blob: 3b6f1a3ab1d1a8903e0a4975568ec199b9031ae0 [file] [log] [blame]
/* readelf.c -- display contents of an ELF format file
Copyright (C) 1998-2021 Free Software Foundation, Inc.
Originally developed by Eric Youngdale <eric@andante.jic.com>
Modifications by Nick Clifton <nickc@redhat.com>
This file is part of GNU Binutils.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
/* The difference between readelf and objdump:
Both programs are capable of displaying the contents of ELF format files,
so why does the binutils project have two file dumpers ?
The reason is that objdump sees an ELF file through a BFD filter of the
world; if BFD has a bug where, say, it disagrees about a machine constant
in e_flags, then the odds are good that it will remain internally
consistent. The linker sees it the BFD way, objdump sees it the BFD way,
GAS sees it the BFD way. There was need for a tool to go find out what
the file actually says.
This is why the readelf program does not link against the BFD library - it
exists as an independent program to help verify the correct working of BFD.
There is also the case that readelf can provide more information about an
ELF file than is provided by objdump. In particular it can display DWARF
debugging information which (at the moment) objdump cannot. */
#include "sysdep.h"
#include <assert.h>
#include <time.h>
#include <zlib.h>
#include <wchar.h>
#if __GNUC__ >= 2
/* Define BFD64 here, even if our default architecture is 32 bit ELF
as this will allow us to read in and parse 64bit and 32bit ELF files.
Only do this if we believe that the compiler can support a 64 bit
data type. For now we only rely on GCC being able to do this. */
#define BFD64
#endif
#include "bfd.h"
#include "bucomm.h"
#include "elfcomm.h"
#include "dwarf.h"
#include "ctf-api.h"
#include "demangle.h"
#include "elf/common.h"
#include "elf/external.h"
#include "elf/internal.h"
/* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
we can obtain the H8 reloc numbers. We need these for the
get_reloc_size() function. We include h8.h again after defining
RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
#include "elf/h8.h"
#undef _ELF_H8_H
/* Undo the effects of #including reloc-macros.h. */
#undef START_RELOC_NUMBERS
#undef RELOC_NUMBER
#undef FAKE_RELOC
#undef EMPTY_RELOC
#undef END_RELOC_NUMBERS
#undef _RELOC_MACROS_H
/* The following headers use the elf/reloc-macros.h file to
automatically generate relocation recognition functions
such as elf_mips_reloc_type() */
#define RELOC_MACROS_GEN_FUNC
#include "elf/aarch64.h"
#include "elf/alpha.h"
#include "elf/arc.h"
#include "elf/arm.h"
#include "elf/avr.h"
#include "elf/bfin.h"
#include "elf/cr16.h"
#include "elf/cris.h"
#include "elf/crx.h"
#include "elf/csky.h"
#include "elf/d10v.h"
#include "elf/d30v.h"
#include "elf/dlx.h"
#include "elf/bpf.h"
#include "elf/epiphany.h"
#include "elf/fr30.h"
#include "elf/frv.h"
#include "elf/ft32.h"
#include "elf/h8.h"
#include "elf/hppa.h"
#include "elf/i386.h"
#include "elf/i370.h"
#include "elf/i860.h"
#include "elf/i960.h"
#include "elf/ia64.h"
#include "elf/ip2k.h"
#include "elf/lm32.h"
#include "elf/iq2000.h"
#include "elf/m32c.h"
#include "elf/m32r.h"
#include "elf/m68k.h"
#include "elf/m68hc11.h"
#include "elf/s12z.h"
#include "elf/mcore.h"
#include "elf/mep.h"
#include "elf/metag.h"
#include "elf/microblaze.h"
#include "elf/mips.h"
#include "elf/mmix.h"
#include "elf/mn10200.h"
#include "elf/mn10300.h"
#include "elf/moxie.h"
#include "elf/mt.h"
#include "elf/msp430.h"
#include "elf/nds32.h"
#include "elf/nfp.h"
#include "elf/nios2.h"
#include "elf/or1k.h"
#include "elf/pj.h"
#include "elf/ppc.h"
#include "elf/ppc64.h"
#include "elf/pru.h"
#include "elf/riscv.h"
#include "elf/rl78.h"
#include "elf/rx.h"
#include "elf/s390.h"
#include "elf/score.h"
#include "elf/sh.h"
#include "elf/sparc.h"
#include "elf/spu.h"
#include "elf/tic6x.h"
#include "elf/tilegx.h"
#include "elf/tilepro.h"
#include "elf/v850.h"
#include "elf/vax.h"
#include "elf/visium.h"
#include "elf/wasm32.h"
#include "elf/x86-64.h"
#include "elf/xc16x.h"
#include "elf/xgate.h"
#include "elf/xstormy16.h"
#include "elf/xtensa.h"
#include "elf/z80.h"
#include "getopt.h"
#include "libiberty.h"
#include "safe-ctype.h"
#include "filenames.h"
#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
#endif
typedef struct elf_section_list
{
Elf_Internal_Shdr * hdr;
struct elf_section_list * next;
} elf_section_list;
/* Flag bits indicating particular types of dump. */
#define HEX_DUMP (1 << 0) /* The -x command line switch. */
#define DISASS_DUMP (1 << 1) /* The -i command line switch. */
#define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
#define STRING_DUMP (1 << 3) /* The -p command line switch. */
#define RELOC_DUMP (1 << 4) /* The -R command line switch. */
#define CTF_DUMP (1 << 5) /* The --ctf command line switch. */
typedef unsigned char dump_type;
/* A linked list of the section names for which dumps were requested. */
struct dump_list_entry
{
char * name;
dump_type type;
struct dump_list_entry * next;
};
/* A dynamic array of flags indicating for which sections a dump
has been requested via command line switches. */
struct dump_data
{
dump_type * dump_sects;
unsigned int num_dump_sects;
};
static struct dump_data cmdline;
static struct dump_list_entry * dump_sects_byname;
char * program_name = "readelf";
static bool show_name = false;
static bool do_dynamic = false;
static bool do_syms = false;
static bool do_dyn_syms = false;
static bool do_lto_syms = false;
static bool do_reloc = false;
static bool do_sections = false;
static bool do_section_groups = false;
static bool do_section_details = false;
static bool do_segments = false;
static bool do_unwind = false;
static bool do_using_dynamic = false;
static bool do_header = false;
static bool do_dump = false;
static bool do_version = false;
static bool do_histogram = false;
static bool do_debugging = false;
static bool do_ctf = false;
static bool do_arch = false;
static bool do_notes = false;
static bool do_archive_index = false;
static bool check_all = false;
static bool is_32bit_elf = false;
static bool decompress_dumps = false;
static bool do_not_show_symbol_truncation = false;
static bool do_demangle = false; /* Pretty print C++ symbol names. */
static bool process_links = false;
static int demangle_flags = DMGL_ANSI | DMGL_PARAMS;
static int sym_base = 0;
static char *dump_ctf_parent_name;
static char *dump_ctf_symtab_name;
static char *dump_ctf_strtab_name;
struct group_list
{
struct group_list * next;
unsigned int section_index;
};
struct group
{
struct group_list * root;
unsigned int group_index;
};
typedef struct filedata
{
const char * file_name;
bool is_separate;
FILE * handle;
bfd_size_type file_size;
Elf_Internal_Ehdr file_header;
unsigned long archive_file_offset;
unsigned long archive_file_size;
/* Everything below this point is cleared out by free_filedata. */
Elf_Internal_Shdr * section_headers;
Elf_Internal_Phdr * program_headers;
char * string_table;
unsigned long string_table_length;
unsigned long dynamic_addr;
bfd_size_type dynamic_size;
size_t dynamic_nent;
Elf_Internal_Dyn * dynamic_section;
Elf_Internal_Shdr * dynamic_strtab_section;
char * dynamic_strings;
unsigned long dynamic_strings_length;
Elf_Internal_Shdr * dynamic_symtab_section;
unsigned long num_dynamic_syms;
Elf_Internal_Sym * dynamic_symbols;
bfd_vma version_info[16];
unsigned int dynamic_syminfo_nent;
Elf_Internal_Syminfo * dynamic_syminfo;
unsigned long dynamic_syminfo_offset;
bfd_size_type nbuckets;
bfd_size_type nchains;
bfd_vma * buckets;
bfd_vma * chains;
bfd_size_type ngnubuckets;
bfd_size_type ngnuchains;
bfd_vma * gnubuckets;
bfd_vma * gnuchains;
bfd_vma * mipsxlat;
bfd_vma gnusymidx;
char * program_interpreter;
bfd_vma dynamic_info[DT_ENCODING];
bfd_vma dynamic_info_DT_GNU_HASH;
bfd_vma dynamic_info_DT_MIPS_XHASH;
elf_section_list * symtab_shndx_list;
size_t group_count;
struct group * section_groups;
struct group ** section_headers_groups;
/* A dynamic array of flags indicating for which sections a dump of
some kind has been requested. It is reset on a per-object file
basis and then initialised from the cmdline_dump_sects array,
the results of interpreting the -w switch, and the
dump_sects_byname list. */
struct dump_data dump;
} Filedata;
/* How to print a vma value. */
typedef enum print_mode
{
HEX,
HEX_5,
DEC,
DEC_5,
UNSIGNED,
UNSIGNED_5,
PREFIX_HEX,
PREFIX_HEX_5,
FULL_HEX,
LONG_HEX,
OCTAL,
OCTAL_5
}
print_mode;
/* Versioned symbol info. */
enum versioned_symbol_info
{
symbol_undefined,
symbol_hidden,
symbol_public
};
static const char * get_symbol_version_string
(Filedata *, bool, const char *, unsigned long, unsigned,
Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
#define UNKNOWN -1
#define SECTION_NAME(X) \
(filedata->string_table + (X)->sh_name)
#define SECTION_NAME_VALID(X) \
((X) != NULL \
&& filedata->string_table != NULL \
&& (X)->sh_name < filedata->string_table_length)
#define SECTION_NAME_PRINT(X) \
((X) == NULL ? _("<none>") \
: filedata->string_table == NULL ? _("<no-strings>") \
: (X)->sh_name >= filedata->string_table_length ? _("<corrupt>") \
: filedata->string_table + (X)->sh_name)
#define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
#define VALID_SYMBOL_NAME(strtab, strtab_size, offset) \
(strtab != NULL && offset < strtab_size)
#define VALID_DYNAMIC_NAME(filedata, offset) \
VALID_SYMBOL_NAME (filedata->dynamic_strings, \
filedata->dynamic_strings_length, offset)
/* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
already been called and verified that the string exists. */
#define GET_DYNAMIC_NAME(filedata, offset) \
(filedata->dynamic_strings + offset)
#define REMOVE_ARCH_BITS(ADDR) \
do \
{ \
if (filedata->file_header.e_machine == EM_ARM) \
(ADDR) &= ~1; \
} \
while (0)
/* Get the correct GNU hash section name. */
#define GNU_HASH_SECTION_NAME(filedata) \
filedata->dynamic_info_DT_MIPS_XHASH ? ".MIPS.xhash" : ".gnu.hash"
/* Print a BFD_VMA to an internal buffer, for use in error messages.
