blob: c06b4a803d93149929bd2dbd2ff35859133305c5 [file] [log] [blame]
/* itbl-parse.y
Copyright (C) 1997-2021 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
Yacc grammar for instruction table entries.
Original Instruction table specification document:
MIPS Coprocessor Table Specification
This document describes the format of the MIPS coprocessor table. The
table specifies a list of valid functions, data registers and control
registers that can be used in coprocessor instructions. This list,
together with the coprocessor instruction classes listed below,
specifies the complete list of coprocessor instructions that will
be recognized and assembled by the GNU assembler. In effect,
this makes the GNU assembler table-driven, where the table is
specified by the programmer.
The table is an ordinary text file that the GNU assembler reads when
it starts. Using the information in the table, the assembler
generates an internal list of valid coprocessor registers and
functions. The assembler uses this internal list in addition to the
standard MIPS registers and instructions which are built-in to the
assembler during code generation.
To specify the coprocessor table when invoking the GNU assembler, use
the command line option "--itbl file", where file is the
complete name of the table, including path and extension.
gas -t cop.tbl test.s -o test.o
gas -t /usr/local/lib/cop.tbl test.s -o test.o
gas --itbl d:\gnu\data\cop.tbl test.s -o test.o
Only one table may be supplied during a single invocation of
the assembler.
Instruction classes
Below is a list of the valid coprocessor instruction classes for
any given coprocessor "z". These instructions are already recognized
by the assembler, and are listed here only for reference.
Class format instructions
op base rt offset
LWCz rt,offset (base)
SWCz rt,offset (base)
COPz sub rt rd 0
MTCz rt,rd
MFCz rt,rd
CTCz rt,rd
CFCz rt,rd
COPz CO cofun
COPz cofun
COPz BC br offset
BCzT offset
BCzF offset
COPz sub rt rd 0
DMFCz rt,rd
DMTCz rt,rd
op base rt offset
LDCz rt,offset (base)
SDCz rt,offset (base)
COPz BC br offset
BCzTL offset
BCzFL offset
The coprocessor table defines coprocessor-specific registers that can
be used with all of the above classes of instructions, where
appropriate. It also defines additional coprocessor-specific
functions for Class3 (COPz cofun) instructions, Thus, the table allows
the programmer to use convenient mnemonics and operands for these
functions, instead of the COPz mmenmonic and cofun operand.
The names of the MIPS general registers and their aliases are defined
by the assembler and will be recognized as valid register names by the
assembler when used (where allowed) in coprocessor instructions.
However, the names and values of all coprocessor data and control
register mnemonics must be specified in the coprocessor table.
Table Grammar
Here is the grammar for the coprocessor table:
table -> entry*
entry -> [z entrydef] [comment] '\n'
entrydef -> type name val
entrydef -> 'insn' name val funcdef ; type of entry (instruction)
z -> 'p'['0'..'3'] ; processor number
type -> ['dreg' | 'creg' | 'greg' ] ; type of entry (register)
; 'dreg', 'creg' or 'greg' specifies a data, control, or general
; register mnemonic, respectively
name -> [ltr|dec]* ; mnemonic of register/function
val -> [dec|hex] ; register/function number (integer constant)
funcdef -> frange flags fields
; bitfield range for opcode
; list of fields' formats
fields -> field*
field -> [','] ftype frange flags
flags -> ['*' flagexpr]
flagexpr -> '[' flagexpr ']'
flagexpr -> val '|' flagexpr
ftype -> [ type | 'immed' | 'addr' ]
; 'immed' specifies an immediate value; see grammar for "val" above
; 'addr' specifies a C identifier; name of symbol to be resolved at
; link time
frange -> ':' val '-' val ; starting to ending bit positions, where
; where 0 is least significant bit
frange -> (null) ; default range of 31-0 will be assumed
comment -> [';'|'#'] [char]*
char -> any printable character
ltr -> ['a'..'z'|'A'..'Z']
dec -> ['0'..'9']* ; value in decimal
hex -> '0x'['0'..'9' | 'a'..'f' | 'A'..'F']* ; value in hexadecimal
Example 1:
The table:
p1 dreg d1 1 ; data register "d1" for COP1 has value 1
p1 creg c3 3 ; ctrl register "c3" for COP1 has value 3
p3 func fill 0x1f:24-20 ; function "fill" for COP3 has value 31 and
; no fields
will allow the assembler to accept the following coprocessor instructions:
LWC1 d1,0x100 ($2)
Here, the general purpose register "$2", and instruction "LWC1", are standard
mnemonics built-in to the MIPS assembler.
