequence will be the
absolute one. In SVR4 PIC, the first sequence will be for global
symbols and the second will be for local symbols.
The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
SECOND are the lengths of the two sequences in bytes. These fields
can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
the subtype has the following flags:
RELAX_PIC
Set if generating PIC code.
RELAX_USE_SECOND
Set if it has been decided that we should use the second
sequence instead of the first.
RELAX_SECOND_LONGER
Set in the first variant frag if the macro's second implementation
is longer than its first. This refers to the macro as a whole,
not an individual relaxation.
RELAX_NOMACRO
Set in the first variant frag if the macro appeared in a .set nomacro
block and if one alternative requires a warning but the other does not.
RELAX_DELAY_SLOT
Like RELAX_NOMACRO, but indicates that the macro appears in a branch
delay slot.
RELAX_DELAY_SLOT_16BIT
Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
16-bit instruction.
RELAX_DELAY_SLOT_SIZE_FIRST
Like RELAX_DELAY_SLOT, but indicates that the first implementation of
the macro is of the wrong size for the branch delay slot.
RELAX_DELAY_SLOT_SIZE_SECOND
Like RELAX_DELAY_SLOT, but indicates that the second implementation of
the macro is of the wrong size for the branch delay slot.
The frag's "opcode" points to the first fixup for relaxable code.
Relaxable macros are generated using a sequence such as:
relax_start (SYMBOL);
... generate first expansion ...
relax_switch ();
... generate second expansion ...
relax_end ();
The code and fixups for the unwanted alternative are discarded
by md_convert_frag. */
#define RELAX_ENCODE(FIRST, SECOND, PIC) \
(((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
#define RELAX_SECOND(X) ((X) & 0xff)
#define RELAX_PIC(X) (((X) & 0x10000) != 0)
#define RELAX_USE_SECOND 0x20000
#define RELAX_SECOND_LONGER 0x40000
#define RELAX_NOMACRO 0x80000
#define RELAX_DELAY_SLOT 0x100000
#define RELAX_DELAY_SLOT_16BIT 0x200000
#define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
#define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
/* Branch without likely bit. If label is out of range, we turn:
beq reg1, reg2, label
delay slot
into
bne reg1, reg2, 0f
nop
j label
0: delay slot
with the following opcode replacements:
beq <-> bne
blez <-> bgtz
bltz <-> bgez
bc1f <-> bc1t
bltzal <-> bgezal (with jal label instead of j label)
Even though keeping the delay slot instruction in the delay slot of
the branch would be more efficient, it would be very tricky to do
correctly, because we'd have to introduce a variable frag *after*
the delay slot instruction, and expand that instead. Let's do it
the easy way for now, even if the branch-not-taken case now costs
one additional instruction. Out-of-range branches are not supposed
to be common, anyway.
Branch likely. If label is out of range, we turn:
beql reg1, reg2, label
delay slot (annulled if branch not taken)
into
beql reg1, reg2, 1f
nop
beql $0, $0, 2f
nop
1: j[al] label
delay slot (executed only if branch taken)
2:
It would be possible to generate a shorter sequence by losing the
likely bit, generating something like:
bne reg1, reg2, 0f
nop
j[al] label
delay slot (executed only if branch taken)
0:
beql -> bne
bnel -> beq
blezl -> bgtz
bgtzl -> blez
bltzl -> bgez
bgezl -> bltz
bc1fl -> bc1t
bc1tl -> bc1f
bltzall -> bgezal (with jal label instead of j label)
bgezall -> bltzal (ditto)
but it's not clear that it would actually improve performance. */
#define RELAX_BRANCH_ENCODE(at, pic, \
uncond, likely, link, toofar) \
((relax_substateT) \
(0xc0000000 \
| ((at) & 0x1f) \
| ((pic) ? 0x20 : 0) \
| ((toofar) ? 0x40 : 0) \
| ((link) ? 0x80 : 0) \
| ((likely) ? 0x100 : 0) \
| ((uncond) ? 0x200 : 0)))
#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
#define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
#define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
#define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
#define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
/* For mips16 code, we use an entirely different form of relaxation.
mips16 supports two versions of most instructions which take
immediate values: a small one which takes some small value, and a
larger one which takes a 16 bit value. Since branches also follow
this pattern, relaxing these values is required.
We can assemble both mips16 and normal MIPS code in a single
object. Therefore, we need to support this type of relaxation at
the same time that we support the relaxation described above. We
use the high bit of the subtype field to distinguish these cases.
The information we store for this type of relaxation is the
argument code found in the opcode file for this relocation, whether
the user explicitly requested a small or extended form, and whether
the relocation is in a jump or jal delay slot. That tells us the
size of the value, and how it should be stored. We also store
whether the fragment is considered to be extended or not. We also
store whether this is known to be a branch to a different section,
whether we have tried to relax this frag yet, and whether we have
ever extended a PC relative fragment because of a shift count. */
#define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
small, ext, \
dslot, jal_dslot) \
(0x80000000 \
| ((type) & 0xff) \
| ((e2) ? 0x100 : 0) \
| ((pic) ? 0x200 : 0) \
| ((sym32) ? 0x400 : 0) \
| ((nomacro) ? 0x800 : 0) \
| ((small) ? 0x1000 : 0) \
| ((ext) ? 0x2000 : 0) \
| ((dslot) ? 0x4000 : 0) \
| ((jal_dslot) ? 0x8000 : 0))
#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
#define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
#define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
#define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
#define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
#define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
#define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
#define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
#define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
#define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
#define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
#define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
/* For microMIPS code, we use relaxation similar to one we use for
MIPS16 code. Some instructions that take immediate values support
two encodings: a small one which takes some small value, and a
larger one which takes a 16 bit value. As some branches also follow
this pattern, relaxing these values is required.
We can assemble both microMIPS and normal MIPS code in a single
object. Therefore, we need to support this type of relaxation at
the same time that we support the relaxation described above. We
use one of the high bits of the subtype field to distinguish these
cases.
The information we store for this type of relaxation is the argument
code found in the opcode file for this relocation, the register
selected as the assembler temporary, whether in the 32-bit
instruction mode, whether the branch is unconditional, whether it is
compact, whether there is no delay-slot instruction available to fill
in, whether it stores the link address implicitly in $ra, whether
relaxation of out-of-range 32-bit branches to a sequence of
instructions is enabled, and whether the displacement of a branch is
too large to fit as an immediate argument of a 16-bit and a 32-bit
branch, respectively. */
#define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
uncond, compact, link, nods, \
relax32, toofar16, toofar32) \
(0x40000000 \
| ((type) & 0xff) \
| (((at) & 0x1f) << 8) \
| ((insn32) ? 0x2000 : 0) \
| ((pic) ? 0x4000 : 0) \
| ((uncond) ? 0x8000 : 0) \
| ((compact) ? 0x10000 : 0) \
| ((link) ? 0x20000 : 0) \
| ((nods) ? 0x40000 : 0) \
| ((relax32) ? 0x80000 : 0) \
| ((toofar16) ? 0x100000 : 0) \
| ((toofar32) ? 0x200000 : 0))
#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
#define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
#define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
#define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
/* Sign-extend 16-bit value X. */
#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
/* Is the given value a sign-extended 32-bit value? */
#define IS_SEXT_32BIT_NUM(x) \
(((x) &~ (offsetT) 0x7fffffff) == 0 \
|| (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
/* Is the given value a sign-extended 16-bit value? */
#define IS_SEXT_16BIT_NUM(x) \
(((x) &~ (offsetT) 0x7fff) == 0 \
|| (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
/* Is the given value a sign-extended 12-bit value? */
#define IS_SEXT_12BIT_NUM(x) \
(((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
/* Is the given value a sign-extended 9-bit value? */
#define IS_SEXT_9BIT_NUM(x) \
(((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
/* Is the given value a zero-extended 32-bit value? Or a negated one? */
#define IS_ZEXT_32BIT_NUM(x) \
(((x) &~ (offsetT) 0xffffffff) == 0 \
|| (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
/* Extract bits MASK << SHIFT from STRUCT and shift them right
SHIFT places. */
#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
(((STRUCT) >> (SHIFT)) & (MASK))
/* Extract the operand given by FIELD from mips_cl_insn INSN. */
#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
(!(MICROMIPS) \
? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
: EXTRACT_BITS ((INSN).insn_opcode, \
MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
EXTRACT_BITS ((INSN).insn_opcode, \
MIPS16OP_MASK_##FIELD, \
MIPS16OP_SH_##FIELD)
/* The MIPS16 EXTEND opcode, shifted left 16 places. */
#define MIPS16_EXTEND (0xf000U << 16)
/* Whether or not we are emitting a branch-likely macro. */
static bool emit_branch_likely_macro = false;
/* Global variables used when generating relaxable macros. See the
comment above RELAX_ENCODE for more details about how relaxation
is used. */
static struct {
/* 0 if we're not emitting a relaxable macro.
1 if we're emitting the first of the two relaxation alternatives.
2 if we're emitting the second alternative. */
int sequence;
/* The first relaxable fixup in the current frag. (In other words,
the first fixup that refers to relaxable code.) */
fixS *first_fixup;
/* sizes[0] says how many bytes of the first alternative are stored in
the current frag. Likewise sizes[1] for the second alternative. */
unsigned int sizes[2];
/* The symbol on which the choice of sequence depends. */
symbolS *symbol;
} mips_relax;
/* Global variables used to decide whether a macro needs a warning. */
static struct {
/* True if the macro is in a branch delay slot. */
bool delay_slot_p;
/* Set to the length in bytes required if the macro is in a delay slot
that requires a specific length of instruction, otherwise zero. */
unsigned int delay_slot_length;
/* For relaxable macros, sizes[0] is the length of the first alternative
in bytes and sizes[1] is the length of the second alternative.
For non-relaxable macros, both elements give the length of the
macro in bytes. */
unsigned int sizes[2];
/* For relaxable macros, first_insn_sizes[0] is the length of the first
instruction of the first alternative in bytes and first_insn_sizes[1]
is the length of the first instruction of the second alternative.
For non-relaxable macros, both elements give the length of the first
instruction in bytes.
Set to zero if we haven't yet seen the first instruction. */
unsigned int first_insn_sizes[2];
/* For relaxable macros, insns[0] is the number of instructions for the
first alternative and insns[1] is the number of instructions for the
second alternative.
For non-relaxable macros, both elements give the number of
instructions for the macro. */
unsigned int insns[2];
/* The first variant frag for this macro. */
fragS *first_frag;
} mips_macro_warning;
/* Prototypes for static functions. */
enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
static void append_insn
(struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
bool expansionp);
static void mips_no_prev_insn (void);
static void macro_build (expressionS *, const char *, const char *, ...);
static void mips16_macro_build
(expressionS *, const char *, const char *, va_list *);
static void load_register (int, expressionS *, int);
static void macro_start (void);
static void macro_end (void);
static void macro (struct mips_cl_insn *ip, char *str);
static void mips16_macro (struct mips_cl_insn * ip);
static void mips_ip (char *str, struct mips_cl_insn * ip);
static void mips16_ip (char *str, struct mips_cl_insn * ip);
static unsigned long mips16_immed_extend (offsetT, unsigned int);
static void mips16_immed
(const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
unsigned int, unsigned long *);
static size_t my_getSmallExpression
(expressionS *, bfd_reloc_code_real_type *, char *);
static void my_getExpression (expressionS *, char *);
static void s_align (int);
static void s_change_sec (int);
static void s_change_section (int);
static void s_cons (int);
static void s_float_cons (int);
static void s_mips_globl (int);
static void s_option (int);
static void s_mipsset (int);
static void s_abicalls (int);
static void s_cpload (int);
static void s_cpsetup (int);
static void s_cplocal (int);
static void s_cprestore (int);
static void s_cpreturn (int);
static void s_dtprelword (int);
static void s_dtpreldword (int);
static void s_tprelword (int);
static void s_tpreldword (int);
static void s_gpvalue (int);
static void s_gpword (int);
static void s_gpdword (int);
static void s_ehword (int);
static void s_cpadd (int);
static void s_insn (int);
static void s_nan (int);
static void s_module (int);
static void s_mips_ent (int);
static void s_mips_end (int);
static void s_mips_frame (int);
static void s_mips_mask (int reg_type);
static void s_mips_stab (int);
static void s_mips_weakext (int);
static void s_mips_file (int);
static void s_mips_loc (int);
static bool pic_need_relax (symbolS *);
static int relaxed_branch_length (fragS *, asection *, int);
static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
static void file_mips_check_options (void);
/* Table and functions used to map between CPU/ISA names, and
ISA levels, and CPU numbers. */
struct mips_cpu_info
{
const char *name; /* CPU or ISA name. */
int flags; /* MIPS_CPU_* flags. */
int ase; /* Set of ASEs implemented by the CPU. */
int isa; /* ISA level. */
int cpu; /* CPU number (default CPU if ISA). */
};
#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
/* Command-line options. */
const char *md_shortopts = "O::g::G:";
enum options
{
OPTION_MARCH = OPTION_MD_BASE,
OPTION_MTUNE,
OPTION_MIPS1,
OPTION_MIPS2,
OPTION_MIPS3,
OPTION_MIPS4,
OPTION_MIPS5,
OPTION_MIPS32,
OPTION_MIPS64,
OPTION_MIPS32R2,
OPTION_MIPS32R3,
OPTION_MIPS32R5,
OPTION_MIPS32R6,
OPTION_MIPS64R2,
OPTION_MIPS64R3,
OPTION_MIPS64R5,
OPTION_MIPS64R6,
OPTION_MIPS16,
OPTION_NO_MIPS16,
OPTION_MIPS3D,
OPTION_NO_MIPS3D,
OPTION_MDMX,
OPTION_NO_MDMX,
OPTION_DSP,
OPTION_NO_DSP,
OPTION_MT,
OPTION_NO_MT,
OPTION_VIRT,
OPTION_NO_VIRT,
OPTION_MSA,
OPTION_NO_MSA,
OPTION_SMARTMIPS,
OPTION_NO_SMARTMIPS,
OPTION_DSPR2,
OPTION_NO_DSPR2,
OPTION_DSPR3,
OPTION_NO_DSPR3,
OPTION_EVA,
OPTION_NO_EVA,
OPTION_XPA,
OPTION_NO_XPA,
OPTION_MICROMIPS,
OPTION_NO_MICROMIPS,
OPTION_MCU,
OPTION_NO_MCU,
OPTION_MIPS16E2,
OPTION_NO_MIPS16E2,
OPTION_CRC,
OPTION_NO_CRC,
OPTION_M4650,
OPTION_NO_M4650,
OPTION_M4010,
OPTION_NO_M4010,
OPTION_M4100,
OPTION_NO_M4100,
OPTION_M3900,
OPTION_NO_M3900,
OPTION_M7000_HILO_FIX,
OPTION_MNO_7000_HILO_FIX,
OPTION_FIX_24K,
OPTION_NO_FIX_24K,
OPTION_FIX_RM7000,
OPTION_NO_FIX_RM7000,
OPTION_FIX_LOONGSON3_LLSC,
OPTION_NO_FIX_LOONGSON3_LLSC,
OPTION_FIX_LOONGSON2F_JUMP,
OPTION_NO_FIX_LOONGSON2F_JUMP,
OPTION_FIX_LOONGSON2F_NOP,
OPTION_NO_FIX_LOONGSON2F_NOP,
OPTION_FIX_VR4120,
OPTION_NO_FIX_VR4120,
OPTION_FIX_VR4130,
OPTION_NO_FIX_VR4130,
OPTION_FIX_CN63XXP1,
OPTION_NO_FIX_CN63XXP1,
OPTION_FIX_R5900,
OPTION_NO_FIX_R5900,
OPTION_TRAP,
OPTION_BREAK,
OPTION_EB,
OPTION_EL,
OPTION_FP32,
OPTION_GP32,
OPTION_CONSTRUCT_FLOATS,
OPTION_NO_CONSTRUCT_FLOATS,
OPTION_FP64,
OPTION_FPXX,
OPTION_GP64,
OPTION_RELAX_BRANCH,
OPTION_NO_RELAX_BRANCH,
OPTION_IGNORE_BRANCH_ISA,
OPTION_NO_IGNORE_BRANCH_ISA,
OPTION_INSN32,
OPTION_NO_INSN32,
OPTION_MSHARED,
OPTION_MNO_SHARED,
OPTION_MSYM32,
OPTION_MNO_SYM32,
OPTION_SOFT_FLOAT,
OPTION_HARD_FLOAT,
OPTION_SINGLE_FLOAT,
OPTION_DOUBLE_FLOAT,
OPTION_32,
OPTION_CALL_SHARED,
OPTION_CALL_NONPIC,
OPTION_NON_SHARED,
OPTION_XGOT,
OPTION_MABI,
OPTION_N32,
OPTION_64,
OPTION_MDEBUG,
OPTION_NO_MDEBUG,
OPTION_PDR,
OPTION_NO_PDR,
OPTION_MVXWORKS_PIC,
OPTION_NAN,
OPTION_ODD_SPREG,
OPTION_NO_ODD_SPREG,
OPTION_GINV,
OPTION_NO_GINV,
OPTION_LOONGSON_MMI,
OPTION_NO_LOONGSON_MMI,
OPTION_LOONGSON_CAM,
OPTION_NO_LOONGSON_CAM,
OPTION_LOONGSON_EXT,
OPTION_NO_LOONGSON_EXT,
OPTION_LOONGSON_EXT2,
OPTION_NO_LOONGSON_EXT2,
OPTION_END_OF_ENUM
};
struct option md_longopts[] =
{
/* Options which specify architecture. */
{"march", required_argument, NULL, OPTION_MARCH},
{"mtune", required_argument, NULL, OPTION_MTUNE},
{"mips0", no_argument, NULL, OPTION_MIPS1},
{"mips1", no_argument, NULL, OPTION_MIPS1},
{"mips2", no_argument, NULL, OPTION_MIPS2},
{"mips3", no_argument, NULL, OPTION_MIPS3},
{"mips4", no_argument, NULL, OPTION_MIPS4},
{"mips5", no_argument, NULL, OPTION_MIPS5},
{"mips32", no_argument, NULL, OPTION_MIPS32},
{"mips64", no_argument, NULL, OPTION_MIPS64},
{"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
{"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
{"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
{"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
{"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
{"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
{"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
{"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
/* Options which specify Application Specific Extensions (ASEs). */
{"mips16", no_argument, NULL, OPTION_MIPS16},
{"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
{"mips3d", no_argument, NULL, OPTION_MIPS3D},
{"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
{"mdmx", no_argument, NULL, OPTION_MDMX},
{"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
{"mdsp", no_argument, NULL, OPTION_DSP},
{"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
{"mmt", no_argument, NULL, OPTION_MT},
{"mno-mt", no_argument, NULL, OPTION_NO_MT},
{"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
{"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
{"mdspr2", no_argument, NULL, OPTION_DSPR2},
{"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
{"mdspr3", no_argument, NULL, OPTION_DSPR3},
{"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
{"meva", no_argument, NULL, OPTION_EVA},
{"mno-eva", no_argument, NULL, OPTION_NO_EVA},
{"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
{"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
{"mmcu", no_argument, NULL, OPTION_MCU},
{"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
{"mvirt", no_argument, NULL, OPTION_VIRT},
{"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
{"mmsa", no_argument, NULL, OPTION_MSA},
{"mno-msa", no_argument, NULL, OPTION_NO_MSA},
{"mxpa", no_argument, NULL, OPTION_XPA},
{"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
{"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
{"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
{"mcrc", no_argument, NULL, OPTION_CRC},
{"mno-crc", no_argument, NULL, OPTION_NO_CRC},
{"mginv", no_argument, NULL, OPTION_GINV},
{"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
{"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
{"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
{"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
{"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
{"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
{"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
{"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
{"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
/* Old-style architecture options. Don't add more of these. */
{"m4650", no_argument, NULL, OPTION_M4650},
{"no-m4650", no_argument, NULL, OPTION_NO_M4650},
{"m4010", no_argument, NULL, OPTION_M4010},
{"no-m4010", no_argument, NULL, OPTION_NO_M4010},
{"m4100", no_argument, NULL, OPTION_M4100},
{"no-m4100", no_argument, NULL, OPTION_NO_M4100},
{"m3900", no_argument, NULL, OPTION_M3900},
{"no-m3900", no_argument, NULL, OPTION_NO_M3900},
/* Options which enable bug fixes. */
{"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
{"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
{"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
{"mfix-loongson3-llsc", no_argument, NULL, OPTION_FIX_LOONGSON3_LLSC},
{"mno-fix-loongson3-llsc", no_argument, NULL, OPTION_NO_FIX_LOONGSON3_LLSC},
{"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
{"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
{"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
{"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
{"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
{"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
{"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
{"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
{"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
{"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
{"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
{"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
{"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
{"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
{"mfix-r5900", no_argument, NULL, OPTION_FIX_R5900},
{"mno-fix-r5900", no_argument, NULL, OPTION_NO_FIX_R5900},
/* Miscellaneous options. */
{"trap", no_argument, NULL, OPTION_TRAP},
{"no-break", no_argument, NULL, OPTION_TRAP},
{"break", no_argument, NULL, OPTION_BREAK},
{"no-trap", no_argument, NULL, OPTION_BREAK},
{"EB", no_argument, NULL, OPTION_EB},
{"EL", no_argument, NULL, OPTION_EL},
{"mfp32", no_argument, NULL, OPTION_FP32},
{"mgp32", no_argument, NULL, OPTION_GP32},
{"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
{"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
{"mfp64", no_argument, NULL, OPTION_FP64},
{"mfpxx", no_argument, NULL, OPTION_FPXX},
{"mgp64", no_argument, NULL, OPTION_GP64},
{"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
{"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
{"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
{"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
{"minsn32", no_argument, NULL, OPTION_INSN32},
{"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
{"mshared", no_argument, NULL, OPTION_MSHARED},
{"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
{"msym32", no_argument, NULL, OPTION_MSYM32},
{"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
{"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
{"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
{"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
{"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
{"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
{"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
/* Strictly speaking this next option is ELF specific,
but we allow it for other ports as well in order to
make testing easier. */
{"32", no_argument, NULL, OPTION_32},
/* ELF-specific options. */
{"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
{"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
{"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
{"non_shared", no_argument, NULL, OPTION_NON_SHARED},
{"xgot", no_argument, NULL, OPTION_XGOT},
{"mabi", required_argument, NULL, OPTION_MABI},
{"n32", no_argument, NULL, OPTION_N32},
{"64", no_argument, NULL, OPTION_64},
{"mdebug", no_argument, NULL, OPTION_MDEBUG},
{"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
{"mpdr", no_argument, NULL, OPTION_PDR},
{"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
{"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
{"mnan", required_argument, NULL, OPTION_NAN},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
/* Information about either an Application Specific Extension or an
optional architecture feature that, for simplicity, we treat in the
same way as an ASE. */
struct mips_ase
{
/* The name of the ASE, used in both the command-line and .set options. */
const char *name;
/* The associated ASE_* flags. If the ASE is available on both 32-bit
and 64-bit architectures, the flags here refer to the subset that
is available on both. */
unsigned int flags;
/* The ASE_* flag used for instructions that are available on 64-bit
architectures but that are not included in FLAGS. */
unsigned int flags64;
/* The command-line options that turn the ASE on and off. */
int option_on;
int option_off;
/* The minimum required architecture revisions for MIPS32, MIPS64,
microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
int mips32_rev;
int mips64_rev;
int micromips32_rev;
int micromips64_rev;
/* The architecture where the ASE was removed or -1 if the extension has not
been removed. */
int rem_rev;
};
/* A table of all supported ASEs. */
static const struct mips_ase mips_ases[] = {
{ "dsp", ASE_DSP, ASE_DSP64,
OPTION_DSP, OPTION_NO_DSP,
2, 2, 2, 2,
-1 },
{ "dspr2", ASE_DSP | ASE_DSPR2, 0,
OPTION_DSPR2, OPTION_NO_DSPR2,
2, 2, 2, 2,
-1 },
{ "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
OPTION_DSPR3, OPTION_NO_DSPR3,
6, 6, -1, -1,
-1 },
{ "eva", ASE_EVA, 0,
OPTION_EVA, OPTION_NO_EVA,
2, 2, 2, 2,
-1 },
{ "mcu", ASE_MCU, 0,
OPTION_MCU, OPTION_NO_MCU,
2, 2, 2, 2,
-1 },
/* Deprecated in MIPS64r5, but we don't implement that yet. */
{ "mdmx", ASE_MDMX, 0,
OPTION_MDMX, OPTION_NO_MDMX,
-1, 1, -1, -1,
6 },
/* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
{ "mips3d", ASE_MIPS3D, 0,
OPTION_MIPS3D, OPTION_NO_MIPS3D,
2, 1, -1, -1,
6 },
{ "mt", ASE_MT, 0,
OPTION_MT, OPTION_NO_MT,
2, 2, -1, -1,
-1 },
{ "smartmips", ASE_SMARTMIPS, 0,
OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1, -1, -1, -1,
6 },
{ "virt", ASE_VIRT, ASE_VIRT64,
OPTION_VIRT, OPTION_NO_VIRT,
2, 2, 2, 2,
-1 },
{ "msa", ASE_MSA, ASE_MSA64,
OPTION_MSA, OPTION_NO_MSA,
2, 2, 2, 2,
-1 },
{ "xpa", ASE_XPA, 0,
OPTION_XPA, OPTION_NO_XPA,
2, 2, 2, 2,
-1 },
{ "mips16e2", ASE_MIPS16E2, 0,
OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
2, 2, -1, -1,
6 },
{ "crc", ASE_CRC, ASE_CRC64,
OPTION_CRC, OPTION_NO_CRC,
6, 6, -1, -1,
-1 },
{ "ginv", ASE_GINV, 0,
OPTION_GINV, OPTION_NO_GINV,
6, 6, 6, 6,
-1 },
{ "loongson-mmi", ASE_LOONGSON_MMI, 0,
OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
0, 0, -1, -1,
-1 },
{ "loongson-cam", ASE_LOONGSON_CAM, 0,
OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
0, 0, -1, -1,
-1 },
{ "loongson-ext", ASE_LOONGSON_EXT, 0,
OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
0, 0, -1, -1,
-1 },
{ "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
0, 0, -1, -1,
-1 },
};
/* The set of ASEs that require -mfp64. */
#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
/* Groups of ASE_* flags that represent different revisions of an ASE. */
static const unsigned int mips_ase_groups[] = {
ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
};
/* Pseudo-op table.
The following pseudo-ops from the Kane and Heinrich MIPS book
should be defined here, but are currently unsupported: .alias,
.galive, .gjaldef, .gjrlive, .livereg, .noalias.
The following pseudo-ops from the Kane and Heinrich MIPS book are
specific to the type of debugging information being generated, and
should be defined by the object format: .aent, .begin, .bend,
.bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
.vreg.
The following pseudo-ops from the Kane and Heinrich MIPS book are
not MIPS CPU specific, but are also not specific to the object file
format. This file is probably the best place to define them, but
they are not currently supported: .asm0, .endr, .lab, .struct. */
static const pseudo_typeS mips_pseudo_table[] =
{
/* MIPS specific pseudo-ops. */
{"option", s_option, 0},
{"set", s_mipsset, 0},
{"rdata", s_change_sec, 'r'},
{"sdata", s_change_sec, 's'},
{"livereg", s_ignore, 0},
{"abicalls", s_abicalls, 0},
{"cpload", s_cpload, 0},
{"cpsetup", s_cpsetup, 0},
{"cplocal", s_cplocal, 0},
{"cprestore", s_cprestore, 0},
{"cpreturn", s_cpreturn, 0},
{"dtprelword", s_dtprelword, 0},
{"dtpreldword", s_dtpreldword, 0},
{"tprelword", s_tprelword, 0},
{"tpreldword", s_tpreldword, 0},
{"gpvalue", s_gpvalue, 0},
{"gpword", s_gpword, 0},
{"gpdword", s_gpdword, 0},
{"ehword", s_ehword, 0},
{"cpadd", s_cpadd, 0},
{"insn", s_insn, 0},
{"nan", s_nan, 0},
{"module", s_module, 0},
/* Relatively generic pseudo-ops that happen to be used on MIPS
chips. */
{"asciiz", stringer, 8 + 1},
{"bss", s_change_sec, 'b'},
{"err", s_err, 0},
{"half", s_cons, 1},
{"dword", s_cons, 3},
{"weakext", s_mips_weakext, 0},
{"origin", s_org, 0},
{"repeat", s_rept, 0},
/* For MIPS this is non-standard, but we define it for consistency. */
{"sbss", s_change_sec, 'B'},
/* These pseudo-ops are defined in read.c, but must be overridden
here for one reason or another. */
{"align", s_align, 0},
{"byte", s_cons, 0},
{"data", s_change_sec, 'd'},
{"double", s_float_cons, 'd'},
{"float", s_float_cons, 'f'},
{"globl", s_mips_globl, 0},
{"global", s_mips_globl, 0},
{"hword", s_cons, 1},
{"int", s_cons, 2},
{"long", s_cons, 2},
{"octa", s_cons, 4},
{"quad", s_cons, 3},
{"section", s_change_section, 0},
{"short", s_cons, 1},
{"single", s_float_cons, 'f'},
{"stabd", s_mips_stab, 'd'},
{"stabn", s_mips_stab, 'n'},
{"stabs", s_mips_stab, 's'},
{"text", s_change_sec, 't'},
{"word", s_cons, 2},
{ "extern", ecoff_directive_extern, 0},
{ NULL, NULL, 0 },
};
static const pseudo_typeS mips_nonecoff_pseudo_table[] =
{
/* These pseudo-ops should be defined by the object file format.
However, a.out doesn't support them, so we have versions here. */
{"aent", s_mips_ent, 1},
{"bgnb", s_ignore, 0},
{"end", s_mips_end, 0},
{"endb", s_ignore, 0},
{"ent", s_mips_ent, 0},
{"file", s_mips_file, 0},
{"fmask", s_mips_mask, 'F'},
{"frame", s_mips_frame, 0},
{"loc", s_mips_loc, 0},
{"mask", s_mips_mask, 'R'},
{"verstamp", s_ignore, 0},
{ NULL, NULL, 0 },
};
/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
purpose of the `.dc.a' internal pseudo-op. */
int
mips_address_bytes (void)
{
file_mips_check_options ();
return HAVE_64BIT_ADDRESSES ? 8 : 4;
}
extern void pop_insert (const pseudo_typeS *);
void
mips_pop_insert (void)
{
pop_insert (mips_pseudo_table);
if (! ECOFF_DEBUGGING)
pop_insert (mips_nonecoff_pseudo_table);
}
/* Symbols labelling the current insn. */
struct insn_label_list
{
struct insn_label_list *next;
symbolS *label;
};
static struct insn_label_list *free_insn_labels;
#define label_list tc_segment_info_data.labels
static void mips_clear_insn_labels (void);
static void mips_mark_labels (void);
static void mips_compressed_mark_labels (void);
static inline void
mips_clear_insn_labels (void)
{
struct insn_label_list **pl;
segment_info_type *si;
if (now_seg)
{
for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
;
si = seg_info (now_seg);
*pl = si->label_list;
si->label_list = NULL;
}
}
/* Mark instruction labels in MIPS16/microMIPS mode. */
static inline void
mips_mark_labels (void)
{
if (HAVE_CODE_COMPRESSION)
mips_compressed_mark_labels ();
}
static char *expr_end;
/* An expression in a macro instruction. This is set by mips_ip and
mips16_ip and when populated is always an O_constant. */
static expressionS imm_expr;
/* The relocatable field in an instruction and the relocs associated
with it. These variables are used for instructions like LUI and
JAL as well as true offsets. They are also used for address
operands in macros. */
static expressionS offset_expr;
static bfd_reloc_code_real_type offset_reloc[3]
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
/* This is set to the resulting size of the instruction to be produced
by mips16_ip if an explicit extension is used or by mips_ip if an
explicit size is supplied. */
static unsigned int forced_insn_length;
/* True if we are assembling an instruction. All dot symbols defined during
this time should be treated as code labels. */
static bool mips_assembling_insn;
/* The pdr segment for per procedure frame/regmask info. Not used for
ECOFF debugging. */
static segT pdr_seg;
/* The default target format to use. */
#if defined (TE_FreeBSD)
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
#elif defined (TE_TMIPS)
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
#else
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
#endif
const char *
mips_target_format (void)
{
switch (OUTPUT_FLAVOR)
{
case bfd_target_elf_flavour:
#ifdef TE_VXWORKS
if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
return (target_big_endian
? "elf32-bigmips-vxworks"
: "elf32-littlemips-vxworks");
#endif
return (target_big_endian
? (HAVE_64BIT_OBJECTS
? ELF_TARGET ("elf64-", "big")
: (HAVE_NEWABI
? ELF_TARGET ("elf32-n", "big")
: ELF_TARGET ("elf32-", "big")))
: (HAVE_64BIT_OBJECTS
? ELF_TARGET ("elf64-", "little")
: (HAVE_NEWABI
? ELF_TARGET ("elf32-n", "little")
: ELF_TARGET ("elf32-", "little"))));
default:
abort ();
return NULL;
}
}
/* Return the ISA revision that is currently in use, or 0 if we are
generating code for MIPS V or below. */
static int
mips_isa_rev (void)
{
if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
return 2;
if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
return 3;
if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
return 5;
if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
return 6;
/* microMIPS implies revision 2 or above. */
if (mips_opts.micromips)
return 2;
if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
return 1;
return 0;
}
/* Return the mask of all ASEs that are revisions of those in FLAGS. */
static unsigned int
mips_ase_mask (unsigned int flags)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
if (flags & mips_ase_groups[i])
flags |= mips_ase_groups[i];
return flags;
}
/* Check whether the current ISA supports ASE. Issue a warning if
appropriate. */
static void
mips_check_isa_supports_ase (const struct mips_ase *ase)
{
const char *base;
int min_rev, size;
static unsigned int warned_isa;
static unsigned int warned_fp32;
if (ISA_HAS_64BIT_REGS (mips_opts.isa))
min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
else
min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
if ((min_rev < 0 || mips_isa_rev () < min_rev)
&& (warned_isa & ase->flags) != ase->flags)
{
warned_isa |= ase->flags;
base = mips_opts.micromips ? "microMIPS" : "MIPS";
size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
if (min_rev < 0)
as_warn (_("the %d-bit %s architecture does not support the"
" `%s' extension"), size, base, ase->name);
else
as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
ase->name, base, size, min_rev);
}
else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
&& (warned_isa & ase->flags) != ase->flags)
{
warned_isa |= ase->flags;
base = mips_opts.micromips ? "microMIPS" : "MIPS";
size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
as_warn (_("the `%s' extension was removed in %s%d revision %d"),
ase->name, base, size, ase->rem_rev);
}
if ((ase->flags & FP64_ASES)
&& mips_opts.fp != 64
&& (warned_fp32 & ase->flags) != ase->flags)
{
warned_fp32 |= ase->flags;
as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
}
}
/* Check all enabled ASEs to see whether they are supported by the
chosen architecture. */
static void
mips_check_isa_supports_ases (void)
{
unsigned int i, mask;
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
{
mask = mips_ase_mask (mips_ases[i].flags);
if ((mips_opts.ase & mask) == mips_ases[i].flags)
mips_check_isa_supports_ase (&mips_ases[i]);
}
}
/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
that were affected. */
static unsigned int
mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
bool enabled_p)
{
unsigned int mask;
mask = mips_ase_mask (ase->flags);
opts->ase &= ~mask;
/* Clear combination ASE flags, which need to be recalculated based on
updated regular ASE settings. */
opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT | ASE_EVA_R6);
if (enabled_p)
opts->ase |= ase->flags;
/* The Virtualization ASE has eXtended Physical Addressing (XPA)
instructions which are only valid when both ASEs are enabled.
This sets the ASE_XPA_VIRT flag when both ASEs are present. */
if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
{
opts->ase |= ASE_XPA_VIRT;
mask |= ASE_XPA_VIRT;
}
if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
{
opts->ase |= ASE_MIPS16E2_MT;
mask |= ASE_MIPS16E2_MT;
}
/* The EVA Extension has instructions which are only valid when the R6 ISA
is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
present. */
if (((opts->ase & ASE_EVA) != 0) && ISA_IS_R6 (opts->isa))
{
opts->ase |= ASE_EVA_R6;
mask |= ASE_EVA_R6;
}
return mask;
}
/* Return the ASE called NAME, or null if none. */
static const struct mips_ase *
mips_lookup_ase (const char *name)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if (strcmp (name, mips_ases[i].name) == 0)
return &mips_ases[i];
return NULL;
}
/* Return the length of a microMIPS instruction in bytes. If bits of
the mask beyond the low 16 are 0, then it is a 16-bit instruction,
otherwise it is a 32-bit instruction. */
static inline unsigned int
micromips_insn_length (const struct mips_opcode *mo)
{
return mips_opcode_32bit_p (mo) ? 4 : 2;
}
/* Return the length of MIPS16 instruction OPCODE. */
static inline unsigned int
mips16_opcode_length (unsigned long opcode)
{
return (opcode >> 16) == 0 ? 2 : 4;
}
/* Return the length of instruction INSN. */
static inline unsigned int
insn_length (const struct mips_cl_insn *insn)
{
if (mips_opts.micromips)
return micromips_insn_length (insn->insn_mo);
else if (mips_opts.mips16)
return mips16_opcode_length (insn->insn_opcode);
else
return 4;
}
/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
static void
create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
{
size_t i;
insn->insn_mo = mo;
insn->insn_opcode = mo->match;
insn->frag = NULL;
insn->where = 0;
for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
insn->fixp[i] = NULL;
insn->fixed_p = (mips_opts.noreorder > 0);
insn->noreorder_p = (mips_opts.noreorder > 0);
insn->mips16_absolute_jump_p = 0;
insn->complete_p = 0;
insn->cleared_p = 0;
}
/* Get a list of all the operands in INSN. */
static const struct mips_operand_array *
insn_operands (const struct mips_cl_insn *insn)
{
if (insn->insn_mo >= &mips_opcodes[0]
&& insn->insn_mo < &mips_opcodes[NUMOPCODES])
return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
if (insn->insn_mo >= &mips16_opcodes[0]
&& insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
if (insn->insn_mo >= &micromips_opcodes[0]
&& insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
abort ();
}
/* Get a description of operand OPNO of INSN. */
static const struct mips_operand *
insn_opno (const struct mips_cl_insn *insn, unsigned opno)
{
const struct mips_operand_array *operands;
operands = insn_operands (insn);
if (opno >= MAX_OPERANDS || !operands->operand[opno])
abort ();
return operands->operand[opno];
}
/* Install UVAL as the value of OPERAND in INSN. */
static inline void
insn_insert_operand (struct mips_cl_insn *insn,
const struct mips_operand *operand, unsigned int uval)
{
if (mips_opts.mips16
&& operand->type == OP_INT && operand->lsb == 0
&& mips_opcode_32bit_p (insn->insn_mo))
insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
else
insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
}
/* Extract the value of OPERAND from INSN. */
static inline unsigned
insn_extract_operand (const struct mips_cl_insn *insn,
const struct mips_operand *operand)
{
return mips_extract_operand (operand, insn->insn_opcode);
}
/* Record the current MIPS16/microMIPS mode in now_seg. */
static void
mips_record_compressed_mode (void)
{
segment_info_type *si;
si = seg_info (now_seg);
if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
si->tc_segment_info_data.mips16 = mips_opts.mips16;
if (si->tc_segment_info_data.micromips != mips_opts.micromips)
si->tc_segment_info_data.micromips = mips_opts.micromips;
}
/* Read a standard MIPS instruction from BUF. */
static unsigned long
read_insn (char *buf)
{
if (target_big_endian)
return bfd_getb32 ((bfd_byte *) buf);
else
return bfd_getl32 ((bfd_byte *) buf);
}
/* Write standard MIPS instruction INSN to BUF. Return a pointer to
the next byte. */
static char *
write_insn (char *buf, unsigned int insn)
{
md_number_to_chars (buf, insn, 4);
return buf + 4;
}
/* Read a microMIPS or MIPS16 opcode from BUF, given that it
has length LENGTH. */
static unsigned long
read_compressed_insn (char *buf, unsigned int length)
{
unsigned long insn;
unsigned int i;
insn = 0;
for (i = 0; i < length; i += 2)
{
insn <<= 16;
if (target_big_endian)
insn |= bfd_getb16 ((char *) buf);
else
insn |= bfd_getl16 ((char *) buf);
buf += 2;
}
return insn;
}
/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
instruction is LENGTH bytes long. Return a pointer to the next byte. */
static char *
write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
{
unsigned int i;
for (i = 0; i < length; i += 2)
md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
return buf + length;
}
/* Install INSN at the location specified by its "frag" and "where" fields. */
static void
install_insn (const struct mips_cl_insn *insn)
{
char *f = insn->frag->fr_literal + insn->where;
if (HAVE_CODE_COMPRESSION)
write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
else
write_insn (f, insn->insn_opcode);
mips_record_compressed_mode ();
}
/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
and install the opcode in the new location. */
static void
move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
{
size_t i;
insn->frag = frag;
insn->where = where;
for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
if (insn->fixp[i] != NULL)
{
insn->fixp[i]->fx_frag = frag;
insn->fixp[i]->fx_where = where;
}
install_insn (insn);
}
/* Add INSN to the end of the output. */
static void
add_fixed_insn (struct mips_cl_insn *insn)
{
char *f = frag_more (insn_length (insn));
move_insn (insn, frag_now, f - frag_now->fr_literal);
}
/* Start a variant frag and move INSN to the start of the variant part,
marking it as fixed. The other arguments are as for frag_var. */
static void
add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
relax_substateT subtype, symbolS *symbol, offsetT offset)
{
frag_grow (max_chars);
move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
insn->fixed_p = 1;
frag_var (rs_machine_dependent, max_chars, var,
subtype, symbol, offset, NULL);
}
/* Insert N copies of INSN into the history buffer, starting at
position FIRST. Neither FIRST nor N need to be clipped. */
static void
insert_into_history (unsigned int first, unsigned int n,
const struct mips_cl_insn *insn)
{
if (mips_relax.sequence != 2)
{
unsigned int i;
for (i = ARRAY_SIZE (history); i-- > first;)
if (i >= first + n)
history[i] = history[i - n];
else
history[i] = *insn;
}
}
/* Clear the error in insn_error. */
static void
clear_insn_error (void)
{
memset (&insn_error, 0, sizeof (insn_error));
}
/* Possibly record error message MSG for the current instruction.