BFD_FMA_FMT can't be used in translated strings. */
static const char *
bfd_vmatoa (char *fmtch, bfd_vma value)
{
/* bfd_vmatoa is used more then once in a printf call for output.
Cycle through an array of buffers. */
static int buf_pos = 0;
static struct bfd_vmatoa_buf
{
char place[64];
} buf[4];
char *ret;
char fmt[32];
ret = buf[buf_pos++].place;
buf_pos %= ARRAY_SIZE (buf);
sprintf (fmt, "%%%s%s", BFD_VMA_FMT, fmtch);
snprintf (ret, sizeof (buf[0].place), fmt, value);
return ret;
}
/* Retrieve NMEMB structures, each SIZE bytes long from FILEDATA starting at
OFFSET + the offset of the current archive member, if we are examining an
archive. Put the retrieved data into VAR, if it is not NULL. Otherwise
allocate a buffer using malloc and fill that. In either case return the
pointer to the start of the retrieved data or NULL if something went wrong.
If something does go wrong and REASON is not NULL then emit an error
message using REASON as part of the context. */
static void *
get_data (void * var,
Filedata * filedata,
unsigned long offset,
bfd_size_type size,
bfd_size_type nmemb,
const char * reason)
{
void * mvar;
bfd_size_type amt = size * nmemb;
if (size == 0 || nmemb == 0)
return NULL;
/* If the size_t type is smaller than the bfd_size_type, eg because
you are building a 32-bit tool on a 64-bit host, then make sure
that when the sizes are cast to (size_t) no information is lost. */
if ((size_t) size != size
|| (size_t) nmemb != nmemb
|| (size_t) amt != amt)
{
if (reason)
error (_("Size truncation prevents reading %s"
" elements of size %s for %s\n"),
bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
return NULL;
}
/* Check for size overflow. */
if (amt / size != nmemb || (size_t) amt + 1 == 0)
{
if (reason)
error (_("Size overflow prevents reading %s"
" elements of size %s for %s\n"),
bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
return NULL;
}
/* Be kind to memory checkers (eg valgrind, address sanitizer) by not
attempting to allocate memory when the read is bound to fail. */
if (filedata->archive_file_offset > filedata->file_size
|| offset > filedata->file_size - filedata->archive_file_offset
|| amt > filedata->file_size - filedata->archive_file_offset - offset)
{
if (reason)
error (_("Reading %s bytes extends past end of file for %s\n"),
bfd_vmatoa ("u", amt), reason);
return NULL;
}
if (fseek (filedata->handle, filedata->archive_file_offset + offset,
SEEK_SET))
{
if (reason)
error (_("Unable to seek to 0x%lx for %s\n"),
filedata->archive_file_offset + offset, reason);
return NULL;
}
mvar = var;
if (mvar == NULL)
{
/* + 1 so that we can '\0' terminate invalid string table sections. */
mvar = malloc ((size_t) amt + 1);
if (mvar == NULL)
{
if (reason)
error (_("Out of memory allocating %s bytes for %s\n"),
bfd_vmatoa ("u", amt), reason);
return NULL;
}
((char *) mvar)[amt] = '\0';
}
if (fread (mvar, (size_t) size, (size_t) nmemb, filedata->handle) != nmemb)
{
if (reason)
error (_("Unable to read in %s bytes of %s\n"),
bfd_vmatoa ("u", amt), reason);
if (mvar != var)
free (mvar);
return NULL;
}
return mvar;
}
/* Print a VMA value in the MODE specified.
Returns the number of characters displayed. */
static unsigned int
print_vma (bfd_vma vma, print_mode mode)
{
unsigned int nc = 0;
switch (mode)
{
case FULL_HEX:
nc = printf ("0x");
/* Fall through. */
case LONG_HEX:
#ifdef BFD64
if (is_32bit_elf)
return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
#endif
printf_vma (vma);
return nc + 16;
case DEC_5:
if (vma <= 99999)
return printf ("%5" BFD_VMA_FMT "d", vma);
/* Fall through. */
case PREFIX_HEX:
nc = printf ("0x");
/* Fall through. */
case HEX:
return nc + printf ("%" BFD_VMA_FMT "x", vma);
case PREFIX_HEX_5:
nc = printf ("0x");
/* Fall through. */
case HEX_5:
return nc + printf ("%05" BFD_VMA_FMT "x", vma);
case DEC:
return printf ("%" BFD_VMA_FMT "d", vma);
case UNSIGNED:
return printf ("%" BFD_VMA_FMT "u", vma);
case UNSIGNED_5:
return printf ("%5" BFD_VMA_FMT "u", vma);
case OCTAL:
return printf ("%" BFD_VMA_FMT "o", vma);
case OCTAL_5:
return printf ("%5" BFD_VMA_FMT "o", vma);
default:
/* FIXME: Report unrecognised mode ? */
return 0;
}
}
/* Display a symbol on stdout. Handles the display of control characters and
multibye characters (assuming the host environment supports them).
Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
If truncation will happen and do_not_show_symbol_truncation is FALSE then display
abs(WIDTH) - 5 characters followed by "[...]".
If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
padding as necessary.
Returns the number of emitted characters. */
static unsigned int
print_symbol (signed int width, const char * symbol)
{
bool extra_padding = false;
bool do_dots = false;
signed int num_printed = 0;
#ifdef HAVE_MBSTATE_T
mbstate_t state;
#endif
unsigned int width_remaining;
const void * alloced_symbol = NULL;
if (width < 0)
{
/* Keep the width positive. This helps the code below. */
width = - width;
extra_padding = true;
}
else if (width == 0)
return 0;
if (do_wide)
/* Set the remaining width to a very large value.
This simplifies the code below. */
width_remaining = INT_MAX;
else
{
width_remaining = width;
if (! do_not_show_symbol_truncation
&& (int) strlen (symbol) > width)
{
width_remaining -= 5;
if ((int) width_remaining < 0)
width_remaining = 0;
do_dots = true;
}
}
#ifdef HAVE_MBSTATE_T
/* Initialise the multibyte conversion state. */
memset (& state, 0, sizeof (state));
#endif
if (do_demangle && *symbol)
{
const char * res = cplus_demangle (symbol, demangle_flags);
if (res != NULL)
alloced_symbol = symbol = res;
}
while (width_remaining)
{
size_t n;
const char c = *symbol++;
if (c == 0)
break;
/* Do not print control characters directly as they can affect terminal
settings. Such characters usually appear in the names generated
by the assembler for local labels. */
if (ISCNTRL (c))
{
if (width_remaining < 2)
break;
printf ("^%c", c + 0x40);
width_remaining -= 2;
num_printed += 2;
}
else if (ISPRINT (c))
{
putchar (c);
width_remaining --;
num_printed ++;
}
else
{
#ifdef HAVE_MBSTATE_T
wchar_t w;
#endif
/* Let printf do the hard work of displaying multibyte characters. */
printf ("%.1s", symbol - 1);
width_remaining --;
num_printed ++;
#ifdef HAVE_MBSTATE_T
/* Try to find out how many bytes made up the character that was
just printed. Advance the symbol pointer past the bytes that
were displayed. */
n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
#else
n = 1;
#endif
if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
symbol += (n - 1);
}
}
if (do_dots)
num_printed += printf ("[...]");
if (extra_padding && num_printed < width)
{
/* Fill in the remaining spaces. */
printf ("%-*s", width - num_printed, " ");
num_printed = width;
}
free ((void *) alloced_symbol);
return num_printed;
}
/* Returns a pointer to a static buffer containing a printable version of
the given section's name. Like print_symbol, except that it does not try
to print multibyte characters, it just interprets them as hex values. */
static const char *
printable_section_name (Filedata * filedata, const Elf_Internal_Shdr * sec)
{
#define MAX_PRINT_SEC_NAME_LEN 256
static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
const char * name = SECTION_NAME_PRINT (sec);
char * buf = sec_name_buf;
char c;
unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
while ((c = * name ++) != 0)
{
if (ISCNTRL (c))
{
if (remaining < 2)
break;
* buf ++ = '^';
* buf ++ = c + 0x40;
remaining -= 2;
}
else if (ISPRINT (c))
{
* buf ++ = c;
remaining -= 1;
}
else
{
static char hex[17] = "0123456789ABCDEF";
if (remaining < 4)
break;
* buf ++ = '<';
* buf ++ = hex[(c & 0xf0) >> 4];
* buf ++ = hex[c & 0x0f];
* buf ++ = '>';
remaining -= 4;
}
if (remaining == 0)
break;
}
* buf = 0;
return sec_name_buf;
}
static const char *
printable_section_name_from_index (Filedata * filedata, unsigned long ndx)
{
if (ndx >= filedata->file_header.e_shnum)
return _("<corrupt>");
return printable_section_name (filedata, filedata->section_headers + ndx);
}
/* Return a pointer to section NAME, or NULL if no such section exists. */
static Elf_Internal_Shdr *
find_section (Filedata * filedata, const char * name)
{
unsigned int i;
if (filedata->section_headers == NULL)
return NULL;
for (i = 0; i < filedata->file_header.e_shnum; i++)
if (SECTION_NAME_VALID (filedata->section_headers + i)
&& streq (SECTION_NAME (filedata->section_headers + i), name))
return filedata->section_headers + i;
return NULL;
}
/* Return a pointer to a section containing ADDR, or NULL if no such
section exists. */
static Elf_Internal_Shdr *
find_section_by_address (Filedata * filedata, bfd_vma addr)
{
unsigned int i;
if (filedata->section_headers == NULL)
return NULL;
for (i = 0; i < filedata->file_header.e_shnum; i++)
{
Elf_Internal_Shdr *sec = filedata->section_headers + i;