Example 2:
The table:
p3 dreg d3 3 ; data register "d3" for COP3 has value 3
p3 creg c2 22 ; control register "c2" for COP3 has value 22
p3 func fee 0x1f:24-20 dreg:17-13 creg:12-8 immed:7-0
; function "fee" for COP3 has value 31, and 3 fields
; consisting of a data register, a control register,
; and an immediate value.
will allow the assembler to accept the following coprocessor instruction:
fee d3,c2,0x1
and will emit the object code:
31-26 25 24-20 19-18 17-13 12-8 7-0
COPz CO fun dreg creg immed
010011 1 11111 00 00011 10110 00000001
Example 3:
The table:
p3 dreg d3 3 ; data register "d3" for COP3 has value 3
p3 creg c2 22 ; control register "c2" for COP3 has value 22
p3 func fuu 0x01f00001 dreg:17-13 creg:12-8
will allow the assembler to accept the following coprocessor
fuu d3,c2
and will emit the object code:
31-26 25 24-20 19-18 17-13 12-8 7-0
COPz CO fun dreg creg
010011 1 11111 00 00011 10110 00000001
In this way, the programmer can force arbitrary bits of an instruction
to have predefined values.
Additional notes:
Encoding of ranges:
To handle more than one bit position range within an instruction,
use 0s to mask out the ranges which don't apply.
May decide to modify the syntax to allow commas separate multiple
ranges within an instruction (range','range).
Changes in grammar:
The number of parms argument to the function entry
was deleted from the original format such that we now count the fields.
FIXME! should really change lexical analyzer
to recognize 'dreg' etc. in context sensitive way.
Currently function names or mnemonics may be incorrectly parsed as keywords
FIXME! hex is ambiguous with any digit
#include "as.h"
#include "itbl-lex.h"
#include "itbl-ops.h"
/* #define DEBUG */
#ifdef DEBUG
#ifndef DBG_LVL
#define DBG_LVL 1
#define DBG_LVL 0
#if DBG_LVL >= 1
#define DBG(x) printf x
#define DBG(x)
#if DBG_LVL >= 2
#define DBGL2(x) printf x
#define DBGL2(x)
static int sbit, ebit;
static struct itbl_entry *insn=0;
static int yyerror (const char *);
char *str;
int num;
int processor;
unsigned long val;
%type <val> value flags flagexpr
%type <num> number NUM ftype regtype pnum PNUM
%type <str> ID name
%start insntbl
entry entrys
pnum regtype name value NL
DBG (("line %d: entry pnum=%d type=%d name=%s value=x%x\n",
insntbl_line, $1, $2, $3, $4));
itbl_add_reg ($1, $2, $3, $4);
| pnum INSN name value range flags
DBG (("line %d: entry pnum=%d type=INSN name=%s value=x%x",
insntbl_line, $1, $3, $4));
DBG ((" sbit=%d ebit=%d flags=0x%x\n", sbit, ebit, $6));
insn=itbl_add_insn ($1, $3, $4, sbit, ebit, $6);
fieldspecs NL
| NL
| error NL
',' fieldspec fieldspecs
| fieldspec fieldspecs
DBGL2 (("ftype\n"));
$$ = $1;
DBGL2 (("addr\n"));
$$ = ADDR;
DBGL2 (("immed\n"));
$$ = IMMED;
ftype range flags
DBG (("line %d: field type=%d sbit=%d ebit=%d, flags=0x%x\n",
insntbl_line, $1, sbit, ebit, $3));
itbl_add_operand (insn, $1, sbit, ebit, $3);
NUM '|' flagexpr
$$ = $1 | $3;
| '[' flagexpr ']'
$$ = $2;
$$ = $1;
'*' flagexpr
DBGL2 (("flags=%d\n", $2));
$$ = $2;
$$ = 0;
':' NUM '-' NUM
DBGL2 (("range %d %d\n", $2, $4));
sbit = $2;
ebit = $4;
sbit = 31;
ebit = 0;
DBGL2 (("pnum=%d\n",$1));
$$ = $1;
DBGL2 (("dreg\n"));
$$ = DREG;
DBGL2 (("creg\n"));
$$ = CREG;
DBGL2 (("greg\n"));
$$ = GREG;
DBGL2 (("name=%s\n",$1));
$$ = $1;
DBGL2 (("num=%d\n",$1));
$$ = $1;
DBGL2 (("val=x%x\n",$1));
$$ = $1;
static int
yyerror (const char *msg)
printf ("line %d: %s\n", insntbl_line, msg);
return 0;