If the error is about a particular argument, ARGNUM is the 1-based
number of that argument, otherwise it is 0. FORMAT is the format
of MSG. Return true if MSG was used, false if the current message
was kept. */
static bool
set_insn_error_format (int argnum, enum mips_insn_error_format format,
const char *msg)
{
if (argnum == 0)
{
/* Give priority to errors against specific arguments, and to
the first whole-instruction message. */
if (insn_error.msg)
return false;
}
else
{
/* Keep insn_error if it is against a later argument. */
if (argnum < insn_error.min_argnum)
return false;
/* If both errors are against the same argument but are different,
give up on reporting a specific error for this argument.
See the comment about mips_insn_error for details. */
if (argnum == insn_error.min_argnum
&& insn_error.msg
&& strcmp (insn_error.msg, msg) != 0)
{
insn_error.msg = 0;
insn_error.min_argnum += 1;
return false;
}
}
insn_error.min_argnum = argnum;
insn_error.format = format;
insn_error.msg = msg;
return true;
}
/* Record an instruction error with no % format fields. ARGNUM and MSG are
as for set_insn_error_format. */
static void
set_insn_error (int argnum, const char *msg)
{
set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
}
/* Record an instruction error with one %d field I. ARGNUM and MSG are
as for set_insn_error_format. */
static void
set_insn_error_i (int argnum, const char *msg, int i)
{
if (set_insn_error_format (argnum, ERR_FMT_I, msg))
insn_error.u.i = i;
}
/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
are as for set_insn_error_format. */
static void
set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
{
if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
{
insn_error.u.ss[0] = s1;
insn_error.u.ss[1] = s2;
}
}
/* Report the error in insn_error, which is against assembly code STR. */
static void
report_insn_error (const char *str)
{
const char *msg = concat (insn_error.msg, " `%s'", NULL);
switch (insn_error.format)
{
case ERR_FMT_PLAIN:
as_bad (msg, str);
break;
case ERR_FMT_I:
as_bad (msg, insn_error.u.i, str);
break;
case ERR_FMT_SS:
as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
break;
}
free ((char *) msg);
}
/* Initialize vr4120_conflicts. There is a bit of duplication here:
the idea is to make it obvious at a glance that each errata is
included. */
static void
init_vr4120_conflicts (void)
{
#define CONFLICT(FIRST, SECOND) \
vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
/* Errata 21 - [D]DIV[U] after [D]MACC */
CONFLICT (MACC, DIV);
CONFLICT (DMACC, DIV);
/* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
CONFLICT (DMULT, DMULT);
CONFLICT (DMULT, DMACC);
CONFLICT (DMACC, DMULT);
CONFLICT (DMACC, DMACC);
/* Errata 24 - MT{LO,HI} after [D]MACC */
CONFLICT (MACC, MTHILO);
CONFLICT (DMACC, MTHILO);
/* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
instruction is executed immediately after a MACC or DMACC
instruction, the result of [either instruction] is incorrect." */
CONFLICT (MACC, MULT);
CONFLICT (MACC, DMULT);
CONFLICT (DMACC, MULT);
CONFLICT (DMACC, DMULT);
/* VR4181A errata MD(4): "If a MACC or DMACC instruction is
executed immediately after a DMULT, DMULTU, DIV, DIVU,
DDIV or DDIVU instruction, the result of the MACC or
DMACC instruction is incorrect.". */
CONFLICT (DMULT, MACC);
CONFLICT (DMULT, DMACC);
CONFLICT (DIV, MACC);
CONFLICT (DIV, DMACC);
#undef CONFLICT
}
struct regname {
const char *name;
unsigned int num;
};
#define RNUM_MASK 0x00000ff
#define RTYPE_MASK 0x0ffff00
#define RTYPE_NUM 0x0000100
#define RTYPE_FPU 0x0000200
#define RTYPE_FCC 0x0000400
#define RTYPE_VEC 0x0000800
#define RTYPE_GP 0x0001000
#define RTYPE_CP0 0x0002000
#define RTYPE_PC 0x0004000
#define RTYPE_ACC 0x0008000
#define RTYPE_CCC 0x0010000
#define RTYPE_VI 0x0020000
#define RTYPE_VF 0x0040000
#define RTYPE_R5900_I 0x0080000
#define RTYPE_R5900_Q 0x0100000
#define RTYPE_R5900_R 0x0200000
#define RTYPE_R5900_ACC 0x0400000
#define RTYPE_MSA 0x0800000
#define RWARN 0x8000000
#define GENERIC_REGISTER_NUMBERS \
{"$0", RTYPE_NUM | 0}, \
{"$1", RTYPE_NUM | 1}, \
{"$2", RTYPE_NUM | 2}, \
{"$3", RTYPE_NUM | 3}, \
{"$4", RTYPE_NUM | 4}, \
{"$5", RTYPE_NUM | 5}, \
{"$6", RTYPE_NUM | 6}, \
{"$7", RTYPE_NUM | 7}, \
{"$8", RTYPE_NUM | 8}, \
{"$9", RTYPE_NUM | 9}, \
{"$10", RTYPE_NUM | 10}, \
{"$11", RTYPE_NUM | 11}, \
{"$12", RTYPE_NUM | 12}, \
{"$13", RTYPE_NUM | 13}, \
{"$14", RTYPE_NUM | 14}, \
{"$15", RTYPE_NUM | 15}, \
{"$16", RTYPE_NUM | 16}, \
{"$17", RTYPE_NUM | 17}, \
{"$18", RTYPE_NUM | 18}, \
{"$19", RTYPE_NUM | 19}, \
{"$20", RTYPE_NUM | 20}, \
{"$21", RTYPE_NUM | 21}, \
{"$22", RTYPE_NUM | 22}, \
{"$23", RTYPE_NUM | 23}, \
{"$24", RTYPE_NUM | 24}, \
{"$25", RTYPE_NUM | 25}, \
{"$26", RTYPE_NUM | 26}, \
{"$27", RTYPE_NUM | 27}, \
{"$28", RTYPE_NUM | 28}, \
{"$29", RTYPE_NUM | 29}, \
{"$30", RTYPE_NUM | 30}, \
{"$31", RTYPE_NUM | 31}
#define FPU_REGISTER_NAMES \
{"$f0", RTYPE_FPU | 0}, \
{"$f1", RTYPE_FPU | 1}, \
{"$f2", RTYPE_FPU | 2}, \
{"$f3", RTYPE_FPU | 3}, \
{"$f4", RTYPE_FPU | 4}, \
{"$f5", RTYPE_FPU | 5}, \
{"$f6", RTYPE_FPU | 6}, \
{"$f7", RTYPE_FPU | 7}, \
{"$f8", RTYPE_FPU | 8}, \
{"$f9", RTYPE_FPU | 9}, \
{"$f10", RTYPE_FPU | 10}, \
{"$f11", RTYPE_FPU | 11}, \
{"$f12", RTYPE_FPU | 12}, \
{"$f13", RTYPE_FPU | 13}, \
{"$f14", RTYPE_FPU | 14}, \
{"$f15", RTYPE_FPU | 15}, \
{"$f16", RTYPE_FPU | 16}, \
{"$f17", RTYPE_FPU | 17}, \
{"$f18", RTYPE_FPU | 18}, \
{"$f19", RTYPE_FPU | 19}, \
{"$f20", RTYPE_FPU | 20}, \
{"$f21", RTYPE_FPU | 21}, \
{"$f22", RTYPE_FPU | 22}, \
{"$f23", RTYPE_FPU | 23}, \
{"$f24", RTYPE_FPU | 24}, \
{"$f25", RTYPE_FPU | 25}, \
{"$f26", RTYPE_FPU | 26}, \
{"$f27", RTYPE_FPU | 27}, \
{"$f28", RTYPE_FPU | 28}, \
{"$f29", RTYPE_FPU | 29}, \
{"$f30", RTYPE_FPU | 30}, \
{"$f31", RTYPE_FPU | 31}
#define FPU_CONDITION_CODE_NAMES \
{"$fcc0", RTYPE_FCC | 0}, \
{"$fcc1", RTYPE_FCC | 1}, \
{"$fcc2", RTYPE_FCC | 2}, \
{"$fcc3", RTYPE_FCC | 3}, \
{"$fcc4", RTYPE_FCC | 4}, \
{"$fcc5", RTYPE_FCC | 5}, \
{"$fcc6", RTYPE_FCC | 6}, \
{"$fcc7", RTYPE_FCC | 7}
#define COPROC_CONDITION_CODE_NAMES \
{"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
{"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
{"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
{"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
{"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
{"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
{"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
{"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
#define N32N64_SYMBOLIC_REGISTER_NAMES \
{"$a4", RTYPE_GP | 8}, \
{"$a5", RTYPE_GP | 9}, \
{"$a6", RTYPE_GP | 10}, \
{"$a7", RTYPE_GP | 11}, \
{"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
{"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
{"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
{"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
{"$t0", RTYPE_GP | 12}, \
{"$t1", RTYPE_GP | 13}, \
{"$t2", RTYPE_GP | 14}, \
{"$t3", RTYPE_GP | 15}
#define O32_SYMBOLIC_REGISTER_NAMES \
{"$t0", RTYPE_GP | 8}, \
{"$t1", RTYPE_GP | 9}, \
{"$t2", RTYPE_GP | 10}, \
{"$t3", RTYPE_GP | 11}, \
{"$t4", RTYPE_GP | 12}, \
{"$t5", RTYPE_GP | 13}, \
{"$t6", RTYPE_GP | 14}, \
{"$t7", RTYPE_GP | 15}, \
{"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
{"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
{"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
{"$ta3", RTYPE_GP | 15} /* alias for $t7 */
/* Remaining symbolic register names. */
#define SYMBOLIC_REGISTER_NAMES \
{"$zero", RTYPE_GP | 0}, \
{"$at", RTYPE_GP | 1}, \
{"$AT", RTYPE_GP | 1}, \
{"$v0", RTYPE_GP | 2}, \
{"$v1", RTYPE_GP | 3}, \
{"$a0", RTYPE_GP | 4}, \
{"$a1", RTYPE_GP | 5}, \
{"$a2", RTYPE_GP | 6}, \
{"$a3", RTYPE_GP | 7}, \
{"$s0", RTYPE_GP | 16}, \
{"$s1", RTYPE_GP | 17}, \
{"$s2", RTYPE_GP | 18}, \
{"$s3", RTYPE_GP | 19}, \
{"$s4", RTYPE_GP | 20}, \
{"$s5", RTYPE_GP | 21}, \
{"$s6", RTYPE_GP | 22}, \
{"$s7", RTYPE_GP | 23}, \
{"$t8", RTYPE_GP | 24}, \
{"$t9", RTYPE_GP | 25}, \
{"$k0", RTYPE_GP | 26}, \
{"$kt0", RTYPE_GP | 26}, \
{"$k1", RTYPE_GP | 27}, \
{"$kt1", RTYPE_GP | 27}, \
{"$gp", RTYPE_GP | 28}, \
{"$sp", RTYPE_GP | 29}, \
{"$s8", RTYPE_GP | 30}, \
{"$fp", RTYPE_GP | 30}, \
{"$ra", RTYPE_GP | 31}
#define MIPS16_SPECIAL_REGISTER_NAMES \
{"$pc", RTYPE_PC | 0}
#define MDMX_VECTOR_REGISTER_NAMES \
/* {"$v0", RTYPE_VEC | 0}, Clash with REG 2 above. */ \
/* {"$v1", RTYPE_VEC | 1}, Clash with REG 3 above. */ \
{"$v2", RTYPE_VEC | 2}, \
{"$v3", RTYPE_VEC | 3}, \
{"$v4", RTYPE_VEC | 4}, \
{"$v5", RTYPE_VEC | 5}, \
{"$v6", RTYPE_VEC | 6}, \
{"$v7", RTYPE_VEC | 7}, \
{"$v8", RTYPE_VEC | 8}, \
{"$v9", RTYPE_VEC | 9}, \
{"$v10", RTYPE_VEC | 10}, \
{"$v11", RTYPE_VEC | 11}, \
{"$v12", RTYPE_VEC | 12}, \
{"$v13", RTYPE_VEC | 13}, \
{"$v14", RTYPE_VEC | 14}, \
{"$v15", RTYPE_VEC | 15}, \
{"$v16", RTYPE_VEC | 16}, \
{"$v17", RTYPE_VEC | 17}, \
{"$v18", RTYPE_VEC | 18}, \
{"$v19", RTYPE_VEC | 19}, \
{"$v20", RTYPE_VEC | 20}, \
{"$v21", RTYPE_VEC | 21}, \
{"$v22", RTYPE_VEC | 22}, \
{"$v23", RTYPE_VEC | 23}, \
{"$v24", RTYPE_VEC | 24}, \
{"$v25", RTYPE_VEC | 25}, \
{"$v26", RTYPE_VEC | 26}, \
{"$v27", RTYPE_VEC | 27}, \
{"$v28", RTYPE_VEC | 28}, \
{"$v29", RTYPE_VEC | 29}, \
{"$v30", RTYPE_VEC | 30}, \
{"$v31", RTYPE_VEC | 31}
#define R5900_I_NAMES \
{"$I", RTYPE_R5900_I | 0}
#define R5900_Q_NAMES \
{"$Q", RTYPE_R5900_Q | 0}
#define R5900_R_NAMES \
{"$R", RTYPE_R5900_R | 0}
#define R5900_ACC_NAMES \
{"$ACC", RTYPE_R5900_ACC | 0 }
#define MIPS_DSP_ACCUMULATOR_NAMES \
{"$ac0", RTYPE_ACC | 0}, \
{"$ac1", RTYPE_ACC | 1}, \
{"$ac2", RTYPE_ACC | 2}, \
{"$ac3", RTYPE_ACC | 3}
static const struct regname reg_names[] = {
GENERIC_REGISTER_NUMBERS,
FPU_REGISTER_NAMES,
FPU_CONDITION_CODE_NAMES,
COPROC_CONDITION_CODE_NAMES,
/* The $txx registers depends on the abi,
these will be added later into the symbol table from
one of the tables below once mips_abi is set after
parsing of arguments from the command line. */
SYMBOLIC_REGISTER_NAMES,
MIPS16_SPECIAL_REGISTER_NAMES,
MDMX_VECTOR_REGISTER_NAMES,
R5900_I_NAMES,
R5900_Q_NAMES,
R5900_R_NAMES,
R5900_ACC_NAMES,
MIPS_DSP_ACCUMULATOR_NAMES,
{0, 0}
};
static const struct regname reg_names_o32[] = {
O32_SYMBOLIC_REGISTER_NAMES,
{0, 0}
};
static const struct regname reg_names_n32n64[] = {
N32N64_SYMBOLIC_REGISTER_NAMES,
{0, 0}
};
/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
interpreted as vector registers 0 and 1. If SYMVAL is the value of one
of these register symbols, return the associated vector register,
otherwise return SYMVAL itself. */
static unsigned int
mips_prefer_vec_regno (unsigned int symval)
{
if ((symval & -2) == (RTYPE_GP | 2))
return RTYPE_VEC | (symval & 1);
return symval;
}
/* Return true if string [S, E) is a valid register name, storing its
symbol value in *SYMVAL_PTR if so. */
static bool
mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
{
char save_c;
symbolS *symbol;
/* Terminate name. */
save_c = *e;
*e = '\0';
/* Look up the name. */
symbol = symbol_find (s);
*e = save_c;
if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
return false;
*symval_ptr = S_GET_VALUE (symbol);
return true;
}
/* Return true if the string at *SPTR is a valid register name. Allow it
to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
is nonnull.
When returning true, move *SPTR past the register, store the
register's symbol value in *SYMVAL_PTR and the channel mask in
*CHANNELS_PTR (if nonnull). The symbol value includes the register
number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
static bool
mips_parse_register (char **sptr, unsigned int *symval_ptr,
unsigned int *channels_ptr)
{
char *s, *e, *m;
const char *q;
unsigned int channels, symval, bit;
/* Find end of name. */
s = e = *sptr;
if (is_name_beginner (*e))
++e;
while (is_part_of_name (*e))
++e;
channels = 0;
if (!mips_parse_register_1 (s, e, &symval))
{
if (!channels_ptr)
return false;
/* Eat characters from the end of the string that are valid
channel suffixes. The preceding register must be $ACC or
end with a digit, so there is no ambiguity. */
bit = 1;
m = e;
for (q = "wzyx"; *q; q++, bit <<= 1)
if (m > s && m[-1] == *q)
{
--m;
channels |= bit;
}
if (channels == 0
|| !mips_parse_register_1 (s, m, &symval)
|| (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
return false;
}
*sptr = e;
*symval_ptr = symval;
if (channels_ptr)
*channels_ptr = channels;
return true;
}
/* Check if SPTR points at a valid register specifier according to TYPES.
If so, then return 1, advance S to consume the specifier and store
the register's number in REGNOP, otherwise return 0. */
static int
reg_lookup (char **s, unsigned int types, unsigned int *regnop)
{
unsigned int regno;
if (mips_parse_register (s, &regno, NULL))
{
if (types & RTYPE_VEC)
regno = mips_prefer_vec_regno (regno);
if (regno & types)
regno &= RNUM_MASK;
else
regno = ~0;
}
else
{
if (types & RWARN)
as_warn (_("unrecognized register name `%s'"), *s);
regno = ~0;
}
if (regnop)
*regnop = regno;
return regno <= RNUM_MASK;
}
/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
mask in *CHANNELS. Return a pointer to the first unconsumed character. */
static char *
mips_parse_vu0_channels (char *s, unsigned int *channels)
{
unsigned int i;
*channels = 0;
for (i = 0; i < 4; i++)
if (*s == "xyzw"[i])
{
*channels |= 1 << (3 - i);
++s;
}
return s;
}
/* Token types for parsed operand lists. */
enum mips_operand_token_type {
/* A plain register, e.g. $f2. */
OT_REG,
/* A 4-bit XYZW channel mask. */
OT_CHANNELS,
/* A constant vector index, e.g. [1]. */
OT_INTEGER_INDEX,
/* A register vector index, e.g. [$2]. */
OT_REG_INDEX,
/* A continuous range of registers, e.g. $s0-$s4. */
OT_REG_RANGE,
/* A (possibly relocated) expression. */
OT_INTEGER,
/* A floating-point value. */
OT_FLOAT,
/* A single character. This can be '(', ')' or ',', but '(' only appears
before OT_REGs. */
OT_CHAR,
/* A doubled character, either "--" or "++". */
OT_DOUBLE_CHAR,
/* The end of the operand list. */
OT_END
};
/* A parsed operand token. */
struct mips_operand_token
{
/* The type of token. */
enum mips_operand_token_type type;
union
{
/* The register symbol value for an OT_REG or OT_REG_INDEX. */
unsigned int regno;
/* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
unsigned int channels;
/* The integer value of an OT_INTEGER_INDEX. */
addressT index;
/* The two register symbol values involved in an OT_REG_RANGE. */
struct {
unsigned int regno1;
unsigned int regno2;
} reg_range;
/* The value of an OT_INTEGER. The value is represented as an
expression and the relocation operators that were applied to
that expression. The reloc entries are BFD_RELOC_UNUSED if no
relocation operators were used. */
struct {
expressionS value;
bfd_reloc_code_real_type relocs[3];
} integer;
/* The binary data for an OT_FLOAT constant, and the number of bytes
in the constant. */
struct {
unsigned char data[8];
int length;
} flt;
/* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
char ch;
} u;
};
/* An obstack used to construct lists of mips_operand_tokens. */
static struct obstack mips_operand_tokens;
/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
static void
mips_add_token (struct mips_operand_token *token,
enum mips_operand_token_type type)
{
token->type = type;
obstack_grow (&mips_operand_tokens, token, sizeof (*token));
}
/* Check whether S is '(' followed by a register name. Add OT_CHAR
and OT_REG tokens for them if so, and return a pointer to the first
unconsumed character. Return null otherwise. */
static char *
mips_parse_base_start (char *s)
{
struct mips_operand_token token;
unsigned int regno, channels;
bool decrement_p;
if (*s != '(')
return 0;
++s;
SKIP_SPACE_TABS (s);
/* Only match "--" as part of a base expression. In other contexts "--X"
is a double negative. */
decrement_p = (s[0] == '-' && s[1] == '-');
if (decrement_p)
{
s += 2;
SKIP_SPACE_TABS (s);
}
/* Allow a channel specifier because that leads to better error messages
than treating something like "$vf0x++" as an expression. */
if (!mips_parse_register (&s, &regno, &channels))
return 0;
token.u.ch = '(';
mips_add_token (&token, OT_CHAR);
if (decrement_p)
{
token.u.ch = '-';
mips_add_token (&token, OT_DOUBLE_CHAR);
}
token.u.regno = regno;
mips_add_token (&token, OT_REG);
if (channels)
{
token.u.channels = channels;
mips_add_token (&token, OT_CHANNELS);
}
/* For consistency, only match "++" as part of base expressions too. */
SKIP_SPACE_TABS (s);
if (s[0] == '+' && s[1] == '+')
{
s += 2;
token.u.ch = '+';
mips_add_token (&token, OT_DOUBLE_CHAR);
}
return s;
}
/* Parse one or more tokens from S. Return a pointer to the first
unconsumed character on success. Return null if an error was found
and store the error text in insn_error. FLOAT_FORMAT is as for
mips_parse_arguments. */
static char *
mips_parse_argument_token (char *s, char float_format)
{
char *end, *save_in;
const char *err;
unsigned int regno1, regno2, channels;
struct mips_operand_token token;
/* First look for "($reg", since we want to treat that as an
OT_CHAR and OT_REG rather than an expression. */
end = mips_parse_base_start (s);
if (end)
return end;
/* Handle other characters that end up as OT_CHARs. */
if (*s == ')' || *s == ',')
{
token.u.ch = *s;
mips_add_token (&token, OT_CHAR);
++s;
return s;
}
/* Handle tokens that start with a register. */
if (mips_parse_register (&s, &regno1, &channels))
{
if (channels)
{
/* A register and a VU0 channel suffix. */
token.u.regno = regno1;
mips_add_token (&token, OT_REG);
token.u.channels = channels;
mips_add_token (&token, OT_CHANNELS);
return s;
}
SKIP_SPACE_TABS (s);
if (*s == '-')
{
/* A register range. */
++s;
SKIP_SPACE_TABS (s);
if (!mips_parse_register (&s, &regno2, NULL))
{
set_insn_error (0, _("invalid register range"));
return 0;
}
token.u.reg_range.regno1 = regno1;
token.u.reg_range.regno2 = regno2;
mips_add_token (&token, OT_REG_RANGE);
return s;
}
/* Add the register itself. */
token.u.regno = regno1;
mips_add_token (&token, OT_REG);
/* Check for a vector index. */
if (*s == '[')
{
++s;
SKIP_SPACE_TABS (s);
if (mips_parse_register (&s, &token.u.regno, NULL))
mips_add_token (&token, OT_REG_INDEX);
else
{
expressionS element;
my_getExpression (&element, s);
if (element.X_op != O_constant)
{
set_insn_error (0, _("vector element must be constant"));
return 0;
}
s = expr_end;
token.u.index = element.X_add_number;
mips_add_token (&token, OT_INTEGER_INDEX);
}
SKIP_SPACE_TABS (s);
if (*s != ']')
{
set_insn_error (0, _("missing `]'"));
return 0;
}
++s;
}
return s;
}
if (float_format)
{
/* First try to treat expressions as floats. */
save_in = input_line_pointer;
input_line_pointer = s;
err = md_atof (float_format, (char *) token.u.flt.data,
&token.u.flt.length);
end = input_line_pointer;
input_line_pointer = save_in;
if (err && *err)
{
set_insn_error (0, err);
return 0;
}
if (s != end)
{
mips_add_token (&token, OT_FLOAT);
return end;
}
}
/* Treat everything else as an integer expression. */
token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
s = expr_end;
mips_add_token (&token, OT_INTEGER);
return s;
}
/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
if expressions should be treated as 32-bit floating-point constants,
'd' if they should be treated as 64-bit floating-point constants,
or 0 if they should be treated as integer expressions (the usual case).
Return a list of tokens on success, otherwise return 0. The caller
must obstack_free the list after use. */
static struct mips_operand_token *
mips_parse_arguments (char *s, char float_format)
{
struct mips_operand_token token;
SKIP_SPACE_TABS (s);
while (*s)
{
s = mips_parse_argument_token (s, float_format);
if (!s)
{
obstack_free (&mips_operand_tokens,
obstack_finish (&mips_operand_tokens));
return 0;
}
SKIP_SPACE_TABS (s);
}
mips_add_token (&token, OT_END);
return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
}
/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
static bool
is_opcode_valid (const struct mips_opcode *mo)
{
int isa = mips_opts.isa;
int ase = mips_opts.ase;
int fp_s, fp_d;
unsigned int i;
if (ISA_HAS_64BIT_REGS (isa))
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
ase |= mips_ases[i].flags64;
if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
return false;
/* Check whether the instruction or macro requires single-precision or
double-precision floating-point support. Note that this information is
stored differently in the opcode table for insns and macros. */
if (mo->pinfo == INSN_MACRO)
{
fp_s = mo->pinfo2 & INSN2_M_FP_S;
fp_d = mo->pinfo2 & INSN2_M_FP_D;
}
else
{
fp_s = mo->pinfo & FP_S;
fp_d = mo->pinfo & FP_D;
}
if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
return false;
if (fp_s && mips_opts.soft_float)
return false;
return true;
}
/* Return TRUE if the MIPS16 opcode MO is valid on the currently
selected ISA and architecture. */
static bool
is_opcode_valid_16 (const struct mips_opcode *mo)
{
int isa = mips_opts.isa;
int ase = mips_opts.ase;
unsigned int i;
if (ISA_HAS_64BIT_REGS (isa))
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
ase |= mips_ases[i].flags64;
return opcode_is_member (mo, isa, ase, mips_opts.arch);
}
/* Return TRUE if the size of the microMIPS opcode MO matches one
explicitly requested. Always TRUE in the standard MIPS mode.
Use is_size_valid_16 for MIPS16 opcodes. */
static bool
is_size_valid (const struct mips_opcode *mo)
{
if (!mips_opts.micromips)
return true;
if (mips_opts.insn32)
{
if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
return false;
if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
return false;
}
if (!forced_insn_length)
return true;
if (mo->pinfo == INSN_MACRO)
return false;
return forced_insn_length == micromips_insn_length (mo);
}
/* Return TRUE if the size of the MIPS16 opcode MO matches one
explicitly requested. */
static bool
is_size_valid_16 (const struct mips_opcode *mo)
{
if (!forced_insn_length)
return true;
if (mo->pinfo == INSN_MACRO)
return false;
if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
return false;
if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
return false;
return true;
}
/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
of the preceding instruction. Always TRUE in the standard MIPS mode.
We don't accept macros in 16-bit delay slots to avoid a case where
a macro expansion fails because it relies on a preceding 32-bit real
instruction to have matched and does not handle the operands correctly.
The only macros that may expand to 16-bit instructions are JAL that
cannot be placed in a delay slot anyway, and corner cases of BALIGN
and BGT (that likewise cannot be placed in a delay slot) that decay to
a NOP. In all these cases the macros precede any corresponding real
instruction definitions in the opcode table, so they will match in the
second pass where the size of the delay slot is ignored and therefore
produce correct code. */
static bool
is_delay_slot_valid (const struct mips_opcode *mo)
{
if (!mips_opts.micromips)
return true;
if (mo->pinfo == INSN_MACRO)
return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
&& micromips_insn_length (mo) != 4)
return false;
if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
&& micromips_insn_length (mo) != 2)
return false;
return true;
}
/* For consistency checking, verify that all bits of OPCODE are specified
either by the match/mask part of the instruction definition, or by the
operand list. Also build up a list of operands in OPERANDS.
INSN_BITS says which bits of the instruction are significant.
If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
provides the mips_operand description of each operand. DECODE_OPERAND
is null for MIPS16 instructions. */
static int
validate_mips_insn (const struct mips_opcode *opcode,
unsigned long insn_bits,
const struct mips_operand *(*decode_operand) (const char *),
struct mips_operand_array *operands)
{
const char *s;
unsigned long used_bits, doubled, undefined, opno, mask;
const struct mips_operand *operand;
mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
if ((mask & opcode->match) != opcode->match)
{
as_bad (_("internal: bad mips opcode (mask error): %s %s"),
opcode->name, opcode->args);
return 0;
}
used_bits = 0;
opno = 0;
if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
for (s = opcode->args; *s; ++s)
switch (*s)
{
case ',':
case '(':
case ')':
break;
case '#':
s++;
break;
default:
if (!decode_operand)
operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
else
operand = decode_operand (s);
if (!operand && opcode->pinfo != INSN_MACRO)
{
as_bad (_("internal: unknown operand type: %s %s"),
opcode->name, opcode->args);
return 0;
}
gas_assert (opno < MAX_OPERANDS);
operands->operand[opno] = operand;
if (!decode_operand && operand
&& operand->type == OP_INT && operand->lsb == 0
&& mips_opcode_32bit_p (opcode))
used_bits |= mips16_immed_extend (-1, operand->size);
else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
{
used_bits = mips_insert_operand (operand, used_bits, -1);
if (operand->type == OP_MDMX_IMM_REG)
/* Bit 5 is the format selector (OB vs QH). The opcode table
has separate entries for each format. */
used_bits &= ~(1 << (operand->lsb + 5));
if (operand->type == OP_ENTRY_EXIT_LIST)
used_bits &= ~(mask & 0x700);
/* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
operand field that cannot be fully described with LSB/SIZE. */
if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
used_bits &= ~0x6000;
}
/* Skip prefix characters. */
if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
++s;
opno += 1;
break;
}
doubled = used_bits & mask & insn_bits;
if (doubled)
{
as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
" %s %s"), doubled, opcode->name, opcode->args);
return 0;
}
used_bits |= mask;
undefined = ~used_bits & insn_bits;
if (opcode->pinfo != INSN_MACRO && undefined)
{
as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
undefined, opcode->name, opcode->args);
return 0;
}
used_bits &= ~insn_bits;
if (used_bits)
{
as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
used_bits, opcode->name, opcode->args);
return 0;
}
return 1;
}
/* The MIPS16 version of validate_mips_insn. */
static int
validate_mips16_insn (const struct mips_opcode *opcode,
struct mips_operand_array *operands)
{
unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
return validate_mips_insn (opcode, insn_bits, 0, operands);
}
/* The microMIPS version of validate_mips_insn. */
static int
validate_micromips_insn (const struct mips_opcode *opc,
struct mips_operand_array *operands)
{
unsigned long insn_bits;
unsigned long major;
unsigned int length;
if (opc->pinfo == INSN_MACRO)
return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
operands);
length = micromips_insn_length (opc);
if (length != 2 && length != 4)
{
as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
"%s %s"), length, opc->name, opc->args);
return 0;
}
major = opc->match >> (10 + 8 * (length - 2));
if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
|| (length == 4 && (major & 7) != 0 && (major & 4) != 4))
{
as_bad (_("internal error: bad microMIPS opcode "
"(opcode/length mismatch): %s %s"), opc->name, opc->args);
return 0;
}
/* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
insn_bits = 1 << 4 * length;
insn_bits <<= 4 * length;
insn_bits -= 1;
return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
operands);
}
/* This function is called once, at assembler startup time. It should set up
all the tables, etc. that the MD part of the assembler will need. */
void
md_begin (void)
{
int i = 0;
int broken = 0;
if (mips_pic != NO_PIC)
{
if (g_switch_seen && g_switch_value != 0)
as_bad (_("-G may not be used in position-independent code"));
g_switch_value = 0;
}
else if (mips_abicalls)
{
if (g_switch_seen && g_switch_value != 0)
as_bad (_("-G may not be used with abicalls"));
g_switch_value = 0;
}
if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
as_warn (_("could not set architecture and machine"));
op_hash = str_htab_create ();
mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
for (i = 0; i < NUMOPCODES;)
{
const char *name = mips_opcodes[i].name;
if (str_hash_insert (op_hash, name, &mips_opcodes[i], 0) != NULL)
as_fatal (_("duplicate %s"), name);
do
{
if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
decode_mips_operand, &mips_operands[i]))
broken = 1;
if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
{
create_insn (&nop_insn, mips_opcodes + i);
if (mips_fix_loongson2f_nop)
nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
nop_insn.fixed_p = 1;
}
if (sync_insn.insn_mo == NULL && strcmp (name, "sync") == 0)
create_insn (&sync_insn, mips_opcodes + i);
++i;
}
while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
}
mips16_op_hash = str_htab_create ();
mips16_operands = XCNEWVEC (struct mips_operand_array,
bfd_mips16_num_opcodes);
i = 0;
while (i < bfd_mips16_num_opcodes)
{
const char *name = mips16_opcodes[i].name;
if (str_hash_insert (mips16_op_hash, name, &mips16_opcodes[i], 0))
as_fatal (_("duplicate %s"), name);
do
{
if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
broken = 1;
if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
{
create_insn (&mips16_nop_insn, mips16_opcodes + i);
mips16_nop_insn.fixed_p = 1;
}
++i;
}
while (i < bfd_mips16_num_opcodes
&& strcmp (mips16_opcodes[i].name, name) == 0);
}
micromips_op_hash = str_htab_create ();
micromips_operands = XCNEWVEC (struct mips_operand_array,
bfd_micromips_num_opcodes);
i = 0;
while (i < bfd_micromips_num_opcodes)
{
const char *name = micromips_opcodes[i].name;
if (str_hash_insert (micromips_op_hash, name, &micromips_opcodes[i], 0))
as_fatal (_("duplicate %s"), name);
do
{
struct mips_cl_insn *micromips_nop_insn;
if (!validate_micromips_insn (&micromips_opcodes[i],
&micromips_operands[i]))
broken = 1;
if (micromips_opcodes[i].pinfo != INSN_MACRO)
{
if (micromips_insn_length (micromips_opcodes + i) == 2)
micromips_nop_insn = &micromips_nop16_insn;
else if (micromips_insn_length (micromips_opcodes + i) == 4)
micromips_nop_insn = &micromips_nop32_insn;
else
continue;
if (micromips_nop_insn->insn_mo == NULL
&& strcmp (name, "nop") == 0)
{
create_insn (micromips_nop_insn, micromips_opcodes + i);
micromips_nop_insn->fixed_p = 1;
}
}
}
while (++i < bfd_micromips_num_opcodes
&& strcmp (micromips_opcodes[i].name, name) == 0);
}
if (broken)
as_fatal (_("broken assembler, no assembly attempted"));
/* We add all the general register names to the symbol table. This
helps us detect invalid uses of them. */
for (i = 0; reg_names[i].name; i++)
symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
&zero_address_frag,
reg_names[i].num));
if (HAVE_NEWABI)
for (i = 0; reg_names_n32n64[i].name; i++)
symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
&zero_address_frag,
reg_names_n32n64[i].num));
else
for (i = 0; reg_names_o32[i].name; i++)
symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
&zero_address_frag,
reg_names_o32[i].num));
for (i = 0; i < 32; i++)
{
char regname[16];
/* R5900 VU0 floating-point register. */
sprintf (regname, "$vf%d", i);
symbol_table_insert (symbol_new (regname, reg_section,
&zero_address_frag, RTYPE_VF | i));
/* R5900 VU0 integer register. */
sprintf (regname, "$vi%d", i);
symbol_table_insert (symbol_new (regname, reg_section,
&zero_address_frag, RTYPE_VI | i));
/* MSA register. */
sprintf (regname, "$w%d", i);
symbol_table_insert (symbol_new (regname, reg_section,
&zero_address_frag, RTYPE_MSA | i));
}
obstack_init (&mips_operand_tokens);
mips_no_prev_insn ();
mips_gprmask = 0;
mips_cprmask[0] = 0;
mips_cprmask[1] = 0;
mips_cprmask[2] = 0;
mips_cprmask[3] = 0;
/* set the default alignment for the text section (2**2) */
record_alignment (text_section, 2);
bfd_set_gp_size (stdoutput, g_switch_value);
/* On a native system other than VxWorks, sections must be aligned
to 16 byte boundaries. When configured for an embedded ELF
target, we don't bother. */
if (!startswith (TARGET_OS, "elf")
&& !startswith (TARGET_OS, "vxworks"))
{
bfd_set_section_alignment (text_section, 4);
bfd_set_section_alignment (data_section, 4);
bfd_set_section_alignment (bss_section, 4);
}
/* Create a .reginfo section for register masks and a .mdebug
section for debugging information. */
{
segT seg;
subsegT subseg;
flagword flags;
segT sec;
seg = now_seg;
subseg = now_subseg;
/* The ABI says this section should be loaded so that the
running program can access it. However, we don't load it
if we are configured for an embedded target. */
flags = SEC_READONLY | SEC_DATA;
if (!startswith (TARGET_OS, "elf"))
flags |= SEC_ALLOC | SEC_LOAD;
if (mips_abi != N64_ABI)
{
sec = subseg_new (".reginfo", (subsegT) 0);
bfd_set_section_flags (sec, flags);
bfd_set_section_alignment (sec, HAVE_NEWABI ? 3 : 2);
mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
}
else
{
/* The 64-bit ABI uses a .MIPS.options section rather than
.reginfo section. */
sec = subseg_new (".MIPS.options", (subsegT) 0);
bfd_set_section_flags (sec, flags);
bfd_set_section_alignment (sec, 3);
/* Set up the option header. */
{
Elf_Internal_Options opthdr;
char *f;
opthdr.kind = ODK_REGINFO;
opthdr.size = (sizeof (Elf_External_Options)
+ sizeof (Elf64_External_RegInfo));
opthdr.section = 0;
opthdr.info = 0;
f = frag_more (sizeof (Elf_External_Options));
bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
(Elf_External_Options *) f);
mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
}
}
sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
bfd_set_section_flags (sec,
SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
bfd_set_section_alignment (sec, 3);
mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
if (ECOFF_DEBUGGING)
{
sec = subseg_new (".mdebug", (subsegT) 0);
bfd_set_section_flags (sec, SEC_HAS_CONTENTS | SEC_READONLY);
bfd_set_section_alignment (sec, 2);
}
else if (mips_flag_pdr)
{
pdr_seg = subseg_new (".pdr", (subsegT) 0);
bfd_set_section_flags (pdr_seg,
SEC_READONLY | SEC_RELOC | SEC_DEBUGGING);
bfd_set_section_alignment (pdr_seg, 2);
}
subseg_set (seg, subseg);
}
if (mips_fix_vr4120)
init_vr4120_conflicts ();
}
static inline void
fpabi_incompatible_with (int fpabi, const char *what)
{
as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
Tag_GNU_MIPS_ABI_FP, fpabi, what);
}
static inline void
fpabi_requires (int fpabi, const char *what)
{
as_warn (_(".gnu_attribute %d,%d requires `%s'"),
Tag_GNU_MIPS_ABI_FP, fpabi, what);
}
/* Check -mabi and register sizes against the specified FP ABI. */
static void
check_fpabi (int fpabi)
{
switch (fpabi)
{
case Val_GNU_MIPS_ABI_FP_DOUBLE:
if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (file_mips_opts.single_float)
fpabi_incompatible_with (fpabi, "singlefloat");
if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
fpabi_incompatible_with (fpabi, "gp=64 fp=32");
else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
fpabi_incompatible_with (fpabi, "gp=32 fp=64");
break;
case Val_GNU_MIPS_ABI_FP_XX:
if (mips_abi != O32_ABI)
fpabi_requires (fpabi, "-mabi=32");
else if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (file_mips_opts.single_float)
fpabi_incompatible_with (fpabi, "singlefloat");
else if (file_mips_opts.fp != 0)
fpabi_requires (fpabi, "fp=xx");
break;
case Val_GNU_MIPS_ABI_FP_64A:
case Val_GNU_MIPS_ABI_FP_64:
if (mips_abi != O32_ABI)
fpabi_requires (fpabi, "-mabi=32");
else if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (file_mips_opts.single_float)
fpabi_incompatible_with (fpabi, "singlefloat");
else if (file_mips_opts.fp != 64)
fpabi_requires (fpabi, "fp=64");
else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
fpabi_incompatible_with (fpabi, "nooddspreg");
else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
fpabi_requires (fpabi, "nooddspreg");
break;
case Val_GNU_MIPS_ABI_FP_SINGLE:
if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (!file_mips_opts.single_float)
fpabi_requires (fpabi, "singlefloat");
break;
case Val_GNU_MIPS_ABI_FP_SOFT:
if (!file_mips_opts.soft_float)
fpabi_requires (fpabi, "softfloat");
break;
case Val_GNU_MIPS_ABI_FP_OLD_64:
as_warn (_(".gnu_attribute %d,%d is no longer supported"),
Tag_GNU_MIPS_ABI_FP, fpabi);
break;
case Val_GNU_MIPS_ABI_FP_NAN2008:
/* Silently ignore compatibility value. */
break;
default:
as_warn (_(".gnu_attribute %d,%d is not a recognized"
" floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
break;
}
}
/* Perform consistency checks on the current options. */
static void
mips_check_options (struct mips_set_options *opts, bool abi_checks)
{
/* Check the size of integer registers agrees with the ABI and ISA. */
if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
as_bad (_("`gp=64' used with a 32-bit processor"));
else if (abi_checks
&& opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
as_bad (_("`gp=32' used with a 64-bit ABI"));
else if (abi_checks
&& opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
as_bad (_("`gp=64' used with a 32-bit ABI"));
/* Check the size of the float registers agrees with the ABI and ISA. */
switch (opts->fp)
{
case 0:
if (!CPU_HAS_LDC1_SDC1 (opts->arch))
as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
else if (opts->single_float == 1)
as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
break;
case 64:
if (!ISA_HAS_64BIT_FPRS (opts->isa))
as_bad (_("`fp=64' used with a 32-bit fpu"));
else if (abi_checks
&& ABI_NEEDS_32BIT_REGS (mips_abi)
&& !ISA_HAS_MXHC1 (opts->isa))
as_warn (_("`fp=64' used with a 32-bit ABI"));
break;
case 32:
if (abi_checks
&& ABI_NEEDS_64BIT_REGS (mips_abi))
as_warn (_("`fp=32' used with a 64-bit ABI"));
if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
as_bad (_("`fp=32' used with a MIPS R6 cpu"));
break;
default:
as_bad (_("Unknown size of floating point registers"));
break;
}
if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
if (opts->micromips == 1 && opts->mips16 == 1)
as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
else if (ISA_IS_R6 (opts->isa)
&& (opts->micromips == 1
|| opts->mips16 == 1))
as_fatal (_("`%s' cannot be used with `%s'"),
opts->micromips ? "micromips" : "mips16",
mips_cpu_info_from_isa (opts->isa)->name);
if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
as_fatal (_("branch relaxation is not supported in `%s'"),
mips_cpu_info_from_isa (opts->isa)->name);
}
/* Perform consistency checks on the module level options exactly once.