if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
return sec;
}
return NULL;
}
static Elf_Internal_Shdr *
find_section_by_type (Filedata * filedata, unsigned int type)
{
unsigned int i;
if (filedata->section_headers == NULL)
return NULL;
for (i = 0; i < filedata->file_header.e_shnum; i++)
{
Elf_Internal_Shdr *sec = filedata->section_headers + i;
if (sec->sh_type == type)
return sec;
}
return NULL;
}
/* Return a pointer to section NAME, or NULL if no such section exists,
restricted to the list of sections given in SET. */
static Elf_Internal_Shdr *
find_section_in_set (Filedata * filedata, const char * name, unsigned int * set)
{
unsigned int i;
if (filedata->section_headers == NULL)
return NULL;
if (set != NULL)
{
while ((i = *set++) > 0)
{
/* See PR 21156 for a reproducer. */
if (i >= filedata->file_header.e_shnum)
continue; /* FIXME: Should we issue an error message ? */
if (SECTION_NAME_VALID (filedata->section_headers + i)
&& streq (SECTION_NAME (filedata->section_headers + i), name))
return filedata->section_headers + i;
}
}
return find_section (filedata, name);
}
/* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
This OS has so many departures from the ELF standard that we test it at
many places. */
static inline bool
is_ia64_vms (Filedata * filedata)
{
return filedata->file_header.e_machine == EM_IA_64
&& filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
}
/* Guess the relocation size commonly used by the specific machines. */
static bool
guess_is_rela (unsigned int e_machine)
{
switch (e_machine)
{
/* Targets that use REL relocations. */
case EM_386:
case EM_IAMCU:
case EM_960:
case EM_ARM:
case EM_D10V:
case EM_CYGNUS_D10V:
case EM_DLX:
case EM_MIPS:
case EM_MIPS_RS3_LE:
case EM_CYGNUS_M32R:
case EM_SCORE:
case EM_XGATE:
case EM_NFP:
case EM_BPF:
return false;
/* Targets that use RELA relocations. */
case EM_68K:
case EM_860:
case EM_AARCH64:
case EM_ADAPTEVA_EPIPHANY:
case EM_ALPHA:
case EM_ALTERA_NIOS2:
case EM_ARC:
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
case EM_AVR:
case EM_AVR_OLD:
case EM_BLACKFIN:
case EM_CR16:
case EM_CRIS:
case EM_CRX:
case EM_CSKY:
case EM_D30V:
case EM_CYGNUS_D30V:
case EM_FR30:
case EM_FT32:
case EM_CYGNUS_FR30:
case EM_CYGNUS_FRV:
case EM_H8S:
case EM_H8_300:
case EM_H8_300H:
case EM_IA_64:
case EM_IP2K:
case EM_IP2K_OLD:
case EM_IQ2000:
case EM_LATTICEMICO32:
case EM_M32C_OLD:
case EM_M32C:
case EM_M32R:
case EM_MCORE:
case EM_CYGNUS_MEP:
case EM_METAG:
case EM_MMIX:
case EM_MN10200:
case EM_CYGNUS_MN10200:
case EM_MN10300:
case EM_CYGNUS_MN10300:
case EM_MOXIE:
case EM_MSP430:
case EM_MSP430_OLD:
case EM_MT:
case EM_NDS32:
case EM_NIOS32:
case EM_OR1K:
case EM_PPC64:
case EM_PPC:
case EM_TI_PRU:
case EM_RISCV:
case EM_RL78:
case EM_RX:
case EM_S390:
case EM_S390_OLD:
case EM_SH:
case EM_SPARC:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPU:
case EM_TI_C6000:
case EM_TILEGX:
case EM_TILEPRO:
case EM_V800:
case EM_V850:
case EM_CYGNUS_V850:
case EM_VAX:
case EM_VISIUM:
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
case EM_XSTORMY16:
case EM_XTENSA:
case EM_XTENSA_OLD:
case EM_MICROBLAZE:
case EM_MICROBLAZE_OLD:
case EM_WEBASSEMBLY:
return true;
case EM_68HC05:
case EM_68HC08:
case EM_68HC11:
case EM_68HC16:
case EM_FX66:
case EM_ME16:
case EM_MMA:
case EM_NCPU:
case EM_NDR1:
case EM_PCP:
case EM_ST100:
case EM_ST19:
case EM_ST7:
case EM_ST9PLUS:
case EM_STARCORE:
case EM_SVX:
case EM_TINYJ:
default:
warn (_("Don't know about relocations on this machine architecture\n"));
return false;
}
}
/* Load RELA type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
Returns TRUE upon success, FALSE otherwise. If successful then a
pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
and the number of relocs loaded is placed in *NRELASP. It is the caller's
responsibility to free the allocated buffer. */
static bool
slurp_rela_relocs (Filedata * filedata,
unsigned long rel_offset,
unsigned long rel_size,
Elf_Internal_Rela ** relasp,
unsigned long * nrelasp)
{
Elf_Internal_Rela * relas;
size_t nrelas;
unsigned int i;
if (is_32bit_elf)
{
Elf32_External_Rela * erelas;
erelas = (Elf32_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
rel_size, _("32-bit relocation data"));
if (!erelas)
return false;
nrelas = rel_size / sizeof (Elf32_External_Rela);
relas = (Elf_Internal_Rela *) cmalloc (nrelas,
sizeof (Elf_Internal_Rela));
if (relas == NULL)
{
free (erelas);
error (_("out of memory parsing relocs\n"));
return false;
}
for (i = 0; i < nrelas; i++)
{
relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
relas[i].r_info = BYTE_GET (erelas[i].r_info);
relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
}
free (erelas);
}
else
{
Elf64_External_Rela * erelas;
erelas = (Elf64_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
rel_size, _("64-bit relocation data"));
if (!erelas)
return false;
nrelas = rel_size / sizeof (Elf64_External_Rela);
relas = (Elf_Internal_Rela *) cmalloc (nrelas,
sizeof (Elf_Internal_Rela));
if (relas == NULL)
{
free (erelas);
error (_("out of memory parsing relocs\n"));
return false;
}
for (i = 0; i < nrelas; i++)
{
relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
relas[i].r_info = BYTE_GET (erelas[i].r_info);
relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
/* The #ifdef BFD64 below is to prevent a compile time
warning. We know that if we do not have a 64 bit data
type that we will never execute this code anyway. */
#ifdef BFD64
if (filedata->file_header.e_machine == EM_MIPS
&& filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
{
/* In little-endian objects, r_info isn't really a
64-bit little-endian value: it has a 32-bit
little-endian symbol index followed by four
individual byte fields. Reorder INFO
accordingly. */
bfd_vma inf = relas[i].r_info;
inf = (((inf & 0xffffffff) << 32)
| ((inf >> 56) & 0xff)
| ((inf >> 40) & 0xff00)
| ((inf >> 24) & 0xff0000)
| ((inf >> 8) & 0xff000000));
relas[i].r_info = inf;
}
#endif /* BFD64 */
}
free (erelas);
}
*relasp = relas;
*nrelasp = nrelas;
return true;
}
/* Load REL type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
Returns TRUE upon success, FALSE otherwise. If successful then a
pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
and the number of relocs loaded is placed in *NRELSP. It is the caller's
responsibility to free the allocated buffer. */
static bool
slurp_rel_relocs (Filedata * filedata,
unsigned long rel_offset,
unsigned long rel_size,
Elf_Internal_Rela ** relsp,
unsigned long * nrelsp)
{
Elf_Internal_Rela * rels;
size_t nrels;
unsigned int i;
if (is_32bit_elf)
{
Elf32_External_Rel * erels;
erels = (Elf32_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
rel_size, _("32-bit relocation data"));
if (!erels)
return false;
nrels = rel_size / sizeof (Elf32_External_Rel);
rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
if (rels == NULL)
{
free (erels);
error (_("out of memory parsing relocs\n"));
return false;
}
for (i = 0; i < nrels; i++)
{
rels[i].r_offset = BYTE_GET (erels[i].r_offset);
rels[i].r_info = BYTE_GET (erels[i].r_info);
rels[i].r_addend = 0;
}
free (erels);
}
else
{
Elf64_External_Rel * erels;
erels = (Elf64_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
rel_size, _("64-bit relocation data"));
if (!erels)
return false;
nrels = rel_size / sizeof (Elf64_External_Rel);
rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
if (rels == NULL)
{
free (erels);
error (_("out of memory parsing relocs\n"));
return false;
}
for (i = 0; i < nrels; i++)
{
rels[i].r_offset = BYTE_GET (erels[i].r_offset);
rels[i].r_info = BYTE_GET (erels[i].r_info);
rels[i].r_addend = 0;
/* The #ifdef BFD64 below is to prevent a compile time
warning. We know that if we do not have a 64 bit data
type that we will never execute this code anyway. */
#ifdef BFD64
if (filedata->file_header.e_machine == EM_MIPS
&& filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
{
/* In little-endian objects, r_info isn't really a
64-bit little-endian value: it has a 32-bit
little-endian symbol index followed by four
individual byte fields. Reorder INFO
accordingly. */
bfd_vma inf = rels[i].r_info;
inf = (((inf & 0xffffffff) << 32)
| ((inf >> 56) & 0xff)
| ((inf >> 40) & 0xff00)
| ((inf >> 24) & 0xff0000)
| ((inf >> 8) & 0xff000000));
rels[i].r_info = inf;
}
#endif /* BFD64 */
}
free (erels);
}
*relsp = rels;
*nrelsp = nrels;
return true;
}
/* Returns the reloc type extracted from the reloc info field. */
static unsigned int
get_reloc_type (Filedata * filedata, bfd_vma reloc_info)
{
if (is_32bit_elf)
return ELF32_R_TYPE (reloc_info);
switch (filedata->file_header.e_machine)
{
case EM_MIPS:
/* Note: We assume that reloc_info has already been adjusted for us. */
return ELF64_MIPS_R_TYPE (reloc_info);
case EM_SPARCV9:
return ELF64_R_TYPE_ID (reloc_info);
default:
return ELF64_R_TYPE (reloc_info);