This is a deferred check that happens:
at the first .set directive
or, at the first pseudo op that generates code (inc .dc.a)
or, at the first instruction
or, at the end. */
static void
file_mips_check_options (void)
{
if (file_mips_opts_checked)
return;
/* The following code determines the register size.
Similar code was added to GCC 3.3 (see override_options() in
config/mips/mips.c). The GAS and GCC code should be kept in sync
as much as possible. */
if (file_mips_opts.gp < 0)
{
/* Infer the integer register size from the ABI and processor.
Restrict ourselves to 32-bit registers if that's all the
processor has, or if the ABI cannot handle 64-bit registers. */
file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
|| !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
? 32 : 64;
}
if (file_mips_opts.fp < 0)
{
/* No user specified float register size.
??? GAS treats single-float processors as though they had 64-bit
float registers (although it complains when double-precision
instructions are used). As things stand, saying they have 32-bit
registers would lead to spurious "register must be even" messages.
So here we assume float registers are never smaller than the
integer ones. */
if (file_mips_opts.gp == 64)
/* 64-bit integer registers implies 64-bit float registers. */
file_mips_opts.fp = 64;
else if ((file_mips_opts.ase & FP64_ASES)
&& ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
/* Handle ASEs that require 64-bit float registers, if possible. */
file_mips_opts.fp = 64;
else if (ISA_IS_R6 (mips_opts.isa))
/* R6 implies 64-bit float registers. */
file_mips_opts.fp = 64;
else
/* 32-bit float registers. */
file_mips_opts.fp = 32;
}
/* Disable operations on odd-numbered floating-point registers by default
when using the FPXX ABI. */
if (file_mips_opts.oddspreg < 0)
{
if (file_mips_opts.fp == 0)
file_mips_opts.oddspreg = 0;
else
file_mips_opts.oddspreg = 1;
}
/* End of GCC-shared inference code. */
/* This flag is set when we have a 64-bit capable CPU but use only
32-bit wide registers. Note that EABI does not use it. */
if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
&& ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
|| mips_abi == O32_ABI))
mips_32bitmode = 1;
if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
as_bad (_("trap exception not supported at ISA 1"));
/* If the selected architecture includes support for ASEs, enable
generation of code for them. */
if (file_mips_opts.mips16 == -1)
file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
if (file_mips_opts.micromips == -1)
file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
? 1 : 0;
if (mips_nan2008 == -1)
mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
as_fatal (_("`%s' does not support legacy NaN"),
mips_cpu_info_from_arch (file_mips_opts.arch)->name);
/* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
being selected implicitly. */
if (file_mips_opts.fp != 64)
file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
/* If the user didn't explicitly select or deselect a particular ASE,
use the default setting for the CPU. */
file_mips_opts.ase |= (file_mips_opts.init_ase & ~file_ase_explicit);
/* Set up the current options. These may change throughout assembly. */
mips_opts = file_mips_opts;
mips_check_isa_supports_ases ();
mips_check_options (&file_mips_opts, true);
file_mips_opts_checked = true;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
as_warn (_("could not set architecture and machine"));
}
void
md_assemble (char *str)
{
struct mips_cl_insn insn;
bfd_reloc_code_real_type unused_reloc[3]
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
file_mips_check_options ();
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
offset_reloc[0] = BFD_RELOC_UNUSED;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
mips_mark_labels ();
mips_assembling_insn = true;
clear_insn_error ();
if (mips_opts.mips16)
mips16_ip (str, &insn);
else
{
mips_ip (str, &insn);
DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
str, insn.insn_opcode));
}
if (insn_error.msg)
report_insn_error (str);
else if (insn.insn_mo->pinfo == INSN_MACRO)
{
macro_start ();
if (mips_opts.mips16)
mips16_macro (&insn);
else
macro (&insn, str);
macro_end ();
}
else
{
if (offset_expr.X_op != O_absent)
append_insn (&insn, &offset_expr, offset_reloc, false);
else
append_insn (&insn, NULL, unused_reloc, false);
}
mips_assembling_insn = false;
}
/* Convenience functions for abstracting away the differences between
MIPS16 and non-MIPS16 relocations. */
static inline bool
mips16_reloc_p (bfd_reloc_code_real_type reloc)
{
switch (reloc)
{
case BFD_RELOC_MIPS16_JMP:
case BFD_RELOC_MIPS16_GPREL:
case BFD_RELOC_MIPS16_GOT16:
case BFD_RELOC_MIPS16_CALL16:
case BFD_RELOC_MIPS16_HI16_S:
case BFD_RELOC_MIPS16_HI16:
case BFD_RELOC_MIPS16_LO16:
case BFD_RELOC_MIPS16_16_PCREL_S1:
return true;
default:
return false;
}
}
static inline bool
micromips_reloc_p (bfd_reloc_code_real_type reloc)
{
switch (reloc)
{
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_GPREL16:
case BFD_RELOC_MICROMIPS_JMP:
case BFD_RELOC_MICROMIPS_HI16:
case BFD_RELOC_MICROMIPS_HI16_S:
case BFD_RELOC_MICROMIPS_LO16:
case BFD_RELOC_MICROMIPS_LITERAL:
case BFD_RELOC_MICROMIPS_GOT16:
case BFD_RELOC_MICROMIPS_CALL16:
case BFD_RELOC_MICROMIPS_GOT_HI16:
case BFD_RELOC_MICROMIPS_GOT_LO16:
case BFD_RELOC_MICROMIPS_CALL_HI16:
case BFD_RELOC_MICROMIPS_CALL_LO16:
case BFD_RELOC_MICROMIPS_SUB:
case BFD_RELOC_MICROMIPS_GOT_PAGE:
case BFD_RELOC_MICROMIPS_GOT_OFST:
case BFD_RELOC_MICROMIPS_GOT_DISP:
case BFD_RELOC_MICROMIPS_HIGHEST:
case BFD_RELOC_MICROMIPS_HIGHER:
case BFD_RELOC_MICROMIPS_SCN_DISP:
case BFD_RELOC_MICROMIPS_JALR:
return true;
default:
return false;
}
}
static inline bool
jmp_reloc_p (bfd_reloc_code_real_type reloc)
{
return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
}
static inline bool
b_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
|| reloc == BFD_RELOC_MIPS_21_PCREL_S2
|| reloc == BFD_RELOC_16_PCREL_S2
|| reloc == BFD_RELOC_MIPS16_16_PCREL_S1
|| reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
|| reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
|| reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
}
static inline bool
got16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
|| reloc == BFD_RELOC_MICROMIPS_GOT16);
}
static inline bool
hi16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
|| reloc == BFD_RELOC_MICROMIPS_HI16_S);
}
static inline bool
lo16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
|| reloc == BFD_RELOC_MICROMIPS_LO16);
}
static inline bool
jalr_reloc_p (bfd_reloc_code_real_type reloc)
{
return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
}
static inline bool
gprel16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
|| reloc == BFD_RELOC_MICROMIPS_GPREL16);
}
/* Return true if RELOC is a PC-relative relocation that does not have
full address range. */
static inline bool
limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
{
switch (reloc)
{
case BFD_RELOC_16_PCREL_S2:
case BFD_RELOC_MIPS16_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_MIPS_21_PCREL_S2:
case BFD_RELOC_MIPS_26_PCREL_S2:
case BFD_RELOC_MIPS_18_PCREL_S3:
case BFD_RELOC_MIPS_19_PCREL_S2:
return true;
case BFD_RELOC_32_PCREL:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_LO16_PCREL:
return HAVE_64BIT_ADDRESSES;
default:
return false;
}
}
/* Return true if the given relocation might need a matching %lo().
This is only "might" because SVR4 R_MIPS_GOT16 relocations only
need a matching %lo() when applied to local symbols. */
static inline bool
reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
{
return (HAVE_IN_PLACE_ADDENDS
&& (hi16_reloc_p (reloc)
/* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
all GOT16 relocations evaluate to "G". */
|| (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
}
/* Return the type of %lo() reloc needed by RELOC, given that
reloc_needs_lo_p. */
static inline bfd_reloc_code_real_type
matching_lo_reloc (bfd_reloc_code_real_type reloc)
{
return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
: (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
: BFD_RELOC_LO16));
}
/* Return true if the given fixup is followed by a matching R_MIPS_LO16
relocation. */
static inline bool
fixup_has_matching_lo_p (fixS *fixp)
{
return (fixp->fx_next != NULL
&& fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
&& fixp->fx_addsy == fixp->fx_next->fx_addsy
&& fixp->fx_offset == fixp->fx_next->fx_offset);
}
/* Move all labels in LABELS to the current insertion point. TEXT_P
says whether the labels refer to text or data. */
static void
mips_move_labels (struct insn_label_list *labels, bool text_p)
{
struct insn_label_list *l;
valueT val;
for (l = labels; l != NULL; l = l->next)
{
gas_assert (S_GET_SEGMENT (l->label) == now_seg);
symbol_set_frag (l->label, frag_now);
val = (valueT) frag_now_fix ();
/* MIPS16/microMIPS text labels are stored as odd.
We just carry the ISA mode bit forward. */
if (text_p && HAVE_CODE_COMPRESSION)
val |= (S_GET_VALUE (l->label) & 0x1);
S_SET_VALUE (l->label, val);
}
}
/* Move all labels in insn_labels to the current insertion point
and treat them as text labels. */
static void
mips_move_text_labels (void)
{
mips_move_labels (seg_info (now_seg)->label_list, true);
}
/* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
static bool
s_is_linkonce (symbolS *sym, segT from_seg)
{
bool linkonce = false;
segT symseg = S_GET_SEGMENT (sym);
if (symseg != from_seg && !S_IS_LOCAL (sym))
{
if ((bfd_section_flags (symseg) & SEC_LINK_ONCE))
linkonce = true;
/* The GNU toolchain uses an extension for ELF: a section
beginning with the magic string .gnu.linkonce is a
linkonce section. */
if (startswith (segment_name (symseg), ".gnu.linkonce"))
linkonce = true;
}
return linkonce;
}
/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
linker to handle them specially, such as generating jalx instructions
when needed. We also make them odd for the duration of the assembly,
in order to generate the right sort of code. We will make them even
in the adjust_symtab routine, while leaving them marked. This is
convenient for the debugger and the disassembler. The linker knows
to make them odd again. */
static void
mips_compressed_mark_label (symbolS *label)
{
gas_assert (HAVE_CODE_COMPRESSION);
if (mips_opts.mips16)
S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
else
S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
if ((S_GET_VALUE (label) & 1) == 0
/* Don't adjust the address if the label is global or weak, or
in a link-once section, since we'll be emitting symbol reloc
references to it which will be patched up by the linker, and
the final value of the symbol may or may not be MIPS16/microMIPS. */
&& !S_IS_WEAK (label)
&& !S_IS_EXTERNAL (label)
&& !s_is_linkonce (label, now_seg))
S_SET_VALUE (label, S_GET_VALUE (label) | 1);
}
/* Mark preceding MIPS16 or microMIPS instruction labels. */
static void
mips_compressed_mark_labels (void)
{
struct insn_label_list *l;
for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
mips_compressed_mark_label (l->label);
}
/* End the current frag. Make it a variant frag and record the
relaxation info. */
static void
relax_close_frag (void)
{
mips_macro_warning.first_frag = frag_now;
frag_var (rs_machine_dependent, 0, 0,
RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
mips_pic != NO_PIC),
mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
mips_relax.first_fixup = 0;
}
/* Start a new relaxation sequence whose expansion depends on SYMBOL.
See the comment above RELAX_ENCODE for more details. */
static void
relax_start (symbolS *symbol)
{
gas_assert (mips_relax.sequence == 0);
mips_relax.sequence = 1;
mips_relax.symbol = symbol;
}
/* Start generating the second version of a relaxable sequence.
See the comment above RELAX_ENCODE for more details. */
static void
relax_switch (void)
{
gas_assert (mips_relax.sequence == 1);
mips_relax.sequence = 2;
}
/* End the current relaxable sequence. */
static void
relax_end (void)
{
gas_assert (mips_relax.sequence == 2);
relax_close_frag ();
mips_relax.sequence = 0;
}
/* Return true if IP is a delayed branch or jump. */
static inline bool
delayed_branch_p (const struct mips_cl_insn *ip)
{
return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
| INSN_COND_BRANCH_DELAY
| INSN_COND_BRANCH_LIKELY)) != 0;
}
/* Return true if IP is a compact branch or jump. */
static inline bool
compact_branch_p (const struct mips_cl_insn *ip)
{
return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
| INSN2_COND_BRANCH)) != 0;
}
/* Return true if IP is an unconditional branch or jump. */
static inline bool
uncond_branch_p (const struct mips_cl_insn *ip)
{
return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
|| (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
}
/* Return true if IP is a branch-likely instruction. */
static inline bool
branch_likely_p (const struct mips_cl_insn *ip)
{
return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
}
/* Return the type of nop that should be used to fill the delay slot
of delayed branch IP. */
static struct mips_cl_insn *
get_delay_slot_nop (const struct mips_cl_insn *ip)
{
if (mips_opts.micromips
&& (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
return &micromips_nop32_insn;
return NOP_INSN;
}
/* Return a mask that has bit N set if OPCODE reads the register(s)
in operand N. */
static unsigned int
insn_read_mask (const struct mips_opcode *opcode)
{
return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
}
/* Return a mask that has bit N set if OPCODE writes to the register(s)
in operand N. */
static unsigned int
insn_write_mask (const struct mips_opcode *opcode)
{
return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
}
/* Return a mask of the registers specified by operand OPERAND of INSN.
Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
is set. */
static unsigned int
operand_reg_mask (const struct mips_cl_insn *insn,
const struct mips_operand *operand,
unsigned int type_mask)
{
unsigned int uval, vsel;
switch (operand->type)
{
case OP_INT:
case OP_MAPPED_INT:
case OP_MSB:
case OP_PCREL:
case OP_PERF_REG:
case OP_ADDIUSP_INT:
case OP_ENTRY_EXIT_LIST:
case OP_REPEAT_DEST_REG:
case OP_REPEAT_PREV_REG:
case OP_PC:
case OP_VU0_SUFFIX:
case OP_VU0_MATCH_SUFFIX:
case OP_IMM_INDEX:
abort ();
case OP_REG28:
return 1 << 28;
case OP_REG:
case OP_OPTIONAL_REG:
{
const struct mips_reg_operand *reg_op;
reg_op = (const struct mips_reg_operand *) operand;
if (!(type_mask & (1 << reg_op->reg_type)))
return 0;
uval = insn_extract_operand (insn, operand);
return 1u << mips_decode_reg_operand (reg_op, uval);
}
case OP_REG_PAIR:
{
const struct mips_reg_pair_operand *pair_op;
pair_op = (const struct mips_reg_pair_operand *) operand;
if (!(type_mask & (1 << pair_op->reg_type)))
return 0;
uval = insn_extract_operand (insn, operand);
return (1u << pair_op->reg1_map[uval]) | (1u << pair_op->reg2_map[uval]);
}
case OP_CLO_CLZ_DEST:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
uval = insn_extract_operand (insn, operand);
return (1u << (uval & 31)) | (1u << (uval >> 5));
case OP_SAME_RS_RT:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
uval = insn_extract_operand (insn, operand);
gas_assert ((uval & 31) == (uval >> 5));
return 1u << (uval & 31);
case OP_CHECK_PREV:
case OP_NON_ZERO_REG:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
uval = insn_extract_operand (insn, operand);
return 1u << (uval & 31);
case OP_LWM_SWM_LIST:
abort ();
case OP_SAVE_RESTORE_LIST:
abort ();
case OP_MDMX_IMM_REG:
if (!(type_mask & (1 << OP_REG_VEC)))
return 0;
uval = insn_extract_operand (insn, operand);
vsel = uval >> 5;
if ((vsel & 0x18) == 0x18)
return 0;
return 1u << (uval & 31);
case OP_REG_INDEX:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
return 1u << insn_extract_operand (insn, operand);
}
abort ();
}
/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
where bit N of OPNO_MASK is set if operand N should be included.
Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
is set. */
static unsigned int
insn_reg_mask (const struct mips_cl_insn *insn,
unsigned int type_mask, unsigned int opno_mask)
{
unsigned int opno, reg_mask;
opno = 0;
reg_mask = 0;
while (opno_mask != 0)
{
if (opno_mask & 1)
reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
opno_mask >>= 1;
opno += 1;
}
return reg_mask;
}
/* Return the mask of core registers that IP reads. */
static unsigned int
gpr_read_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo, pinfo2;
unsigned int mask;
mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
pinfo2 = ip->insn_mo->pinfo2;
if (pinfo & INSN_UDI)
{
/* UDI instructions have traditionally been assumed to read RS
and RT. */
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
}
if (pinfo & INSN_READ_GPR_24)
mask |= 1 << 24;
if (pinfo2 & INSN2_READ_GPR_16)
mask |= 1 << 16;
if (pinfo2 & INSN2_READ_SP)
mask |= 1 << SP;
if (pinfo2 & INSN2_READ_GPR_31)
mask |= 1u << 31;
/* Don't include register 0. */
return mask & ~1;
}
/* Return the mask of core registers that IP writes. */
static unsigned int
gpr_write_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo, pinfo2;
unsigned int mask;
mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
pinfo2 = ip->insn_mo->pinfo2;
if (pinfo & INSN_WRITE_GPR_24)
mask |= 1 << 24;
if (pinfo & INSN_WRITE_GPR_31)
mask |= 1u << 31;
if (pinfo & INSN_UDI)
/* UDI instructions have traditionally been assumed to write to RD. */
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
if (pinfo2 & INSN2_WRITE_SP)
mask |= 1 << SP;
/* Don't include register 0. */
return mask & ~1;
}
/* Return the mask of floating-point registers that IP reads. */
static unsigned int
fpr_read_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo;
unsigned int mask;
mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
| (1 << OP_REG_MSA)),
insn_read_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
/* Conservatively treat all operands to an FP_D instruction are doubles.
(This is overly pessimistic for things like cvt.d.s.) */
if (FPR_SIZE != 64 && (pinfo & FP_D))
mask |= mask << 1;
return mask;
}
/* Return the mask of floating-point registers that IP writes. */
static unsigned int
fpr_write_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo;
unsigned int mask;
mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
| (1 << OP_REG_MSA)),
insn_write_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
/* Conservatively treat all operands to an FP_D instruction are doubles.
(This is overly pessimistic for things like cvt.s.d.) */
if (FPR_SIZE != 64 && (pinfo & FP_D))
mask |= mask << 1;
return mask;
}
/* Operand OPNUM of INSN is an odd-numbered floating-point register.
Check whether that is allowed. */
static bool
mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
{
const char *s = insn->name;
bool oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
|| FPR_SIZE == 64) && mips_opts.oddspreg;
if (insn->pinfo == INSN_MACRO)
/* Let a macro pass, we'll catch it later when it is expanded. */
return true;
/* Single-precision coprocessor loads and moves are OK for 32-bit registers,
otherwise it depends on oddspreg. */
if ((insn->pinfo & FP_S)
&& (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
| INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
return FPR_SIZE == 32 || oddspreg;
/* Allow odd registers for single-precision ops and double-precision if the
floating-point registers are 64-bit wide. */
switch (insn->pinfo & (FP_S | FP_D))
{
case FP_S:
case 0:
return oddspreg;
case FP_D:
return FPR_SIZE == 64;
default:
break;
}
/* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
s = strchr (insn->name, '.');
if (s != NULL && opnum == 2)
s = strchr (s + 1, '.');
if (s != NULL && (s[1] == 'w' || s[1] == 's'))
return oddspreg;
return FPR_SIZE == 64;
}
/* Information about an instruction argument that we're trying to match. */
struct mips_arg_info
{
/* The instruction so far. */
struct mips_cl_insn *insn;
/* The first unconsumed operand token. */
struct mips_operand_token *token;
/* The 1-based operand number, in terms of insn->insn_mo->args. */
int opnum;
/* The 1-based argument number, for error reporting. This does not
count elided optional registers, etc.. */
int argnum;
/* The last OP_REG operand seen, or ILLEGAL_REG if none. */
unsigned int last_regno;
/* If the first operand was an OP_REG, this is the register that it
specified, otherwise it is ILLEGAL_REG. */
unsigned int dest_regno;
/* The value of the last OP_INT operand. Only used for OP_MSB,
where it gives the lsb position. */
unsigned int last_op_int;
/* If true, match routines should assume that no later instruction
alternative matches and should therefore be as accommodating as
possible. Match routines should not report errors if something
is only invalid for !LAX_MATCH. */
bool lax_match;
/* True if a reference to the current AT register was seen. */
bool seen_at;
};
/* Record that the argument is out of range. */
static void
match_out_of_range (struct mips_arg_info *arg)
{
set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
}
/* Record that the argument isn't constant but needs to be. */
static void
match_not_constant (struct mips_arg_info *arg)
{
set_insn_error_i (arg->argnum, _("operand %d must be constant"),
arg->argnum);
}
/* Try to match an OT_CHAR token for character CH. Consume the token
and return true on success, otherwise return false. */
static bool
match_char (struct mips_arg_info *arg, char ch)
{
if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
{
++arg->token;
if (ch == ',')
arg->argnum += 1;
return true;
}
return false;
}
/* Try to get an expression from the next tokens in ARG. Consume the
tokens and return true on success, storing the expression value in
VALUE and relocation types in R. */
static bool
match_expression (struct mips_arg_info *arg, expressionS *value,
bfd_reloc_code_real_type *r)
{
/* If the next token is a '(' that was parsed as being part of a base
expression, assume we have an elided offset. The later match will fail
if this turns out to be wrong. */
if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
{
value->X_op = O_constant;
value->X_add_number = 0;
r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
return true;
}
/* Reject register-based expressions such as "0+$2" and "(($2))".
For plain registers the default error seems more appropriate. */
if (arg->token->type == OT_INTEGER
&& arg->token->u.integer.value.X_op == O_register)
{
set_insn_error (arg->argnum, _("register value used as expression"));
return false;
}
if (arg->token->type == OT_INTEGER)
{
*value = arg->token->u.integer.value;
memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
++arg->token;
return true;
}
set_insn_error_i
(arg->argnum, _("operand %d must be an immediate expression"),
arg->argnum);
return false;
}
/* Try to get a constant expression from the next tokens in ARG. Consume
the tokens and return true on success, storing the constant value
in *VALUE. */
static bool
match_const_int (struct mips_arg_info *arg, offsetT *value)
{
expressionS ex;
bfd_reloc_code_real_type r[3];
if (!match_expression (arg, &ex, r))
return false;
if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
*value = ex.X_add_number;
else
{
if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
match_out_of_range (arg);
else
match_not_constant (arg);
return false;
}
return true;
}
/* Return the RTYPE_* flags for a register operand of type TYPE that
appears in instruction OPCODE. */
static unsigned int
convert_reg_type (const struct mips_opcode *opcode,
enum mips_reg_operand_type type)
{
switch (type)
{
case OP_REG_GP:
return RTYPE_NUM | RTYPE_GP;
case OP_REG_FP:
/* Allow vector register names for MDMX if the instruction is a 64-bit
FPR load, store or move (including moves to and from GPRs). */
if ((mips_opts.ase & ASE_MDMX)
&& (opcode->pinfo & FP_D)
&& (opcode->pinfo & (INSN_COPROC_MOVE
| INSN_COPROC_MEMORY_DELAY
| INSN_LOAD_COPROC
| INSN_LOAD_MEMORY
| INSN_STORE_MEMORY)))
return RTYPE_FPU | RTYPE_VEC;
return RTYPE_FPU;
case OP_REG_CCC:
if (opcode->pinfo & (FP_D | FP_S))
return RTYPE_CCC | RTYPE_FCC;
return RTYPE_CCC;
case OP_REG_VEC:
if (opcode->membership & INSN_5400)
return RTYPE_FPU;
return RTYPE_FPU | RTYPE_VEC;
case OP_REG_ACC:
return RTYPE_ACC;
case OP_REG_COPRO:
case OP_REG_CONTROL:
if (opcode->name[strlen (opcode->name) - 1] == '0')
return RTYPE_NUM | RTYPE_CP0;
return RTYPE_NUM;
case OP_REG_HW:
return RTYPE_NUM;
case OP_REG_VI:
return RTYPE_NUM | RTYPE_VI;
case OP_REG_VF:
return RTYPE_NUM | RTYPE_VF;
case OP_REG_R5900_I:
return RTYPE_R5900_I;
case OP_REG_R5900_Q:
return RTYPE_R5900_Q;
case OP_REG_R5900_R:
return RTYPE_R5900_R;
case OP_REG_R5900_ACC:
return RTYPE_R5900_ACC;
case OP_REG_MSA:
return RTYPE_MSA;
case OP_REG_MSA_CTRL:
return RTYPE_NUM;
}
abort ();
}
/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
static void
check_regno (struct mips_arg_info *arg,
enum mips_reg_operand_type type, unsigned int regno)
{
if (AT && type == OP_REG_GP && regno == AT)
arg->seen_at = true;
if (type == OP_REG_FP
&& (regno & 1) != 0
&& !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
{
/* This was a warning prior to introducing O32 FPXX and FP64 support
so maintain a warning for FP32 but raise an error for the new
cases. */
if (FPR_SIZE == 32)
as_warn (_("float register should be even, was %d"), regno);
else
as_bad (_("float register should be even, was %d"), regno);
}
if (type == OP_REG_CCC)
{
const char *name;
size_t length;
name = arg->insn->insn_mo->name;
length = strlen (name);
if ((regno & 1) != 0
&& ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
|| (length >= 5 && startswith (name + length - 5, "any2"))))
as_warn (_("condition code register should be even for %s, was %d"),
name, regno);
if ((regno & 3) != 0
&& (length >= 5 && startswith (name + length - 5, "any4")))
as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
name, regno);
}
}
/* ARG is a register with symbol value SYMVAL. Try to interpret it as
a register of type TYPE. Return true on success, storing the register
number in *REGNO and warning about any dubious uses. */
static bool
match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
unsigned int symval, unsigned int *regno)
{
if (type == OP_REG_VEC)
symval = mips_prefer_vec_regno (symval);
if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
return false;
*regno = symval & RNUM_MASK;
check_regno (arg, type, *regno);
return true;
}
/* Try to interpret the next token in ARG as a register of type TYPE.
Consume the token and return true on success, storing the register
number in *REGNO. Return false on failure. */
static bool
match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
unsigned int *regno)
{
if (arg->token->type == OT_REG
&& match_regno (arg, type, arg->token->u.regno, regno))
{
++arg->token;
return true;
}
return false;
}
/* Try to interpret the next token in ARG as a range of registers of type TYPE.
Consume the token and return true on success, storing the register numbers
in *REGNO1 and *REGNO2. Return false on failure. */
static bool
match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
unsigned int *regno1, unsigned int *regno2)
{
if (match_reg (arg, type, regno1))
{
*regno2 = *regno1;
return true;
}
if (arg->token->type == OT_REG_RANGE
&& match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
&& match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
&& *regno1 <= *regno2)
{
++arg->token;
return true;
}
return false;
}
/* OP_INT matcher. */
static bool
match_int_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_int_operand *operand;
unsigned int uval;
int min_val, max_val, factor;
offsetT sval;
operand = (const struct mips_int_operand *) operand_base;
factor = 1 << operand->shift;
min_val = mips_int_operand_min (operand);
max_val = mips_int_operand_max (operand);
if (operand_base->lsb == 0
&& operand_base->size == 16
&& operand->shift == 0
&& operand->bias == 0
&& (operand->max_val == 32767 || operand->max_val == 65535))
{
/* The operand can be relocated. */
if (!match_expression (arg, &offset_expr, offset_reloc))
return false;
if (offset_expr.X_op == O_big)
{
match_out_of_range (arg);
return false;
}
if (offset_reloc[0] != BFD_RELOC_UNUSED)
/* Relocation operators were used. Accept the argument and
leave the relocation value in offset_expr and offset_relocs
for the caller to process. */
return true;
if (offset_expr.X_op != O_constant)
{
/* Accept non-constant operands if no later alternative matches,
leaving it for the caller to process. */
if (!arg->lax_match)
{
match_not_constant (arg);
return false;
}
offset_reloc[0] = BFD_RELOC_LO16;
return true;
}
/* Clear the global state; we're going to install the operand
ourselves. */
sval = offset_expr.X_add_number;
offset_expr.X_op = O_absent;
/* For compatibility with older assemblers, we accept
0x8000-0xffff as signed 16-bit numbers when only
signed numbers are allowed. */
if (sval > max_val)
{
max_val = ((1 << operand_base->size) - 1) << operand->shift;
if (!arg->lax_match && sval <= max_val)
{
match_out_of_range (arg);
return false;
}
}
}
else
{
if (!match_const_int (arg, &sval))
return false;
}
arg->last_op_int = sval;
if (sval < min_val || sval > max_val || sval % factor)
{
match_out_of_range (arg);
return false;
}
uval = (unsigned int) sval >> operand->shift;
uval -= operand->bias;
/* Handle -mfix-cn63xxp1. */
if (arg->opnum == 1
&& mips_fix_cn63xxp1
&& !mips_opts.micromips
&& strcmp ("pref", arg->insn->insn_mo->name) == 0)
switch (uval)
{
case 5:
case 25:
case 26:
case 27:
case 28:
case 29:
case 30:
case 31:
/* These are ok. */
break;
default:
/* The rest must be changed to 28. */
uval = 28;
break;
}
insn_insert_operand (arg->insn, operand_base, uval);
return true;
}
/* OP_MAPPED_INT matcher. */
static bool
match_mapped_int_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_mapped_int_operand *operand;
unsigned int uval, num_vals;
offsetT sval;
operand = (const struct mips_mapped_int_operand *) operand_base;
if (!match_const_int (arg, &sval))
return false;
num_vals = 1 << operand_base->size;
for (uval = 0; uval < num_vals; uval++)
if (operand->int_map[uval] == sval)
break;
if (uval == num_vals)
{
match_out_of_range (arg);
return false;
}
insn_insert_operand (arg->insn, operand_base, uval);
return true;
}
/* OP_MSB matcher. */
static bool
match_msb_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_msb_operand *operand;
int min_val, max_val, max_high;
offsetT size, sval, high;
operand = (const struct mips_msb_operand *) operand_base;
min_val = operand->bias;
max_val = min_val + (1 << operand_base->size) - 1;
max_high = operand->opsize;
if (!match_const_int (arg, &size))
return false;
high = size + arg->last_op_int;
sval = operand->add_lsb ? high : size;
if (size < 0 || high > max_high || sval < min_val || sval > max_val)
{
match_out_of_range (arg);
return false;
}
insn_insert_operand (arg->insn, operand_base, sval - min_val);
return true;
}
/* OP_REG matcher. */
static bool
match_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_reg_operand *operand;
unsigned int regno, uval, num_vals;
operand = (const struct mips_reg_operand *) operand_base;
if (!match_reg (arg, operand->reg_type, &regno))
return false;
if (operand->reg_map)
{
num_vals = 1 << operand->root.size;
for (uval = 0; uval < num_vals; uval++)
if (operand->reg_map[uval] == regno)
break;
if (num_vals == uval)
return false;
}
else
uval = regno;
arg->last_regno = regno;
if (arg->opnum == 1)
arg->dest_regno = regno;
insn_insert_operand (arg->insn, operand_base, uval);
return true;
}
/* OP_REG_PAIR matcher. */
static bool
match_reg_pair_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_reg_pair_operand *operand;
unsigned int regno1, regno2, uval, num_vals;
operand = (const struct mips_reg_pair_operand *) operand_base;
if (!match_reg (arg, operand->reg_type, &regno1)
|| !match_char (arg, ',')
|| !match_reg (arg, operand->reg_type, &regno2))
return false;
num_vals = 1 << operand_base->size;
for (uval = 0; uval < num_vals; uval++)
if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
break;
if (uval == num_vals)
return false;
insn_insert_operand (arg->insn, operand_base, uval);
return true;
}
/* OP_PCREL matcher. The caller chooses the relocation type. */
static bool
match_pcrel_operand (struct mips_arg_info *arg)
{
bfd_reloc_code_real_type r[3];
return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
}
/* OP_PERF_REG matcher. */
static bool
match_perf_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
offsetT sval;
if (!match_const_int (arg, &sval))
return false;
if (sval != 0
&& (sval != 1
|| (mips_opts.arch == CPU_R5900
&& (strcmp (arg->insn->insn_mo->name, "mfps") == 0
|| strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
{
set_insn_error (arg->argnum, _("invalid performance register"));
return false;
}
insn_insert_operand (arg->insn, operand, sval);
return true;
}
/* OP_ADDIUSP matcher. */
static bool
match_addiusp_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
offsetT sval;
unsigned int uval;
if (!match_const_int (arg, &sval))
return false;
if (sval % 4)
{
match_out_of_range (arg);
return false;
}
sval /= 4;
if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
{
match_out_of_range (arg);
return false;
}
uval = (unsigned int) sval;
uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
insn_insert_operand (arg->insn, operand, uval);
return true;
}
/* OP_CLO_CLZ_DEST matcher. */
static bool
match_clo_clz_dest_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (!match_reg (arg, OP_REG_GP, &regno))
return false;
insn_insert_operand (arg->insn, operand, regno | (regno << 5));
return true;
}
/* OP_CHECK_PREV matcher. */
static bool
match_check_prev_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_check_prev_operand *operand;
unsigned int regno;
operand = (const struct mips_check_prev_operand *) operand_base;
if (!match_reg (arg, OP_REG_GP, &regno))
return false;
if (!operand->zero_ok && regno == 0)
return false;
if ((operand->less_than_ok && regno < arg->last_regno)
|| (operand->greater_than_ok && regno > arg->last_regno)
|| (operand->equal_ok && regno == arg->last_regno))
{
arg->last_regno = regno;
insn_insert_operand (arg->insn, operand_base, regno);
return true;
}
return false;
}
/* OP_SAME_RS_RT matcher. */
static bool
match_same_rs_rt_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (!match_reg (arg, OP_REG_GP, &regno))
return false;
if (regno == 0)
{
set_insn_error (arg->argnum, _("the source register must not be $0"));
return false;
}
arg->last_regno = regno;
insn_insert_operand (arg->insn, operand, regno | (regno << 5));
return true;
}
/* OP_LWM_SWM_LIST matcher. */
static bool
match_lwm_swm_list_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int reglist, sregs, ra, regno1, regno2;
struct mips_arg_info reset;
reglist = 0;
if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
return false;
do
{
if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
{
reglist |= 1 << FP;
regno2 = S7;
}
reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
reset = *arg;
}
while (match_char (arg, ',')
&& match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
*arg = reset;
if (operand->size == 2)
{
/* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
s0, ra
s0, s1, ra, s2, s3
s0-s2, ra
and any permutations of these. */
if ((reglist & 0xfff1ffff) != 0x80010000)
return false;
sregs = (reglist >> 17) & 7;
ra = 0;
}
else
{
/* The list must include at least one of ra and s0-sN,
for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
which are $23 and $30 respectively.) E.g.:
ra
s0
ra, s0, s1, s2
s0-s8
s0-s5, ra
and any permutations of these. */
if ((reglist & 0x3f00ffff) != 0)
return false;
ra = (reglist >> 27) & 0x10;
sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
}
sregs += 1;
if ((sregs & -sregs) != sregs)
return false;
insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
return true;
}
/* OP_ENTRY_EXIT_LIST matcher. */
static unsigned int
match_entry_exit_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int mask;
bool is_exit;
/* The format is the same for both ENTRY and EXIT, but the constraints
are different. */
is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
mask = (is_exit ? 7 << 3 : 0);
do
{
unsigned int regno1, regno2;
bool is_freg;
if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
is_freg = false;
else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
is_freg = true;
else
return false;
if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
{
mask &= ~(7 << 3);
mask |= (5 + regno2) << 3;
}
else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
mask |= (regno2 - 3) << 3;
else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
mask |= (regno2 - 15) << 1;
else if (regno1 == RA && regno2 == RA)
mask |= 1;
else
return false;
}
while (match_char (arg, ','));
insn_insert_operand (arg->insn, operand, mask);
return true;
}
/* Encode regular MIPS SAVE/RESTORE instruction operands according to
the argument register mask AMASK, the number of static registers
saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
respectively, and the frame size FRAME_SIZE. */
static unsigned int
mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
unsigned int ra, unsigned int s0, unsigned int s1,
unsigned int frame_size)
{
return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
| (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
}
/* Encode MIPS16 SAVE/RESTORE instruction operands according to the
argument register mask AMASK, the number of static registers saved
NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
respectively, and the frame size FRAME_SIZE. */
static unsigned int
mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
unsigned int ra, unsigned int s0, unsigned int s1,
unsigned int frame_size)
{
unsigned int args;
args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
if (nsreg || amask || frame_size == 0 || frame_size > 16)
args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
| ((frame_size & 0xf0) << 16));
return args;
}
/* OP_SAVE_RESTORE_LIST matcher. */
static bool
match_save_restore_list_operand (struct mips_arg_info *arg)
{
unsigned int opcode, args, statics, sregs;
unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
unsigned int arg_mask, ra, s0, s1;
offsetT frame_size;
opcode = arg->insn->insn_opcode;
frame_size = 0;
num_frame_sizes = 0;
args = 0;
statics = 0;
sregs = 0;
ra = 0;
s0 = 0;
s1 = 0;
do
{
unsigned int regno1, regno2;
if (arg->token->type == OT_INTEGER)
{
/* Handle the frame size. */
if (!match_const_int (arg, &frame_size))
return false;
num_frame_sizes += 1;
}
else
{
if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
return false;
while (regno1 <= regno2)
{
if (regno1 >= 4 && regno1 <= 7)
{
if (num_frame_sizes == 0)
/* args $a0-$a3 */
args |= 1 << (regno1 - 4);
else
/* statics $a0-$a3 */
statics |= 1 << (regno1 - 4);
}
else if (regno1 >= 16 && regno1 <= 23)
/* $s0-$s7 */
sregs |= 1 << (regno1 - 16);
else if (regno1 == 30)
/* $s8 */
sregs |= 1 << 8;
else if (regno1 == 31)
/* Add $ra to insn. */
ra = 1;
else
return false;
regno1 += 1;
if (regno1 == 24)
regno1 = 30;
}
}
}
while (match_char (arg, ','));
/* Encode args/statics combination. */
if (args & statics)
return false;
else if (args == 0xf)
/* All $a0-$a3 are args. */
arg_mask = MIPS_SVRS_ALL_ARGS;
else if (statics == 0xf)
/* All $a0-$a3 are statics. */
arg_mask = MIPS_SVRS_ALL_STATICS;
else
{
/* Count arg registers. */
num_args = 0;
while (args & 0x1)
{
args >>= 1;
num_args += 1;
}
if (args != 0)
return false;
/* Count static registers. */
num_statics = 0;
while (statics & 0x8)
{
statics = (statics << 1) & 0xf;
num_statics += 1;
}
if (statics != 0)
return false;
/* Encode args/statics. */
arg_mask = (num_args << 2) | num_statics;
}
/* Encode $s0/$s1. */
if (sregs & (1 << 0)) /* $s0 */
s0 = 1;
if (sregs & (1 << 1)) /* $s1 */
s1 = 1;
sregs >>= 2;
/* Encode $s2-$s8. */
num_sregs = 0;
while (sregs & 1)
{
sregs >>= 1;
num_sregs += 1;
}
if (sregs != 0)
return false;
/* Encode frame size. */
if (num_frame_sizes == 0)
{
set_insn_error (arg->argnum, _("missing frame size"));
return false;
}
if (num_frame_sizes > 1)
{
set_insn_error (arg->argnum, _("frame size specified twice"));
return false;
}
if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
{
set_insn_error (arg->argnum, _("invalid frame size"));
return false;
}
frame_size /= 8;
/* Finally build the instruction. */
if (mips_opts.mips16)
opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
frame_size);
else if (!mips_opts.micromips)
opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
frame_size);
else
abort ();
arg->insn->insn_opcode = opcode;
return true;
}
/* OP_MDMX_IMM_REG matcher. */
static bool
match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno, uval;
bool is_qh;
const struct mips_opcode *opcode;
/* The mips_opcode records whether this is an octobyte or quadhalf
instruction. Start out with that bit in place. */
opcode = arg->insn->insn_mo;
uval = mips_extract_operand (operand, opcode->match);
is_qh = (uval != 0);
if (arg->token->type == OT_REG)
{
if ((opcode->membership & INSN_5400)
&& strcmp (opcode->name, "rzu.ob") == 0)
{
set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
arg->argnum);
return false;
}
if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
return false;
++arg->token;
/* Check whether this is a vector register or a broadcast of
a single element. */
if (arg->token->type == OT_INTEGER_INDEX)
{
if (arg->token->u.index > (is_qh ? 3 : 7))
{
set_insn_error (arg->argnum, _("invalid element selector"));
return false;
}
uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
++arg->token;
}
else
{
/* A full vector. */
if ((opcode->membership & INSN_5400)
&& (strcmp (opcode->name, "sll.ob") == 0
|| strcmp (opcode->name, "srl.ob") == 0))
{
set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
arg->argnum);
return false;
}
if (is_qh)
uval |= MDMX_FMTSEL_VEC_QH << 5;
else
uval |= MDMX_FMTSEL_VEC_OB << 5;
}
uval |= regno;
}
else
{
offsetT sval;
if (!match_const_int (arg, &sval))
return false;
if (sval < 0 || sval > 31)
{
match_out_of_range (arg);
return false;
}
uval |= (sval & 31);
if (is_qh)
uval |= MDMX_FMTSEL_IMM_QH << 5;
else
uval |= MDMX_FMTSEL_IMM_OB << 5;
}
insn_insert_operand (arg->insn, operand, uval);
return true;
}
/* OP_IMM_INDEX matcher. */
static bool
match_imm_index_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int max_val;
if (arg->token->type != OT_INTEGER_INDEX)
return false;
max_val = (1 << operand->size) - 1;
if (arg->token->u.index > max_val)
{
match_out_of_range (arg);
return false;
}
insn_insert_operand (arg->insn, operand, arg->token->u.index);
++arg->token;
return true;
}
/* OP_REG_INDEX matcher. */
static bool
match_reg_index_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (arg->token->type != OT_REG_INDEX)
return false;
if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
return false;
insn_insert_operand (arg->insn, operand, regno);
++arg->token;
return true;
}
/* OP_PC matcher. */
static bool
match_pc_operand (struct mips_arg_info *arg)
{
if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
{
++arg->token;
return true;
}
return false;
}
/* OP_REG28 matcher. */
static bool
match_reg28_operand (struct mips_arg_info *arg)
{
unsigned int regno;
if (arg->token->type == OT_REG
&& match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
&& regno == GP)
{
++arg->token;
return true;
}
return false;
}
/* OP_NON_ZERO_REG matcher. */
static bool
match_non_zero_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (!match_reg (arg, OP_REG_GP, &regno))
return false;
if (regno == 0)
{
set_insn_error (arg->argnum, _("the source register must not be $0"));
return false;
}
arg->last_regno = regno;
insn_insert_operand (arg->insn, operand, regno);
return true;
}
/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
register that we need to match. */
static bool
match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
{
unsigned int regno;
return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
}
/* Try to match a floating-point constant from ARG for LI.S or LI.D.
LENGTH is the length of the value in bytes (4 for float, 8 for double)
and USING_GPRS says whether the destination is a GPR rather than an FPR.
Return the constant in IMM and OFFSET as follows:
- If the constant should be loaded via memory, set IMM to O_absent and
OFFSET to the memory address.
- Otherwise, if the constant should be loaded into two 32-bit registers,
set IMM to the O_constant to load into the high register and OFFSET
to the corresponding value for the low register.
- Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
These constants only appear as the last operand in an instruction,
and every instruction that accepts them in any variant accepts them
in all variants. This means we don't have to worry about backing out
any changes if the instruction does not match. We just match
unconditionally and report an error if the constant is invalid. */
static bool
match_float_constant (struct mips_arg_info *arg, expressionS *imm,
expressionS *offset, int length, bool using_gprs)
{
char *p;
segT seg, new_seg;
subsegT subseg;
const char *newname;
unsigned char *data;
/* Where the constant is placed is based on how the MIPS assembler
does things:
length == 4 && using_gprs -- immediate value only
length == 8 && using_gprs -- .rdata or immediate value
length == 4 && !using_gprs -- .lit4 or immediate value
length == 8 && !using_gprs -- .lit8 or immediate value
The .lit4 and .lit8 sections are only used if permitted by the
-G argument. */
if (arg->token->type != OT_FLOAT)
{
set_insn_error (arg->argnum, _("floating-point expression required"));
return false;
}
gas_assert (arg->token->u.flt.length == length);
data = arg->token->u.flt.data;
++arg->token;
/* Handle 32-bit constants for which an immediate value is best. */
if (length == 4
&& (using_gprs
|| g_switch_value < 4
|| (data[0] == 0 && data[1] == 0)
|| (data[2] == 0 && data[3] == 0)))
{
imm->X_op = O_constant;
if (!target_big_endian)
imm->X_add_number = bfd_getl32 (data);
else
imm->X_add_number = bfd_getb32 (data);
offset->X_op = O_absent;
return true;
}
/* Handle 64-bit constants for which an immediate value is best. */
if (length == 8
&& !mips_disable_float_construction
/* Constants can only be constructed in GPRs and copied to FPRs if the
GPRs are at least as wide as the FPRs or MTHC1 is available.
Unlike most tests for 32-bit floating-point registers this check
specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
permit 64-bit moves without MXHC1.
Force the constant into memory otherwise. */
&& (using_gprs
|| GPR_SIZE == 64
|| ISA_HAS_MXHC1 (mips_opts.isa)
|| FPR_SIZE == 32)
&& ((data[0] == 0 && data[1] == 0)
|| (data[2] == 0 && data[3] == 0))
&& ((data[4] == 0 && data[5] == 0)
|| (data[6] == 0 && data[7] == 0)))
{
/* The value is simple enough to load with a couple of instructions.
If using 32-bit registers, set IMM to the high order 32 bits and
OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
64 bit constant. */
if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
{
imm->X_op = O_constant;
offset->X_op = O_constant;
if (!target_big_endian)
{
imm->X_add_number = bfd_getl32 (data + 4);
offset->X_add_number = bfd_getl32 (data);
}
else
{
imm->X_add_number = bfd_getb32 (data);
offset->X_add_number = bfd_getb32 (data + 4);
}
if (offset->X_add_number == 0)
offset->X_op = O_absent;
}
else
{
imm->X_op = O_constant;
if (!target_big_endian)
imm->X_add_number = bfd_getl64 (data);
else
imm->X_add_number = bfd_getb64 (data);
offset->X_op = O_absent;
}
return true;
}
/* Switch to the right section. */
seg = now_seg;
subseg = now_subseg;
if (length == 4)
{
gas_assert (!using_gprs && g_switch_value >= 4);
newname = ".lit4";
}
else
{
if (using_gprs || g_switch_value < 8)
newname = RDATA_SECTION_NAME;
else
newname = ".lit8";
}
new_seg = subseg_new (newname, (subsegT) 0);
bfd_set_section_flags (new_seg,
SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
frag_align (length == 4 ? 2 : 3, 0, 0);
if (!startswith (TARGET_OS, "elf"))
record_alignment (new_seg, 4);
else
record_alignment (new_seg, length == 4 ? 2 : 3);
if (seg == now_seg)
as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
/* Set the argument to the current address in the section. */
imm->X_op = O_absent;
offset->X_op = O_symbol;
offset->X_add_symbol = symbol_temp_new_now ();
offset->X_add_number = 0;
/* Put the floating point number into the section. */
p = frag_more (length);
memcpy (p, data, length);
/* Switch back to the original section. */
subseg_set (seg, subseg);
return true;
}
/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
them. */
static bool
match_vu0_suffix_operand (struct mips_arg_info *arg,
const struct mips_operand *operand,
bool match_p)
{
unsigned int uval;
/* The operand can be an XYZW mask or a single 2-bit channel index
(with X being 0). */
gas_assert (operand->size == 2 || operand->size == 4);
/* The suffix can be omitted when it is already part of the opcode. */
if (arg->token->type != OT_CHANNELS)
return match_p;
uval = arg->token->u.channels;
if (operand->size == 2)
{
/* Check that a single bit is set and convert it into a 2-bit index. */
if ((uval & -uval) != uval)
return false;
uval = 4 - ffs (uval);
}
if (match_p && insn_extract_operand (arg->insn, operand) != uval)
return false;
++arg->token;
if (!match_p)
insn_insert_operand (arg->insn, operand, uval);
return true;
}
/* Try to match a token from ARG against OPERAND. Consume the token
and return true on success, otherwise return false. */
static bool
match_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
switch (operand->type)
{
case OP_INT:
return match_int_operand (arg, operand);
case OP_MAPPED_INT:
return match_mapped_int_operand (arg, operand);
case OP_MSB:
return match_msb_operand (arg, operand);
case OP_REG:
case OP_OPTIONAL_REG:
return match_reg_operand (arg, operand);
case OP_REG_PAIR:
return match_reg_pair_operand (arg, operand);
case OP_PCREL:
return match_pcrel_operand (arg);
case OP_PERF_REG:
return match_perf_reg_operand (arg, operand);
case OP_ADDIUSP_INT:
return match_addiusp_operand (arg, operand);
case OP_CLO_CLZ_DEST:
return match_clo_clz_dest_operand (arg, operand);
case OP_LWM_SWM_LIST:
return match_lwm_swm_list_operand (arg, operand);
case OP_ENTRY_EXIT_LIST:
return match_entry_exit_operand (arg, operand);
case OP_SAVE_RESTORE_LIST:
return match_save_restore_list_operand (arg);
case OP_MDMX_IMM_REG:
return match_mdmx_imm_reg_operand (arg, operand);
case OP_REPEAT_DEST_REG:
return match_tied_reg_operand (arg, arg->dest_regno);
case OP_REPEAT_PREV_REG:
return match_tied_reg_operand (arg, arg->last_regno);
case OP_PC:
return match_pc_operand (arg);
case OP_REG28:
return match_reg28_operand (arg);
case OP_VU0_SUFFIX:
return match_vu0_suffix_operand (arg, operand, false);
case OP_VU0_MATCH_SUFFIX:
return match_vu0_suffix_operand (arg, operand, true);
case OP_IMM_INDEX:
return match_imm_index_operand (arg, operand);
case OP_REG_INDEX:
return match_reg_index_operand (arg, operand);
case OP_SAME_RS_RT:
return match_same_rs_rt_operand (arg, operand);
case OP_CHECK_PREV:
return match_check_prev_operand (arg, operand);
case OP_NON_ZERO_REG:
return match_non_zero_reg_operand (arg, operand);
}
abort ();
}
/* ARG is the state after successfully matching an instruction.
Issue any queued-up warnings. */
static void
check_completed_insn (struct mips_arg_info *arg)
{
if (arg->seen_at)
{
if (AT == ATREG)
as_warn (_("used $at without \".set noat\""));
else
as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
}
}
/* Return true if modifying general-purpose register REG needs a delay. */
static bool
reg_needs_delay (unsigned int reg)
{
unsigned long prev_pinfo;
prev_pinfo = history[0].insn_mo->pinfo;
if (!mips_opts.noreorder
&& (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
|| ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
&& (gpr_write_mask (&history[0]) & (1 << reg)))
return true;
return false;
}
/* Classify an instruction according to the FIX_VR4120_* enumeration.
Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
by VR4120 errata. */
static unsigned int
classify_vr4120_insn (const char *name)
{
if (startswith (name, "macc"))
return FIX_VR4120_MACC;
if (startswith (name, "dmacc"))
return FIX_VR4120_DMACC;
if (startswith (name, "mult"))
return FIX_VR4120_MULT;
if (startswith (name, "dmult"))
return FIX_VR4120_DMULT;
if (strstr (name, "div"))
return FIX_VR4120_DIV;
if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
return FIX_VR4120_MTHILO;
return NUM_FIX_VR4120_CLASSES;
}
#define INSN_ERET 0x42000018
#define INSN_DERET 0x4200001f
#define INSN_DMULT 0x1c
#define INSN_DMULTU 0x1d
/* Return the number of instructions that must separate INSN1 and INSN2,
where INSN1 is the earlier instruction. Return the worst-case value
for any INSN2 if INSN2 is null. */
static unsigned int
insns_between (const struct mips_cl_insn *insn1,
const struct mips_cl_insn *insn2)
{
unsigned long pinfo1, pinfo2;
unsigned int mask;
/* If INFO2 is null, pessimistically assume that all flags are set for
the second instruction. */
pinfo1 = insn1->insn_mo->pinfo;
pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
/* For most targets, write-after-read dependencies on the HI and LO
registers must be separated by at least two instructions. */
if (!hilo_interlocks)
{
if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
return 2;
if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
return 2;
}
/* If we're working around r7000 errata, there must be two instructions
between an mfhi or mflo and any instruction that uses the result. */
if (mips_7000_hilo_fix
&& !mips_opts.micromips
&& MF_HILO_INSN (pinfo1)
&& (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
return 2;
/* If we're working around 24K errata, one instruction is required
if an ERET or DERET is followed by a branch instruction. */
if (mips_fix_24k && !mips_opts.micromips)
{
if (insn1->insn_opcode == INSN_ERET
|| insn1->insn_opcode == INSN_DERET)
{
if (insn2 == NULL
|| insn2->insn_opcode == INSN_ERET
|| insn2->insn_opcode == INSN_DERET
|| delayed_branch_p (insn2))
return 1;
}
}
/* If we're working around PMC RM7000 errata, there must be three
nops between a dmult and a load instruction. */
if (mips_fix_rm7000 && !mips_opts.micromips)
{
if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
|| (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
{
if (pinfo2 & INSN_LOAD_MEMORY)
return 3;
}
}
/* If working around VR4120 errata, check for combinations that need
a single intervening instruction. */
if (mips_fix_vr4120 && !mips_opts.micromips)
{
unsigned int class1, class2;
class1 = classify_vr4120_insn (insn1->insn_mo->name);
if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
{
if (insn2 == NULL)
return 1;
class2 = classify_vr4120_insn (insn2->insn_mo->name);
if (vr4120_conflicts[class1] & (1 << class2))
return 1;
}
}
if (!HAVE_CODE_COMPRESSION)
{
/* Check for GPR or coprocessor load delays. All such delays
are on the RT register. */
/* Itbl support may require additional care here. */
if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
|| (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
{
if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
return 1;
}
/* Check for generic coprocessor hazards.
This case is not handled very well. There is no special
knowledge of CP0 handling, and the coprocessors other than
the floating point unit are not distinguished at all. */
/* Itbl support may require additional care here. FIXME!
Need to modify this to include knowledge about
user specified delays! */
else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
|| (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
{
/* Handle cases where INSN1 writes to a known general coprocessor
register. There must be a one instruction delay before INSN2
if INSN2 reads that register, otherwise no delay is needed. */
mask = fpr_write_mask (insn1);
if (mask != 0)
{
if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
return 1;
}
else
{
/* Read-after-write dependencies on the control registers
require a two-instruction gap. */
if ((pinfo1 & INSN_WRITE_COND_CODE)
&& (pinfo2 & INSN_READ_COND_CODE))
return 2;
/* We don't know exactly what INSN1 does. If INSN2 is
also a coprocessor instruction, assume there must be
a one instruction gap. */
if (pinfo2 & INSN_COP)
return 1;
}
}
/* Check for read-after-write dependencies on the coprocessor
control registers in cases where INSN1 does not need a general
coprocessor delay. This means that INSN1 is a floating point
comparison instruction. */
/* Itbl support may require additional care here. */
else if (!cop_interlocks
&& (pinfo1 & INSN_WRITE_COND_CODE)
&& (pinfo2 & INSN_READ_COND_CODE))
return 1;
}
/* Forbidden slots can not contain Control Transfer Instructions (CTIs)
CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
and pause. */
if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
&& ((pinfo2 & INSN_NO_DELAY_SLOT)
|| (insn2 && delayed_branch_p (insn2))))
return 1;
return 0;
}
/* Return the number of nops that would be needed to work around the
VR4130 mflo/mfhi errata if instruction INSN immediately followed
the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
that are contained within the first IGNORE instructions of HIST. */
static int
nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
int i, j;
unsigned int mask;
/* Check if the instruction writes to HI or LO. MTHI and MTLO
are not affected by the errata. */
if (insn != 0
&& ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
|| strcmp (insn->insn_mo->name, "mtlo") == 0
|| strcmp (insn->insn_mo->name, "mthi") == 0))
return 0;
/* Search for the first MFLO or MFHI. */
for (i = 0; i < MAX_VR4130_NOPS; i++)
if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
{
/* Extract the destination register. */
mask = gpr_write_mask (&hist[i]);
/* No nops are needed if INSN reads that register. */
if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
return 0;
/* ...or if any of the intervening instructions do. */
for (j = 0; j < i; j++)
if (gpr_read_mask (&hist[j]) & mask)
return 0;
if (i >= ignore)
return MAX_VR4130_NOPS - i;
}
return 0;
}
#define BASE_REG_EQ(INSN1, INSN2) \
((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
== (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
/* Return the minimum alignment for this store instruction. */
static int
fix_24k_align_to (const struct mips_opcode *mo)
{
if (strcmp (mo->name, "sh") == 0)
return 2;
if (strcmp (mo->name, "swc1") == 0
|| strcmp (mo->name, "swc2") == 0
|| strcmp (mo->name, "sw") == 0
|| strcmp (mo->name, "sc") == 0
|| strcmp (mo->name, "s.s") == 0)
return 4;
if (strcmp (mo->name, "sdc1") == 0
|| strcmp (mo->name, "sdc2") == 0
|| strcmp (mo->name, "s.d") == 0)
return 8;
/* sb, swl, swr */
return 1;
}
struct fix_24k_store_info
{
/* Immediate offset, if any, for this store instruction. */
short off;
/* Alignment required by this store instruction. */
int align_to;
/* True for register offsets. */
int register_offset;
};
/* Comparison function used by qsort. */
static int
fix_24k_sort (const void *a, const void *b)
{
const struct fix_24k_store_info *pos1 = a;
const struct fix_24k_store_info *pos2 = b;
return (pos1->off - pos2->off);
}
/* INSN is a store instruction. Try to record the store information
in STINFO. Return false if the information isn't known. */
static bool
fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
const struct mips_cl_insn *insn)
{
/* The instruction must have a known offset. */
if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
return false;
stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
stinfo->align_to = fix_24k_align_to (insn->insn_mo);
return true;
}
/* Return the number of nops that would be needed to work around the 24k
"lost data on stores during refill" errata if instruction INSN
immediately followed the 2 instructions described by HIST.
Ignore hazards that are contained within the first IGNORE
instructions of HIST.
Problem: The FSB (fetch store buffer) acts as an intermediate buffer
for the data cache refills and store data. The following describes
the scenario where the store data could be lost.
* A data cache miss, due to either a load or a store, causing fill
data to be supplied by the memory subsystem
* The first three doublewords of fill data are returned and written
into the cache
* A sequence of four stores occurs in consecutive cycles around the
final doubleword of the fill:
* Store A
* Store B
* Store C
* Zero, One or more instructions
* Store D
The four stores A-D must be to different doublewords of the line that
is being filled. The fourth instruction in the sequence above permits
the fill of the final doubleword to be transferred from the FSB into
the cache. In the sequence above, the stores may be either integer
(sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
swxc1, sdxc1, suxc1) stores, as long as the four stores are to
different doublewords on the line. If the floating point unit is
running in 1:2 mode, it is not possible to create the sequence above
using only floating point store instructions.
In this case, the cache line being filled is incorrectly marked
invalid, thereby losing the data from any store to the line that
occurs between the original miss and the completion of the five
cycle sequence shown above.
The workarounds are:
* Run the data cache in write-through mode.
* Insert a non-store instruction between
Store A and Store B or Store B and Store C. */
static int
nops_for_24k (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
struct fix_24k_store_info pos[3];
int align, i, base_offset;
if (ignore >= 2)
return 0;
/* If the previous instruction wasn't a store, there's nothing to
worry about. */
if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
return 0;
/* If the instructions after the previous one are unknown, we have
to assume the worst. */
if (!insn)
return 1;
/* Check whether we are dealing with three consecutive stores. */
if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
|| (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
return 0;
/* If we don't know the relationship between the store addresses,
assume the worst. */
if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
|| !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
return 1;
if (!fix_24k_record_store_info (&pos[0], insn)
|| !fix_24k_record_store_info (&pos[1], &hist[0])
|| !fix_24k_record_store_info (&pos[2], &hist[1]))
return 1;
qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
/* Pick a value of ALIGN and X such that all offsets are adjusted by
X bytes and such that the base register + X is known to be aligned
to align bytes. */
if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
align = 8;
else
{
align = pos[0].align_to;
base_offset = pos[0].off;
for (i = 1; i < 3; i++)
if (align < pos[i].align_to)
{
align = pos[i].align_to;
base_offset = pos[i].off;
}
for (i = 0; i < 3; i++)
pos[i].off -= base_offset;
}
pos[0].off &= ~align + 1;
pos[1].off &= ~align + 1;
pos[2].off &= ~align + 1;
/* If any two stores write to the same chunk, they also write to the
same doubleword. The offsets are still sorted at this point. */
if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
return 0;
/* A range of at least 9 bytes is needed for the stores to be in
non-overlapping doublewords. */
if (pos[2].off - pos[0].off <= 8)
return 0;
if (pos[2].off - pos[1].off >= 24
|| pos[1].off - pos[0].off >= 24
|| pos[2].off - pos[0].off >= 32)
return 0;
return 1;
}
/* Return the number of nops that would be needed if instruction INSN
immediately followed the MAX_NOPS instructions given by HIST,
where HIST[0] is the most recent instruction. Ignore hazards
between INSN and the first IGNORE instructions in HIST.
If INSN is null, return the worse-case number of nops for any
instruction. */
static int
nops_for_insn (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
int i, nops, tmp_nops;
nops = 0;
for (i = ignore; i < MAX_DELAY_NOPS; i++)
{
tmp_nops = insns_between (hist + i, insn) - i;
if (tmp_nops > nops)
nops = tmp_nops;
}
if (mips_fix_vr4130 && !mips_opts.micromips)
{
tmp_nops = nops_for_vr4130 (ignore, hist, insn);
if (tmp_nops > nops)
nops = tmp_nops;
}
if (mips_fix_24k && !mips_opts.micromips)
{
tmp_nops = nops_for_24k (ignore, hist, insn);
if (tmp_nops > nops)
nops = tmp_nops;
}
return nops;
}
/* The variable arguments provide NUM_INSNS extra instructions that
might be added to HIST. Return the largest number of nops that
would be needed after the extended sequence, ignoring hazards
in the first IGNORE instructions. */
static int
nops_for_sequence (int num_insns, int ignore,
const struct mips_cl_insn *hist, ...)
{
va_list args;
struct mips_cl_insn buffer[MAX_NOPS];
struct mips_cl_insn *cursor;
int nops;
va_start (args, hist);
cursor = buffer + num_insns;
memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
while (cursor > buffer)
*--cursor = *va_arg (args, const struct mips_cl_insn *);
nops = nops_for_insn (ignore, buffer, NULL);
va_end (args);
return nops;
}
/* Like nops_for_insn, but if INSN is a branch, take into account the
worst-case delay for the branch target. */
static int
nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
int nops, tmp_nops;
nops = nops_for_insn (ignore, hist, insn);
if (delayed_branch_p (insn))
{
tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
hist, insn, get_delay_slot_nop (insn));
if (tmp_nops > nops)
nops = tmp_nops;
}
else if (compact_branch_p (insn))
{
tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
if (tmp_nops > nops)
nops = tmp_nops;
}
return nops;
}
/* Fix NOP issue: Replace nops by "or at,at,zero". */
static void
fix_loongson2f_nop (struct mips_cl_insn * ip)
{
gas_assert (!HAVE_CODE_COMPRESSION);
if (strcmp (ip->insn_mo->name, "nop") == 0)
ip->insn_opcode = LOONGSON2F_NOP_INSN;
}
/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
jr target pc &= 'hffff_ffff_cfff_ffff. */
static void
fix_loongson2f_jump (struct mips_cl_insn * ip)
{
gas_assert (!HAVE_CODE_COMPRESSION);
if (strcmp (ip->insn_mo->name, "j") == 0
|| strcmp (ip->insn_mo->name, "jr") == 0
|| strcmp (ip->insn_mo->name, "jalr") == 0)
{
int sreg;
expressionS ep;
if (! mips_opts.at)
return;
sreg = EXTRACT_OPERAND (0, RS, *ip);
if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
return;
ep.X_op = O_constant;
ep.X_add_number = 0xcfff0000;
macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
ep.X_add_number = 0xffff;
macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
}
}
static void
fix_loongson2f (struct mips_cl_insn * ip)
{
if (mips_fix_loongson2f_nop)
fix_loongson2f_nop (ip);
if (mips_fix_loongson2f_jump)
fix_loongson2f_jump (ip);
}
static bool
has_label_name (const char *arr[], size_t len ,const char *s)
{
unsigned long i;
for (i = 0; i < len; i++)
{
if (!arr[i])
return false;
if (streq (arr[i], s))
return true;
}
return false;
}
/* Fix loongson3 llsc errata: Insert sync before ll/lld. */
static void
fix_loongson3_llsc (struct mips_cl_insn * ip)
{
gas_assert (!HAVE_CODE_COMPRESSION);
/* If is an local label and the insn is not sync,
look forward that whether an branch between ll/sc jump to here
if so, insert a sync. */
if (seg_info (now_seg)->label_list
&& S_IS_LOCAL (seg_info (now_seg)->label_list->label)
&& (strcmp (ip->insn_mo->name, "sync") != 0))
{
unsigned long i;
valueT label_value;
const char *label_names[MAX_LABELS_SAME];
const char *label_name;
label_name = S_GET_NAME (seg_info (now_seg)->label_list->label);
label_names[0] = label_name;
struct insn_label_list *llist = seg_info (now_seg)->label_list;
label_value = S_GET_VALUE (llist->label);
for (i = 1; i < MAX_LABELS_SAME; i++)
{
llist = llist->next;
if (!llist)
break;
if (S_GET_VALUE (llist->label) == label_value)
label_names[i] = S_GET_NAME (llist->label);
else
break;
}
for (; i < MAX_LABELS_SAME; i++)
label_names[i] = NULL;
unsigned long lookback = ARRAY_SIZE (history);
for (i = 0; i < lookback; i++)
{
if (streq (history[i].insn_mo->name, "ll")
|| streq (history[i].insn_mo->name, "lld"))
break;
if (streq (history[i].insn_mo->name, "sc")
|| streq (history[i].insn_mo->name, "scd"))
{
unsigned long j;
for (j = i + 1; j < lookback; j++)
{
if (streq (history[i].insn_mo->name, "ll")
|| streq (history[i].insn_mo->name, "lld"))
break;
if (delayed_branch_p (&history[j]))
{
if (has_label_name (label_names,
MAX_LABELS_SAME,
history[j].target))
{
add_fixed_insn (&sync_insn);
insert_into_history (0, 1, &sync_insn);
i = lookback;
break;
}
}
}
}
}
}
/* If we find a sc, we look forward to look for an branch insn,
and see whether it jump back and out of ll/sc. */
else if (streq (ip->insn_mo->name, "sc") || streq (ip->insn_mo->name, "scd"))
{
unsigned long lookback = ARRAY_SIZE (history) - 1;
unsigned long i;
for (i = 0; i < lookback; i++)
{
if (streq (history[i].insn_mo->name, "ll")
|| streq (history[i].insn_mo->name, "lld"))
break;
if (delayed_branch_p (&history[i]))
{
unsigned long j;
for (j = i + 1; j < lookback; j++)
{
if (streq (history[j].insn_mo->name, "ll")
|| streq (history[i].insn_mo->name, "lld"))
break;
}
for (; j < lookback; j++)
{
if (history[j].label[0] != '\0'
&& streq (history[j].label, history[i].target)
&& strcmp (history[j+1].insn_mo->name, "sync") != 0)
{
add_fixed_insn (&sync_insn);
insert_into_history (++j, 1, &sync_insn);
}
}
}
}
}
/* Skip if there is a sync before ll/lld. */
if ((strcmp (ip->insn_mo->name, "ll") == 0
|| strcmp (ip->insn_mo->name, "lld") == 0)
&& (strcmp (history[0].insn_mo->name, "sync") != 0))
{
add_fixed_insn (&sync_insn);
insert_into_history (0, 1, &sync_insn);
}
}
/* IP is a branch that has a delay slot, and we need to fill it
automatically. Return true if we can do that by swapping IP
with the previous instruction.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. */
static bool
can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type *reloc_type)
{
unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
unsigned int fpr_read, prev_fpr_write;
/* -O2 and above is required for this optimization. */
if (mips_optimize < 2)
return false;
/* If we have seen .set volatile or .set nomove, don't optimize. */
if (mips_opts.nomove)
return false;
/* We can't swap if the previous instruction's position is fixed. */
if (history[0].fixed_p)
return false;
/* If the previous previous insn was in a .set noreorder, we can't
swap. Actually, the MIPS assembler will swap in this situation.
However, gcc configured -with-gnu-as will generate code like
.set noreorder
lw $4,XXX
.set reorder
INSN
bne $4,$0,foo
in which we can not swap the bne and INSN. If gcc is not configured
-with-gnu-as, it does not output the .set pseudo-ops. */
if (history[1].noreorder_p)
return false;
/* If the previous instruction had a fixup in mips16 mode, we can not swap.
This means that the previous instruction was a 4-byte one anyhow. */
if (mips_opts.mips16 && history[0].fixp[0])
return false;
/* If the branch is itself the target of a branch, we can not swap.
We cheat on this; all we check for is whether there is a label on
this instruction. If there are any branches to anything other than
a label, users must use .set noreorder. */
if (seg_info (now_seg)->label_list)
return false;
/* If the previous instruction is in a variant frag other than this
branch's one, we cannot do the swap. This does not apply to
MIPS16 code, which uses variant frags for different purposes. */
if (!mips_opts.mips16
&& history[0].frag
&& history[0].frag->fr_type == rs_machine_dependent)
return false;
/* We do not swap with instructions that cannot architecturally
be placed in a branch delay slot, such as SYNC or ERET. We
also refrain from swapping with a trap instruction, since it
complicates trap handlers to have the trap instruction be in
a delay slot. */
prev_pinfo = history[0].insn_mo->pinfo;
if (prev_pinfo & INSN_NO_DELAY_SLOT)
return false;
/* Check for conflicts between the branch and the instructions
before the candidate delay slot. */
if (nops_for_insn (0, history + 1, ip) > 0)
return false;
/* Check for conflicts between the swapped sequence and the
target of the branch. */
if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
return false;
/* If the branch reads a register that the previous
instruction sets, we can not swap. */
gpr_read = gpr_read_mask (ip);
prev_gpr_write = gpr_write_mask (&history[0]);
if (gpr_read & prev_gpr_write)
return false;
fpr_read = fpr_read_mask (ip);
prev_fpr_write = fpr_write_mask (&history[0]);
if (fpr_read & prev_fpr_write)
return false;
/* If the branch writes a register that the previous
instruction sets, we can not swap. */
gpr_write = gpr_write_mask (ip);
if (gpr_write & prev_gpr_write)
return false;
/* If the branch writes a register that the previous
instruction reads, we can not swap. */
prev_gpr_read = gpr_read_mask (&history[0]);
if (gpr_write & prev_gpr_read)
return false;
/* If one instruction sets a condition code and the
other one uses a condition code, we can not swap. */
pinfo = ip->insn_mo->pinfo;
if ((pinfo & INSN_READ_COND_CODE)
&& (prev_pinfo & INSN_WRITE_COND_CODE))
return false;
if ((pinfo & INSN_WRITE_COND_CODE)
&& (prev_pinfo & INSN_READ_COND_CODE))
return false;
/* If the previous instruction uses the PC, we can not swap. */
prev_pinfo2 = history[0].insn_mo->pinfo2;
if (prev_pinfo2 & INSN2_READ_PC)
return false;
/* If the previous instruction has an incorrect size for a fixed
branch delay slot in microMIPS mode, we cannot swap. */
pinfo2 = ip->insn_mo->pinfo2;
if (mips_opts.micromips
&& (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
&& insn_length (history) != 2)
return false;
if (mips_opts.micromips
&& (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
&& insn_length (history) != 4)
return false;
/* On the R5900 short loops need to be fixed by inserting a NOP in the
branch delay slot.