}
}
/* Return the symbol index extracted from the reloc info field. */
static bfd_vma
get_reloc_symindex (bfd_vma reloc_info)
{
return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
}
static inline bool
uses_msp430x_relocs (Filedata * filedata)
{
return
filedata->file_header.e_machine == EM_MSP430 /* Paranoia. */
/* GCC uses osabi == ELFOSBI_STANDALONE. */
&& (((filedata->file_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
/* TI compiler uses ELFOSABI_NONE. */
|| (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
}
/* Display the contents of the relocation data found at the specified
offset. */
static bool
dump_relocations (Filedata * filedata,
unsigned long rel_offset,
unsigned long rel_size,
Elf_Internal_Sym * symtab,
unsigned long nsyms,
char * strtab,
unsigned long strtablen,
int is_rela,
bool is_dynsym)
{
unsigned long i;
Elf_Internal_Rela * rels;
bool res = true;
if (is_rela == UNKNOWN)
is_rela = guess_is_rela (filedata->file_header.e_machine);
if (is_rela)
{
if (!slurp_rela_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
return false;
}
else
{
if (!slurp_rel_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
return false;
}
if (is_32bit_elf)
{
if (is_rela)
{
if (do_wide)
printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
else
printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
}
else
{
if (do_wide)
printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
else
printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
}
}
else
{
if (is_rela)
{
if (do_wide)
printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
else
printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
}
else
{
if (do_wide)
printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
else
printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
}
}
for (i = 0; i < rel_size; i++)
{
const char * rtype;
bfd_vma offset;
bfd_vma inf;
bfd_vma symtab_index;
bfd_vma type;
offset = rels[i].r_offset;
inf = rels[i].r_info;
type = get_reloc_type (filedata, inf);
symtab_index = get_reloc_symindex (inf);
if (is_32bit_elf)
{
printf ("%8.8lx %8.8lx ",
(unsigned long) offset & 0xffffffff,
(unsigned long) inf & 0xffffffff);
}
else
{
printf (do_wide
? "%16.16" BFD_VMA_FMT "x %16.16" BFD_VMA_FMT "x "
: "%12.12" BFD_VMA_FMT "x %12.12" BFD_VMA_FMT "x ",
offset, inf);
}
switch (filedata->file_header.e_machine)
{
default:
rtype = NULL;
break;
case EM_AARCH64:
rtype = elf_aarch64_reloc_type (type);
break;
case EM_M32R:
case EM_CYGNUS_M32R:
rtype = elf_m32r_reloc_type (type);
break;
case EM_386:
case EM_IAMCU:
rtype = elf_i386_reloc_type (type);
break;
case EM_68HC11:
case EM_68HC12:
rtype = elf_m68hc11_reloc_type (type);
break;
case EM_S12Z:
rtype = elf_s12z_reloc_type (type);
break;
case EM_68K:
rtype = elf_m68k_reloc_type (type);
break;
case EM_960:
rtype = elf_i960_reloc_type (type);
break;
case EM_AVR:
case EM_AVR_OLD:
rtype = elf_avr_reloc_type (type);
break;
case EM_OLD_SPARCV9:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
rtype = elf_sparc_reloc_type (type);
break;
case EM_SPU:
rtype = elf_spu_reloc_type (type);
break;
case EM_V800:
rtype = v800_reloc_type (type);
break;
case EM_V850:
case EM_CYGNUS_V850:
rtype = v850_reloc_type (type);
break;
case EM_D10V:
case EM_CYGNUS_D10V:
rtype = elf_d10v_reloc_type (type);
break;
case EM_D30V:
case EM_CYGNUS_D30V:
rtype = elf_d30v_reloc_type (type);
break;
case EM_DLX:
rtype = elf_dlx_reloc_type (type);
break;
case EM_SH:
rtype = elf_sh_reloc_type (type);
break;
case EM_MN10300:
case EM_CYGNUS_MN10300:
rtype = elf_mn10300_reloc_type (type);
break;
case EM_MN10200:
case EM_CYGNUS_MN10200:
rtype = elf_mn10200_reloc_type (type);
break;
case EM_FR30:
case EM_CYGNUS_FR30:
rtype = elf_fr30_reloc_type (type);
break;
case EM_CYGNUS_FRV:
rtype = elf_frv_reloc_type (type);
break;
case EM_CSKY:
rtype = elf_csky_reloc_type (type);
break;
case EM_FT32:
rtype = elf_ft32_reloc_type (type);
break;
case EM_MCORE:
rtype = elf_mcore_reloc_type (type);
break;
case EM_MMIX:
rtype = elf_mmix_reloc_type (type);
break;
case EM_MOXIE:
rtype = elf_moxie_reloc_type (type);
break;
case EM_MSP430:
if (uses_msp430x_relocs (filedata))
{
rtype = elf_msp430x_reloc_type (type);
break;
}
/* Fall through. */
case EM_MSP430_OLD:
rtype = elf_msp430_reloc_type (type);
break;
case EM_NDS32:
rtype = elf_nds32_reloc_type (type);
break;
case EM_PPC:
rtype = elf_ppc_reloc_type (type);
break;
case EM_PPC64:
rtype = elf_ppc64_reloc_type (type);
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
rtype = elf_mips_reloc_type (type);
break;
case EM_RISCV:
rtype = elf_riscv_reloc_type (type);
break;
case EM_ALPHA:
rtype = elf_alpha_reloc_type (type);
break;
case EM_ARM:
rtype = elf_arm_reloc_type (type);
break;
case EM_ARC:
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
rtype = elf_arc_reloc_type (type);
break;
case EM_PARISC:
rtype = elf_hppa_reloc_type (type);
break;
case EM_H8_300:
case EM_H8_300H:
case EM_H8S:
rtype = elf_h8_reloc_type (type);
break;
case EM_OR1K:
rtype = elf_or1k_reloc_type (type);
break;
case EM_PJ:
case EM_PJ_OLD:
rtype = elf_pj_reloc_type (type);
break;
case EM_IA_64:
rtype = elf_ia64_reloc_type (type);
break;
case EM_CRIS:
rtype = elf_cris_reloc_type (type);
break;
case EM_860:
rtype = elf_i860_reloc_type (type);
break;
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
rtype = elf_x86_64_reloc_type (type);
break;
case EM_S370:
rtype = i370_reloc_type (type);
break;
case EM_S390_OLD:
case EM_S390:
rtype = elf_s390_reloc_type (type);
break;
case EM_SCORE:
rtype = elf_score_reloc_type (type);
break;
case EM_XSTORMY16:
rtype = elf_xstormy16_reloc_type (type);
break;
case EM_CRX:
rtype = elf_crx_reloc_type (type);
break;
case EM_VAX:
rtype = elf_vax_reloc_type (type);
break;
case EM_VISIUM:
rtype = elf_visium_reloc_type (type);
break;
case EM_BPF:
rtype = elf_bpf_reloc_type (type);
break;
case EM_ADAPTEVA_EPIPHANY:
rtype = elf_epiphany_reloc_type (type);
break;
case EM_IP2K:
case EM_IP2K_OLD:
rtype = elf_ip2k_reloc_type (type);
break;
case EM_IQ2000:
rtype = elf_iq2000_reloc_type (type);
break;
case EM_XTENSA_OLD:
case EM_XTENSA:
rtype = elf_xtensa_reloc_type (type);
break;
case EM_LATTICEMICO32:
rtype = elf_lm32_reloc_type (type);
break;
case EM_M32C_OLD:
case EM_M32C:
rtype = elf_m32c_reloc_type (type);
break;
case EM_MT:
rtype = elf_mt_reloc_type (type);
break;
case EM_BLACKFIN:
rtype = elf_bfin_reloc_type (type);
break;
case EM_CYGNUS_MEP:
rtype = elf_mep_reloc_type (type);
break;
case EM_CR16:
rtype = elf_cr16_reloc_type (type);
break;
case EM_MICROBLAZE:
case EM_MICROBLAZE_OLD:
rtype = elf_microblaze_reloc_type (type);
break;
case EM_RL78:
rtype = elf_rl78_reloc_type (type);
break;
case EM_RX:
rtype = elf_rx_reloc_type (type);
break;
case EM_METAG:
rtype = elf_metag_reloc_type (type);
break;
case EM_XC16X:
case EM_C166:
rtype = elf_xc16x_reloc_type (type);
break;
case EM_TI_C6000:
rtype = elf_tic6x_reloc_type (type);
break;
case EM_TILEGX:
rtype = elf_tilegx_reloc_type (type);
break;
case EM_TILEPRO:
rtype = elf_tilepro_reloc_type (type);
break;
case EM_WEBASSEMBLY:
rtype = elf_wasm32_reloc_type (type);
break;
case EM_XGATE:
rtype = elf_xgate_reloc_type (type);
break;
case EM_ALTERA_NIOS2:
rtype = elf_nios2_reloc_type (type);
break;
case EM_TI_PRU:
rtype = elf_pru_reloc_type (type);
break;
case EM_NFP:
if (EF_NFP_MACH (filedata->file_header.e_flags) == E_NFP_MACH_3200)
rtype = elf_nfp3200_reloc_type (type);
else
rtype = elf_nfp_reloc_type (type);
break;
case EM_Z80:
rtype = elf_z80_reloc_type (type);
break;
}
if (rtype == NULL)
printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
else
printf (do_wide ? "%-22s" : "%-17.17s", rtype);
if (filedata->file_header.e_machine == EM_ALPHA
&& rtype != NULL
&& streq (rtype, "R_ALPHA_LITUSE")
&& is_rela)
{
switch (rels[i].r_addend)
{
case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
default: rtype = NULL;
}
if (rtype)
printf (" (%s)", rtype);
else
{
putchar (' ');
printf (_("<unknown addend: %lx>"),
(unsigned long) rels[i].r_addend);
res = false;
}
}
else if (symtab_index)
{
if (symtab == NULL || symtab_index >= nsyms)
{
error (_(" bad symbol index: %08lx in reloc\n"),
(unsigned long) symtab_index);
res = false;
}
else
{
Elf_Internal_Sym * psym;
const char * version_string;
enum versioned_symbol_info sym_info;
unsigned short vna_other;
psym = symtab + symtab_index;
version_string
= get_symbol_version_string (filedata, is_dynsym,
strtab, strtablen,
symtab_index,
psym,
&sym_info,
&vna_other);
printf (" ");
if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
{
const char * name;
unsigned int len;
unsigned int width = is_32bit_elf ? 8 : 14;
/* Relocations against GNU_IFUNC symbols do not use the value
of the symbol as the address to relocate against. Instead
they invoke the function named by the symbol and use its
result as the address for relocation.