The short loop bug under certain conditions causes loops to execute
only once or twice. We must ensure that the assembler never
generates loops that satisfy all of the following conditions:
- a loop consists of less than or equal to six instructions
(including the branch delay slot);
- a loop contains only one conditional branch instruction at the end
of the loop;
- a loop does not contain any other branch or jump instructions;
- a branch delay slot of the loop is not NOP (EE 2.9 or later).
We need to do this because of a hardware bug in the R5900 chip. */
if (mips_fix_r5900
/* Check if instruction has a parameter, ignore "j $31". */
&& (address_expr != NULL)
/* Parameter must be 16 bit. */
&& (*reloc_type == BFD_RELOC_16_PCREL_S2)
/* Branch to same segment. */
&& (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
/* Branch to same code fragment. */
&& (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
/* Can only calculate branch offset if value is known. */
&& symbol_constant_p (address_expr->X_add_symbol)
/* Check if branch is really conditional. */
&& !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
|| (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
|| (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
{
int distance;
/* Check if loop is shorter than or equal to 6 instructions
including branch and delay slot. */
distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
if (distance <= 20)
{
int i;
int rv;
rv = false;
/* When the loop includes branches or jumps,
it is not a short loop. */
for (i = 0; i < (distance / 4); i++)
{
if ((history[i].cleared_p)
|| delayed_branch_p (&history[i]))
{
rv = true;
break;
}
}
if (!rv)
{
/* Insert nop after branch to fix short loop. */
return false;
}
}
}
return true;
}
/* Decide how we should add IP to the instruction stream.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. */
static enum append_method
get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type *reloc_type)
{
/* The relaxed version of a macro sequence must be inherently
hazard-free. */
if (mips_relax.sequence == 2)
return APPEND_ADD;
/* We must not dabble with instructions in a ".set noreorder" block. */
if (mips_opts.noreorder)
return APPEND_ADD;
/* Otherwise, it's our responsibility to fill branch delay slots. */
if (delayed_branch_p (ip))
{
if (!branch_likely_p (ip)
&& can_swap_branch_p (ip, address_expr, reloc_type))
return APPEND_SWAP;
if (mips_opts.mips16
&& ISA_SUPPORTS_MIPS16E
&& gpr_read_mask (ip) != 0)
return APPEND_ADD_COMPACT;
if (mips_opts.micromips
&& ((ip->insn_opcode & 0xffe0) == 0x4580
|| (!forced_insn_length
&& ((ip->insn_opcode & 0xfc00) == 0xcc00
|| (ip->insn_opcode & 0xdc00) == 0x8c00))
|| (ip->insn_opcode & 0xdfe00000) == 0x94000000
|| (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
return APPEND_ADD_COMPACT;
return APPEND_ADD_WITH_NOP;
}
return APPEND_ADD;
}
/* IP is an instruction whose opcode we have just changed, END points
to the end of the opcode table processed. Point IP->insn_mo to the
new opcode's definition. */
static void
find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
{
const struct mips_opcode *mo;
for (mo = ip->insn_mo; mo < end; mo++)
if (mo->pinfo != INSN_MACRO
&& (ip->insn_opcode & mo->mask) == mo->match)
{
ip->insn_mo = mo;
return;
}
abort ();
}
/* IP is a MIPS16 instruction whose opcode we have just changed.
Point IP->insn_mo to the new opcode's definition. */
static void
find_altered_mips16_opcode (struct mips_cl_insn *ip)
{
find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
}
/* IP is a microMIPS instruction whose opcode we have just changed.
Point IP->insn_mo to the new opcode's definition. */
static void
find_altered_micromips_opcode (struct mips_cl_insn *ip)
{
find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
}
/* For microMIPS macros, we need to generate a local number label
as the target of branches. */
#define MICROMIPS_LABEL_CHAR '\037'
static unsigned long micromips_target_label;
static char micromips_target_name[32];
static char *
micromips_label_name (void)
{
char *p = micromips_target_name;
char symbol_name_temporary[24];
unsigned long l;
int i;
if (*p)
return p;
i = 0;
l = micromips_target_label;
#ifdef LOCAL_LABEL_PREFIX
*p++ = LOCAL_LABEL_PREFIX;
#endif
*p++ = 'L';
*p++ = MICROMIPS_LABEL_CHAR;
do
{
symbol_name_temporary[i++] = l % 10 + '0';
l /= 10;
}
while (l != 0);
while (i > 0)
*p++ = symbol_name_temporary[--i];
*p = '\0';
return micromips_target_name;
}
static void
micromips_label_expr (expressionS *label_expr)
{
label_expr->X_op = O_symbol;
label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
label_expr->X_add_number = 0;
}
static void
micromips_label_inc (void)
{
micromips_target_label++;
*micromips_target_name = '\0';
}
static void
micromips_add_label (void)
{
symbolS *s;
s = colon (micromips_label_name ());
micromips_label_inc ();
S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
}
/* If assembling microMIPS code, then return the microMIPS reloc
corresponding to the requested one if any. Otherwise return
the reloc unchanged. */
static bfd_reloc_code_real_type
micromips_map_reloc (bfd_reloc_code_real_type reloc)
{
static const bfd_reloc_code_real_type relocs[][2] =
{
/* Keep sorted incrementally by the left-hand key. */
{ BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
{ BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
{ BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
{ BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
{ BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
{ BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
{ BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
{ BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
{ BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
{ BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
{ BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
{ BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
{ BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
{ BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
{ BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
{ BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
{ BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
{ BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
{ BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
{ BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
{ BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
{ BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
{ BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
{ BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
{ BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
{ BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
{ BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
};
bfd_reloc_code_real_type r;
size_t i;
if (!mips_opts.micromips)
return reloc;
for (i = 0; i < ARRAY_SIZE (relocs); i++)
{
r = relocs[i][0];
if (r > reloc)
return reloc;
if (r == reloc)
return relocs[i][1];
}
return reloc;
}
/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
Return true on success, storing the resolved value in RESULT. */
static bool
calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
offsetT *result)
{
switch (reloc)
{
case BFD_RELOC_MIPS_HIGHEST:
case BFD_RELOC_MICROMIPS_HIGHEST:
*result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
return true;
case BFD_RELOC_MIPS_HIGHER:
case BFD_RELOC_MICROMIPS_HIGHER:
*result = ((operand + 0x80008000ull) >> 32) & 0xffff;
return true;
case BFD_RELOC_HI16_S:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_MICROMIPS_HI16_S:
case BFD_RELOC_MIPS16_HI16_S:
*result = ((operand + 0x8000) >> 16) & 0xffff;
return true;
case BFD_RELOC_HI16:
case BFD_RELOC_MICROMIPS_HI16:
case BFD_RELOC_MIPS16_HI16:
*result = (operand >> 16) & 0xffff;
return true;
case BFD_RELOC_LO16:
case BFD_RELOC_LO16_PCREL:
case BFD_RELOC_MICROMIPS_LO16:
case BFD_RELOC_MIPS16_LO16:
*result = operand & 0xffff;
return true;
case BFD_RELOC_UNUSED:
*result = operand;
return true;
default:
return false;
}
}
/* Output an instruction. IP is the instruction information.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. EXPANSIONP is true if the instruction is part of
a macro expansion. */
static void
append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type *reloc_type, bool expansionp)
{
unsigned long prev_pinfo2, pinfo;
bool relaxed_branch = false;
enum append_method method;
bool relax32;
int branch_disp;
if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
fix_loongson2f (ip);
ip->target[0] = '\0';
if (offset_expr.X_op == O_symbol)
strncpy (ip->target, S_GET_NAME (offset_expr.X_add_symbol), 15);
ip->label[0] = '\0';
if (seg_info (now_seg)->label_list)
strncpy (ip->label, S_GET_NAME (seg_info (now_seg)->label_list->label), 15);
if (mips_fix_loongson3_llsc && !HAVE_CODE_COMPRESSION)
fix_loongson3_llsc (ip);
file_ase_mips16 |= mips_opts.mips16;
file_ase_micromips |= mips_opts.micromips;
prev_pinfo2 = history[0].insn_mo->pinfo2;
pinfo = ip->insn_mo->pinfo;
/* Don't raise alarm about `nods' frags as they'll fill in the right
kind of nop in relaxation if required. */
if (mips_opts.micromips
&& !expansionp
&& !(history[0].frag
&& history[0].frag->fr_type == rs_machine_dependent
&& RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
&& RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
&& (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
&& micromips_insn_length (ip->insn_mo) != 2)
|| ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
&& micromips_insn_length (ip->insn_mo) != 4)))
as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
(prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
if (address_expr == NULL)
ip->complete_p = 1;
else if (reloc_type[0] <= BFD_RELOC_UNUSED
&& reloc_type[1] == BFD_RELOC_UNUSED
&& reloc_type[2] == BFD_RELOC_UNUSED
&& address_expr->X_op == O_constant)
{
switch (*reloc_type)
{
case BFD_RELOC_MIPS_JMP:
{
int shift;
/* Shift is 2, unusually, for microMIPS JALX. */
shift = (mips_opts.micromips
&& strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("jump to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0x3ffffff);
ip->complete_p = 1;
}
break;
case BFD_RELOC_MIPS16_JMP:
if ((address_expr->X_add_number & 3) != 0)
as_bad (_("jump to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |=
(((address_expr->X_add_number & 0x7c0000) << 3)
| ((address_expr->X_add_number & 0xf800000) >> 7)
| ((address_expr->X_add_number & 0x3fffc) >> 2));
ip->complete_p = 1;
break;
case BFD_RELOC_16_PCREL_S2:
{
int shift;
shift = mips_opts.micromips ? 1 : 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
if (!mips_relax_branch)
{
if ((address_expr->X_add_number + (1 << (shift + 15)))
& ~((1 << (shift + 16)) - 1))
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0xffff);
}
}
break;
case BFD_RELOC_MIPS_21_PCREL_S2:
{
int shift;
shift = 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
if ((address_expr->X_add_number + (1 << (shift + 20)))
& ~((1 << (shift + 21)) - 1))
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0x1fffff);
}
break;
case BFD_RELOC_MIPS_26_PCREL_S2:
{
int shift;
shift = 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
if ((address_expr->X_add_number + (1 << (shift + 25)))
& ~((1 << (shift + 26)) - 1))
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0x3ffffff);
}
break;
default:
{
offsetT value;
if (calculate_reloc (*reloc_type, address_expr->X_add_number,
&value))
{
ip->insn_opcode |= value & 0xffff;
ip->complete_p = 1;
}
}
break;
}
}
if (mips_relax.sequence != 2 && !mips_opts.noreorder)
{
/* There are a lot of optimizations we could do that we don't.
In particular, we do not, in general, reorder instructions.
If you use gcc with optimization, it will reorder
instructions and generally do much more optimization then we
do here; repeating all that work in the assembler would only
benefit hand written assembly code, and does not seem worth
it. */
int nops = (mips_optimize == 0
? nops_for_insn (0, history, NULL)
: nops_for_insn_or_target (0, history, ip));
if (nops > 0)
{
fragS *old_frag;
unsigned long old_frag_offset;
int i;
old_frag = frag_now;
old_frag_offset = frag_now_fix ();
for (i = 0; i < nops; i++)
add_fixed_insn (NOP_INSN);
insert_into_history (0, nops, NOP_INSN);
if (listing)
{
listing_prev_line ();
/* We may be at the start of a variant frag. In case we
are, make sure there is enough space for the frag
after the frags created by listing_prev_line. The
argument to frag_grow here must be at least as large
as the argument to all other calls to frag_grow in
this file. We don't have to worry about being in the
middle of a variant frag, because the variants insert
all needed nop instructions themselves. */
frag_grow (40);
}
mips_move_text_labels ();
#ifndef NO_ECOFF_DEBUGGING
if (ECOFF_DEBUGGING)
ecoff_fix_loc (old_frag, old_frag_offset);
#endif
}
}
else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
{
int nops;
/* Work out how many nops in prev_nop_frag are needed by IP,
ignoring hazards generated by the first prev_nop_frag_since
instructions. */
nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
gas_assert (nops <= prev_nop_frag_holds);
/* Enforce NOPS as a minimum. */
if (nops > prev_nop_frag_required)
prev_nop_frag_required = nops;
if (prev_nop_frag_holds == prev_nop_frag_required)
{
/* Settle for the current number of nops. Update the history
accordingly (for the benefit of any future .set reorder code). */
prev_nop_frag = NULL;
insert_into_history (prev_nop_frag_since,
prev_nop_frag_holds, NOP_INSN);
}
else
{
/* Allow this instruction to replace one of the nops that was
tentatively added to prev_nop_frag. */
prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
prev_nop_frag_holds--;
prev_nop_frag_since++;
}
}
method = get_append_method (ip, address_expr, reloc_type);
branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
dwarf2_emit_insn (0);
/* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
so "move" the instruction address accordingly.
Also, it doesn't seem appropriate for the assembler to reorder .loc
entries. If this instruction is a branch that we are going to swap
with the previous instruction, the two instructions should be
treated as a unit, and the debug information for both instructions
should refer to the start of the branch sequence. Using the
current position is certainly wrong when swapping a 32-bit branch
and a 16-bit delay slot, since the current position would then be
in the middle of a branch. */
dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
relax32 = (mips_relax_branch
/* Don't try branch relaxation within .set nomacro, or within
.set noat if we use $at for PIC computations. If it turns
out that the branch was out-of-range, we'll get an error. */
&& !mips_opts.warn_about_macros
&& (mips_opts.at || mips_pic == NO_PIC)
/* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
as they have no complementing branches. */
&& !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
if (!HAVE_CODE_COMPRESSION
&& address_expr
&& relax32
&& *reloc_type == BFD_RELOC_16_PCREL_S2
&& delayed_branch_p (ip))
{
relaxed_branch = true;
add_relaxed_insn (ip, (relaxed_branch_length
(NULL, NULL,
uncond_branch_p (ip) ? -1
: branch_likely_p (ip) ? 1
: 0)), 4,
RELAX_BRANCH_ENCODE
(AT, mips_pic != NO_PIC,
uncond_branch_p (ip),
branch_likely_p (ip),
pinfo & INSN_WRITE_GPR_31,
0),
address_expr->X_add_symbol,
address_expr->X_add_number);
*reloc_type = BFD_RELOC_UNUSED;
}
else if (mips_opts.micromips
&& address_expr
&& ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
|| *reloc_type > BFD_RELOC_UNUSED)
&& (delayed_branch_p (ip) || compact_branch_p (ip))
/* Don't try branch relaxation when users specify
16-bit/32-bit instructions. */
&& !forced_insn_length)
{
bool relax16 = (method != APPEND_ADD_COMPACT
&& *reloc_type > BFD_RELOC_UNUSED);
int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
int uncond = uncond_branch_p (ip) ? -1 : 0;
int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
int nods = method == APPEND_ADD_WITH_NOP;
int al = pinfo & INSN_WRITE_GPR_31;
int length32 = nods ? 8 : 4;
gas_assert (address_expr != NULL);
gas_assert (!mips_relax.sequence);
relaxed_branch = true;
if (nods)
method = APPEND_ADD;
if (relax32)
length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
mips_pic != NO_PIC,
uncond, compact, al, nods,
relax32, 0, 0),
address_expr->X_add_symbol,
address_expr->X_add_number);
*reloc_type = BFD_RELOC_UNUSED;
}
else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
{
bool require_unextended;
bool require_extended;
symbolS *symbol;
offsetT offset;
if (forced_insn_length != 0)
{
require_unextended = forced_insn_length == 2;
require_extended = forced_insn_length == 4;
}
else
{
require_unextended = (mips_opts.noautoextend
&& !mips_opcode_32bit_p (ip->insn_mo));
require_extended = 0;
}
/* We need to set up a variant frag. */
gas_assert (address_expr != NULL);
/* Pass any `O_symbol' expression unchanged as an `expr_section'
symbol created by `make_expr_symbol' may not get a necessary
external relocation produced. */
if (address_expr->X_op == O_symbol)
{
symbol = address_expr->X_add_symbol;
offset = address_expr->X_add_number;
}
else
{
symbol = make_expr_symbol (address_expr);
symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
offset = 0;
}
add_relaxed_insn (ip, 12, 0,
RELAX_MIPS16_ENCODE
(*reloc_type - BFD_RELOC_UNUSED,
mips_opts.ase & ASE_MIPS16E2,
mips_pic != NO_PIC,
HAVE_32BIT_SYMBOLS,
mips_opts.warn_about_macros,
require_unextended, require_extended,
delayed_branch_p (&history[0]),
history[0].mips16_absolute_jump_p),
symbol, offset);
}
else if (mips_opts.mips16 && insn_length (ip) == 2)
{
if (!delayed_branch_p (ip))
/* Make sure there is enough room to swap this instruction with
a following jump instruction. */
frag_grow (6);
add_fixed_insn (ip);
}
else
{
if (mips_opts.mips16
&& mips_opts.noreorder
&& delayed_branch_p (&history[0]))
as_warn (_("extended instruction in delay slot"));
if (mips_relax.sequence)
{
/* If we've reached the end of this frag, turn it into a variant
frag and record the information for the instructions we've
written so far. */
if (frag_room () < 4)
relax_close_frag ();
mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
}
if (mips_relax.sequence != 2)
{
if (mips_macro_warning.first_insn_sizes[0] == 0)
mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
mips_macro_warning.sizes[0] += insn_length (ip);
mips_macro_warning.insns[0]++;
}
if (mips_relax.sequence != 1)
{
if (mips_macro_warning.first_insn_sizes[1] == 0)
mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
mips_macro_warning.sizes[1] += insn_length (ip);
mips_macro_warning.insns[1]++;
}
if (mips_opts.mips16)
{
ip->fixed_p = 1;
ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
}
add_fixed_insn (ip);
}
if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
{
bfd_reloc_code_real_type final_type[3];
reloc_howto_type *howto0;
reloc_howto_type *howto;
int i;
/* Perform any necessary conversion to microMIPS relocations
and find out how many relocations there actually are. */
for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
final_type[i] = micromips_map_reloc (reloc_type[i]);
/* In a compound relocation, it is the final (outermost)
operator that determines the relocated field. */
howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
if (!howto)
abort ();
if (i > 1)
howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
bfd_get_reloc_size (howto),
address_expr,
howto0 && howto0->pc_relative,
final_type[0]);
/* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
/* Tag symbols that have a R_MIPS16_26 relocation against them. */
if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
*symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
/* These relocations can have an addend that won't fit in
4 octets for 64bit assembly. */
if (GPR_SIZE == 64
&& ! howto->partial_inplace
&& (reloc_type[0] == BFD_RELOC_16
|| reloc_type[0] == BFD_RELOC_32
|| reloc_type[0] == BFD_RELOC_MIPS_JMP
|| reloc_type[0] == BFD_RELOC_GPREL16
|| reloc_type[0] == BFD_RELOC_MIPS_LITERAL
|| reloc_type[0] == BFD_RELOC_GPREL32
|| reloc_type[0] == BFD_RELOC_64
|| reloc_type[0] == BFD_RELOC_CTOR
|| reloc_type[0] == BFD_RELOC_MIPS_SUB
|| reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
|| reloc_type[0] == BFD_RELOC_MIPS_HIGHER
|| reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
|| reloc_type[0] == BFD_RELOC_MIPS_REL16
|| reloc_type[0] == BFD_RELOC_MIPS_RELGOT
|| reloc_type[0] == BFD_RELOC_MIPS16_GPREL
|| hi16_reloc_p (reloc_type[0])
|| lo16_reloc_p (reloc_type[0])))
ip->fixp[0]->fx_no_overflow = 1;
/* These relocations can have an addend that won't fit in 2 octets. */
if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
|| reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
ip->fixp[0]->fx_no_overflow = 1;
if (mips_relax.sequence)
{
if (mips_relax.first_fixup == 0)
mips_relax.first_fixup = ip->fixp[0];
}
else if (reloc_needs_lo_p (*reloc_type))
{
struct mips_hi_fixup *hi_fixup;
/* Reuse the last entry if it already has a matching %lo. */
hi_fixup = mips_hi_fixup_list;
if (hi_fixup == 0
|| !fixup_has_matching_lo_p (hi_fixup->fixp))
{
hi_fixup = XNEW (struct mips_hi_fixup);
hi_fixup->next = mips_hi_fixup_list;
mips_hi_fixup_list = hi_fixup;
}
hi_fixup->fixp = ip->fixp[0];
hi_fixup->seg = now_seg;
}
/* Add fixups for the second and third relocations, if given.
Note that the ABI allows the second relocation to be
against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
moment we only use RSS_UNDEF, but we could add support
for the others if it ever becomes necessary. */
for (i = 1; i < 3; i++)
if (reloc_type[i] != BFD_RELOC_UNUSED)
{
ip->fixp[i] = fix_new (ip->frag, ip->where,
ip->fixp[0]->fx_size, NULL, 0,
false, final_type[i]);
/* Use fx_tcbit to mark compound relocs. */
ip->fixp[0]->fx_tcbit = 1;
ip->fixp[i]->fx_tcbit = 1;
}
}
/* Update the register mask information. */
mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
switch (method)
{
case APPEND_ADD:
insert_into_history (0, 1, ip);
break;
case APPEND_ADD_WITH_NOP:
{
struct mips_cl_insn *nop;
insert_into_history (0, 1, ip);
nop = get_delay_slot_nop (ip);
add_fixed_insn (nop);
insert_into_history (0, 1, nop);
if (mips_relax.sequence)
mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
}
break;
case APPEND_ADD_COMPACT:
/* Convert MIPS16 jr/jalr into a "compact" jump. */
if (mips_opts.mips16)
{
ip->insn_opcode |= 0x0080;
find_altered_mips16_opcode (ip);
}
/* Convert microMIPS instructions. */
else if (mips_opts.micromips)
{
/* jr16->jrc */
if ((ip->insn_opcode & 0xffe0) == 0x4580)
ip->insn_opcode |= 0x0020;
/* b16->bc */
else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
ip->insn_opcode = 0x40e00000;
/* beqz16->beqzc, bnez16->bnezc */
else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
{
unsigned long regno;
regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
regno &= MICROMIPSOP_MASK_MD;
regno = micromips_to_32_reg_d_map[regno];
ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
| (regno << MICROMIPSOP_SH_RS)
| 0x40a00000) ^ 0x00400000;
}
/* beqz->beqzc, bnez->bnezc */
else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
| ((ip->insn_opcode >> 7) & 0x00400000)
| 0x40a00000) ^ 0x00400000;
/* beq $0->beqzc, bne $0->bnezc */
else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
ip->insn_opcode = (((ip->insn_opcode >>
(MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
& (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
| ((ip->insn_opcode >> 7) & 0x00400000)
| 0x40a00000) ^ 0x00400000;
else
abort ();
find_altered_micromips_opcode (ip);
}
else
abort ();
install_insn (ip);
insert_into_history (0, 1, ip);
break;
case APPEND_SWAP:
{
struct mips_cl_insn delay = history[0];
if (relaxed_branch || delay.frag != ip->frag)
{
/* Add the delay slot instruction to the end of the
current frag and shrink the fixed part of the
original frag. If the branch occupies the tail of
the latter, move it backwards to cover the gap. */
delay.frag->fr_fix -= branch_disp;
if (delay.frag == ip->frag)
move_insn (ip, ip->frag, ip->where - branch_disp);
add_fixed_insn (&delay);
}
else
{
/* If this is not a relaxed branch and we are in the
same frag, then just swap the instructions. */
move_insn (ip, delay.frag, delay.where);
move_insn (&delay, ip->frag, ip->where + insn_length (ip));
}
history[0] = *ip;
delay.fixed_p = 1;
insert_into_history (0, 1, &delay);
}
break;
}
/* If we have just completed an unconditional branch, clear the history. */
if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
|| (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
{
unsigned int i;
mips_no_prev_insn ();
for (i = 0; i < ARRAY_SIZE (history); i++)
history[i].cleared_p = 1;
}
/* We need to emit a label at the end of branch-likely macros. */
if (emit_branch_likely_macro)
{
emit_branch_likely_macro = false;
micromips_add_label ();
}
/* We just output an insn, so the next one doesn't have a label. */
mips_clear_insn_labels ();
}
/* Forget that there was any previous instruction or label.
When BRANCH is true, the branch history is also flushed. */
static void
mips_no_prev_insn (void)
{
prev_nop_frag = NULL;
insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
mips_clear_insn_labels ();
}
/* This function must be called before we emit something other than
instructions. It is like mips_no_prev_insn except that it inserts
any NOPS that might be needed by previous instructions. */
void
mips_emit_delays (void)
{
if (! mips_opts.noreorder)
{
int nops = nops_for_insn (0, history, NULL);
if (nops > 0)
{
while (nops-- > 0)
add_fixed_insn (NOP_INSN);
mips_move_text_labels ();
}
}
mips_no_prev_insn ();
}
/* Start a (possibly nested) noreorder block. */
static void
start_noreorder (void)
{
if (mips_opts.noreorder == 0)
{
unsigned int i;
int nops;
/* None of the instructions before the .set noreorder can be moved. */
for (i = 0; i < ARRAY_SIZE (history); i++)
history[i].fixed_p = 1;
/* Insert any nops that might be needed between the .set noreorder
block and the previous instructions. We will later remove any
nops that turn out not to be needed. */
nops = nops_for_insn (0, history, NULL);
if (nops > 0)
{
if (mips_optimize != 0)
{
/* Record the frag which holds the nop instructions, so
that we can remove them if we don't need them. */
frag_grow (nops * NOP_INSN_SIZE);
prev_nop_frag = frag_now;
prev_nop_frag_holds = nops;
prev_nop_frag_required = 0;
prev_nop_frag_since = 0;
}
for (; nops > 0; --nops)
add_fixed_insn (NOP_INSN);
/* Move on to a new frag, so that it is safe to simply
decrease the size of prev_nop_frag. */
frag_wane (frag_now);
frag_new (0);
mips_move_text_labels ();
}
mips_mark_labels ();
mips_clear_insn_labels ();
}
mips_opts.noreorder++;
mips_any_noreorder = 1;
}
/* End a nested noreorder block. */
static void
end_noreorder (void)
{
mips_opts.noreorder--;
if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
{
/* Commit to inserting prev_nop_frag_required nops and go back to
handling nop insertion the .set reorder way. */
prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
* NOP_INSN_SIZE);
insert_into_history (prev_nop_frag_since,
prev_nop_frag_required, NOP_INSN);
prev_nop_frag = NULL;
}
}
/* Sign-extend 32-bit mode constants that have bit 31 set and all
higher bits unset. */
static void
normalize_constant_expr (expressionS *ex)
{
if (ex->X_op == O_constant
&& IS_ZEXT_32BIT_NUM (ex->X_add_number))
ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
- 0x80000000);
}
/* Sign-extend 32-bit mode address offsets that have bit 31 set and
all higher bits unset. */
static void
normalize_address_expr (expressionS *ex)
{
if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
|| (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
&& IS_ZEXT_32BIT_NUM (ex->X_add_number))
ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
- 0x80000000);
}
/* Try to match TOKENS against OPCODE, storing the result in INSN.
Return true if the match was successful.
OPCODE_EXTRA is a value that should be ORed into the opcode
(used for VU0 channel suffixes, etc.). MORE_ALTS is true if
there are more alternatives after OPCODE and SOFT_MATCH is
as for mips_arg_info. */
static bool
match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
struct mips_operand_token *tokens, unsigned int opcode_extra,
bool lax_match, bool complete_p)
{
const char *args;
struct mips_arg_info arg;
const struct mips_operand *operand;
char c;
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
offset_reloc[0] = BFD_RELOC_UNUSED;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
create_insn (insn, opcode);
/* When no opcode suffix is specified, assume ".xyzw". */
if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
else
insn->insn_opcode |= opcode_extra;
memset (&arg, 0, sizeof (arg));
arg.insn = insn;
arg.token = tokens;
arg.argnum = 1;
arg.last_regno = ILLEGAL_REG;
arg.dest_regno = ILLEGAL_REG;
arg.lax_match = lax_match;
for (args = opcode->args;; ++args)
{
if (arg.token->type == OT_END)
{
/* Handle unary instructions in which only one operand is given.
The source is then the same as the destination. */
if (arg.opnum == 1 && *args == ',')
{
operand = (mips_opts.micromips
? decode_micromips_operand (args + 1)
: decode_mips_operand (args + 1));
if (operand && mips_optional_operand_p (operand))
{
arg.token = tokens;
arg.argnum = 1;
continue;
}
}
/* Treat elided base registers as $0. */
if (strcmp (args, "(b)") == 0)
args += 3;
if (args[0] == '+')
switch (args[1])
{
case 'K':
case 'N':
/* The register suffix is optional. */
args += 2;
break;
}
/* Fail the match if there were too few operands. */
if (*args)
return false;
/* Successful match. */
if (!complete_p)
return true;
clear_insn_error ();
if (arg.dest_regno == arg.last_regno
&& startswith (insn->insn_mo->name, "jalr"))
{
if (arg.opnum == 2)
set_insn_error
(0, _("source and destination must be different"));
else if (arg.last_regno == 31)
set_insn_error
(0, _("a destination register must be supplied"));
}
else if (arg.last_regno == 31
&& (startswith (insn->insn_mo->name, "bltzal")
|| startswith (insn->insn_mo->name, "bgezal")))
set_insn_error (0, _("the source register must not be $31"));
check_completed_insn (&arg);
return true;
}
/* Fail the match if the line has too many operands. */
if (*args == 0)
return false;
/* Handle characters that need to match exactly. */
if (*args == '(' || *args == ')' || *args == ',')
{
if (match_char (&arg, *args))
continue;
return false;
}
if (*args == '#')
{
++args;
if (arg.token->type == OT_DOUBLE_CHAR
&& arg.token->u.ch == *args)
{
++arg.token;
continue;
}
return false;
}
/* Handle special macro operands. Work out the properties of
other operands. */
arg.opnum += 1;
switch (*args)
{
case '-':
switch (args[1])
{
case 'A':
*offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
break;
case 'B':
*offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
break;
}
break;
case '+':
switch (args[1])
{
case 'i':
*offset_reloc = BFD_RELOC_MIPS_JMP;
break;
case '\'':
*offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
break;
case '\"':
*offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
break;
}
break;
case 'I':
if (!match_const_int (&arg, &imm_expr.X_add_number))
return false;
imm_expr.X_op = O_constant;
if (GPR_SIZE == 32)
normalize_constant_expr (&imm_expr);
continue;
case 'A':
if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
{
/* Assume that the offset has been elided and that what
we saw was a base register. The match will fail later
if that assumption turns out to be wrong. */
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
}
else
{
if (!match_expression (&arg, &offset_expr, offset_reloc))
return false;
normalize_address_expr (&offset_expr);
}
continue;
case 'F':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8, true))
return false;
continue;
case 'L':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8, false))
return false;
continue;
case 'f':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
4, true))
return false;
continue;
case 'l':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
4, false))
return false;
continue;
case 'p':
*offset_reloc = BFD_RELOC_16_PCREL_S2;
break;
case 'a':
*offset_reloc = BFD_RELOC_MIPS_JMP;
break;
case 'm':
gas_assert (mips_opts.micromips);
c = args[1];
switch (c)
{
case 'D':
case 'E':
if (!forced_insn_length)
*offset_reloc = (int) BFD_RELOC_UNUSED + c;
else if (c == 'D')
*offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
else
*offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
break;
}
break;
}
operand = (mips_opts.micromips
? decode_micromips_operand (args)
: decode_mips_operand (args));
if (!operand)
abort ();
/* Skip prefixes. */
if (*args == '+' || *args == 'm' || *args == '-')
args++;
if (mips_optional_operand_p (operand)
&& args[1] == ','
&& (arg.token[0].type != OT_REG
|| arg.token[1].type == OT_END))
{
/* Assume that the register has been elided and is the
same as the first operand. */
arg.token = tokens;
arg.argnum = 1;
}
if (!match_operand (&arg, operand))
return false;
}
}
/* Like match_insn, but for MIPS16. */
static bool
match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
struct mips_operand_token *tokens)
{
const char *args;
const struct mips_operand *operand;
const struct mips_operand *ext_operand;
bool pcrel = false;
int required_insn_length;
struct mips_arg_info arg;
int relax_char;
if (forced_insn_length)
required_insn_length = forced_insn_length;
else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
required_insn_length = 2;
else
required_insn_length = 0;
create_insn (insn, opcode);
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
offset_reloc[0] = BFD_RELOC_UNUSED;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
relax_char = 0;
memset (&arg, 0, sizeof (arg));
arg.insn = insn;
arg.token = tokens;
arg.argnum = 1;
arg.last_regno = ILLEGAL_REG;
arg.dest_regno = ILLEGAL_REG;
relax_char = 0;
for (args = opcode->args;; ++args)
{
int c;
if (arg.token->type == OT_END)
{
offsetT value;
/* Handle unary instructions in which only one operand is given.
The source is then the same as the destination. */
if (arg.opnum == 1 && *args == ',')
{
operand = decode_mips16_operand (args[1], false);
if (operand && mips_optional_operand_p (operand))
{
arg.token = tokens;
arg.argnum = 1;
continue;
}
}
/* Fail the match if there were too few operands. */
if (*args)
return false;
/* Successful match. Stuff the immediate value in now, if
we can. */
clear_insn_error ();
if (opcode->pinfo == INSN_MACRO)
{
gas_assert (relax_char == 0 || relax_char == 'p');
gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
}
else if (relax_char
&& offset_expr.X_op == O_constant
&& !pcrel
&& calculate_reloc (*offset_reloc,
offset_expr.X_add_number,
&value))
{
mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
required_insn_length, &insn->insn_opcode);
offset_expr.X_op = O_absent;
*offset_reloc = BFD_RELOC_UNUSED;
}
else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
{
if (required_insn_length == 2)
set_insn_error (0, _("invalid unextended operand value"));
else if (!mips_opcode_32bit_p (opcode))
{
forced_insn_length = 4;
insn->insn_opcode |= MIPS16_EXTEND;
}
}
else if (relax_char)
*offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
check_completed_insn (&arg);
return true;
}
/* Fail the match if the line has too many operands. */
if (*args == 0)
return false;
/* Handle characters that need to match exactly. */
if (*args == '(' || *args == ')' || *args == ',')
{
if (match_char (&arg, *args))
continue;
return false;
}
arg.opnum += 1;
c = *args;
switch (c)
{
case 'p':
case 'q':
case 'A':
case 'B':
case 'E':
case 'V':
case 'u':
relax_char = c;
break;
case 'I':
if (!match_const_int (&arg, &imm_expr.X_add_number))
return false;
imm_expr.X_op = O_constant;
if (GPR_SIZE == 32)
normalize_constant_expr (&imm_expr);
continue;
case 'a':
case 'i':
*offset_reloc = BFD_RELOC_MIPS16_JMP;
break;
}
operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
if (!operand)
abort ();
if (operand->type == OP_PCREL)
pcrel = true;
else
{
ext_operand = decode_mips16_operand (c, true);
if (operand != ext_operand)
{
if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
{
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
relax_char = c;
continue;
}
if (!match_expression (&arg, &offset_expr, offset_reloc))
return false;
/* '8' is used for SLTI(U) and has traditionally not
been allowed to take relocation operators. */
if (offset_reloc[0] != BFD_RELOC_UNUSED
&& (ext_operand->size != 16 || c == '8'))
{
match_not_constant (&arg);
return false;
}
if (offset_expr.X_op == O_big)
{
match_out_of_range (&arg);
return false;
}
relax_char = c;
continue;
}
}
if (mips_optional_operand_p (operand)
&& args[1] == ','
&& (arg.token[0].type != OT_REG
|| arg.token[1].type == OT_END))
{
/* Assume that the register has been elided and is the
same as the first operand. */
arg.token = tokens;
arg.argnum = 1;
}
if (!match_operand (&arg, operand))
return false;
}
}
/* Record that the current instruction is invalid for the current ISA. */
static void
match_invalid_for_isa (void)
{
set_insn_error_ss
(0, _("opcode not supported on this processor: %s (%s)"),
mips_cpu_info_from_arch (mips_opts.arch)->name,
mips_cpu_info_from_isa (mips_opts.isa)->name);
}
/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
Return true if a definite match or failure was found, storing any match
in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
(to handle things like VU0 suffixes). LAX_MATCH is true if we have already
tried and failed to match under normal conditions and now want to try a
more relaxed match. */
static bool
match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
const struct mips_opcode *past, struct mips_operand_token *tokens,
int opcode_extra, bool lax_match)
{
const struct mips_opcode *opcode;
const struct mips_opcode *invalid_delay_slot;
bool seen_valid_for_isa, seen_valid_for_size;
/* Search for a match, ignoring alternatives that don't satisfy the
current ISA or forced_length. */
invalid_delay_slot = 0;
seen_valid_for_isa = false;
seen_valid_for_size = false;
opcode = first;
do
{
gas_assert (strcmp (opcode->name, first->name) == 0);
if (is_opcode_valid (opcode))
{
seen_valid_for_isa = true;
if (is_size_valid (opcode))
{
bool delay_slot_ok;
seen_valid_for_size = true;
delay_slot_ok = is_delay_slot_valid (opcode);
if (match_insn (insn, opcode, tokens, opcode_extra,
lax_match, delay_slot_ok))
{
if (!delay_slot_ok)
{
if (!invalid_delay_slot)
invalid_delay_slot = opcode;
}
else
return true;
}
}
}
++opcode;
}
while (opcode < past && strcmp (opcode->name, first->name) == 0);
/* If the only matches we found had the wrong length for the delay slot,
pick the first such match. We'll issue an appropriate warning later. */
if (invalid_delay_slot)
{
if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
lax_match, true))
return true;
abort ();
}
/* Handle the case where we didn't try to match an instruction because
all the alternatives were incompatible with the current ISA. */
if (!seen_valid_for_isa)
{
match_invalid_for_isa ();
return true;
}
/* Handle the case where we didn't try to match an instruction because
all the alternatives were of the wrong size. */
if (!seen_valid_for_size)
{
if (mips_opts.insn32)
set_insn_error (0, _("opcode not supported in the `insn32' mode"));
else
set_insn_error_i
(0, _("unrecognized %d-bit version of microMIPS opcode"),
8 * forced_insn_length);
return true;
}
return false;
}
/* Like match_insns, but for MIPS16. */
static bool
match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
struct mips_operand_token *tokens)
{
const struct mips_opcode *opcode;
bool seen_valid_for_isa;
bool seen_valid_for_size;
/* Search for a match, ignoring alternatives that don't satisfy the
current ISA. There are no separate entries for extended forms so
we deal with forced_length later. */
seen_valid_for_isa = false;
seen_valid_for_size = false;
opcode = first;
do
{
gas_assert (strcmp (opcode->name, first->name) == 0);
if (is_opcode_valid_16 (opcode))
{
seen_valid_for_isa = true;
if (is_size_valid_16 (opcode))
{
seen_valid_for_size = true;
if (match_mips16_insn (insn, opcode, tokens))
return true;
}
}
++opcode;
}
while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
&& strcmp (opcode->name, first->name) == 0);
/* Handle the case where we didn't try to match an instruction because
all the alternatives were incompatible with the current ISA. */
if (!seen_valid_for_isa)
{
match_invalid_for_isa ();
return true;
}
/* Handle the case where we didn't try to match an instruction because
all the alternatives were of the wrong size. */
if (!seen_valid_for_size)
{
if (forced_insn_length == 2)
set_insn_error
(0, _("unrecognized unextended version of MIPS16 opcode"));
else
set_insn_error
(0, _("unrecognized extended version of MIPS16 opcode"));
return true;
}
return false;
}
/* Set up global variables for the start of a new macro. */
static void
macro_start (void)
{
memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
memset (&mips_macro_warning.first_insn_sizes, 0,
sizeof (mips_macro_warning.first_insn_sizes));
memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
mips_macro_warning.delay_slot_p = (mips_opts.noreorder
&& delayed_branch_p (&history[0]));
if (history[0].frag
&& history[0].frag->fr_type == rs_machine_dependent
&& RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
&& RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
mips_macro_warning.delay_slot_length = 0;
else
switch (history[0].insn_mo->pinfo2
& (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
{
case INSN2_BRANCH_DELAY_32BIT:
mips_macro_warning.delay_slot_length = 4;
break;
case INSN2_BRANCH_DELAY_16BIT:
mips_macro_warning.delay_slot_length = 2;
break;
default:
mips_macro_warning.delay_slot_length = 0;
break;
}
mips_macro_warning.first_frag = NULL;
}
/* Given that a macro is longer than one instruction or of the wrong size,
return the appropriate warning for it. Return null if no warning is
needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
and RELAX_NOMACRO. */
static const char *
macro_warning (relax_substateT subtype)
{
if (subtype & RELAX_DELAY_SLOT)
return _("macro instruction expanded into multiple instructions"
" in a branch delay slot");
else if (subtype & RELAX_NOMACRO)
return _("macro instruction expanded into multiple instructions");
else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
| RELAX_DELAY_SLOT_SIZE_SECOND))
return ((subtype & RELAX_DELAY_SLOT_16BIT)
? _("macro instruction expanded into a wrong size instruction"
" in a 16-bit branch delay slot")
: _("macro instruction expanded into a wrong size instruction"
" in a 32-bit branch delay slot"));
else
return 0;
}
/* Finish up a macro. Emit warnings as appropriate. */
static void
macro_end (void)
{
/* Relaxation warning flags. */
relax_substateT subtype = 0;
/* Check delay slot size requirements. */
if (mips_macro_warning.delay_slot_length == 2)
subtype |= RELAX_DELAY_SLOT_16BIT;
if (mips_macro_warning.delay_slot_length != 0)
{
if (mips_macro_warning.delay_slot_length
!= mips_macro_warning.first_insn_sizes[0])
subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
if (mips_macro_warning.delay_slot_length
!= mips_macro_warning.first_insn_sizes[1])
subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
}
/* Check instruction count requirements. */
if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
{
if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
subtype |= RELAX_SECOND_LONGER;
if (mips_opts.warn_about_macros)
subtype |= RELAX_NOMACRO;
if (mips_macro_warning.delay_slot_p)
subtype |= RELAX_DELAY_SLOT;
}
/* If both alternatives fail to fill a delay slot correctly,
emit the warning now. */
if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
&& (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
{
relax_substateT s;
const char *msg;
s = subtype & (RELAX_DELAY_SLOT_16BIT
| RELAX_DELAY_SLOT_SIZE_FIRST
| RELAX_DELAY_SLOT_SIZE_SECOND);
msg = macro_warning (s);
if (msg != NULL)
as_warn ("%s", msg);
subtype &= ~s;
}
/* If both implementations are longer than 1 instruction, then emit the
warning now. */
if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
{
relax_substateT s;
const char *msg;
s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
msg = macro_warning (s);
if (msg != NULL)
as_warn ("%s", msg);
subtype &= ~s;
}
/* If any flags still set, then one implementation might need a warning
and the other either will need one of a different kind or none at all.
Pass any remaining flags over to relaxation. */
if (mips_macro_warning.first_frag != NULL)
mips_macro_warning.first_frag->fr_subtype |= subtype;
}
/* Instruction operand formats used in macros that vary between
standard MIPS and microMIPS code. */
static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
static const char * const jalr_fmt[2] = { "d,s", "t,s" };
static const char * const lui_fmt[2] = { "t,u", "s,u" };
static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
: cop12_fmt[mips_opts.micromips])
#define JALR_FMT (jalr_fmt[mips_opts.micromips])
#define LUI_FMT (lui_fmt[mips_opts.micromips])
#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
: mem12_fmt[mips_opts.micromips])
#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
#define SHFT_FMT (shft_fmt[mips_opts.micromips])
#define TRAP_FMT (trap_fmt[mips_opts.micromips])
/* Read a macro's relocation codes from *ARGS and store them in *R.
The first argument in *ARGS will be either the code for a single
relocation or -1 followed by the three codes that make up a
composite relocation. */
static void
macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
{
int i, next;
next = va_arg (*args, int);
if (next >= 0)
r[0] = (bfd_reloc_code_real_type) next;
else
{
for (i = 0; i < 3; i++)
r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
/* This function is only used for 16-bit relocation fields.
To make the macro code simpler, treat an unrelocated value
in the same way as BFD_RELOC_LO16. */
if (r[0] == BFD_RELOC_UNUSED)
r[0] = BFD_RELOC_LO16;
}
}
/* Build an instruction created by a macro expansion. This is passed
a pointer to the count of instructions created so far, an
expression, the name of the instruction to build, an operand format
string, and corresponding arguments. */
static void
macro_build (expressionS *ep, const char *name, const char *fmt, ...)
{
const struct mips_opcode *mo = NULL;
bfd_reloc_code_real_type r[3];
const struct mips_opcode *amo;
const struct mips_operand *operand;
htab_t hash;
struct mips_cl_insn insn;
va_list args;
unsigned int uval;
va_start (args, fmt);
if (mips_opts.mips16)
{
mips16_macro_build (ep, name, fmt, &args);
va_end (args);
return;
}
r[0] = BFD_RELOC_UNUSED;
r[1] = BFD_RELOC_UNUSED;
r[2] = BFD_RELOC_UNUSED;
hash = mips_opts.micromips ? micromips_op_hash : op_hash;
amo = (struct mips_opcode *) str_hash_find (hash, name);
gas_assert (amo);
gas_assert (strcmp (name, amo->name) == 0);
do
{
/* Search until we get a match for NAME. It is assumed here that
macros will never generate MDMX, MIPS-3D, or MT instructions.
We try to match an instruction that fulfills the branch delay
slot instruction length requirement (if any) of the previous
instruction. While doing this we record the first instruction
seen that matches all the other conditions and use it anyway
if the requirement cannot be met; we will issue an appropriate
warning later on. */
if (strcmp (fmt, amo->args) == 0
&& amo->pinfo != INSN_MACRO
&& is_opcode_valid (amo)
&& is_size_valid (amo))
{
if (is_delay_slot_valid (amo))
{
mo = amo;
break;
}
else if (!mo)
mo = amo;
}
++amo;
gas_assert (amo->name);
}
while (strcmp (name, amo->name) == 0);
gas_assert (mo);
create_insn (&insn, mo);
for (; *fmt; ++fmt)
{
switch (*fmt)
{
case ',':
case '(':
case ')':
case 'z':
break;
case 'i':
case 'j':
macro_read_relocs (&args, r);
gas_assert (*r == BFD_RELOC_GPREL16
|| *r == BFD_RELOC_MIPS_HIGHER
|| *r == BFD_RELOC_HI16_S
|| *r == BFD_RELOC_LO16
|| *r == BFD_RELOC_MIPS_GOT_OFST
|| (mips_opts.micromips
&& (*r == BFD_RELOC_16
|| *r == BFD_RELOC_MIPS_GOT16
|| *r == BFD_RELOC_MIPS_CALL16
|| *r == BFD_RELOC_MIPS_GOT_HI16
|| *r == BFD_RELOC_MIPS_GOT_LO16
|| *r == BFD_RELOC_MIPS_CALL_HI16
|| *r == BFD_RELOC_MIPS_CALL_LO16
|| *r == BFD_RELOC_MIPS_SUB
|| *r == BFD_RELOC_MIPS_GOT_PAGE
|| *r == BFD_RELOC_MIPS_HIGHEST
|| *r == BFD_RELOC_MIPS_GOT_DISP
|| *r == BFD_RELOC_MIPS_TLS_GD
|| *r == BFD_RELOC_MIPS_TLS_LDM
|| *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
|| *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
|| *r == BFD_RELOC_MIPS_TLS_GOTTPREL
|| *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
|| *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
break;
case 'o':
macro_read_relocs (&args, r);
break;
case 'u':
macro_read_relocs (&args, r);
gas_assert (ep != NULL
&& (ep->X_op == O_constant
|| (ep->X_op == O_symbol
&& (*r == BFD_RELOC_MIPS_HIGHEST
|| *r == BFD_RELOC_HI16_S
|| *r == BFD_RELOC_HI16
|| *r == BFD_RELOC_GPREL16
|| *r == BFD_RELOC_MIPS_GOT_HI16
|| *r == BFD_RELOC_MIPS_CALL_HI16))));
break;
case 'p':
gas_assert (ep != NULL);
/*
* This allows macro() to pass an immediate expression for
* creating short branches without creating a symbol.
*
* We don't allow branch relaxation for these branches, as
* they should only appear in ".set nomacro" anyway.
*/
if (ep->X_op == O_constant)
{
/* For microMIPS we always use relocations for branches.
So we should not resolve immediate values. */
gas_assert (!mips_opts.micromips);
if ((ep->X_add_number & 3) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) ep->X_add_number);
if ((ep->X_add_number + 0x20000) & ~0x3ffff)
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) ep->X_add_number);
insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
ep = NULL;
}
else
*r = BFD_RELOC_16_PCREL_S2;
break;
case 'a':
gas_assert (ep != NULL);
*r = BFD_RELOC_MIPS_JMP;
break;
default:
operand = (mips_opts.micromips
? decode_micromips_operand (fmt)
: decode_mips_operand (fmt));
if (!operand)
abort ();
uval = va_arg (args, int);
if (operand->type == OP_CLO_CLZ_DEST)
uval |= (uval << 5);
insn_insert_operand (&insn, operand, uval);
if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
++fmt;
break;
}
}
va_end (args);
gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (&insn, ep, r, true);
}
static void
mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
va_list *args)
{
struct mips_opcode *mo;
struct mips_cl_insn insn;
const struct mips_operand *operand;
bfd_reloc_code_real_type r[3]
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
mo = (struct mips_opcode *) str_hash_find (mips16_op_hash, name);
gas_assert (mo);
gas_assert (strcmp (name, mo->name) == 0);
while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
{
++mo;
gas_assert (mo->name);
gas_assert (strcmp (name, mo->name) == 0);
}
create_insn (&insn, mo);
for (; *fmt; ++fmt)
{
int c;
c = *fmt;
switch (c)
{
case ',':
case '(':
case ')':
break;
case '.':
case 'S':
case 'P':
case 'R':
break;
case '<':
case '5':
case 'F':
case 'H':
case 'W':
case 'D':
case 'j':
case '8':
case 'V':
case 'C':
case 'U':
case 'k':
case 'K':
case 'p':
case 'q':
{
offsetT value;
gas_assert (ep != NULL);
if (ep->X_op != O_constant)
*r = (int) BFD_RELOC_UNUSED + c;
else if (calculate_reloc (*r, ep->X_add_number, &value))
{
mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
ep = NULL;
*r = BFD_RELOC_UNUSED;
}
}
break;
default:
operand = decode_mips16_operand (c, false);
if (!operand)
abort ();
insn_insert_operand (&insn, operand, va_arg (*args, int));
break;
}
}
gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (&insn, ep, r, true);
}
/*
* Generate a "jalr" instruction with a relocation hint to the called
* function. This occurs in NewABI PIC code.
*/
static void
macro_build_jalr (expressionS *ep, int cprestore)
{
static const bfd_reloc_code_real_type jalr_relocs[2]
= { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
const char *jalr;
char *f = NULL;
if (MIPS_JALR_HINT_P (ep))
{
frag_grow (8);
f = frag_more (0);
}
if (mips_opts.micromips)
{
jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
? "jalr" : "jalrs");
if (MIPS_JALR_HINT_P (ep)
|| mips_opts.insn32
|| (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
else
macro_build (NULL, jalr, "mj", PIC_CALL_REG);
}
else
macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
if (MIPS_JALR_HINT_P (ep))
fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, false, jalr_reloc);
}
/*
* Generate a "lui" instruction.
*/
static void
macro_build_lui (expressionS *ep, int regnum)
{
gas_assert (! mips_opts.mips16);
if (ep->X_op != O_constant)
{
gas_assert (ep->X_op == O_symbol);
/* _gp_disp is a special case, used from s_cpload.
__gnu_local_gp is used if mips_no_shared. */
gas_assert (mips_pic == NO_PIC
|| (! HAVE_NEWABI
&& strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
|| (! mips_in_shared
&& strcmp (S_GET_NAME (ep->X_add_symbol),
"__gnu_local_gp") == 0));
}
macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
}
/* Generate a sequence of instructions to do a load or store from a constant
offset off of a base register (breg) into/from a target register (treg),
using AT if necessary. */
static void
macro_build_ldst_constoffset (expressionS *ep, const char *op,
int treg, int breg, int dbl)
{
gas_assert (ep->X_op == O_constant);
/* Sign-extending 32-bit constants makes their handling easier. */
if (!dbl)
normalize_constant_expr (ep);
/* Right now, this routine can only handle signed 32-bit constants. */
if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
as_warn (_("operand overflow"));
if (IS_SEXT_16BIT_NUM(ep->X_add_number))
{
/* Signed 16-bit offset will fit in the op. Easy! */
macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
}
else
{
/* 32-bit offset, need multiple instructions and AT, like:
lui $tempreg,const_hi (BFD_RELOC_HI16_S)
addu $tempreg,$tempreg,$breg
<op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
to handle the complete offset. */
macro_build_lui (ep, AT);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
if (!mips_opts.at)
as_bad (_("macro used $at after \".set noat\""));
}
}
/* set_at()
* Generates code to set the $at register to true (one)
* if reg is less than the immediate expression.
*/
static void
set_at (int reg, int unsignedp)
{
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
AT, reg, BFD_RELOC_LO16);
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
}
}
/* Count the leading zeroes by performing a binary chop. This is a
bulky bit of source, but performance is a LOT better for the
majority of values than a simple loop to count the bits:
for (lcnt = 0; (lcnt < 32); lcnt++)
if ((v) & (1 << (31 - lcnt)))
break;
However it is not code size friendly, and the gain will drop a bit
on certain cached systems.
*/
#define COUNT_TOP_ZEROES(v) \
(((v) & ~0xffff) == 0 \
? ((v) & ~0xff) == 0 \
? ((v) & ~0xf) == 0 \
? ((v) & ~0x3) == 0 \
? ((v) & ~0x1) == 0 \
? !(v) \
? 32 \
: 31 \
: 30 \
: ((v) & ~0x7) == 0 \
? 29 \
: 28 \
: ((v) & ~0x3f) == 0 \
? ((v) & ~0x1f) == 0 \
? 27 \
: 26 \
: ((v) & ~0x7f) == 0 \
? 25 \
: 24 \
: ((v) & ~0xfff) == 0 \
? ((v) & ~0x3ff) == 0 \
? ((v) & ~0x1ff) == 0 \
? 23 \
: 22 \
: ((v) & ~0x7ff) == 0 \
? 21 \
: 20 \
: ((v) & ~0x3fff) == 0 \
? ((v) & ~0x1fff) == 0 \
? 19 \
: 18 \
: ((v) & ~0x7fff) == 0 \
? 17 \
: 16 \
: ((v) & ~0xffffff) == 0 \
? ((v) & ~0xfffff) == 0 \
? ((v) & ~0x3ffff) == 0 \
? ((v) & ~0x1ffff) == 0 \
? 15 \
: 14 \
: ((v) & ~0x7ffff) == 0 \
? 13 \
: 12 \
: ((v) & ~0x3fffff) == 0 \
? ((v) & ~0x1fffff) == 0 \
? 11 \
: 10 \
: ((v) & ~0x7fffff) == 0 \
? 9 \
: 8 \
: ((v) & ~0xfffffff) == 0 \
? ((v) & ~0x3ffffff) == 0 \
? ((v) & ~0x1ffffff) == 0 \
? 7 \
: 6 \
: ((v) & ~0x7ffffff) == 0 \
? 5 \
: 4 \
: ((v) & ~0x3fffffff) == 0 \
? ((v) & ~0x1fffffff) == 0 \
? 3 \
: 2 \
: ((v) & ~0x7fffffff) == 0 \
? 1 \
: 0)
/* load_register()
* This routine generates the least number of instructions necessary to load
* an absolute expression value into a register.
*/
static void
load_register (int reg, expressionS *ep, int dbl)
{
int freg;
expressionS hi32, lo32;
if (ep->X_op != O_big)
{
gas_assert (ep->X_op == O_constant);
/* Sign-extending 32-bit constants makes their handling easier. */
if (!dbl)
normalize_constant_expr (ep);
if (IS_SEXT_16BIT_NUM (ep->X_add_number))
{
/* We can handle 16 bit signed values with an addiu to
$zero. No need to ever use daddiu here, since $zero and
the result are always correct in 32 bit mode. */
macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
return;
}
else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
{
/* We can handle 16 bit unsigned values with an ori to
$zero. */
macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
return;
}
else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
{
/* 32 bit values require an lui. */
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
if ((ep->X_add_number & 0xffff) != 0)
macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
return;
}
}
/* The value is larger than 32 bits. */
if (!dbl || GPR_SIZE == 32)
{
char value[32];
sprintf_vma (value, ep->X_add_number);
as_bad (_("number (0x%s) larger than 32 bits"), value);
macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
return;
}
if (ep->X_op != O_big)
{
hi32 = *ep;
hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
hi32.X_add_number &= 0xffffffff;
lo32 = *ep;
lo32.X_add_number &= 0xffffffff;
}
else
{
gas_assert (ep->X_add_number > 2);
if (ep->X_add_number == 3)
generic_bignum[3] = 0;
else if (ep->X_add_number > 4)
as_bad (_("number larger than 64 bits"));
lo32.X_op = O_constant;
lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
hi32.X_op = O_constant;
hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
}
if (hi32.X_add_number == 0)
freg = 0;
else
{
int shift, bit;
unsigned long hi, lo;
if (hi32.X_add_number == (offsetT) 0xffffffff)
{
if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
{
macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
return;
}
if (lo32.X_add_number & 0x80000000)
{
macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
if (lo32.X_add_number & 0xffff)
macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
return;
}
}
/* Check for 16bit shifted constant. We know that hi32 is
non-zero, so start the mask on the first bit of the hi32
value. */
shift = 17;
do
{
unsigned long himask, lomask;
if (shift < 32)
{
himask = 0xffff >> (32 - shift);
lomask = (0xffffU << shift) & 0xffffffff;
}
else
{
himask = 0xffffU << (shift - 32);
lomask = 0;
}
if ((hi32.X_add_number & ~(offsetT) himask) == 0
&& (lo32.X_add_number & ~(offsetT) lomask) == 0)
{
expressionS tmp;
tmp.X_op = O_constant;
if (shift < 32)
tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
| (lo32.X_add_number >> shift));
else
tmp.X_add_number = hi32.X_add_number >> (shift - 32);
macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
reg, reg, (shift >= 32) ? shift - 32 : shift);
return;
}
++shift;
}
while (shift <= (64 - 16));
/* Find the bit number of the lowest one bit, and store the
shifted value in hi/lo. */
hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
if (lo != 0)
{
bit = 0;
while ((lo & 1) == 0)
{
lo >>= 1;
++bit;
}
if (bit != 0)
{
lo |= (hi & ((2UL << (bit - 1)) - 1)) << (32 - bit);
hi >>= bit;
}
}
else
{
bit = 32;
while ((hi & 1) == 0)
{
hi >>= 1;
++bit;
}
lo = hi;
hi = 0;
}
/* Optimize if the shifted value is a (power of 2) - 1. */
if ((hi == 0 && ((lo + 1) & lo) == 0)
|| (lo == 0xffffffff && ((hi + 1) & hi) == 0))
{
shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
if (shift != 0)
{
expressionS tmp;
/* This instruction will set the register to be all
ones. */
tmp.X_op = O_constant;
tmp.X_add_number = (offsetT) -1;
macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
if (bit != 0)
{
bit += shift;
macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
reg, reg, (bit >= 32) ? bit - 32 : bit);
}
macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
reg, reg, (shift >= 32) ? shift - 32 : shift);
return;
}
}
/* Sign extend hi32 before calling load_register, because we can
generally get better code when we load a sign extended value. */
if ((hi32.X_add_number & 0x80000000) != 0)
hi32.X_add_number |= ~(offsetT) 0xffffffff;
load_register (reg, &hi32, 0);
freg = reg;
}
if ((lo32.X_add_number & 0xffff0000) == 0)
{
if (freg != 0)
{
macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
freg = reg;
}
}
else
{
expressionS mid16;
if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
{
macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
return;
}
if (freg != 0)
{
macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
freg = reg;
}
mid16 = lo32;
mid16.X_add_number >>= 16;
macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
freg = reg;
}
if ((lo32.X_add_number & 0xffff) != 0)
macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
}
static inline void
load_delay_nop (void)
{
if (!gpr_interlocks)
macro_build (NULL, "nop", "");
}
/* Load an address into a register. */
static void
load_address (int reg, expressionS *ep, int *used_at)
{
if (ep->X_op != O_constant
&& ep->X_op != O_symbol)
{
as_bad (_("expression too complex"));
ep->X_op = O_constant;
}
if (ep->X_op == O_constant)
{
load_register (reg, ep, HAVE_64BIT_ADDRESSES);
return;
}
if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, we want
addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
Otherwise we want
lui $reg,<sym> (BFD_RELOC_HI16_S)
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If we have an addend, we always use the latter form.
With 64bit address space and a usable $at we want
lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
daddiu $at,<sym> (BFD_RELOC_LO16)
dsll32 $reg,0
daddu $reg,$reg,$at
If $at is already in use, we use a path which is suboptimal
on superscalar processors.
lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $reg,16
daddiu $reg,<sym> (BFD_RELOC_HI16_S)
dsll $reg,16
daddiu $reg,<sym> (BFD_RELOC_LO16)
For GP relative symbols in 64bit address space we can use
the same sequence as in 32bit address space. */
if (HAVE_64BIT_SYMBOLS)
{
if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (ep->X_add_symbol, 1))
{
relax_start (ep->X_add_symbol);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
if (*used_at == 0 && mips_opts.at)
{
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
macro_build (ep, "daddiu", "t,r,j", reg, reg,
BFD_RELOC_MIPS_HIGHER);
macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
*used_at = 1;
}
else
{
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
macro_build (ep, "daddiu", "t,r,j", reg, reg,
BFD_RELOC_MIPS_HIGHER);
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
}
if (mips_relax.sequence)
relax_end ();
}
else
{
if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (ep->X_add_symbol, 1))
{
relax_start (ep->X_add_symbol);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
macro_build_lui (ep, reg);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
reg, reg, BFD_RELOC_LO16);
if (mips_relax.sequence)
relax_end ();
}
}
else if (!mips_big_got)
{
expressionS ex;
/* If this is a reference to an external symbol, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
Otherwise we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If there is a constant, it must be added in after.
If we have NewABI, we want
lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
unless we're referencing a global symbol with a non-zero
offset, in which case cst must be added separately. */
if (HAVE_NEWABI)
{
if (ep->X_add_number)
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
relax_start (ep->X_add_symbol);
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
reg, reg, BFD_RELOC_LO16);
ep->X_add_number = ex.X_add_number;
relax_switch ();
}
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (mips_relax.sequence)
relax_end ();
}
else
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
relax_start (ep->X_add_symbol);
relax_switch ();
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
relax_end ();
if (ex.X_add_number != 0)
{
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
reg, reg, BFD_RELOC_LO16);
}
}
}
else if (mips_big_got)
{
expressionS ex;
/* This is the large GOT case. If this is a reference to an
external symbol, we want
lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $reg,$reg,$gp
lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
Otherwise, for a reference to a local symbol in old ABI, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If there is a constant, it must be added in after.
In the NewABI, for local symbols, with or without offsets, we want:
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
*/
if (HAVE_NEWABI)
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
relax_start (ep->X_add_symbol);
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
reg, reg, mips_gp_register);
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
reg, BFD_RELOC_MIPS_GOT_LO16, reg);
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
else if (ex.X_add_number)
{
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
}
ep->X_add_number = ex.X_add_number;
relax_switch ();
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_MIPS_GOT_OFST);
relax_end ();
}
else
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
relax_start (ep->X_add_symbol);
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
reg, reg, mips_gp_register);
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
reg, BFD_RELOC_MIPS_GOT_LO16, reg);
relax_switch ();
if (reg_needs_delay (mips_gp_register))
{
/* We need a nop before loading from $gp. This special
check is required because the lui which starts the main
instruction stream does not refer to $gp, and so will not
insert the nop which may be required. */
macro_build (NULL, "nop", "");
}
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
relax_end ();
if (ex.X_add_number != 0)
{
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
}
}
}
else
abort ();
if (!mips_opts.at && *used_at == 1)
as_bad (_("macro used $at after \".set noat\""));
}
/* Move the contents of register SOURCE into register DEST. */
static void
move_register (int dest, int source)
{
/* Prefer to use a 16-bit microMIPS instruction unless the previous
instruction specifically requires a 32-bit one. */
if (mips_opts.micromips
&& !mips_opts.insn32
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, "move", "mp,mj", dest, source);
else
macro_build (NULL, "or", "d,v,t", dest, source, 0);
}
/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
The two alternatives are:
Global symbol Local symbol
------------- ------------
lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
... ...
addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
load_got_offset emits the first instruction and add_got_offset
emits the second for a 16-bit offset or add_got_offset_hilo emits
a sequence to add a 32-bit offset using a scratch register. */
static void
load_got_offset (int dest, expressionS *local)
{
expressionS global;
global = *local;
global.X_add_number = 0;
relax_start (local->X_add_symbol);
macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
relax_switch ();
macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
relax_end ();
}
static void
add_got_offset (int dest, expressionS *local)
{
expressionS global;
global.X_op = O_constant;
global.X_op_symbol = NULL;
global.X_add_symbol = NULL;
global.X_add_number = local->X_add_number;
relax_start (local->X_add_symbol);
macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
dest, dest, BFD_RELOC_LO16);
relax_switch ();
macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
relax_end ();
}
static void
add_got_offset_hilo (int dest, expressionS *local, int tmp)
{
expressionS global;
int hold_mips_optimize;
global.X_op = O_constant;
global.X_op_symbol = NULL;
global.X_add_symbol = NULL;
global.X_add_number = local->X_add_number;
relax_start (local->X_add_symbol);
load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
relax_switch ();
/* Set mips_optimize around the lui instruction to avoid
inserting an unnecessary nop after the lw. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
macro_build_lui (&global, tmp);
mips_optimize = hold_mips_optimize;
macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
relax_end ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
}
/* Emit a sequence of instructions to emulate a branch likely operation.
BR is an ordinary branch corresponding to one to be emulated. BRNEG
is its complementing branch with the original condition negated.
CALL is set if the original branch specified the link operation.
EP, FMT, SREG and TREG specify the usual macro_build() parameters.
Code like this is produced in the noreorder mode:
BRNEG <args>, 1f
nop
b <sym>
delay slot (executed only if branch taken)
1:
or, if CALL is set:
BRNEG <args>, 1f
nop
bal <sym>
delay slot (executed only if branch taken)
1:
In the reorder mode the delay slot would be filled with a nop anyway,
so code produced is simply:
BR <args>, <sym>
nop
This function is used when producing code for the microMIPS ASE that
does not implement branch likely instructions in hardware. */
static void
macro_build_branch_likely (const char *br, const char *brneg,
int call, expressionS *ep, const char *fmt,
unsigned int sreg, unsigned int treg)
{
int noreorder = mips_opts.noreorder;
expressionS expr1;
gas_assert (mips_opts.micromips);
start_noreorder ();
if (noreorder)
{
micromips_label_expr (&expr1);
macro_build (&expr1, brneg, fmt, sreg, treg);
macro_build (NULL, "nop", "");
macro_build (ep, call ? "bal" : "b", "p");
/* Set to true so that append_insn adds a label. */
emit_branch_likely_macro = true;
}
else
{
macro_build (ep, br, fmt, sreg, treg);
macro_build (NULL, "nop", "");
}
end_noreorder ();
}
/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
the condition code tested. EP specifies the branch target. */
static void
macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
{
const int call = 0;
const char *brneg;
const char *br;
switch (type)
{
case M_BC1FL:
br = "bc1f";
brneg = "bc1t";
break;
case M_BC1TL:
br = "bc1t";
brneg = "bc1f";
break;
case M_BC2FL:
br = "bc2f";
brneg = "bc2t";
break;
case M_BC2TL:
br = "bc2t";
brneg = "bc2f";
break;
default:
abort ();
}
macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
}
/* Emit a two-argument branch macro specified by TYPE, using SREG as
the register tested. EP specifies the branch target. */
static void
macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
{
const char *brneg = NULL;
const char *br;
int call = 0;
switch (type)
{
case M_BGEZ:
br = "bgez";
break;
case M_BGEZL:
br = mips_opts.micromips ? "bgez" : "bgezl";
brneg = "bltz";
break;
case M_BGEZALL:
gas_assert (mips_opts.micromips);
br = mips_opts.insn32 ? "bgezal" : "bgezals";
brneg = "bltz";
call = 1;
break;
case M_BGTZ:
br = "bgtz";
break;
case M_BGTZL:
br = mips_opts.micromips ? "bgtz" : "bgtzl";
brneg = "blez";
break;
case M_BLEZ:
br = "blez";
break;
case M_BLEZL:
br = mips_opts.micromips ? "blez" : "blezl";
brneg = "bgtz";
break;
case M_BLTZ:
br = "bltz";
break;
case M_BLTZL:
br = mips_opts.micromips ? "bltz" : "bltzl";
brneg = "bgez";
break;
case M_BLTZALL:
gas_assert (mips_opts.micromips);
br = mips_opts.insn32 ? "bltzal" : "bltzals";
brneg = "bgez";
call = 1;
break;
default:
abort ();
}
if (mips_opts.micromips && brneg)
macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
else
macro_build (ep, br, "s,p", sreg);
}
/* Emit a three-argument branch macro specified by TYPE, using SREG and
TREG as the registers tested. EP specifies the branch target. */
static void
macro_build_branch_rsrt (int type, expressionS *ep,
unsigned int sreg, unsigned int treg)
{
const char *brneg = NULL;
const int call = 0;
const char *br;
switch (type)
{
case M_BEQ:
case M_BEQ_I:
br = "beq";
break;
case M_BEQL:
case M_BEQL_I:
br = mips_opts.micromips ? "beq" : "beql";
brneg = "bne";
break;
case M_BNE:
case M_BNE_I:
br = "bne";
break;
case M_BNEL:
case M_BNEL_I:
br = mips_opts.micromips ? "bne" : "bnel";
brneg = "beq";
break;
default:
abort ();
}
if (mips_opts.micromips && brneg)
macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
else
macro_build (ep, br, "s,t,p", sreg, treg);
}
/* Return the high part that should be loaded in order to make the low
part of VALUE accessible using an offset of OFFBITS bits. */
static offsetT
offset_high_part (offsetT value, unsigned int offbits)
{
offsetT bias;
addressT low_mask;
if (offbits == 0)
return value;
bias = 1 << (offbits - 1);
low_mask = bias * 2 - 1;
return (value + bias) & ~low_mask;
}
/* Return true if the value stored in offset_expr and offset_reloc
fits into a signed offset of OFFBITS bits. RANGE is the maximum
amount that the caller wants to add without inducing overflow
and ALIGN is the known alignment of the value in bytes. */
static bool
small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
{
if (offbits == 16)
{
/* Accept any relocation operator if overflow isn't a concern. */
if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
return true;
/* These relocations are guaranteed not to overflow in correct links. */
if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
|| gprel16_reloc_p (*offset_reloc))
return true;
}
if (offset_expr.X_op == O_constant
&& offset_high_part (offset_expr.X_add_number, offbits) == 0
&& offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
return true;
return false;
}
/*
* Build macros
* This routine implements the seemingly endless macro or synthesized
* instructions and addressing modes in the mips assembly language. Many
* of these macros are simple and are similar to each other. These could
* probably be handled by some kind of table or grammar approach instead of
* this verbose method. Others are not simple macros but are more like
* optimizing code generation.
* One interesting optimization is when several store macros appear
* consecutively that would load AT with the upper half of the same address.
* The ensuing load upper instructions are omitted. This implies some kind
* of global optimization. We currently only optimize within a single macro.
* For many of the load and store macros if the address is specified as a
* constant expression in the first 64k of memory (ie ld $2,0x4000c) we
* first load register 'at' with zero and use it as the base register. The
* mips assembler simply uses register $zero. Just one tiny optimization
* we're missing.
*/
static void
macro (struct mips_cl_insn *ip, char *str)
{
const struct mips_operand_array *operands;
unsigned int breg, i;
unsigned int tempreg;
int mask;
int used_at = 0;
expressionS label_expr;
expressionS expr1;
expressionS *ep;
const char *s;
const char *s2;
const char *fmt;
int likely = 0;
int coproc = 0;
int offbits = 16;
int call = 0;
int jals = 0;
int dbl = 0;
int imm = 0;
int ust = 0;
int lp = 0;
int ll_sc_paired = 0;
bool large_offset;
int off;
int hold_mips_optimize;
unsigned int align;
unsigned int op[MAX_OPERANDS];
gas_assert (! mips_opts.mips16);
operands = insn_operands (ip);
for (i = 0; i < MAX_OPERANDS; i++)
if (operands->operand[i])
op[i] = insn_extract_operand (ip, operands->operand[i]);
else
op[i] = -1;
mask = ip->insn_mo->mask;
label_expr.X_op = O_constant;
label_expr.X_op_symbol = NULL;
label_expr.X_add_symbol = NULL;
label_expr.X_add_number = 0;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
align = 1;
switch (mask)
{
case M_DABS:
dbl = 1;
/* Fall through. */
case M_ABS:
/* bgez $a0,1f
move v0,$a0
sub v0,$zero,$a0
1:
*/
start_noreorder ();
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bgez", "s,p", op[1]);
if (op[0] == op[1])
macro_build (NULL, "nop", "");
else
move_register (op[0], op[1]);
macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
if (mips_opts.micromips)
micromips_add_label ();
end_noreorder ();
break;
case M_ADD_I:
s = "addi";
s2 = "add";
if (ISA_IS_R6 (mips_opts.isa))
goto do_addi_i;
else
goto do_addi;
case M_ADDU_I:
s = "addiu";
s2 = "addu";
goto do_addi;
case M_DADD_I:
dbl = 1;
s = "daddi";
s2 = "dadd";
if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
goto do_addi;
if (imm_expr.X_add_number >= -0x200
&& imm_expr.X_add_number < 0x200
&& !ISA_IS_R6 (mips_opts.isa))
{
macro_build (NULL, s, "t,r,.", op[0], op[1],
(int) imm_expr.X_add_number);
break;
}
goto do_addi_i;
case M_DADDU_I:
dbl = 1;
s = "daddiu";
s2 = "daddu";
do_addi:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
{
macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
break;
}
do_addi_i:
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
break;
case M_AND_I:
s = "andi";
s2 = "and";
goto do_bit;
case M_OR_I:
s = "ori";
s2 = "or";
goto do_bit;
case M_NOR_I:
s = "";
s2 = "nor";
goto do_bit;
case M_XOR_I:
s = "xori";
s2 = "xor";
do_bit:
if (imm_expr.X_add_number >= 0
&& imm_expr.X_add_number < 0x10000)
{
if (mask != M_NOR_I)
macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
else
{
macro_build (&imm_expr, "ori", "t,r,i",
op[0], op[1], BFD_RELOC_LO16);
macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
}
break;
}
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
break;
case M_BALIGN:
switch (imm_expr.X_add_number)
{
case 0:
macro_build (NULL, "nop", "");
break;
case 2:
macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
break;
case 1:
case 3:
macro_build (NULL, "balign", "t,s,2", op[0], op[1],
(int) imm_expr.X_add_number);
break;
default:
as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
(unsigned long) imm_expr.X_add_number);
break;
}
break;
case M_BC1FL:
case M_BC1TL:
case M_BC2FL:
case M_BC2TL:
gas_assert (mips_opts.micromips);
macro_build_branch_ccl (mask, &offset_expr,
EXTRACT_OPERAND (1, BCC, *ip));
break;
case M_BEQ_I:
case M_BEQL_I:
case M_BNE_I:
case M_BNEL_I:
if (imm_expr.X_add_number == 0)
op[1] = 0;
else
{
op[1] = AT;
used_at = 1;
load_register (op[1], &imm_expr, GPR_SIZE == 64);
}
/* Fall through. */
case M_BEQL:
case M_BNEL:
macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
break;
case M_BGEL:
likely = 1;
/* Fall through. */
case M_BGE:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BGEZL:
case M_BGEZALL:
case M_BGTZL:
case M_BLEZL:
case M_BLTZL:
case M_BLTZALL:
macro_build_branch_rs (mask, &offset_expr, op[0]);
break;
case M_BGTL_I:
likely = 1;
/* Fall through. */
case M_BGT_I:
/* Check for > max integer. */
if (imm_expr.X_add_number >= GPR_SMAX)
{
do_false:
/* Result is always false. */
if (! likely)
macro_build (NULL, "nop", "");
else
macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
break;
}
++imm_expr.X_add_number;
/* Fall through. */
case M_BGE_I:
case M_BGEL_I:
if (mask == M_BGEL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
{
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
&offset_expr, op[0]);
break;
}
if (imm_expr.X_add_number == 1)
{
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
&offset_expr, op[0]);
break;
}
if (imm_expr.X_add_number <= GPR_SMIN)
{
do_true:
/* Result is always true. */
as_warn (_("branch %s is always true"), ip->insn_mo->name);
macro_build (&offset_expr, "b", "p");
break;
}
used_at = 1;
set_at (op[0], 0);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
break;
case M_BGEUL:
likely = 1;
/* Fall through. */
case M_BGEU:
if (op[1] == 0)
goto do_true;
else if (op[0] == 0)
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, ZERO, op[1]);
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BGTUL_I:
likely = 1;
/* Fall through. */
case M_BGTU_I:
if (op[0] == 0
|| (GPR_SIZE == 32
&& imm_expr.X_add_number == -1))
goto do_false;
++imm_expr.X_add_number;
/* Fall through. */
case M_BGEU_I:
case M_BGEUL_I:
if (mask == M_BGEUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_true;
else if (imm_expr.X_add_number == 1)
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, op[0], ZERO);
else
{
used_at = 1;
set_at (op[0], 1);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BGTL:
likely = 1;
/* Fall through. */
case M_BGT:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BGTUL:
likely = 1;
/* Fall through. */
case M_BGTU:
if (op[1] == 0)
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, op[0], ZERO);
else if (op[0] == 0)
goto do_false;
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLEL:
likely = 1;
/* Fall through. */
case M_BLE:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BLEL_I:
likely = 1;
/* Fall through. */
case M_BLE_I:
if (imm_expr.X_add_number >= GPR_SMAX)
goto do_true;
++imm_expr.X_add_number;
/* Fall through. */
case M_BLT_I:
case M_BLTL_I:
if (mask == M_BLTL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
else if (imm_expr.X_add_number == 1)
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
else
{
used_at = 1;
set_at (op[0], 0);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLEUL:
likely = 1;
/* Fall through. */
case M_BLEU:
if (op[1] == 0)
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, op[0], ZERO);
else if (op[0] == 0)
goto do_true;
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BLEUL_I:
likely = 1;
/* Fall through. */
case M_BLEU_I:
if (op[0] == 0
|| (GPR_SIZE == 32
&& imm_expr.X_add_number == -1))
goto do_true;
++imm_expr.X_add_number;
/* Fall through. */
case M_BLTU_I:
case M_BLTUL_I:
if (mask == M_BLTUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_false;
else if (imm_expr.X_add_number == 1)
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, op[0], ZERO);
else
{
used_at = 1;
set_at (op[0], 1);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLTL:
likely = 1;
/* Fall through. */
case M_BLT:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLTUL:
likely = 1;
/* Fall through. */
case M_BLTU:
if (op[1] == 0)
goto do_false;
else if (op[0] == 0)
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, ZERO, op[1]);
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_DDIV_3:
dbl = 1;
/* Fall through. */
case M_DIV_3:
s = "mflo";
goto do_div3;
case M_DREM_3:
dbl = 1;
/* Fall through. */
case M_REM_3:
s = "mfhi";
do_div3:
if (op[2] == 0)
{
as_warn (_("divide by zero"));
if (mips_trap)
macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
else
macro_build (NULL, "break", BRK_FMT, 7);
break;
}
start_noreorder ();
if (mips_trap)
{
macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
}
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
macro_build (NULL, "break", BRK_FMT, 7);
if (mips_opts.micromips)
micromips_add_label ();
}
expr1.X_add_number = -1;
used_at = 1;
load_register (AT, &expr1, dbl);
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
if (dbl)
{
expr1.X_add_number = 1;
load_register (AT, &expr1, dbl);
macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
}
else
{
expr1.X_add_number = 0x80000000;
macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
}
if (mips_trap)
{
macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
}
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
macro_build (NULL, "nop", "");
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
macro_build (NULL, "break", BRK_FMT, 6);
}
if (mips_opts.micromips)
micromips_add_label ();
macro_build (NULL, s, MFHL_FMT, op[0]);
break;
case M_DIV_3I:
s = "div";
s2 = "mflo";
goto do_divi;
case M_DIVU_3I:
s = "divu";
s2 = "mflo";
goto do_divi;
case M_REM_3I:
s = "div";
s2 = "mfhi";
goto do_divi;
case M_REMU_3I:
s = "divu";
s2 = "mfhi";
goto do_divi;
case M_DDIV_3I:
dbl = 1;
s = "ddiv";
s2 = "mflo";
goto do_divi;
case M_DDIVU_3I:
dbl = 1;
s = "ddivu";
s2 = "mflo";
goto do_divi;
case M_DREM_3I:
dbl = 1;
s = "ddiv";
s2 = "mfhi";
goto do_divi;
case M_DREMU_3I:
dbl = 1;
s = "ddivu";
s2 = "mfhi";
do_divi:
if (imm_expr.X_add_number == 0)
{
as_warn (_("divide by zero"));
if (mips_trap)
macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
else
macro_build (NULL, "break", BRK_FMT, 7);
break;
}
if (imm_expr.X_add_number == 1)
{
if (strcmp (s2, "mflo") == 0)
move_register (op[0], op[1]);
else
move_register (op[0], ZERO);
break;
}
if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
{
if (strcmp (s2, "mflo") == 0)
macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
else
move_register (op[0], ZERO);
break;
}
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, s, "z,s,t", op[1], AT);
macro_build (NULL, s2, MFHL_FMT, op[0]);
break;
case M_DIVU_3:
s = "divu";
s2 = "mflo";
goto do_divu3;
case M_REMU_3:
s = "divu";
s2 = "mfhi";
goto do_divu3;
case M_DDIVU_3:
s = "ddivu";
s2 = "mflo";
goto do_divu3;
case M_DREMU_3:
s = "ddivu";
s2 = "mfhi";
do_divu3:
start_noreorder ();
if (mips_trap)
{
macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
macro_build (NULL, s, "z,s,t", op[1], op[2]);
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
}
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
macro_build (NULL, s, "z,s,t", op[1], op[2]);
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
macro_build (NULL, "break", BRK_FMT, 7);
if (mips_opts.micromips)
micromips_add_label ();
}
macro_build (NULL, s2, MFHL_FMT, op[0]);
break;
case M_DLCA_AB:
dbl = 1;
/* Fall through. */
case M_LCA_AB:
call = 1;
goto do_la;
case M_DLA_AB:
dbl = 1;
/* Fall through. */
case M_LA_AB:
do_la:
/* Load the address of a symbol into a register. If breg is not
zero, we then add a base register to it. */
breg = op[2];
if (dbl && GPR_SIZE == 32)
as_warn (_("dla used to load 32-bit register; recommend using la "
"instead"));
if (!dbl && HAVE_64BIT_OBJECTS)
as_warn (_("la used to load 64-bit address; recommend using dla "
"instead"));
if (small_offset_p (0, align, 16))
{
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
-1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
break;
}
if (mips_opts.at && (op[0] == breg))
{
tempreg = AT;
used_at = 1;
}
else
tempreg = op[0];
if (offset_expr.X_op != O_symbol
&& offset_expr.X_op != O_constant)
{
as_bad (_("expression too complex"));
offset_expr.X_op = O_constant;
}
if (offset_expr.X_op == O_constant)
load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
else if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, we want
addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
Otherwise we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a constant, we need two instructions anyhow,
so we may as well always use the latter form.