To indicate this to the user, do not display the value of
the symbol in the "Symbols's Value" field. Instead show
its name followed by () as a hint that the symbol is
invoked. */
if (strtab == NULL
|| psym->st_name == 0
|| psym->st_name >= strtablen)
name = "??";
else
name = strtab + psym->st_name;
len = print_symbol (width, name);
if (version_string)
printf (sym_info == symbol_public ? "@@%s" : "@%s",
version_string);
printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
}
else
{
print_vma (psym->st_value, LONG_HEX);
printf (is_32bit_elf ? " " : " ");
}
if (psym->st_name == 0)
{
const char * sec_name = "<null>";
char name_buf[40];
if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
{
if (psym->st_shndx < filedata->file_header.e_shnum)
sec_name = SECTION_NAME_PRINT (filedata->section_headers
+ psym->st_shndx);
else if (psym->st_shndx == SHN_ABS)
sec_name = "ABS";
else if (psym->st_shndx == SHN_COMMON)
sec_name = "COMMON";
else if ((filedata->file_header.e_machine == EM_MIPS
&& psym->st_shndx == SHN_MIPS_SCOMMON)
|| (filedata->file_header.e_machine == EM_TI_C6000
&& psym->st_shndx == SHN_TIC6X_SCOMMON))
sec_name = "SCOMMON";
else if (filedata->file_header.e_machine == EM_MIPS
&& psym->st_shndx == SHN_MIPS_SUNDEFINED)
sec_name = "SUNDEF";
else if ((filedata->file_header.e_machine == EM_X86_64
|| filedata->file_header.e_machine == EM_L1OM
|| filedata->file_header.e_machine == EM_K1OM)
&& psym->st_shndx == SHN_X86_64_LCOMMON)
sec_name = "LARGE_COMMON";
else if (filedata->file_header.e_machine == EM_IA_64
&& filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
&& psym->st_shndx == SHN_IA_64_ANSI_COMMON)
sec_name = "ANSI_COM";
else if (is_ia64_vms (filedata)
&& psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
sec_name = "VMS_SYMVEC";
else
{
sprintf (name_buf, "<section 0x%x>",
(unsigned int) psym->st_shndx);
sec_name = name_buf;
}
}
print_symbol (22, sec_name);
}
else if (strtab == NULL)
printf (_("<string table index: %3ld>"), psym->st_name);
else if (psym->st_name >= strtablen)
{
error (_("<corrupt string table index: %3ld>\n"),
psym->st_name);
res = false;
}
else
{
print_symbol (22, strtab + psym->st_name);
if (version_string)
printf (sym_info == symbol_public ? "@@%s" : "@%s",
version_string);
}
if (is_rela)
{
bfd_vma off = rels[i].r_addend;
if ((bfd_signed_vma) off < 0)
printf (" - %" BFD_VMA_FMT "x", - off);
else
printf (" + %" BFD_VMA_FMT "x", off);
}
}
}
else if (is_rela)
{
bfd_vma off = rels[i].r_addend;
printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
if ((bfd_signed_vma) off < 0)
printf ("-%" BFD_VMA_FMT "x", - off);
else
printf ("%" BFD_VMA_FMT "x", off);
}
if (filedata->file_header.e_machine == EM_SPARCV9
&& rtype != NULL
&& streq (rtype, "R_SPARC_OLO10"))
printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
putchar ('\n');
#ifdef BFD64
if (! is_32bit_elf && filedata->file_header.e_machine == EM_MIPS)
{
bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
const char * rtype2 = elf_mips_reloc_type (type2);
const char * rtype3 = elf_mips_reloc_type (type3);
printf (" Type2: ");
if (rtype2 == NULL)
printf (_("unrecognized: %-7lx"),
(unsigned long) type2 & 0xffffffff);
else
printf ("%-17.17s", rtype2);
printf ("\n Type3: ");
if (rtype3 == NULL)
printf (_("unrecognized: %-7lx"),
(unsigned long) type3 & 0xffffffff);
else
printf ("%-17.17s", rtype3);
putchar ('\n');
}
#endif /* BFD64 */
}
free (rels);
return res;
}
static const char *
get_aarch64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_AARCH64_BTI_PLT: return "AARCH64_BTI_PLT";
case DT_AARCH64_PAC_PLT: return "AARCH64_PAC_PLT";
case DT_AARCH64_VARIANT_PCS: return "AARCH64_VARIANT_PCS";
default:
return NULL;
}
}
static const char *
get_mips_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
case DT_MIPS_IVERSION: return "MIPS_IVERSION";
case DT_MIPS_FLAGS: return "MIPS_FLAGS";
case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
case DT_MIPS_MSYM: return "MIPS_MSYM";
case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
case DT_MIPS_RWPLT: return "MIPS_RWPLT";
case DT_MIPS_XHASH: return "MIPS_XHASH";
default:
return NULL;
}
}
static const char *
get_sparc64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_SPARC_REGISTER: return "SPARC_REGISTER";
default:
return NULL;
}
}
static const char *
get_ppc_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_PPC_GOT: return "PPC_GOT";
case DT_PPC_OPT: return "PPC_OPT";
default:
return NULL;
}
}
static const char *
get_ppc64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_PPC64_GLINK: return "PPC64_GLINK";
case DT_PPC64_OPD: return "PPC64_OPD";
case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
case DT_PPC64_OPT: return "PPC64_OPT";
default:
return NULL;
}
}
static const char *
get_parisc_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
case DT_HP_UX10_INIT: return "HP_UX10_INIT";
case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
case DT_HP_PREINIT: return "HP_PREINIT";
case DT_HP_PREINITSZ: return "HP_PREINITSZ";
case DT_HP_NEEDED: return "HP_NEEDED";
case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
case DT_HP_CHECKSUM: return "HP_CHECKSUM";
case DT_HP_GST_SIZE: return "HP_GST_SIZE";
case DT_HP_GST_VERSION: return "HP_GST_VERSION";
case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
case DT_HP_FILTERED: return "HP_FILTERED";
case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
case DT_PLT: return "PLT";
case DT_PLT_SIZE: return "PLT_SIZE";
case DT_DLT: return "DLT";
case DT_DLT_SIZE: return "DLT_SIZE";
default:
return NULL;
}
}
static const char *
get_ia64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
default:
return NULL;
}
}
static const char *
get_solaris_section_type (unsigned long type)
{
switch (type)
{
case 0x6fffffee: return "SUNW_ancillary";
case 0x6fffffef: return "SUNW_capchain";
case 0x6ffffff0: return "SUNW_capinfo";
case 0x6ffffff1: return "SUNW_symsort";
case 0x6ffffff2: return "SUNW_tlssort";
case 0x6ffffff3: return "SUNW_LDYNSYM";
case 0x6ffffff4: return "SUNW_dof";
case 0x6ffffff5: return "SUNW_cap";
case 0x6ffffff6: return "SUNW_SIGNATURE";
case 0x6ffffff7: return "SUNW_ANNOTATE";
case 0x6ffffff8: return "SUNW_DEBUGSTR";
case 0x6ffffff9: return "SUNW_DEBUG";
case 0x6ffffffa: return "SUNW_move";
case 0x6ffffffb: return "SUNW_COMDAT";
case 0x6ffffffc: return "SUNW_syminfo";
case 0x6ffffffd: return "SUNW_verdef";
case 0x6ffffffe: return "SUNW_verneed";
case 0x6fffffff: return "SUNW_versym";
case 0x70000000: return "SPARC_GOTDATA";
default: return NULL;
}
}
static const char *
get_alpha_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
default: return NULL;
}
}
static const char *
get_score_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
default: return NULL;
}
}
static const char *
get_tic6x_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
default: return NULL;
}
}
static const char *
get_nios2_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_NIOS2_GP: return "NIOS2_GP";
default: return NULL;
}
}
static const char *
get_solaris_dynamic_type (unsigned long type)
{
switch (type)
{
case 0x6000000d: return "SUNW_AUXILIARY";
case 0x6000000e: return "SUNW_RTLDINF";
case 0x6000000f: return "SUNW_FILTER";
case 0x60000010: return "SUNW_CAP";
case 0x60000011: return "SUNW_SYMTAB";
case 0x60000012: return "SUNW_SYMSZ";
case 0x60000013: return "SUNW_SORTENT";
case 0x60000014: return "SUNW_SYMSORT";
case 0x60000015: return "SUNW_SYMSORTSZ";
case 0x60000016: return "SUNW_TLSSORT";
case 0x60000017: return "SUNW_TLSSORTSZ";
case 0x60000018: return "SUNW_CAPINFO";
case 0x60000019: return "SUNW_STRPAD";
case 0x6000001a: return "SUNW_CAPCHAIN";
case 0x6000001b: return "SUNW_LDMACH";
case 0x6000001d: return "SUNW_CAPCHAINENT";
case 0x6000001f: return "SUNW_CAPCHAINSZ";
case 0x60000021: return "SUNW_PARENT";
case 0x60000023: return "SUNW_ASLR";
case 0x60000025: return "SUNW_RELAX";
case 0x60000029: return "SUNW_NXHEAP";
case 0x6000002b: return "SUNW_NXSTACK";
case 0x70000001: return "SPARC_REGISTER";
case 0x7ffffffd: return "AUXILIARY";
case 0x7ffffffe: return "USED";
case 0x7fffffff: return "FILTER";
default: return NULL;
}
}
static const char *
get_dynamic_type (Filedata * filedata, unsigned long type)
{
static char buff[64];
switch (type)
{
case DT_NULL: return "NULL";
case DT_NEEDED: return "NEEDED";
case DT_PLTRELSZ: return "PLTRELSZ";
case DT_PLTGOT: return "PLTGOT";
case DT_HASH: return "HASH";
case DT_STRTAB: return "STRTAB";
case DT_SYMTAB: return "SYMTAB";
case DT_RELA: return "RELA";
case DT_RELASZ: return "RELASZ";
case DT_RELAENT: return "RELAENT";
case DT_STRSZ: return "STRSZ";
case DT_SYMENT: return "SYMENT";
case DT_INIT: return "INIT";
case DT_FINI: return "FINI";
case DT_SONAME: return "SONAME";
case DT_RPATH: return "RPATH";
case DT_SYMBOLIC: return "SYMBOLIC";
case DT_REL: return "REL";
case DT_RELSZ: return "RELSZ";
case DT_RELENT: return "RELENT";
case DT_PLTREL: return "PLTREL";
case DT_DEBUG: return "DEBUG";
case DT_TEXTREL: return "TEXTREL";
case DT_JMPREL: return "JMPREL";
case DT_BIND_NOW: return "BIND_NOW";
case DT_INIT_ARRAY: return "INIT_ARRAY";
case DT_FINI_ARRAY: return "FINI_ARRAY";
case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
case DT_RUNPATH: return "RUNPATH";
case DT_FLAGS: return "FLAGS";
case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
case DT_CHECKSUM: return "CHECKSUM";
case DT_PLTPADSZ: return "PLTPADSZ";
case DT_MOVEENT: return "MOVEENT";
case DT_MOVESZ: return "MOVESZ";
case DT_FEATURE: return "FEATURE";
case DT_POSFLAG_1: return "POSFLAG_1";
case DT_SYMINSZ: return "SYMINSZ";
case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
case DT_ADDRRNGLO: return "ADDRRNGLO";
case DT_CONFIG: return "CONFIG";
case DT_DEPAUDIT: return "DEPAUDIT";
case DT_AUDIT: return "AUDIT";
case DT_PLTPAD: return "PLTPAD";
case DT_MOVETAB: return "MOVETAB";
case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
case DT_VERSYM: return "VERSYM";
case DT_TLSDESC_GOT: return "TLSDESC_GOT";
case DT_TLSDESC_PLT: return "TLSDESC_PLT";
case DT_RELACOUNT: return "RELACOUNT";
case DT_RELCOUNT: return "RELCOUNT";
case DT_FLAGS_1: return "FLAGS_1";
case DT_VERDEF: return "VERDEF";
case DT_VERDEFNUM: return "VERDEFNUM";
case DT_VERNEED: return "VERNEED";
case DT_VERNEEDNUM: return "VERNEEDNUM";
case DT_AUXILIARY: return "AUXILIARY";
case DT_USED: return "USED";
case DT_FILTER: return "FILTER";
case DT_GNU_PRELINKED: return "GNU_PRELINKED";
case DT_GNU_CONFLICT: return "GNU_CONFLICT";
case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
case DT_GNU_LIBLIST: return "GNU_LIBLIST";
case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
case DT_GNU_HASH: return "GNU_HASH";
case DT_GNU_FLAGS_1: return "GNU_FLAGS_1";
default:
if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
{
const char * result;
switch (filedata->file_header.e_machine)
{
case EM_AARCH64:
result = get_aarch64_dynamic_type (type);
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
result = get_mips_dynamic_type (type);
break;
case EM_SPARCV9:
result = get_sparc64_dynamic_type (type);
break;
case EM_PPC:
result = get_ppc_dynamic_type (type);
break;
case EM_PPC64:
result = get_ppc64_dynamic_type (type);
break;
case EM_IA_64:
result = get_ia64_dynamic_type (type);
break;
case EM_ALPHA:
result = get_alpha_dynamic_type (type);
break;
case EM_SCORE:
result = get_score_dynamic_type (type);
break;
case EM_TI_C6000:
result = get_tic6x_dynamic_type (type);
break;
case EM_ALTERA_NIOS2:
result = get_nios2_dynamic_type (type);
break;
default:
if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
result = get_solaris_dynamic_type (type);
else
result = NULL;
break;
}
if (result != NULL)
return result;
snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
}
else if (((type >= DT_LOOS) && (type <= DT_HIOS))
|| (filedata->file_header.e_machine == EM_PARISC
&& (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
{
const char * result;
switch (filedata->file_header.e_machine)
{
case EM_PARISC:
result = get_parisc_dynamic_type (type);
break;
case EM_IA_64:
result = get_ia64_dynamic_type (type);
break;
default:
if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
result = get_solaris_dynamic_type (type);
else
result = NULL;
break;
}
if (result != NULL)
return result;
snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
type);
}
else
snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
return buff;
}
}