With 64bit address space and a usable $at we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
daddiu $at,<sym> (BFD_RELOC_LO16)
dsll32 $tempreg,0
daddu $tempreg,$tempreg,$at
If $at is already in use, we use a path which is suboptimal
on superscalar processors.
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_LO16)
For GP relative symbols in 64bit address space we can use
the same sequence as in 32bit address space. */
if (HAVE_64BIT_SYMBOLS)
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
if (used_at == 0 && mips_opts.at)
{
macro_build (&offset_expr, "lui", LUI_FMT,
tempreg, BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "lui", LUI_FMT,
AT, BFD_RELOC_HI16_S);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
macro_build (&offset_expr, "daddiu", "t,r,j",
AT, AT, BFD_RELOC_LO16);
macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
used_at = 1;
}
else
{
macro_build (&offset_expr, "lui", LUI_FMT,
tempreg, BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_HI16_S);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
if (mips_relax.sequence)
relax_end ();
}
else
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
as_bad (_("offset too large"));
macro_build_lui (&offset_expr, tempreg);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
if (mips_relax.sequence)
relax_end ();
}
}
else if (!mips_big_got && !HAVE_NEWABI)
{
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
/* If this is a reference to an external symbol, and there
is no constant, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
or for lca or if tempreg is PIC_CALL_REG
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<constant>
For a local symbol, we want the same instruction
sequence, but we output a BFD_RELOC_LO16 reloc on the
addiu instruction.
If we have a large constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
For a local symbol, we want the same instruction
sequence, but we output a BFD_RELOC_LO16 reloc on the
addiu instruction.
*/
if (offset_expr.X_add_number == 0)
{
if (mips_pic == SVR4_PIC
&& breg == 0
&& (call || tempreg == PIC_CALL_REG))
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
lw_reloc_type, mips_gp_register);
if (breg != 0)
{
/* We're going to put in an addu instruction using
tempreg, so we may as well insert the nop right
now. */
load_delay_nop ();
}
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
relax_end ();
/* FIXME: If breg == 0, and the next instruction uses
$tempreg, then if this variant case is used an extra
nop will be generated. */
}
else if (offset_expr.X_add_number >= -0x8000
&& offset_expr.X_add_number < 0x8000)
{
load_got_offset (tempreg, &offset_expr);
load_delay_nop ();
add_got_offset (tempreg, &offset_expr);
}
else
{
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number =
SEXT_16BIT (offset_expr.X_add_number);
load_got_offset (tempreg, &offset_expr);
offset_expr.X_add_number = expr1.X_add_number;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg == op[0])
{
load_delay_nop ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
breg = 0;
tempreg = op[0];
}
add_got_offset_hilo (tempreg, &offset_expr, AT);
used_at = 1;
}
}
else if (!mips_big_got && HAVE_NEWABI)
{
int add_breg_early = 0;
/* If this is a reference to an external, and there is no
constant, or local symbol (*), with or without a
constant, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
or for lca or if tempreg is PIC_CALL_REG
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
If we have a small constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
addiu $tempreg,$tempreg,<constant>
If we have a large constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
(*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
local symbols, even though it introduces an additional
instruction. */
if (offset_expr.X_add_number)
{
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
{
unsigned int dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != op[0])
dreg = tempreg;
else
{
gas_assert (tempreg == AT);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
dreg = op[0];
add_breg_early = 1;
}
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
dreg, dreg, AT);
used_at = 1;
}
else
as_bad (_("PIC code offset overflow (max 32 signed bits)"));
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (add_breg_early)
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], tempreg, breg);
breg = 0;
tempreg = op[0];
}
relax_end ();
}
else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_CALL16, mips_gp_register);
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
relax_end ();
}
else
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
}
}
else if (mips_big_got && !HAVE_NEWABI)
{
int gpdelay;
int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
/* This is the large GOT case. If this is a reference to an
external symbol, and there is no constant, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
or for lca or if tempreg is PIC_CALL_REG
lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
nop
addiu $tempreg,$tempreg,<constant>
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
If we have a large constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
addu $tempreg,$tempreg,$at
*/
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
relax_start (offset_expr.X_add_symbol);
gpdelay = reg_needs_delay (mips_gp_register);
if (expr1.X_add_number == 0 && breg == 0
&& (call || tempreg == PIC_CALL_REG))
{
lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
}
macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
tempreg, lw_reloc_type, tempreg);
if (expr1.X_add_number == 0)
{
if (breg != 0)
{
/* We're going to put in an addu instruction using
tempreg, so we may as well insert the nop right
now. */
load_delay_nop ();
}
}
else if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
load_delay_nop ();
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
else
{
unsigned int dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != op[0])
dreg = tempreg;
else
{
gas_assert (tempreg == AT);
load_delay_nop ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
dreg = op[0];
}
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
used_at = 1;
}
offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
relax_switch ();
if (gpdelay)
{
/* This is needed because this instruction uses $gp, but
the first instruction on the main stream does not. */
macro_build (NULL, "nop", "");
}
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
local_reloc_type, mips_gp_register);
if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
/* FIXME: If add_number is 0, and there was no base
register, the external symbol case ended with a load,
so if the symbol turns out to not be external, and
the next instruction uses tempreg, an unnecessary nop
will be inserted. */
}
else
{
if (breg == op[0])
{
/* We must add in the base register now, as in the
external symbol case. */
gas_assert (tempreg == AT);
load_delay_nop ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
tempreg = op[0];
/* We set breg to 0 because we have arranged to add
it in in both cases. */
breg = 0;
}
macro_build_lui (&expr1, AT);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
AT, AT, BFD_RELOC_LO16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, AT);
used_at = 1;
}
relax_end ();
}
else if (mips_big_got && HAVE_NEWABI)
{
int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
int add_breg_early = 0;
/* This is the large GOT case. If this is a reference to an
external symbol, and there is no constant, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
or for lca or if tempreg is PIC_CALL_REG
lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
addi $tempreg,$tempreg,<constant>
If we have a large constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
lui $at,<hiconstant>
addi $at,$at,<loconstant>
add $tempreg,$tempreg,$at
If we have NewABI, and we know it's a local symbol, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
otherwise we have to resort to GOT_HI16/GOT_LO16. */
relax_start (offset_expr.X_add_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number == 0 && breg == 0
&& (call || tempreg == PIC_CALL_REG))
{
lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
}
macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
tempreg, lw_reloc_type, tempreg);
if (expr1.X_add_number == 0)
;
else if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
{
unsigned int dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != op[0])
dreg = tempreg;
else
{
gas_assert (tempreg == AT);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
dreg = op[0];
add_breg_early = 1;
}
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
used_at = 1;
}
else
as_bad (_("PIC code offset overflow (max 32 signed bits)"));
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
tempreg, BFD_RELOC_MIPS_GOT_OFST);
if (add_breg_early)
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], tempreg, breg);
breg = 0;
tempreg = op[0];
}
relax_end ();
}
else
abort ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
break;
case M_MSGSND:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
break;
case M_MSGLD:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", 0x02);
break;
case M_MSGLD_T:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
break;
case M_MSGWAIT:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", 3);
break;
case M_MSGWAIT_T:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
break;
case M_J_A:
/* The j instruction may not be used in PIC code, since it
requires an absolute address. We convert it to a b
instruction. */
if (mips_pic == NO_PIC)
macro_build (&offset_expr, "j", "a");
else
macro_build (&offset_expr, "b", "p");
break;
/* The jal instructions must be handled as macros because when
generating PIC code they expand to multi-instruction
sequences. Normally they are simple instructions. */
case M_JALS_1:
op[1] = op[0];
op[0] = RA;
/* Fall through. */
case M_JALS_2:
gas_assert (mips_opts.micromips);
if (mips_opts.insn32)
{
as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
break;
}
jals = 1;
goto jal;
case M_JAL_1:
op[1] = op[0];
op[0] = RA;
/* Fall through. */
case M_JAL_2:
jal:
if (mips_pic == NO_PIC)
{
s = jals ? "jalrs" : "jalr";
if (mips_opts.micromips
&& !mips_opts.insn32
&& op[0] == RA
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, s, "mj", op[1]);
else
macro_build (NULL, s, JALR_FMT, op[0], op[1]);
}
else
{
int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
&& mips_cprestore_offset >= 0);
if (op[1] != PIC_CALL_REG)
as_warn (_("MIPS PIC call to register other than $25"));
s = ((mips_opts.micromips
&& !mips_opts.insn32
&& (!mips_opts.noreorder || cprestore))
? "jalrs" : "jalr");
if (mips_opts.micromips
&& !mips_opts.insn32
&& op[0] == RA
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, s, "mj", op[1]);
else
macro_build (NULL, s, JALR_FMT, op[0], op[1]);
if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
{
if (mips_cprestore_offset < 0)
as_warn (_("no .cprestore pseudo-op used in PIC code"));
else
{
if (!mips_frame_reg_valid)
{
as_warn (_("no .frame pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_frame_reg_valid = 1;
}
if (!mips_cprestore_valid)
{
as_warn (_("no .cprestore pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_cprestore_valid = 1;
}
if (mips_opts.noreorder)
macro_build (NULL, "nop", "");
expr1.X_add_number = mips_cprestore_offset;
macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
mips_gp_register,
mips_frame_reg,
HAVE_64BIT_ADDRESSES);
}
}
}
break;
case M_JALS_A:
gas_assert (mips_opts.micromips);
if (mips_opts.insn32)
{
as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
break;
}
jals = 1;
/* Fall through. */
case M_JAL_A:
if (mips_pic == NO_PIC)
macro_build (&offset_expr, jals ? "jals" : "jal", "a");
else if (mips_pic == SVR4_PIC)
{
/* If this is a reference to an external symbol, and we are
using a small GOT, we want
lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
nop
jalr $ra,$25
nop
lw $gp,cprestore($sp)
The cprestore value is set using the .cprestore
pseudo-op. If we are using a big GOT, we want
lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
addu $25,$25,$gp
lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
nop
jalr $ra,$25
nop
lw $gp,cprestore($sp)
If the symbol is not external, we want
lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $25,$25,<sym> (BFD_RELOC_LO16)
jalr $ra,$25
nop
lw $gp,cprestore($sp)
For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
sequences above, minus nops, unless the symbol is local,
which enables us to use GOT_PAGE/GOT_OFST (big got) or
GOT_DISP. */
if (HAVE_NEWABI)
{
if (!mips_big_got)
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
mips_gp_register);
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
mips_gp_register);
relax_end ();
}
else
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
BFD_RELOC_MIPS_CALL_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
PIC_CALL_REG, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
PIC_CALL_REG);
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
mips_gp_register);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
PIC_CALL_REG, PIC_CALL_REG,
BFD_RELOC_MIPS_GOT_OFST);
relax_end ();
}
macro_build_jalr (&offset_expr, 0);
}
else
{
relax_start (offset_expr.X_add_symbol);
if (!mips_big_got)
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
mips_gp_register);
load_delay_nop ();
relax_switch ();
}
else
{
int gpdelay;
gpdelay = reg_needs_delay (mips_gp_register);
macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
BFD_RELOC_MIPS_CALL_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
PIC_CALL_REG, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
PIC_CALL_REG);
load_delay_nop ();
relax_switch ();
if (gpdelay)
macro_build (NULL, "nop", "");
}
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
mips_gp_register);
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
relax_end ();
macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
if (mips_cprestore_offset < 0)
as_warn (_("no .cprestore pseudo-op used in PIC code"));
else
{
if (!mips_frame_reg_valid)
{
as_warn (_("no .frame pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_frame_reg_valid = 1;
}
if (!mips_cprestore_valid)
{
as_warn (_("no .cprestore pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_cprestore_valid = 1;
}
if (mips_opts.noreorder)
macro_build (NULL, "nop", "");
expr1.X_add_number = mips_cprestore_offset;
macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
mips_gp_register,
mips_frame_reg,
HAVE_64BIT_ADDRESSES);
}
}
}
else if (mips_pic == VXWORKS_PIC)
as_bad (_("non-PIC jump used in PIC library"));
else
abort ();
break;
case M_LBUE_AB:
s = "lbue";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LHUE_AB:
s = "lhue";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LBE_AB:
s = "lbe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LHE_AB:
s = "lhe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LLE_AB:
s = "lle";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LWE_AB:
s = "lwe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LWLE_AB:
s = "lwle";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LWRE_AB:
s = "lwre";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SBE_AB:
s = "sbe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SCE_AB:
s = "sce";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SHE_AB:
s = "she";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SWE_AB:
s = "swe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SWLE_AB:
s = "swle";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SWRE_AB:
s = "swre";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_ACLR_AB:
s = "aclr";
fmt = "\\,~(b)";
offbits = 12;
goto ld_st;
case M_ASET_AB:
s = "aset";
fmt = "\\,~(b)";
offbits = 12;
goto ld_st;
case M_LB_AB:
s = "lb";
fmt = "t,o(b)";
goto ld;
case M_LBU_AB:
s = "lbu";
fmt = "t,o(b)";
goto ld;
case M_LH_AB:
s = "lh";
fmt = "t,o(b)";
goto ld;
case M_LHU_AB:
s = "lhu";
fmt = "t,o(b)";
goto ld;
case M_LW_AB:
s = "lw";
fmt = "t,o(b)";
goto ld;
case M_LWC0_AB:
gas_assert (!mips_opts.micromips);
s = "lwc0";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWC1_AB:
s = "lwc1";
fmt = "T,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWC2_AB:
s = "lwc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWC3_AB:
gas_assert (!mips_opts.micromips);
s = "lwc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWL_AB:
s = "lwl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LWR_AB:
s = "lwr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LDC1_AB:
s = "ldc1";
fmt = "T,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LDC2_AB:
s = "ldc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LQC2_AB:
s = "lqc2";
fmt = "+7,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LDC3_AB:
s = "ldc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LDL_AB:
s = "ldl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LDR_AB:
s = "ldr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LL_AB:
s = "ll";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld;
case M_LLD_AB:
s = "lld";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld;
case M_LWU_AB:
s = "lwu";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld;
case M_LWP_AB:
gas_assert (mips_opts.micromips);
s = "lwp";
fmt = "t,~(b)";
offbits = 12;
lp = 1;
goto ld;
case M_LDP_AB:
gas_assert (mips_opts.micromips);
s = "ldp";
fmt = "t,~(b)";
offbits = 12;
lp = 1;
goto ld;
case M_LLDP_AB:
case M_LLWP_AB:
case M_LLWPE_AB:
s = ip->insn_mo->name;
fmt = "t,d,s";
ll_sc_paired = 1;
offbits = 0;
goto ld;
case M_LWM_AB:
gas_assert (mips_opts.micromips);
s = "lwm";
fmt = "n,~(b)";
offbits = 12;
goto ld_st;
case M_LDM_AB:
gas_assert (mips_opts.micromips);
s = "ldm";
fmt = "n,~(b)";
offbits = 12;
goto ld_st;
ld:
/* Try to use one the the load registers to compute the base address.
We don't want to use $0 as tempreg. */
if (ll_sc_paired)
{
if ((op[0] == ZERO && op[3] == op[1])
|| (op[1] == ZERO && op[3] == op[0])
|| (op[0] == ZERO && op[1] == ZERO))
goto ld_st;
else if (op[0] != op[3] && op[0] != ZERO)
tempreg = op[0];
else
tempreg = op[1];
}
else
{
if (op[2] == op[0] + lp || op[0] + lp == ZERO)
goto ld_st;
else
tempreg = op[0] + lp;
}
goto ld_noat;
case M_SB_AB:
s = "sb";
fmt = "t,o(b)";
goto ld_st;
case M_SH_AB:
s = "sh";
fmt = "t,o(b)";
goto ld_st;
case M_SW_AB:
s = "sw";
fmt = "t,o(b)";
goto ld_st;
case M_SWC0_AB:
gas_assert (!mips_opts.micromips);
s = "swc0";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWC1_AB:
s = "swc1";
fmt = "T,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWC2_AB:
s = "swc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWC3_AB:
gas_assert (!mips_opts.micromips);
s = "swc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWL_AB:
s = "swl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SWR_AB:
s = "swr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SC_AB:
s = "sc";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_SCD_AB:
s = "scd";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_SCDP_AB:
case M_SCWP_AB:
case M_SCWPE_AB:
s = ip->insn_mo->name;
fmt = "t,d,s";
ll_sc_paired = 1;
offbits = 0;
goto ld_st;
case M_CACHE_AB:
s = "cache";
fmt = (mips_opts.micromips ? "k,~(b)"
: ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
: "k,o(b)");
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_CACHEE_AB:
s = "cachee";
fmt = "k,+j(b)";
offbits = 9;
goto ld_st;
case M_PREF_AB:
s = "pref";
fmt = (mips_opts.micromips ? "k,~(b)"
: ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
: "k,o(b)");
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_PREFE_AB:
s = "prefe";
fmt = "k,+j(b)";
offbits = 9;
goto ld_st;
case M_SDC1_AB:
s = "sdc1";
fmt = "T,o(b)";
coproc = 1;
/* Itbl support may require additional care here. */
goto ld_st;
case M_SDC2_AB:
s = "sdc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SQC2_AB:
s = "sqc2";
fmt = "+7,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SDC3_AB:
gas_assert (!mips_opts.micromips);
s = "sdc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SDL_AB:
s = "sdl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SDR_AB:
s = "sdr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SWP_AB:
gas_assert (mips_opts.micromips);
s = "swp";
fmt = "t,~(b)";
offbits = 12;
goto ld_st;
case M_SDP_AB:
gas_assert (mips_opts.micromips);
s = "sdp";
fmt = "t,~(b)";
offbits = 12;
goto ld_st;
case M_SWM_AB:
gas_assert (mips_opts.micromips);
s = "swm";
fmt = "n,~(b)";
offbits = 12;
goto ld_st;
case M_SDM_AB:
gas_assert (mips_opts.micromips);
s = "sdm";
fmt = "n,~(b)";
offbits = 12;
ld_st:
tempreg = AT;
ld_noat:
breg = ll_sc_paired ? op[3] : op[2];
if (small_offset_p (0, align, 16))
{
/* The first case exists for M_LD_AB and M_SD_AB, which are
macros for o32 but which should act like normal instructions
otherwise. */
if (offbits == 16)
macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2], breg);
else if (small_offset_p (0, align, offbits))
{
if (offbits == 0)
{
if (ll_sc_paired)
macro_build (NULL, s, fmt, op[0], op[1], breg);
else
macro_build (NULL, s, fmt, op[0], breg);
}
else
macro_build (NULL, s, fmt, op[0],
(int) offset_expr.X_add_number, breg);
}
else
{
if (tempreg == AT)
used_at = 1;
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, breg, -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2]);
if (offbits == 0)
{
if (ll_sc_paired)
macro_build (NULL, s, fmt, op[0], op[1], tempreg);
else
macro_build (NULL, s, fmt, op[0], tempreg);
}
else
macro_build (NULL, s, fmt, op[0], 0, tempreg);
}
break;
}
if (tempreg == AT)
used_at = 1;
if (offset_expr.X_op != O_constant
&& offset_expr.X_op != O_symbol)
{
as_bad (_("expression too complex"));
offset_expr.X_op = O_constant;
}
if (HAVE_32BIT_ADDRESSES
&& !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
{
char value [32];
sprintf_vma (value, offset_expr.X_add_number);
as_bad (_("number (0x%s) larger than 32 bits"), value);
}
/* A constant expression in PIC code can be handled just as it
is in non PIC code. */
if (offset_expr.X_op == O_constant)
{
expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
offbits == 0 ? 16 : offbits);
offset_expr.X_add_number -= expr1.X_add_number;
load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
if (offbits == 0)
{
if (offset_expr.X_add_number != 0)
macro_build (&offset_expr, ADDRESS_ADDI_INSN,
"t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
if (ll_sc_paired)
macro_build (NULL, s, fmt, op[0], op[1], tempreg);
else
macro_build (NULL, s, fmt, op[0], tempreg);
}
else if (offbits == 16)
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
else
macro_build (NULL, s, fmt, op[0],
(int) offset_expr.X_add_number, tempreg);
}
else if (offbits != 16)
{
/* The offset field is too narrow to be used for a low-part
relocation, so load the whole address into the auxiliary
register. */
load_address (tempreg, &offset_expr, &used_at);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
if (offbits == 0)
{
if (ll_sc_paired)
macro_build (NULL, s, fmt, op[0], op[1], tempreg);
else
macro_build (NULL, s, fmt, op[0], tempreg);
}
else
macro_build (NULL, s, fmt, op[0], 0, tempreg);
}
else if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, and there
is no base register, we want
<op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
Otherwise, if there is no base register, we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
If we have a constant, we need two instructions anyhow,
so we always use the latter form.
If we have a base register, and this is a reference to a
GP relative symbol, we want
addu $tempreg,$breg,$gp
<op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
Otherwise we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
addu $tempreg,$tempreg,$breg
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
With a constant we always use the latter case.
With 64bit address space and no base register and $at usable,
we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll32 $tempreg,0
daddu $tempreg,$at
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
If we have a base register, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
daddu $at,$breg
dsll32 $tempreg,0
daddu $tempreg,$at
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
Without $at we can't generate the optimal path for superscalar
processors here since this would require two temporary registers.
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
dsll $tempreg,16
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
If we have a base register, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
dsll $tempreg,16
daddu $tempreg,$tempreg,$breg
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
For GP relative symbols in 64bit address space we can use
the same sequence as in 32bit address space. */
if (HAVE_64BIT_SYMBOLS)
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
if (breg == 0)
{
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_GPREL16, mips_gp_register);
}
else
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, breg, mips_gp_register);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_GPREL16, tempreg);
}
relax_switch ();
}
if (used_at == 0 && mips_opts.at)
{
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "lui", LUI_FMT, AT,
BFD_RELOC_HI16_S);
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
tempreg, BFD_RELOC_MIPS_HIGHER);
if (breg != 0)
macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
tempreg);
used_at = 1;
}
else
{
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
tempreg, BFD_RELOC_MIPS_HIGHER);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
tempreg, BFD_RELOC_HI16_S);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
if (breg != 0)
macro_build (NULL, "daddu", "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_LO16, tempreg);
}
if (mips_relax.sequence)
relax_end ();
break;
}
if (breg == 0)
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
mips_gp_register);
relax_switch ();
}
macro_build_lui (&offset_expr, tempreg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_LO16, tempreg);
if (mips_relax.sequence)
relax_end ();
}
else
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, breg, mips_gp_register);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_GPREL16, tempreg);
relax_switch ();
}
macro_build_lui (&offset_expr, tempreg);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_LO16, tempreg);
if (mips_relax.sequence)
relax_end ();
}
}
else if (!mips_big_got)
{
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
/* If this is a reference to an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],0($tempreg)
Otherwise we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
<op> op[0],0($tempreg)
For NewABI, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
<op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
If there is a base register, we add it to $tempreg before
the <op>. If there is a constant, we stick it in the
<op> instruction. We don't handle constants larger than
16 bits, because we have no way to load the upper 16 bits
(actually, we could handle them for the subset of cases
in which we are not using $at). */
gas_assert (offset_expr.X_op == O_symbol);
if (HAVE_NEWABI)
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_MIPS_GOT_OFST, tempreg);
break;
}
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
lw_reloc_type, mips_gp_register);
load_delay_nop ();
relax_start (offset_expr.X_add_symbol);
relax_switch ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
tempreg, BFD_RELOC_LO16);
relax_end ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
}
else if (mips_big_got && !HAVE_NEWABI)
{
int gpdelay;
/* If this is a reference to an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
<op> op[0],0($tempreg)
Otherwise we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
<op> op[0],0($tempreg)
If there is a base register, we add it to $tempreg before
the <op>. If there is a constant, we stick it in the
<op> instruction. We don't handle constants larger than
16 bits, because we have no way to load the upper 16 bits
(actually, we could handle them for the subset of cases
in which we are not using $at). */
gas_assert (offset_expr.X_op == O_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
gpdelay = reg_needs_delay (mips_gp_register);
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_LO16, tempreg);
relax_switch ();
if (gpdelay)
macro_build (NULL, "nop", "");
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
tempreg, BFD_RELOC_LO16);
relax_end ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
}
else if (mips_big_got && HAVE_NEWABI)
{
/* If this is a reference to an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
<op> op[0],<ofst>($tempreg)
Otherwise, for local symbols, we want:
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
<op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
gas_assert (offset_expr.X_op == O_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_LO16, tempreg);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_MIPS_GOT_OFST, tempreg);
relax_end ();
}
else
abort ();
break;
case M_JRADDIUSP:
gas_assert (mips_opts.micromips);
gas_assert (mips_opts.insn32);
start_noreorder ();
macro_build (NULL, "jr", "s", RA);
expr1.X_add_number = op[0] << 2;
macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
end_noreorder ();
break;
case M_JRC:
gas_assert (mips_opts.micromips);
gas_assert (mips_opts.insn32);
macro_build (NULL, "jr", "s", op[0]);
if (mips_opts.noreorder)
macro_build (NULL, "nop", "");
break;
case M_LI:
case M_LI_S:
load_register (op[0], &imm_expr, 0);
break;
case M_DLI:
load_register (op[0], &imm_expr, 1);
break;
case M_LI_SS:
if (imm_expr.X_op == O_constant)
{
used_at = 1;
load_register (AT, &imm_expr, 0);
macro_build (NULL, "mtc1", "t,G", AT, op[0]);
break;
}
else
{
gas_assert (imm_expr.X_op == O_absent
&& offset_expr.X_op == O_symbol
&& strcmp (segment_name (S_GET_SEGMENT
(offset_expr.X_add_symbol)),
".lit4") == 0
&& offset_expr.X_add_number == 0);
macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
BFD_RELOC_MIPS_LITERAL, mips_gp_register);
break;
}
case M_LI_D:
/* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
order 32 bits of the value and the low order 32 bits are either
zero or in OFFSET_EXPR. */
if (imm_expr.X_op == O_constant)
{
if (GPR_SIZE == 64)
load_register (op[0], &imm_expr, 1);
else
{
int hreg, lreg;
if (target_big_endian)
{
hreg = op[0];
lreg = op[0] + 1;
}
else
{
hreg = op[0] + 1;
lreg = op[0];
}
if (hreg <= 31)
load_register (hreg, &imm_expr, 0);
if (lreg <= 31)
{
if (offset_expr.X_op == O_absent)
move_register (lreg, 0);
else
{
gas_assert (offset_expr.X_op == O_constant);
load_register (lreg, &offset_expr, 0);
}
}
}
break;
}
gas_assert (imm_expr.X_op == O_absent);
/* We know that sym is in the .rdata section. First we get the
upper 16 bits of the address. */
if (mips_pic == NO_PIC)
{
macro_build_lui (&offset_expr, AT);
used_at = 1;
}
else
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
used_at = 1;
}
/* Now we load the register(s). */
if (GPR_SIZE == 64)
{
used_at = 1;
macro_build (&offset_expr, "ld", "t,o(b)", op[0],
BFD_RELOC_LO16, AT);
}
else
{
used_at = 1;
macro_build (&offset_expr, "lw", "t,o(b)", op[0],
BFD_RELOC_LO16, AT);
if (op[0] != RA)
{
/* FIXME: How in the world do we deal with the possible
overflow here? */
offset_expr.X_add_number += 4;
macro_build (&offset_expr, "lw", "t,o(b)",
op[0] + 1, BFD_RELOC_LO16, AT);
}
}
break;
case M_LI_DD:
/* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
wide, IMM_EXPR is the entire value and the GPRs are known to be 64
bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
the value and the low order 32 bits are either zero or in
OFFSET_EXPR. */
if (imm_expr.X_op == O_constant)
{
tempreg = ZERO;
if (((FPR_SIZE == 64 && GPR_SIZE == 64)
|| !ISA_HAS_MXHC1 (mips_opts.isa))
&& imm_expr.X_add_number != 0)
{
used_at = 1;
tempreg = AT;
load_register (AT, &imm_expr, FPR_SIZE == 64);
}
if (FPR_SIZE == 64 && GPR_SIZE == 64)
macro_build (NULL, "dmtc1", "t,S", tempreg, op[0]);
else
{
if (!ISA_HAS_MXHC1 (mips_opts.isa))
{
if (FPR_SIZE != 32)
as_bad (_("Unable to generate `%s' compliant code "
"without mthc1"),
(FPR_SIZE == 64) ? "fp64" : "fpxx");
else
macro_build (NULL, "mtc1", "t,G", tempreg, op[0] + 1);
}
if (offset_expr.X_op == O_absent)
macro_build (NULL, "mtc1", "t,G", 0, op[0]);
else
{
gas_assert (offset_expr.X_op == O_constant);
load_register (AT, &offset_expr, 0);
macro_build (NULL, "mtc1", "t,G", AT, op[0]);
}
if (ISA_HAS_MXHC1 (mips_opts.isa))
{
if (imm_expr.X_add_number != 0)
{
used_at = 1;
tempreg = AT;
load_register (AT, &imm_expr, 0);
}
macro_build (NULL, "mthc1", "t,G", tempreg, op[0]);
}
}
break;
}
gas_assert (imm_expr.X_op == O_absent
&& offset_expr.X_op == O_symbol
&& offset_expr.X_add_number == 0);
s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
if (strcmp (s, ".lit8") == 0)
{
op[2] = mips_gp_register;
offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
}
else
{
gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
used_at = 1;
if (mips_pic != NO_PIC)
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&offset_expr, AT);
}
op[2] = AT;
offset_reloc[0] = BFD_RELOC_LO16;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
}
align = 8;
/* Fall through. */
case M_L_DAB:
/* The MIPS assembler seems to check for X_add_number not
being double aligned and generating:
lui at,%hi(foo+1)
addu at,at,v1
addiu at,at,%lo(foo+1)
lwc1 f2,0(at)
lwc1 f3,4(at)
But, the resulting address is the same after relocation so why
generate the extra instruction? */
/* Itbl support may require additional care here. */
coproc = 1;
fmt = "T,o(b)";
if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
{
s = "ldc1";
goto ld_st;
}
s = "lwc1";
goto ldd_std;
case M_S_DAB:
gas_assert (!mips_opts.micromips);
/* Itbl support may require additional care here. */
coproc = 1;
fmt = "T,o(b)";
if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
{
s = "sdc1";
goto ld_st;
}
s = "swc1";
goto ldd_std;
case M_LQ_AB:
fmt = "t,o(b)";
s = "lq";
goto ld;
case M_SQ_AB:
fmt = "t,o(b)";
s = "sq";
goto ld_st;
case M_LD_AB:
fmt = "t,o(b)";
if (GPR_SIZE == 64)
{
s = "ld";
goto ld;
}
s = "lw";
goto ldd_std;
case M_SD_AB:
fmt = "t,o(b)";
if (GPR_SIZE == 64)
{
s = "sd";
goto ld_st;
}
s = "sw";
ldd_std:
/* Even on a big endian machine $fn comes before $fn+1. We have
to adjust when loading from memory. We set coproc if we must
load $fn+1 first. */
/* Itbl support may require additional care here. */
if (!target_big_endian)
coproc = 0;
breg = op[2];
if (small_offset_p (0, align, 16))
{
ep = &offset_expr;
if (!small_offset_p (4, align, 16))
{
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
-1, offset_reloc[0], offset_reloc[1],
offset_reloc[2]);
expr1.X_add_number = 0;
ep = &expr1;
breg = AT;
used_at = 1;
offset_reloc[0] = BFD_RELOC_LO16;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
}
if (strcmp (s, "lw") == 0 && op[0] == breg)
{
ep->X_add_number += 4;
macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2], breg);
ep->X_add_number -= 4;
macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2], breg);
}
else
{
macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2],
breg);
ep->X_add_number += 4;
macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2],
breg);
}
break;
}
if (offset_expr.X_op != O_symbol
&& offset_expr.X_op != O_constant)
{
as_bad (_("expression too complex"));
offset_expr.X_op = O_constant;
}
if (HAVE_32BIT_ADDRESSES
&& !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
{
char value [32];
sprintf_vma (value, offset_expr.X_add_number);
as_bad (_("number (0x%s) larger than 32 bits"), value);
}
if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
{
/* If this is a reference to a GP relative symbol, we want
<op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
<op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
If we have a base register, we use this
addu $at,$breg,$gp
<op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
If this is not a GP relative symbol, we want
lui $at,<sym> (BFD_RELOC_HI16_S)
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register, we add it to $at after the
lui instruction. If there is a constant, we always use
the last case. */
if (offset_expr.X_op == O_symbol
&& (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
if (breg == 0)
{
tempreg = mips_gp_register;
}
else
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
AT, breg, mips_gp_register);
tempreg = AT;
used_at = 1;
}
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_GPREL16, tempreg);
offset_expr.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an
undesired nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_GPREL16, tempreg);
mips_optimize = hold_mips_optimize;
relax_switch ();
offset_expr.X_add_number -= 4;
}
used_at = 1;
if (offset_high_part (offset_expr.X_add_number, 16)
!= offset_high_part (offset_expr.X_add_number + 4, 16))
{
load_address (AT, &offset_expr, &used_at);
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
}
else
macro_build_lui (&offset_expr, AT);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
/* FIXME: How do we handle overflow here? */
offset_expr.X_add_number += 4;
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
if (mips_relax.sequence)
relax_end ();
}
else if (!mips_big_got)
{
/* If this is a reference to an external symbol, we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],0($at)
<op> op[0]+1,4($at)
Otherwise we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register we add it to $at before the
lwc1 instructions. If there is a constant we include it
in the lwc1 instructions. */
used_at = 1;
expr1.X_add_number = offset_expr.X_add_number;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000 - 4)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
load_got_offset (AT, &offset_expr);
load_delay_nop ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
relax_start (offset_expr.X_add_symbol);
macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
expr1.X_add_number += 4;
macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
relax_switch ();
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
offset_expr.X_add_number += 4;
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
relax_end ();
mips_optimize = hold_mips_optimize;
}
else if (mips_big_got)
{
int gpdelay;
/* If this is a reference to an external symbol, we want
lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $at,$at,$gp
lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
nop
<op> op[0],0($at)
<op> op[0]+1,4($at)
Otherwise we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register we add it to $at before the
lwc1 instructions. If there is a constant we include it
in the lwc1 instructions. */
used_at = 1;
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000 - 4)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
gpdelay = reg_needs_delay (mips_gp_register);
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT,
AT, BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
AT, AT, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
AT, BFD_RELOC_MIPS_GOT_LO16, AT);
load_delay_nop ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Itbl support may require additional care here. */
macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
expr1.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
mips_optimize = hold_mips_optimize;
expr1.X_add_number -= 4;
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
if (gpdelay)
macro_build (NULL, "nop", "");
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
offset_expr.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
mips_optimize = hold_mips_optimize;
relax_end ();
}
else
abort ();
break;
case M_SAA_AB:
s = "saa";
goto saa_saad;
case M_SAAD_AB:
s = "saad";
saa_saad:
gas_assert (!mips_opts.micromips);
offbits = 0;
fmt = "t,(b)";
goto ld_st;
/* New code added to support COPZ instructions.
This code builds table entries out of the macros in mip_opcodes.
R4000 uses interlocks to handle coproc delays.
Other chips (like the R3000) require nops to be inserted for delays.
FIXME: Currently, we require that the user handle delays.
In order to fill delay slots for non-interlocked chips,
we must have a way to specify delays based on the coprocessor.
Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
What are the side-effects of the cop instruction?
What cache support might we have and what are its effects?
Both coprocessor & memory require delays. how long???
What registers are read/set/modified?
If an itbl is provided to interpret cop instructions,
this knowledge can be encoded in the itbl spec. */
case M_COP0:
s = "c0";
goto copz;
case M_COP1:
s = "c1";
goto copz;
case M_COP2:
s = "c2";
goto copz;
case M_COP3:
s = "c3";
copz:
gas_assert (!mips_opts.micromips);
/* For now we just do C (same as Cz). The parameter will be
stored in insn_opcode by mips_ip. */
macro_build (NULL, s, "C", (int) ip->insn_opcode);
break;
case M_MOVE:
move_register (op[0], op[1]);
break;
case M_MOVEP:
gas_assert (mips_opts.micromips);
gas_assert (mips_opts.insn32);
move_register (micromips_to_32_reg_h_map1[op[0]],
micromips_to_32_reg_m_map[op[1]]);
move_register (micromips_to_32_reg_h_map2[op[0]],
micromips_to_32_reg_n_map[op[2]]);
break;
case M_DMUL:
dbl = 1;
/* Fall through. */
case M_MUL:
if (mips_opts.arch == CPU_R5900)
macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
op[2]);
else
{
macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
}
break;
case M_DMUL_I:
dbl = 1;
/* Fall through. */
case M_MUL_I:
/* The MIPS assembler some times generates shifts and adds. I'm
not trying to be that fancy. GCC should do this for us
anyway. */
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
break;
case M_DMULO_I:
dbl = 1;
/* Fall through. */
case M_MULO_I:
imm = 1;
goto do_mulo;
case M_DMULO:
dbl = 1;
/* Fall through. */
case M_MULO:
do_mulo:
start_noreorder ();
used_at = 1;
if (imm)
load_register (AT, &imm_expr, dbl);
macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
op[1], imm ? AT : op[2]);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
macro_build (NULL, "mfhi", MFHL_FMT, AT);
if (mips_trap)
macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
macro_build (NULL, "nop", "");
macro_build (NULL, "break", BRK_FMT, 6);
if (mips_opts.micromips)
micromips_add_label ();
}
end_noreorder ();
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
break;
case M_DMULOU_I:
dbl = 1;
/* Fall through. */
case M_MULOU_I:
imm = 1;
goto do_mulou;
case M_DMULOU:
dbl = 1;
/* Fall through. */
case M_MULOU:
do_mulou:
start_noreorder ();
used_at = 1;
if (imm)
load_register (AT, &imm_expr, dbl);
macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
op[1], imm ? AT : op[2]);
macro_build (NULL, "mfhi", MFHL_FMT, AT);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
if (mips_trap)
macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
macro_build (NULL, "nop", "");
macro_build (NULL, "break", BRK_FMT, 6);
if (mips_opts.micromips)
micromips_add_label ();
}
end_noreorder ();
break;
case M_DROL:
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
if (op[0] == op[1])
{
tempreg = AT;
used_at = 1;
}
else
tempreg = op[0];
macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
break;
}
used_at = 1;
macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_ROL:
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
if (op[0] == op[1])
{
tempreg = AT;
used_at = 1;
}
else
tempreg = op[0];
macro_build (NULL, "negu", "d,w", tempreg, op[2]);
macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
break;
}
used_at = 1;
macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_DROL_I:
{
unsigned int rot;
const char *l;
const char *rr;
rot = imm_expr.X_add_number & 0x3f;
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
rot = (64 - rot) & 0x3f;
if (rot >= 32)
macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
else
macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
break;
}
if (rot == 0)
{
macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
break;
}
l = (rot < 0x20) ? "dsll" : "dsll32";
rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
rot &= 0x1f;
used_at = 1;
macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_ROL_I:
{
unsigned int rot;
rot = imm_expr.X_add_number & 0x1f;
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
(32 - rot) & 0x1f);
break;
}
if (rot == 0)
{
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
break;
}
used_at = 1;
macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_DROR:
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
break;
}
used_at = 1;
macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_ROR:
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
break;
}
used_at = 1;
macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_DROR_I:
{
unsigned int rot;
const char *l;
const char *rr;
rot = imm_expr.X_add_number & 0x3f;
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
if (rot >= 32)
macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
else
macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
break;
}
if (rot == 0)
{
macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
break;
}
rr = (rot < 0x20) ? "dsrl" : "dsrl32";
l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
rot &= 0x1f;
used_at = 1;
macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_ROR_I:
{
unsigned int rot;
rot = imm_expr.X_add_number & 0x1f;
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
break;
}
if (rot == 0)
{
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
break;
}
used_at = 1;
macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_SEQ:
if (op[1] == 0)
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
else if (op[2] == 0)
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
else
{
macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
}
break;
case M_SEQ_I:
if (imm_expr.X_add_number == 0)
{
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
break;
}
if (op[1] == 0)
{
as_warn (_("instruction %s: result is always false"),
ip->insn_mo->name);
move_register (op[0], 0);
break;
}
if (CPU_HAS_SEQ (mips_opts.arch)
&& -512 <= imm_expr.X_add_number
&& imm_expr.X_add_number < 512)
{
macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
(int) imm_expr.X_add_number);
break;
}
if (imm_expr.X_add_number >= 0
&& imm_expr.X_add_number < 0x10000)
macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
else if (imm_expr.X_add_number > -0x8000
&& imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
"t,r,j", op[0], op[1], BFD_RELOC_LO16);
}
else if (CPU_HAS_SEQ (mips_opts.arch))
{
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
break;
}
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
used_at = 1;
}
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SGE: /* X >= Y <==> not (X < Y) */
s = "slt";
goto sge;
case M_SGEU:
s = "sltu";
sge:
macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SGE_I: /* X >= I <==> not (X < I). */
case M_SGEU_I:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
op[0], op[1], BFD_RELOC_LO16);
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
op[0], op[1], AT);
used_at = 1;
}
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SGT: /* X > Y <==> Y < X. */
s = "slt";
goto sgt;
case M_SGTU:
s = "sltu";
sgt:
macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
break;
case M_SGT_I: /* X > I <==> I < X. */
s = "slt";
goto sgti;
case M_SGTU_I:
s = "sltu";
sgti:
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
break;
case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X). */
s = "slt";
goto sle;
case M_SLEU:
s = "sltu";
sle:
macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
s = "slt";
goto slei;
case M_SLEU_I:
s = "sltu";
slei:
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SLT_I:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
{
macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
BFD_RELOC_LO16);
break;
}
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
break;
case M_SLTU_I:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
{
macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
BFD_RELOC_LO16);
break;
}
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
break;
case M_SNE:
if (op[1] == 0)
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
else if (op[2] == 0)
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
else
{
macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
}
break;
case M_SNE_I:
if (imm_expr.X_add_number == 0)
{
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
break;
}
if (op[1] == 0)
{
as_warn (_("instruction %s: result is always true"),
ip->insn_mo->name);
macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
op[0], 0, BFD_RELOC_LO16);
break;
}
if (CPU_HAS_SEQ (mips_opts.arch)
&& -512 <= imm_expr.X_add_number
&& imm_expr.X_add_number < 512)
{
macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
(int) imm_expr.X_add_number);
break;
}
if (imm_expr.X_add_number >= 0
&& imm_expr.X_add_number < 0x10000)
{
macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
BFD_RELOC_LO16);
}
else if (imm_expr.X_add_number > -0x8000
&& imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
"t,r,j", op[0], op[1], BFD_RELOC_LO16);
}
else if (CPU_HAS_SEQ (mips_opts.arch))
{
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
break;
}
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
used_at = 1;
}
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
break;
case M_SUB_I:
s = "addi";
s2 = "sub";
if (ISA_IS_R6 (mips_opts.isa))
goto do_subi_i;
else
goto do_subi;
case M_SUBU_I:
s = "addiu";
s2 = "subu";
goto do_subi;
case M_DSUB_I:
dbl = 1;
s = "daddi";
s2 = "dsub";
if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
goto do_subi;
if (imm_expr.X_add_number > -0x200
&& imm_expr.X_add_number <= 0x200
&& !ISA_IS_R6 (mips_opts.isa))
{
macro_build (NULL, s, "t,r,.", op[0], op[1],
(int) -imm_expr.X_add_number);
break;
}
goto do_subi_i;
case M_DSUBU_I:
dbl = 1;
s = "daddiu";
s2 = "dsubu";
do_subi:
if (imm_expr.X_add_number > -0x8000
&& imm_expr.X_add_number <= 0x8000)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
break;
}
do_subi_i:
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
break;
case M_TEQ_I:
s = "teq";
goto trap;
case M_TGE_I:
s = "tge";
goto trap;
case M_TGEU_I:
s = "tgeu";
goto trap;
case M_TLT_I:
s = "tlt";
goto trap;
case M_TLTU_I:
s = "tltu";
goto trap;
case M_TNE_I:
s = "tne";
trap:
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s, "s,t", op[0], AT);
break;
case M_TRUNCWS:
case M_TRUNCWD:
gas_assert (!mips_opts.micromips);
gas_assert (mips_opts.isa == ISA_MIPS1);
used_at = 1;
/*
* Is the double cfc1 instruction a bug in the mips assembler;
* or is there a reason for it?
*/
start_noreorder ();
macro_build (NULL, "cfc1", "t,g", op[2], FCSR);
macro_build (NULL, "cfc1", "t,g", op[2], FCSR);
macro_build (NULL, "nop", "");
expr1.X_add_number = 3;
macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
expr1.X_add_number = 2;
macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
macro_build (NULL, "ctc1", "t,g", AT, FCSR);
macro_build (NULL, "nop", "");
macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
op[0], op[1]);
macro_build (NULL, "ctc1", "t,g", op[2], FCSR);
macro_build (NULL, "nop", "");
end_noreorder ();
break;
case M_ULH_AB:
s = "lb";
s2 = "lbu";
off = 1;
goto uld_st;
case M_ULHU_AB:
s = "lbu";
s2 = "lbu";
off = 1;
goto uld_st;
case M_ULW_AB:
s = "lwl";
s2 = "lwr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 3;
goto uld_st;
case M_ULD_AB:
s = "ldl";
s2 = "ldr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 7;
goto uld_st;
case M_USH_AB:
s = "sb";
s2 = "sb";
off = 1;
ust = 1;
goto uld_st;
case M_USW_AB:
s = "swl";
s2 = "swr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 3;
ust = 1;
goto uld_st;
case M_USD_AB:
s = "sdl";
s2 = "sdr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 7;
ust = 1;
uld_st:
breg = op[2];
large_offset = !small_offset_p (off, align, offbits);
ep = &offset_expr;
expr1.X_add_number = 0;
if (large_offset)
{
used_at = 1;
tempreg = AT;
if (small_offset_p (0, align, 16))
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2]);
else
{
load_address (tempreg, ep, &used_at);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
}
offset_reloc[0] = BFD_RELOC_LO16;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
breg = tempreg;
tempreg = op[0];
ep = &expr1;
}
else if (!ust && op[0] == breg)
{
used_at = 1;
tempreg = AT;
}
else
tempreg = op[0];
if (off == 1)
goto ulh_sh;
if (!target_big_endian)
ep->X_add_number += off;
if (offbits == 12)
macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
else
macro_build (ep, s, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
if (!target_big_endian)
ep->X_add_number -= off;
else
ep->X_add_number += off;
if (offbits == 12)
macro_build (NULL, s2, "t,~(b)",
tempreg, (int) ep->X_add_number, breg);
else
macro_build (ep, s2, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
/* If necessary, move the result in tempreg to the final destination. */
if (!ust && op[0] != tempreg)
{
/* Protect second load's delay slot. */
load_delay_nop ();
move_register (op[0], tempreg);
}
break;
ulh_sh:
used_at = 1;
if (target_big_endian == ust)
ep->X_add_number += off;
tempreg = ust || large_offset ? op[0] : AT;
macro_build (ep, s, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
/* For halfword transfers we need a temporary register to shuffle
bytes. Unfortunately for M_USH_A we have none available before
the next store as AT holds the base address. We deal with this
case by clobbering TREG and then restoring it as with ULH. */
tempreg = ust == large_offset ? op[0] : AT;
if (ust)
macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
if (target_big_endian == ust)
ep->X_add_number -= off;
else
ep->X_add_number += off;
macro_build (ep, s2, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
/* For M_USH_A re-retrieve the LSB. */
if (ust && large_offset)
{
if (target_big_endian)
ep->X_add_number += off;
else
ep->X_add_number -= off;
macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
}
/* For ULH and M_USH_A OR the LSB in. */
if (!ust || large_offset)
{
tempreg = !large_offset ? AT : op[0];
macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
default:
/* FIXME: Check if this is one of the itbl macros, since they
are added dynamically. */
as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
break;
}
if (!mips_opts.at && used_at)
as_bad (_("macro used $at after \".set noat\""));
}
/* Implement macros in mips16 mode. */
static void
mips16_macro (struct mips_cl_insn *ip)
{
const struct mips_operand_array *operands;
int mask;
int tmp;
expressionS expr1;
int dbl;
const char *s, *s2, *s3;
unsigned int op[MAX_OPERANDS];
unsigned int i;
mask = ip->insn_mo->mask;
operands = insn_operands (ip);
for (i = 0; i < MAX_OPERANDS; i++)
if (operands->operand[i])
op[i] = insn_extract_operand (ip, operands->operand[i]);
else
op[i] = -1;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
dbl = 0;
switch (mask)
{
default:
abort ();
case M_DDIV_3:
dbl = 1;
/* Fall through. */
case M_DIV_3:
s = "mflo";
goto do_div3;
case M_DREM_3:
dbl = 1;
/* Fall through. */
case M_REM_3:
s = "mfhi";
do_div3:
start_noreorder ();
macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
expr1.X_add_number = 2;
macro_build (&expr1, "bnez", "x,p", op[2]);
macro_build (NULL, "break", "6", 7);
/* FIXME: The normal code checks for of -1 / -0x80000000 here,
since that causes an overflow. We should do that as well,
but I don't see how to do the comparisons without a temporary
register. */
end_noreorder ();
macro_build (NULL, s, "x", op[0]);
break;
case M_DIVU_3:
s = "divu";
s2 = "mflo";
goto do_divu3;
case M_REMU_3:
s = "divu";
s2 = "mfhi";
goto do_divu3;
case M_DDIVU_3:
s = "ddivu";
s2 = "mflo";
goto do_divu3;
case M_DREMU_3:
s = "ddivu";
s2 = "mfhi";
do_divu3:
start_noreorder ();
macro_build (NULL, s, ".,x,y", op[1], op[2]);
expr1.X_add_number = 2;
macro_build (&expr1, "bnez", "x,p", op[2]);
macro_build (NULL, "break", "6", 7);
end_noreorder ();
macro_build (NULL, s2, "x", op[0]);
break;
case M_DMUL:
dbl = 1;
/* Fall through. */
case M_MUL:
macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
macro_build (NULL, "mflo", "x", op[0]);
break;
case M_DSUBU_I:
dbl = 1;
goto do_subu;
case M_SUBU_I:
do_subu:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
break;
case M_SUBU_I_2:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, "addiu", "x,k", op[0]);
break;
case M_DSUBU_I_2:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, "daddiu", "y,j", op[0]);
break;
case M_BEQ:
s = "cmp";
s2 = "bteqz";
goto do_branch;
case M_BNE:
s = "cmp";
s2 = "btnez";
goto do_branch;
case M_BLT:
s = "slt";
s2 = "btnez";
goto do_branch;
case M_BLTU:
s = "sltu";
s2 = "btnez";
goto do_branch;
case M_BLE:
s = "slt";
s2 = "bteqz";
goto do_reverse_branch;
case M_BLEU:
s = "sltu";
s2 = "bteqz";
goto do_reverse_branch;
case M_BGE:
s = "slt";
s2 = "bteqz";
goto do_branch;
case M_BGEU:
s = "sltu";
s2 = "bteqz";
goto do_branch;
case M_BGT:
s = "slt";
s2 = "btnez";
goto do_reverse_branch;
case M_BGTU:
s = "sltu";
s2 = "btnez";
do_reverse_branch:
tmp = op[1];
op[1] = op[0];
op[0] = tmp;
do_branch:
macro_build (NULL, s, "x,y", op[0], op[1]);
macro_build (&offset_expr, s2, "p");
break;
case M_BEQ_I:
s = "cmpi";
s2 = "bteqz";
s3 = "x,U";
goto do_branch_i;
case M_BNE_I:
s = "cmpi";
s2 = "btnez";
s3 = "x,U";
goto do_branch_i;
case M_BLT_I:
s = "slti";
s2 = "btnez";
s3 = "x,8";
goto do_branch_i;
case M_BLTU_I:
s = "sltiu";
s2 = "btnez";
s3 = "x,8";
goto do_branch_i;
case M_BLE_I:
s = "slti";
s2 = "btnez";
s3 = "x,8";
goto do_addone_branch_i;
case M_BLEU_I:
s = "sltiu";
s2 = "btnez";
s3 = "x,8";
goto do_addone_branch_i;
case M_BGE_I:
s = "slti";
s2 = "bteqz";
s3 = "x,8";
goto do_branch_i;
case M_BGEU_I:
s = "sltiu";
s2 = "bteqz";
s3 = "x,8";
goto do_branch_i;
case M_BGT_I:
s = "slti";
s2 = "bteqz";
s3 = "x,8";
goto do_addone_branch_i;
case M_BGTU_I:
s = "sltiu";
s2 = "bteqz";
s3 = "x,8";
do_addone_branch_i:
++imm_expr.X_add_number;
do_branch_i:
macro_build (&imm_expr, s, s3, op[0]);
macro_build (&offset_expr, s2, "p");
break;
case M_ABS:
expr1.X_add_number = 0;
macro_build (&expr1, "slti", "x,8", op[1]);
if (op[0] != op[1])
macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
expr1.X_add_number = 2;
macro_build (&expr1, "bteqz", "p");
macro_build (NULL, "neg", "x,w", op[0], op[0]);
break;
}
}
/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
opcode bits in *OPCODE_EXTRA. */
static struct mips_opcode *
mips_lookup_insn (htab_t hash, const char *start,
ssize_t length, unsigned int *opcode_extra)
{
char *name, *dot, *p;
unsigned int mask, suffix;
ssize_t opend;
struct mips_opcode *insn;
/* Make a copy of the instruction so that we can fiddle with it. */
name = xstrndup (start, length);
/* Look up the instruction as-is. */
insn = (struct mips_opcode *) str_hash_find (hash, name);
if (insn)
goto end;
dot = strchr (name, '.');
if (dot && dot[1])
{
/* Try to interpret the text after the dot as a VU0 channel suffix. */
p = mips_parse_vu0_channels (dot + 1, &mask);
if (*p == 0 && mask != 0)
{
*dot = 0;
insn = (struct mips_opcode *) str_hash_find (hash, name);
*dot = '.';
if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
{
*opcode_extra |= mask << mips_vu0_channel_mask.lsb;
goto end;
}
}
}
if (mips_opts.micromips)
{
/* See if there's an instruction size override suffix,
either `16' or `32', at the end of the mnemonic proper,
that defines the operation, i.e. before the first `.'
character if any. Strip it and retry. */
opend = dot != NULL ? dot - name : length;
if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
suffix = 2;
else if (opend >= 2 && name[opend - 2] == '3' && name[opend - 1] == '2')
suffix = 4;
else
suffix = 0;
if (suffix)
{
memmove (name + opend - 2, name + opend, length - opend + 1);
insn = (struct mips_opcode *) str_hash_find (hash, name);
if (insn)
{
forced_insn_length = suffix;
goto end;
}
}
}
insn = NULL;
end:
free (name);
return insn;
}
/* Assemble an instruction into its binary format. If the instruction
is a macro, set imm_expr and offset_expr to the values associated
with "I" and "A" operands respectively. Otherwise store the value
of the relocatable field (if any) in offset_expr. In both cases
set offset_reloc to the relocation operators applied to offset_expr. */
static void
mips_ip (char *str, struct mips_cl_insn *insn)
{
const struct mips_opcode *first, *past;
htab_t hash;
char format;
size_t end;
struct mips_operand_token *tokens;
unsigned int opcode_extra;
if (mips_opts.micromips)
{
hash = micromips_op_hash;
past = &micromips_opcodes[bfd_micromips_num_opcodes];
}
else
{
hash = op_hash;
past = &mips_opcodes[NUMOPCODES];
}
forced_insn_length = 0;
opcode_extra = 0;
/* We first try to match an instruction up to a space or to the end. */
for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
continue;
first = mips_lookup_insn (hash, str, end, &opcode_extra);
if (first == NULL)
{
set_insn_error (0, _("unrecognized opcode"));
return;
}
if (strcmp (first->name, "li.s") == 0)
format = 'f';
else if (strcmp (first->name, "li.d") == 0)
format = 'd';
else
format = 0;
tokens = mips_parse_arguments (str + end, format);
if (!tokens)
return;
if (!match_insns (insn, first, past, tokens, opcode_extra, false)
&& !match_insns (insn, first, past, tokens, opcode_extra, true))
set_insn_error (0, _("invalid operands"));
obstack_free (&mips_operand_tokens, tokens);
}
/* As for mips_ip, but used when assembling MIPS16 code.
Also set forced_insn_length to the resulting instruction size in
bytes if the user explicitly requested a small or extended instruction. */
static void
mips16_ip (char *str, struct mips_cl_insn *insn)
{
char *end, *s, c;
struct mips_opcode *first;
struct mips_operand_token *tokens;
unsigned int l;
for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
;
end = s;
c = *end;
l = 0;
switch (c)
{
case '\0':
break;
case ' ':
s++;
break;
case '.':
s++;
if (*s == 't')
{
l = 2;
s++;
}
else if (*s == 'e')
{
l = 4;
s++;
}
if (*s == '\0')
break;
else if (*s++ == ' ')
break;
set_insn_error (0, _("unrecognized opcode"));
return;
}
forced_insn_length = l;
*end = 0;
first = (struct mips_opcode *) str_hash_find (mips16_op_hash, str);
*end = c;
if (!first)
{
set_insn_error (0, _("unrecognized opcode"));
return;
}
tokens = mips_parse_arguments (s, 0);
if (!tokens)
return;
if (!match_mips16_insns (insn, first, tokens))
set_insn_error (0, _("invalid operands"));
obstack_free (&mips_operand_tokens, tokens);
}
/* Marshal immediate value VAL for an extended MIPS16 instruction.
NBITS is the number of significant bits in VAL. */
static unsigned long
mips16_immed_extend (offsetT val, unsigned int nbits)
{
int extval;
extval = 0;
val &= (1U << nbits) - 1;
if (nbits == 16 || nbits == 9)
{
extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
val &= 0x1f;
}
else if (nbits == 15)
{
extval = ((val >> 11) & 0xf) | (val & 0x7f0);
val &= 0xf;
}
else if (nbits == 6)
{
extval = ((val & 0x1f) << 6) | (val & 0x20);
val = 0;
}
return (extval << 16) | val;
}
/* Like decode_mips16_operand, but require the operand to be defined and
require it to be an integer. */
static const struct mips_int_operand *
mips16_immed_operand (int type, bool extended_p)
{
const struct mips_operand *operand;
operand = decode_mips16_operand (type, extended_p);
if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
abort ();
return (const struct mips_int_operand *) operand;
}
/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
static bool
mips16_immed_in_range_p (const struct mips_int_operand *operand,
bfd_reloc_code_real_type reloc, offsetT sval)
{
int min_val, max_val;
min_val = mips_int_operand_min (operand);
max_val = mips_int_operand_max (operand);
if (reloc != BFD_RELOC_UNUSED)
{
if (min_val < 0)
sval = SEXT_16BIT (sval);
else
sval &= 0xffff;
}
return (sval >= min_val
&& sval <= max_val
&& (sval & ((1 << operand->shift) - 1)) == 0);
}
/* Install immediate value VAL into MIPS16 instruction *INSN,
extending it if necessary. The instruction in *INSN may
already be extended.
RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
if none. In the former case, VAL is a 16-bit number with no
defined signedness.
TYPE is the type of the immediate field. USER_INSN_LENGTH
is the length that the user requested, or 0 if none. */
static void
mips16_immed (const char *file, unsigned int line, int type,
bfd_reloc_code_real_type reloc, offsetT val,
unsigned int user_insn_length, unsigned long *insn)
{
const struct mips_int_operand *operand;
unsigned int uval, length;
operand = mips16_immed_operand (type, false);
if (!mips16_immed_in_range_p (operand, reloc, val))
{
/* We need an extended instruction. */
if (user_insn_length == 2)
as_bad_where (file, line, _("invalid unextended operand value"));
else
*insn |= MIPS16_EXTEND;
}
else if (user_insn_length == 4)
{
/* The operand doesn't force an unextended instruction to be extended.
Warn if the user wanted an extended instruction anyway. */
*insn |= MIPS16_EXTEND;
as_warn_where (file, line,
_("extended operand requested but not required"));
}
length = mips16_opcode_length (*insn);
if (length == 4)
{
operand = mips16_immed_operand (type, true);
if (!mips16_immed_in_range_p (operand, reloc, val))
as_bad_where (file, line,
_("operand value out of range for instruction"));
}
uval = ((unsigned int) val >> operand->shift) - operand->bias;
if (length == 2 || operand->root.lsb != 0)
*insn = mips_insert_operand (&operand->root, *insn, uval);
else
*insn |= mips16_immed_extend (uval, operand->root.size);
}
struct percent_op_match
{
const char *str;
bfd_reloc_code_real_type reloc;
};
static const struct percent_op_match mips_percent_op[] =
{
{"%lo", BFD_RELOC_LO16},
{"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
{"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
{"%call16", BFD_RELOC_MIPS_CALL16},
{"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
{"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
{"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
{"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
{"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
{"%got", BFD_RELOC_MIPS_GOT16},
{"%gp_rel", BFD_RELOC_GPREL16},
{"%gprel", BFD_RELOC_GPREL16},
{"%half", BFD_RELOC_16},
{"%highest", BFD_RELOC_MIPS_HIGHEST},
{"%higher", BFD_RELOC_MIPS_HIGHER},
{"%neg", BFD_RELOC_MIPS_SUB},
{"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
{"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
{"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
{"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
{"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
{"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
{"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
{"%hi", BFD_RELOC_HI16_S},
{"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
{"%pcrel_lo", BFD_RELOC_LO16_PCREL}
};
static const struct percent_op_match mips16_percent_op[] =
{
{"%lo", BFD_RELOC_MIPS16_LO16},
{"%gp_rel", BFD_RELOC_MIPS16_GPREL},
{"%gprel", BFD_RELOC_MIPS16_GPREL},
{"%got", BFD_RELOC_MIPS16_GOT16},
{"%call16", BFD_RELOC_MIPS16_CALL16},
{"%hi", BFD_RELOC_MIPS16_HI16_S},
{"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
{"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
{"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
{"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
{"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
{"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
{"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
};
/* Return true if *STR points to a relocation operator. When returning true,
move *STR over the operator and store its relocation code in *RELOC.
Leave both *STR and *RELOC alone when returning false. */
static bool
parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
{
const struct percent_op_match *percent_op;
size_t limit, i;
if (mips_opts.mips16)
{
percent_op = mips16_percent_op;
limit = ARRAY_SIZE (mips16_percent_op);
}
else
{
percent_op = mips_percent_op;
limit = ARRAY_SIZE (mips_percent_op);
}
for (i = 0; i < limit; i++)
if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
{
int len = strlen (percent_op[i].str);
if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
continue;
*str += strlen (percent_op[i].str);
*reloc = percent_op[i].reloc;
/* Check whether the output BFD supports this relocation.
If not, issue an error and fall back on something safe. */
if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
{
as_bad (_("relocation %s isn't supported by the current ABI"),
percent_op[i].str);
*reloc = BFD_RELOC_UNUSED;
}
return true;
}
return false;
}
/* Parse string STR as a 16-bit relocatable operand. Store the
expression in *EP and the relocations in the array starting
at RELOC. Return the number of relocation operators used.
On exit, EXPR_END points to the first character after the expression. */
static size_t
my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
char *str)
{
bfd_reloc_code_real_type reversed_reloc[3];
size_t reloc_index, i;
int crux_depth, str_depth;
char *crux;
/* Search for the start of the main expression, recoding relocations
in REVERSED_RELOC. End the loop with CRUX pointing to the start
of the main expression and with CRUX_DEPTH containing the number
of open brackets at that point. */
reloc_index = -1;
str_depth = 0;
do
{
reloc_index++;
crux = str;
crux_depth = str_depth;
/* Skip over whitespace and brackets, keeping count of the number
of brackets. */
while (*str == ' ' || *str == '\t' || *str == '(')
if (*str++ == '(')
str_depth++;
}
while (*str == '%'
&& reloc_index < (HAVE_NEWABI ? 3 : 1)
&& parse_relocation (&str, &reversed_reloc[reloc_index]));
my_getExpression (ep, crux);
str = expr_end;
/* Match every open bracket. */
while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
if (*str++ == ')')
crux_depth--;
if (crux_depth > 0)
as_bad (_("unclosed '('"));
expr_end = str;
for (i = 0; i < reloc_index; i++)
reloc[i] = reversed_reloc[reloc_index - 1 - i];
return reloc_index;
}
static void
my_getExpression (expressionS *ep, char *str)
{
char *save_in;
save_in = input_line_pointer;
input_line_pointer = str;
expression (ep);
expr_end = input_line_pointer;
input_line_pointer = save_in;
}
const char *
md_atof (int type, char *litP, int *sizeP)
{
return ieee_md_atof (type, litP, sizeP, target_big_endian);
}
void
md_number_to_chars (char *buf, valueT val, int n)
{
if (target_big_endian)
number_to_chars_bigendian (buf, val, n);
else
number_to_chars_littleendian (buf, val, n);
}
static int support_64bit_objects(void)
{
const char **list, **l;
int yes;
list = bfd_target_list ();
for (l = list; *l != NULL; l++)
if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
|| strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
break;
yes = (*l != NULL);
free (list);
return yes;
}
/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
NEW_VALUE. Warn if another value was already specified. Note:
we have to defer parsing the -march and -mtune arguments in order
to handle 'from-abi' correctly, since the ABI might be specified
in a later argument. */
static void
mips_set_option_string (const char **string_ptr, const char *new_value)
{
if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
as_warn (_("a different %s was already specified, is now %s"),
string_ptr == &mips_arch_string ? "-march" : "-mtune",
new_value);
*string_ptr = new_value;
}
int
md_parse_option (int c, const char *arg)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
{
file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c == mips_ases[i].option_on);
return 1;
}
switch (c)
{
case OPTION_CONSTRUCT_FLOATS:
mips_disable_float_construction = 0;
break;
case OPTION_NO_CONSTRUCT_FLOATS:
mips_disable_float_construction = 1;
break;
case OPTION_TRAP:
mips_trap = 1;
break;
case OPTION_BREAK:
mips_trap = 0;
break;
case OPTION_EB:
target_big_endian = 1;
break;
case OPTION_EL:
target_big_endian = 0;
break;
case 'O':
if (arg == NULL)
mips_optimize = 1;
else if (arg[0] == '0')
mips_optimize = 0;
else if (arg[0] == '1')
mips_optimize = 1;
else
mips_optimize = 2;
break;
case 'g':
if (arg == NULL)
mips_debug = 2;
else
mips_debug = atoi (arg);
break;
case OPTION_MIPS1:
file_mips_opts.isa = ISA_MIPS1;
break;
case OPTION_MIPS2:
file_mips_opts.isa = ISA_MIPS2;
break;
case OPTION_MIPS3:
file_mips_opts.isa = ISA_MIPS3;
break;
case OPTION_MIPS4:
file_mips_opts.isa = ISA_MIPS4;
break;
case OPTION_MIPS5:
file_mips_opts.isa = ISA_MIPS5;
break;
case OPTION_MIPS32:
file_mips_opts.isa = ISA_MIPS32;
break;
case OPTION_MIPS32R2:
file_mips_opts.isa = ISA_MIPS32R2;
break;
case OPTION_MIPS32R3:
file_mips_opts.isa = ISA_MIPS32R3;
break;
case OPTION_MIPS32R5:
file_mips_opts.isa = ISA_MIPS32R5;
break;
case OPTION_MIPS32R6:
file_mips_opts.isa = ISA_MIPS32R6;
break;
case OPTION_MIPS64R2:
file_mips_opts.isa = ISA_MIPS64R2;
break;
case OPTION_MIPS64R3:
file_mips_opts.isa = ISA_MIPS64R3;
break;
case OPTION_MIPS64R5:
file_mips_opts.isa = ISA_MIPS64R5;
break;
case OPTION_MIPS64R6:
file_mips_opts.isa = ISA_MIPS64R6;
break;
case OPTION_MIPS64:
file_mips_opts.isa = ISA_MIPS64;
break;
case OPTION_MTUNE:
mips_set_option_string (&mips_tune_string, arg);
break;
case OPTION_MARCH:
mips_set_option_string (&mips_arch_string, arg);
break;
case OPTION_M4650:
mips_set_option_string (&mips_arch_string, "4650");
mips_set_option_string (&mips_tune_string, "4650");
break;
case OPTION_NO_M4650:
break;
case OPTION_M4010:
mips_set_option_string (&mips_arch_string, "4010");
mips_set_option_string (&mips_tune_string, "4010");
break;
case OPTION_NO_M4010:
break;
case OPTION_M4100:
mips_set_option_string (&mips_arch_string, "4100");
mips_set_option_string (&mips_tune_string, "4100");
break;
case OPTION_NO_M4100:
break;
case OPTION_M3900:
mips_set_option_string (&mips_arch_string, "3900");
mips_set_option_string (&mips_tune_string, "3900");
break;
case OPTION_NO_M3900:
break;
case OPTION_MICROMIPS:
if (file_mips_opts.mips16 == 1)
{
as_bad (_("-mmicromips cannot be used with -mips16"));
return 0;
}
file_mips_opts.micromips = 1;
mips_no_prev_insn ();
break;
case OPTION_NO_MICROMIPS:
file_mips_opts.micromips = 0;
mips_no_prev_insn ();
break;
case OPTION_MIPS16:
if (file_mips_opts.micromips == 1)
{
as_bad (_("-mips16 cannot be used with -micromips"));
return 0;
}
file_mips_opts.mips16 = 1;
mips_no_prev_insn ();
break;
case OPTION_NO_MIPS16:
file_mips_opts.mips16 = 0;
mips_no_prev_insn ();
break;
case OPTION_FIX_24K:
mips_fix_24k = 1;
break;
case OPTION_NO_FIX_24K:
mips_fix_24k = 0;
break;
case OPTION_FIX_RM7000:
mips_fix_rm7000 = 1;
break;
case OPTION_NO_FIX_RM7000:
mips_fix_rm7000 = 0;
break;
case OPTION_FIX_LOONGSON3_LLSC:
mips_fix_loongson3_llsc = true;
break;
case OPTION_NO_FIX_LOONGSON3_LLSC:
mips_fix_loongson3_llsc = false;
break;
case OPTION_FIX_LOONGSON2F_JUMP:
mips_fix_loongson2f_jump = true;
break;
case OPTION_NO_FIX_LOONGSON2F_JUMP:
mips_fix_loongson2f_jump = false;
break;
case OPTION_FIX_LOONGSON2F_NOP:
mips_fix_loongson2f_nop = true;
break;
case OPTION_NO_FIX_LOONGSON2F_NOP:
mips_fix_loongson2f_nop = false;
break;
case OPTION_FIX_VR4120:
mips_fix_vr4120 = 1;
break;
case OPTION_NO_FIX_VR4120:
mips_fix_vr4120 = 0;
break;
case OPTION_FIX_VR4130:
mips_fix_vr4130 = 1;
break;
case OPTION_NO_FIX_VR4130:
mips_fix_vr4130 = 0;
break;
case OPTION_FIX_CN63XXP1:
mips_fix_cn63xxp1 = true;
break;
case OPTION_NO_FIX_CN63XXP1:
mips_fix_cn63xxp1 = false;
break;
case OPTION_FIX_R5900:
mips_fix_r5900 = true;
mips_fix_r5900_explicit = true;
break;
case OPTION_NO_FIX_R5900:
mips_fix_r5900 = false;
mips_fix_r5900_explicit = true;
break;
case OPTION_RELAX_BRANCH:
mips_relax_branch = 1;
break;
case OPTION_NO_RELAX_BRANCH:
mips_relax_branch = 0;
break;
case OPTION_IGNORE_BRANCH_ISA:
mips_ignore_branch_isa = true;
break;
case OPTION_NO_IGNORE_BRANCH_ISA:
mips_ignore_branch_isa = false;
break;
case OPTION_INSN32:
file_mips_opts.insn32 = true;
break;
case OPTION_NO_INSN32:
file_mips_opts.insn32 = false;
break;
case OPTION_MSHARED:
mips_in_shared = true;
break;
case OPTION_MNO_SHARED:
mips_in_shared = false;
break;
case OPTION_MSYM32:
file_mips_opts.sym32 = true;
break;
case OPTION_MNO_SYM32:
file_mips_opts.sym32 = false;
break;
/* When generating ELF code, we permit -KPIC and -call_shared to
select SVR4_PIC, and -non_shared to select no PIC. This is
intended to be compatible with Irix 5. */
case OPTION_CALL_SHARED:
mips_pic = SVR4_PIC;
mips_abicalls = true;
break;
case OPTION_CALL_NONPIC:
mips_pic = NO_PIC;
mips_abicalls = true;
break;