static bool get_program_headers (Filedata *);
static bool get_dynamic_section (Filedata *);
static void
locate_dynamic_section (Filedata *filedata)
{
unsigned long dynamic_addr = 0;
bfd_size_type dynamic_size = 0;
if (filedata->file_header.e_phnum != 0
&& get_program_headers (filedata))
{
Elf_Internal_Phdr *segment;
unsigned int i;
for (i = 0, segment = filedata->program_headers;
i < filedata->file_header.e_phnum;
i++, segment++)
{
if (segment->p_type == PT_DYNAMIC)
{
dynamic_addr = segment->p_offset;
dynamic_size = segment->p_filesz;
if (filedata->section_headers != NULL)
{
Elf_Internal_Shdr *sec;
sec = find_section (filedata, ".dynamic");
if (sec != NULL)
{
if (sec->sh_size == 0
|| sec->sh_type == SHT_NOBITS)
{
dynamic_addr = 0;
dynamic_size = 0;
}
else
{
dynamic_addr = sec->sh_offset;
dynamic_size = sec->sh_size;
}
}
}
if (dynamic_addr > filedata->file_size
|| (dynamic_size > filedata->file_size - dynamic_addr))
{
dynamic_addr = 0;
dynamic_size = 0;
}
break;
}
}
}
filedata->dynamic_addr = dynamic_addr;
filedata->dynamic_size = dynamic_size ? dynamic_size : 1;
}
static bool
is_pie (Filedata *filedata)
{
Elf_Internal_Dyn *entry;
if (filedata->dynamic_size == 0)
locate_dynamic_section (filedata);
if (filedata->dynamic_size <= 1)
return false;
if (!get_dynamic_section (filedata))
return false;
for (entry = filedata->dynamic_section;
entry < filedata->dynamic_section + filedata->dynamic_nent;
entry++)
{
if (entry->d_tag == DT_FLAGS_1)
{
if ((entry->d_un.d_val & DF_1_PIE) != 0)
return true;
break;
}
}
return false;
}
static char *
get_file_type (Filedata *filedata)
{
unsigned e_type = filedata->file_header.e_type;
static char buff[64];
switch (e_type)
{
case ET_NONE: return _("NONE (None)");
case ET_REL: return _("REL (Relocatable file)");
case ET_EXEC: return _("EXEC (Executable file)");
case ET_DYN:
if (is_pie (filedata))
return _("DYN (Position-Independent Executable file)");
else
return _("DYN (Shared object file)");
case ET_CORE: return _("CORE (Core file)");
default:
if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
else
snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
return buff;
}
}
static char *
get_machine_name (unsigned e_machine)
{
static char buff[64]; /* XXX */
switch (e_machine)
{
/* Please keep this switch table sorted by increasing EM_ value. */
/* 0 */
case EM_NONE: return _("None");
case EM_M32: return "WE32100";
case EM_SPARC: return "Sparc";
case EM_386: return "Intel 80386";
case EM_68K: return "MC68000";
case EM_88K: return "MC88000";
case EM_IAMCU: return "Intel MCU";
case EM_860: return "Intel 80860";
case EM_MIPS: return "MIPS R3000";
case EM_S370: return "IBM System/370";
/* 10 */
case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
case EM_OLD_SPARCV9: return "Sparc v9 (old)";
case EM_PARISC: return "HPPA";
case EM_VPP550: return "Fujitsu VPP500";
case EM_SPARC32PLUS: return "Sparc v8+" ;
case EM_960: return "Intel 80960";
case EM_PPC: return "PowerPC";
/* 20 */
case EM_PPC64: return "PowerPC64";
case EM_S390_OLD:
case EM_S390: return "IBM S/390";
case EM_SPU: return "SPU";
/* 30 */
case EM_V800: return "Renesas V850 (using RH850 ABI)";
case EM_FR20: return "Fujitsu FR20";
case EM_RH32: return "TRW RH32";
case EM_MCORE: return "MCORE";
/* 40 */
case EM_ARM: return "ARM";
case EM_OLD_ALPHA: return "Digital Alpha (old)";
case EM_SH: return "Renesas / SuperH SH";
case EM_SPARCV9: return "Sparc v9";
case EM_TRICORE: return "Siemens Tricore";
case EM_ARC: return "ARC";
case EM_H8_300: return "Renesas H8/300";
case EM_H8_300H: return "Renesas H8/300H";
case EM_H8S: return "Renesas H8S";
case EM_H8_500: return "Renesas H8/500";
/* 50 */
case EM_IA_64: return "Intel IA-64";
case EM_MIPS_X: return "Stanford MIPS-X";
case EM_COLDFIRE: return "Motorola Coldfire";
case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
case EM_MMA: return "Fujitsu Multimedia Accelerator";
case EM_PCP: return "Siemens PCP";
case EM_NCPU: return "Sony nCPU embedded RISC processor";
case EM_NDR1: return "Denso NDR1 microprocesspr";
case EM_STARCORE: return "Motorola Star*Core processor";
case EM_ME16: return "Toyota ME16 processor";
/* 60 */
case EM_ST100: return "STMicroelectronics ST100 processor";
case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
case EM_X86_64: return "Advanced Micro Devices X86-64";
case EM_PDSP: return "Sony DSP processor";
case EM_PDP10: return "Digital Equipment Corp. PDP-10";
case EM_PDP11: return "Digital Equipment Corp. PDP-11";
case EM_FX66: return "Siemens FX66 microcontroller";
case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
/* 70 */
case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
case EM_SVX: return "Silicon Graphics SVx";
case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
case EM_VAX: return "Digital VAX";
case EM_CRIS: return "Axis Communications 32-bit embedded processor";
case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
case EM_FIREPATH: return "Element 14 64-bit DSP processor";
case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
/* 80 */
case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
case EM_HUANY: return "Harvard Universitys's machine-independent object format";
case EM_PRISM: return "Vitesse Prism";
case EM_AVR_OLD:
case EM_AVR: return "Atmel AVR 8-bit microcontroller";
case EM_CYGNUS_FR30:
case EM_FR30: return "Fujitsu FR30";
case EM_CYGNUS_D10V:
case EM_D10V: return "d10v";
case EM_CYGNUS_D30V:
case EM_D30V: return "d30v";
case EM_CYGNUS_V850:
case EM_V850: return "Renesas V850";
case EM_CYGNUS_M32R:
case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
case EM_CYGNUS_MN10300:
case EM_MN10300: return "mn10300";
/* 90 */
case EM_CYGNUS_MN10200:
case EM_MN10200: return "mn10200";
case EM_PJ: return "picoJava";
case EM_OR1K: return "OpenRISC 1000";
case EM_ARC_COMPACT: return "ARCompact";
case EM_XTENSA_OLD:
case EM_XTENSA: return "Tensilica Xtensa Processor";
case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
case EM_NS32K: return "National Semiconductor 32000 series";
case EM_TPC: return "Tenor Network TPC processor";
case EM_SNP1K: return "Trebia SNP 1000 processor";
/* 100 */
case EM_ST200: return "STMicroelectronics ST200 microcontroller";
case EM_IP2K_OLD:
case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
case EM_MAX: return "MAX Processor";
case EM_CR: return "National Semiconductor CompactRISC";
case EM_F2MC16: return "Fujitsu F2MC16";
case EM_MSP430: return "Texas Instruments msp430 microcontroller";
case EM_BLACKFIN: return "Analog Devices Blackfin";
case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
case EM_SEP: return "Sharp embedded microprocessor";
case EM_ARCA: return "Arca RISC microprocessor";
/* 110 */
case EM_UNICORE: return "Unicore";
case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
case EM_ALTERA_NIOS2: return "Altera Nios II";
case EM_CRX: return "National Semiconductor CRX microprocessor";
case EM_XGATE: return "Motorola XGATE embedded processor";
case EM_C166:
case EM_XC16X: return "Infineon Technologies xc16x";
case EM_M16C: return "Renesas M16C series microprocessors";
case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
case EM_CE: return "Freescale Communication Engine RISC core";
/* 120 */
case EM_M32C: return "Renesas M32c";
/* 130 */
case EM_TSK3000: return "Altium TSK3000 core";
case EM_RS08: return "Freescale RS08 embedded processor";
case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
case EM_SCORE: return "SUNPLUS S+Core";
case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
case EM_LATTICEMICO32: return "Lattice Mico32";
case EM_SE_C17: return "Seiko Epson C17 family";
/* 140 */
case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
case EM_TI_PRU: return "TI PRU I/O processor";
/* 160 */
case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
case EM_R32C: return "Renesas R32C series microprocessors";
case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
case EM_QDSP6: return "QUALCOMM DSP6 Processor";
case EM_8051: return "Intel 8051 and variants";
case EM_STXP7X: return "STMicroelectronics STxP7x family";
case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
case EM_ECOG1X: return "Cyan Technology eCOG1X family";
case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
/* 170 */
case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
case EM_RX: return "Renesas RX";
case EM_METAG: return "Imagination Technologies Meta processor architecture";
case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
case EM_ECOG16: return "Cyan Technology eCOG16 family";
case EM_CR16:
case EM_MICROBLAZE:
case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
case EM_ETPU: return "Freescale Extended Time Processing Unit";
case EM_SLE9X: return "Infineon Technologies SLE9X core";
/* 180 */
case EM_L1OM: return "Intel L1OM";
case EM_K1OM: return "Intel K1OM";
case EM_INTEL182: return "Intel (reserved)";
case EM_AARCH64: return "AArch64";
case EM_ARM184: return "ARM (reserved)";
case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
case EM_TILE64: return "Tilera TILE64 multicore architecture family";
case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
/* 190 */
case EM_CUDA: return "NVIDIA CUDA architecture";
case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
case EM_CLOUDSHIELD: return "CloudShield architecture family";
case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
case EM_ARC_COMPACT2: return "ARCv2";
case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
case EM_RL78: return "Renesas RL78";
case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
case EM_78K0R: return "Renesas 78K0R";
/* 200 */
case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
case EM_BA1: return "Beyond BA1 CPU architecture";
case EM_BA2: return "Beyond BA2 CPU architecture";
case EM_XCORE: return "XMOS xCORE processor family";
case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
case EM_INTELGT: return "Intel Graphics Technology";
/* 210 */
case EM_KM32: return "KM211 KM32 32-bit processor";
case EM_KMX32: return "KM211 KMX32 32-bit processor";
case EM_KMX16: return "KM211 KMX16 16-bit processor";
case EM_KMX8: return "KM211 KMX8 8-bit processor";
case EM_KVARC: return "KM211 KVARC processor";
case EM_CDP: return "Paneve CDP architecture family";
case EM_COGE: return "Cognitive Smart Memory Processor";
case EM_COOL: return "Bluechip Systems CoolEngine";
case EM_NORC: return "Nanoradio Optimized RISC";
case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
/* 220 */
case EM_Z80: return "Zilog Z80";
case EM_VISIUM: return "CDS VISIUMcore processor";
case EM_FT32: return "FTDI Chip FT32";
case EM_MOXIE: return "Moxie";
case EM_AMDGPU: return "AMD GPU";
/* 230 (all reserved) */
/* 240 */
case EM_RISCV: return "RISC-V";
case EM_LANAI: return "Lanai 32-bit processor";
case EM_CEVA: return "CEVA Processor Architecture Family";
case EM_CEVA_X2: return "CEVA X2 Processor Family";
case EM_BPF: return "Linux BPF";
case EM_GRAPHCORE_IPU: return "Graphcore Intelligent Processing Unit";
case EM_IMG1: return "Imagination Technologies";
/* 250 */
case EM_NFP: return "Netronome Flow Processor";
case EM_VE: return "NEC Vector Engine";
case EM_CSKY: return "C-SKY";
case EM_ARC_COMPACT3_64: return "Synopsys ARCv2.3 64-bit";
case EM_MCS6502: return "MOS Technology MCS 6502 processor";
case EM_ARC_COMPACT3: return "Synopsys ARCv2.3 32-bit";
case EM_KVX: return "Kalray VLIW core of the MPPA processor family";
case EM_65816: return "WDC 65816/65C816";
case EM_LOONGARCH: return "LoongArch";
case EM_KF32: return "ChipON KungFu32";
/* Large numbers... */
case EM_MT: return "Morpho Techologies MT processor";
case EM_ALPHA: return "Alpha";
case EM_WEBASSEMBLY: return "Web Assembly";
case EM_DLX: return "OpenDLX";
case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
case EM_IQ2000: return "Vitesse IQ2000";
case EM_M32C_OLD:
case EM_NIOS32: return "Altera Nios";
case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
case EM_CYGNUS_FRV: return "Fujitsu FR-V";
case EM_S12Z: return "Freescale S12Z";
default:
snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
return buff;
}
}
static void
decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
{
/* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
other compilers don't specify an architecture type in the e_flags, and
instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
architectures.
Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
but also sets a specific architecture type in the e_flags field.
However, when decoding the flags we don't worry if we see an
unexpected pairing, for example EM_ARC_COMPACT machine type, with
ARCEM architecture type. */
switch (e_flags & EF_ARC_MACH_MSK)
{
/* We only expect these to occur for EM_ARC_COMPACT2. */
case EF_ARC_CPU_ARCV2EM:
strcat (buf, ", ARC EM");
break;
case EF_ARC_CPU_ARCV2HS:
strcat (buf, ", ARC HS");
break;
/* We only expect these to occur for EM_ARC_COMPACT. */
case E_ARC_MACH_ARC600:
strcat (buf, ", ARC600");
break;
case E_ARC_MACH_ARC601:
strcat (buf, ", ARC601");
break;
case E_ARC_MACH_ARC700:
strcat (buf, ", ARC700");
break;
/* The only times we should end up here are (a) A corrupt ELF, (b) A
new ELF with new architecture being read by an old version of
readelf, or (c) An ELF built with non-GNU compiler that does not
set the architecture in the e_flags. */
default:
if (e_machine == EM_ARC_COMPACT)
strcat (buf, ", Unknown ARCompact");
else
strcat (buf, ", Unknown ARC");
break;
}
switch (e_flags & EF_ARC_OSABI_MSK)
{
case E_ARC_OSABI_ORIG:
strcat (buf, ", (ABI:legacy)");
break;
case E_ARC_OSABI_V2:
strcat (buf, ", (ABI:v2)");
break;
/* Only upstream 3.9+ kernels will support ARCv2 ISA. */
case E_ARC_OSABI_V3:
strcat (buf, ", v3 no-legacy-syscalls ABI");
break;
case E_ARC_OSABI_V4:
strcat (buf, ", v4 ABI");
break;
default:
strcat (buf, ", unrecognised ARC OSABI flag");
break;
}
}
static void
decode_ARM_machine_flags (unsigned e_flags, char buf[])
{
unsigned eabi;
bool unknown = false;
eabi = EF_ARM_EABI_VERSION (e_flags);
e_flags &= ~ EF_ARM_EABIMASK;
/* Handle "generic" ARM flags. */
if (e_flags & EF_ARM_RELEXEC)
{
strcat (buf, ", relocatable executable");
e_flags &= ~ EF_ARM_RELEXEC;
}
if (e_flags & EF_ARM_PIC)
{
strcat (buf, ", position independent");
e_flags &= ~ EF_ARM_PIC;
}
/* Now handle EABI specific flags. */
switch (eabi)
{
default:
strcat (buf, ", <unrecognized EABI>");
if (e_flags)
unknown = true;
break;
case EF_ARM_EABI_VER1:
strcat (buf, ", Version1 EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
strcat (buf, ", sorted symbol tables");
break;
default:
unknown = true;
break;
}
}
break;
case EF_ARM_EABI_VER2:
strcat (buf, ", Version2 EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
strcat (buf, ", sorted symbol tables");
break;
case EF_ARM_DYNSYMSUSESEGIDX:
strcat (buf, ", dynamic symbols use segment index");
break;
case EF_ARM_MAPSYMSFIRST:
strcat (buf, ", mapping symbols precede others");
break;
default:
unknown = true;
break;
}
}
break;
case EF_ARM_EABI_VER3:
strcat (buf, ", Version3 EABI");
break;
case EF_ARM_EABI_VER4:
strcat (buf, ", Version4 EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_BE8:
strcat (buf, ", BE8");
break;
case EF_ARM_LE8:
strcat (buf, ", LE8");
break;
default:
unknown = true;
break;
}
}
break;
case EF_ARM_EABI_VER5:
strcat (buf, ", Version5 EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_BE8:
strcat (buf, ", BE8");
break;
case EF_ARM_LE8:
strcat (buf, ", LE8");
break;
case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
strcat (buf, ", soft-float ABI");
break;
case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
strcat (buf, ", hard-float ABI");
break;
default:
unknown = true;
break;
}
}
break;
case EF_ARM_EABI_UNKNOWN:
strcat (buf, ", GNU EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_INTERWORK:
strcat (buf, ", interworking enabled");
break;
case EF_ARM_APCS_26:
strcat (buf, ", uses APCS/26");
break;
case EF_ARM_APCS_FLOAT:
strcat (buf, ", uses APCS/float");
break;
case EF_ARM_PIC:
strcat (buf, ", position independent");
break;
case EF_ARM_ALIGN8:
strcat (buf, ", 8 bit structure alignment");
break;
case EF_ARM_NEW_ABI:
strcat (buf, ", uses new ABI");
break;
case EF_ARM_OLD_ABI:
strcat (buf, ", uses old ABI");
break;
case EF_ARM_SOFT_FLOAT:
strcat (buf, ", software FP");
break;
case EF_ARM_VFP_FLOAT:
strcat (buf, ", VFP");
break;
case EF_ARM_MAVERICK_FLOAT:
strcat (buf, ", Maverick FP");
break;
default:
unknown = true;
break;
}
}
}
if (unknown)
strcat (buf,_(", <unknown>"));
}
static void
decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
{
--size; /* Leave space for null terminator. */
switch (e_flags & EF_AVR_MACH)
{
case E_AVR_MACH_AVR1:
strncat (buf, ", avr:1", size);
break;
case E_AVR_MACH_AVR2:
strncat (buf, ", avr:2", size);
break;
case E_AVR_MACH_AVR25:
strncat (buf, ", avr:25", size);
break;
case E_AVR_MACH_AVR3:
strncat (buf, ", avr:3", size);
break;
case E_AVR_MACH_AVR31:
strncat (buf, ", avr:31", size);
break;
case E_AVR_MACH_AVR35:
strncat (buf, ", avr:35", size);
break;
case E_AVR_MACH_AVR4:
strncat (buf, ", avr:4", size);
break;
case E_AVR_MACH_AVR5:
strncat (buf, ", avr:5", size);
break;
case E_AVR_MACH_AVR51:
strncat (buf, ", avr:51", size);
break;
case E_AVR_MACH_AVR6:
strncat (buf, ", avr:6", size);
break;
case E_AVR_MACH_AVRTINY:
strncat (buf, ", avr:100", size);
break;
case E_AVR_MACH_XMEGA1:
strncat (buf, ", avr:101", size);
break;
case E_AVR_MACH_XMEGA2:
strncat (buf, ", avr:102", size);
break;
case E_AVR_MACH_XMEGA3:
strncat (buf, ", avr:103", size);
break;
case E_AVR_MACH_XMEGA4:
strncat (buf, ", avr:104", size);
break;
case E_AVR_MACH_XMEGA5:
strncat (buf, ", avr:105", size);
break;
case E_AVR_MACH_XMEGA6:
strncat (buf, ", avr:106", size);
break;
case E_AVR_MACH_XMEGA7:
strncat (buf, ", avr:107", size);
break;
default:
strncat (buf, ", avr:<unknown>", size);
break;
}
size -= strlen (buf);
if (e_flags & EF_AVR_LINKRELAX_PREPARED)
strncat (buf, ", link-relax", size);
}
static void
decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
{
unsigned abi;
unsigned arch;
unsigned config;
unsigned version;
bool has_fpu = false;
unsigned int r = 0;
static const char *ABI_STRINGS[] =
{
"ABI v0", /* use r5 as return register; only used in N1213HC */
"ABI v1", /* use r0 as return register */
"ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
"ABI v2fp", /* for FPU */
"AABI",
"ABI2 FP+"
};
static const char *VER_STRINGS[] =
{
"Andes ELF V1.3 or older",
"Andes ELF V1.3.1",
"Andes ELF V1.4"
};
static const char *ARCH_STRINGS[] =
{
"",
"Andes Star v1.0",
"Andes Star v2.0",
"Andes Star v3.0",
"Andes Star v3.0m"
};
abi = EF_NDS_ABI & e_flags;
arch = EF_NDS_ARCH & e_flags;
config = EF_NDS_INST & e_flags;
version = EF_NDS32_ELF_VERSION & e_flags;
memset (buf, 0, size);
switch (abi)
{
case E_NDS_ABI_V0:
case E_NDS_ABI_V1:
case E_NDS_ABI_V2:
case E_NDS_ABI_V2FP:
case E_NDS_ABI_AABI:
case E_NDS_ABI_V2FP_PLUS:
/* In case there are holes in the array. */
r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
break;
default:
r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
break;
}
switch (version)
{
case E_NDS32_ELF_VER_1_2:
case E_NDS32_ELF_VER_1_3:
case E_NDS32_ELF_VER_1_4:
r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
break;
default:
r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
break;
}
if (E_NDS_ABI_V0 == abi)
{
/* OLD ABI; only used in N1213HC, has performance extension 1. */
r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
if (arch == E_NDS_ARCH_STAR_V1_0)
r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
return;
}
switch (arch)
{
case E_NDS_ARCH_STAR_V1_0:
case E_NDS_ARCH_STAR_V2_0:
case E_NDS_ARCH_STAR_V3_0:
case E_NDS_ARCH_STAR_V3_M:
r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
break;
default:
r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
/* ARCH version determines how the e_flags are interpreted.
If it is unknown, we cannot proceed. */
return;
}
/* Newer ABI; Now handle architecture specific flags. */
if (arch == E_NDS_ARCH_STAR_V1_0)
{
if (config & E_NDS32_HAS_MFUSR_PC_INST)
r += snprintf (buf + r, size -r, ", MFUSR_PC");
if (!(config & E_NDS32_HAS_NO_MAC_INST))
r += snprintf (buf + r, size -r, ", MAC");
if (config & E_NDS32_HAS_DIV_INST)
r += snprintf (buf + r, size -r, ", DIV");
if (config & E_NDS32_HAS_16BIT_INST)
r += snprintf (buf + r, size -r, ", 16b");
}
else
{
if (config & E_NDS32_HAS_MFUSR_PC_INST)
{
if (version <= E_NDS32_ELF_VER_1_3)
r += snprintf (buf + r, size -r, ", [B8]");
else
r += snprintf (buf + r, size -r, ", EX9");
}
if (config & E_NDS32_HAS_MAC_DX_INST)
r += snprintf (buf + r, size -r, ", MAC_DX");
if (config & E_NDS32_HAS_DIV_DX_INST)
r += snprintf (buf + r, size -r, ", DIV_DX");
if (config & E_NDS32_HAS_16BIT_INST)
{
if (version <= E_NDS32_ELF_VER_1_3)
r += snprintf (buf + r, size -r, ", 16b");
else
r += snprintf (buf + r, size -r, ", IFC");
}
}
if (config & E_NDS32_HAS_EXT_INST)
r += snprintf (buf + r, size -r, ", PERF1");
if (config & E_NDS32_HAS_EXT2_INST)
r += snprintf (buf + r, size -r, ", PERF2");
if (config & E_NDS32_HAS_FPU_INST)
{
has_fpu = true;
r += snprintf (buf + r, size -r, ", FPU_SP");
}
if (config & E_NDS32_HAS_FPU_DP_INST)
{
has_fpu = true;
r += snprintf (buf + r, size -r, ", FPU_DP");
}
if (config & E_NDS32_HAS_FPU_MAC_INST)
{
has_fpu = true;
r += snprintf (buf + r, size -r, ", FPU_MAC");
}
if (has_fpu)
{
switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
{
case E_NDS32_FPU_REG_8SP_4DP:
r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
break;
case E_NDS32_FPU_REG_16SP_8DP:
r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
break;
case E_NDS32_FPU_REG_32SP_16DP:
r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
break;
case E_NDS32_FPU_REG_32SP_32DP:
r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
break;
}
}
if (config & E_NDS32_HAS_AUDIO_INST)
r += snprintf (buf + r, size -r, ", AUDIO");
if (config & E_NDS32_HAS_STRING_INST)
r += snprintf (buf + r, size -r, ", STR");
if (config & E_NDS32_HAS_REDUCED_REGS)
r += snprintf (buf + r, size -r, ", 16REG");
if (config & E_NDS32_HAS_VIDEO_INST)
{
if (version <= E_NDS32_ELF_VER_1_3)
r += snprintf (buf + r, size -r, ", VIDEO");
else
r += snprintf (buf + r, size -r, ", SATURATION");
}
if (config & E_NDS32_HAS_ENCRIPT_INST)
r += snprintf (buf + r, size -r, ", ENCRP");
if (config & E_NDS32_HAS_L2C_INST)
r += snprintf (buf + r, size -r, ", L2C");
}
static char *
get_machine_flags (Filedata * filedata, unsigned e_flags, unsigned e_machine)
{
static char buf[1024];
buf[0] = '\0';
if (e_flags)
{
switch (e_machine)
{
default:
break;
case EM_ARC_COMPACT2:
case EM_ARC_COMPACT:
decode_ARC_machine_flags (e_flags, e_machine, buf);
break;
case EM_ARM:
decode_ARM_machine_flags (e_flags, buf);
break;
case EM_AVR:
decode_AVR_machine_flags (e_flags, buf, sizeof buf);
break;
case EM_BLACKFIN:
if (e_flags & EF_BFIN_PIC)
strcat (buf, ", PIC");
if (e_flags & EF_BFIN_FDPIC)
strcat (buf, ", FDPIC");
if (e_flags & EF_BFIN_CODE_IN_L1)
strcat (buf, ", code in L1");
if (e_flags & EF_BFIN_DATA_IN_L1)
strcat (buf, ", data in L1");
break;
case EM_CYGNUS_FRV:
switch (e_flags & EF_FRV_CPU_MASK)
{
case EF_FRV_CPU_GENERIC:
break;
default:
strcat (buf, ", fr???");
break;
case EF_FRV_CPU_FR300:
strcat (buf, ", fr300");
break;
case EF_FRV_CPU_FR400:
strcat (buf, ", fr400");
break;
case EF_FRV_CPU_FR405:
strcat (buf, ", fr405");
break;
case EF_FRV_CPU_FR450:
strcat (buf, ", fr450");
break;
case EF_FRV_CPU_FR500:
strcat (buf, ", fr500");
break;
case EF_FRV_CPU_FR550:
strcat (buf, ", fr550");
break;
case EF_FRV_CPU_SIMPLE:
strcat (buf, ", simple");
break;
case EF_FRV_CPU_TOMCAT:
strcat (buf, ", tomcat");
break;
}
break;
case EM_68K:
if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
strcat (buf, ", m68000");
else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
strcat (buf, ", cpu32");
else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
strcat (buf, ", fido_a");
else
{
char const * isa = _("unknown");
char const * mac = _("unknown mac");
char const * additional = NULL;
switch (e_flags & EF_M68K_CF_ISA_MASK)
{
case EF_M68K_CF_ISA_A_NODIV:
isa = "A";
additional = ", nodiv";
break;
case EF_M68K_CF_ISA_A:
isa = "A";
break;
case EF_M68K_CF_ISA_A_PLUS:
isa = "A+";
break;
case EF_M68K_CF_ISA_B_NOUSP:
isa = "B";
additional = ", nousp";
break;
case EF_M68K_CF_ISA_B:
isa = "B";
break;
case EF_M68K_CF_ISA_C:
isa = "C";
break;
case EF_M68K_CF_ISA_C_NODIV:
isa = "C";
additional = ", nodiv";
break;
}
strcat (buf, ", cf, isa ");
strcat (buf, isa);
if (additional)
strcat (buf, additional);
if (e_flags & EF_M68K_CF_FLOAT)
strcat (buf, ", float");
switch (e_flags & EF_M68K_CF_MAC_MASK)
{
case 0:
mac = NULL;
break;
case EF_M68K_CF_MAC:
mac = "mac";
break;
case EF_M68K_CF_EMAC:
mac = "emac";
break;
case EF_M68K_CF_EMAC_B:
mac = "emac_b";
break;
}
if (mac)
{
strcat (buf, ", ");
strcat (buf, mac);
}
}
break;
case EM_CYGNUS_MEP:
switch (e_flags & EF_MEP_CPU_MASK)
{
case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
default: strcat (buf, _(", <unknown MeP cpu type>")); break;
}
switch (e_flags & EF_MEP_COP_MASK)
{
case EF_MEP_COP_NONE: break;
case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
default: strcat (buf, _("<unknown MeP copro type>")); break;
}
if (e_flags & EF_MEP_LIBRARY)
strcat (buf, ", Built for Library");
if (e_flags & EF_MEP_INDEX_MASK)
sprintf (buf + strlen (buf), ", Configuration Index: %#x",
e_flags & EF_MEP_INDEX_MASK);
if (e_flags & ~ EF_MEP_ALL_FLAGS)
sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
e_flags & ~ EF_MEP_ALL_FLAGS);
break;
case EM_PPC:
if (e_flags & EF_PPC_EMB)
strcat (buf, ", emb");
if (e_flags & EF_PPC_RELOCATABLE)
strcat (buf, _(", relocatable"));
if (e_flags & EF_PPC_RELOCATABLE_LIB)
strcat (buf, _(", relocatable-lib"));
break;
case EM_PPC64:
if (e_flags & EF_PPC64_ABI)
{
char abi[] = ", abiv0";
abi[6] += e_flags & EF_PPC64_ABI;
strcat (buf, abi);
}
break;
case EM_V800:
if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
strcat (buf, ", RH850 ABI");
if (e_flags & EF_V800_850E3)
strcat (buf, ", V3 architecture");
if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
strcat (buf, ", FPU not used");
if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
strcat (buf, ", regmode: COMMON");
if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
strcat (buf, ", r4 not used");
if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
strcat (buf, ", r30 not used");
if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
strcat (buf, ", r5 not used");
if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
strcat (buf, ", r2 not used");
for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
{
switch (e_flags & - e_flags)
{
case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
default: break;
}
}
break;
case EM_V850:
case EM_CYGNUS_V850:
switch (e_flags & EF_V850_ARCH)
{
case E_V850E3V5_ARCH:
strcat (buf, ", v850e3v5");
break;
case E_V850E2V3_ARCH:
strcat (buf, ", v850e2v3");
break;
case E_V850E2_ARCH:
strcat (buf, ", v850e2");
break;
case E_V850E1_ARCH:
strcat (buf, ", v850e1");
break;
case E_V850E_ARCH:
strcat (buf, ", v850e");
break;
case E_V850_ARCH:
strcat (buf, ", v850");
break;
default:
strcat (buf, _(", unknown v850 architecture variant"));
break;
}
break;
case EM_M32R:
case EM_CYGNUS_M32R:
if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
strcat (buf, ", m32r");
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
if (e_flags & EF_MIPS_NOREORDER)
strcat (buf, ", noreorder");
if (e_flags & EF_MIPS_PIC)
strcat (buf, ", pic");
if (e_flags & EF_MIPS_CPIC)
strcat (buf, ", cpic");
if (e_flags & EF_MIPS_UCODE)
strcat (buf, ", ugen_reserved");
if (e_flags & EF_MIPS_ABI2)
strcat (buf, ", abi2");
if (e_flags & EF_MIPS_OPTIONS_FIRST)
strcat (buf, ", odk first");
if (e_flags & EF_MIPS_32BITMODE)
strcat (buf, ", 32bitmode");
if (e_flags & EF_MIPS_NAN2008)
strcat (buf, ", nan2008");
if (e_flags & EF_MIPS_FP64)
strcat (buf, ", fp64");
switch ((e_flags & EF_MIPS_MACH))
{
case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
case E_MIPS_MACH_5900: strcat (buf, ", 5900"); break;
case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
case E_MIPS_MACH_GS464: strcat (buf, ", gs464"); break;
case E_MIPS_MACH_GS464E: strcat (buf, ", gs464e"); break;
case E_MIPS_MACH_GS264E: strcat (buf, ", gs264e"); break;
case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
case E_MIPS_MACH_IAMR2: strcat (buf, ", interaptiv-mr2"); break;
case 0:
/* We simply ignore the field in this case to avoid confusion:
MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
extension. */
break;
default: strcat (buf, _(", unknown CPU")); break;
}
switch ((e_flags & EF_MIPS_ABI))
{
case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
case 0:
/* We simply ignore the field in this case to avoid confusion:
MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
This means it is likely to be an o32 file, but not for
sure. */
break;
default: strcat (buf, _(", unknown ABI")); break;
}
if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
strcat (buf, ", mdmx");
if (e_flags & EF_MIPS_ARCH_ASE_M16)
strcat (buf, ", mips16");
if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
strcat (buf, ", micromips");
switch ((e_flags & EF_MIPS_ARCH))
{
case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
default: strcat (buf, _(", unknown ISA")); break;
}
break;
case EM_NDS32:
decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
break;
case EM_NFP:
switch (EF_NFP_MACH (e_flags))
{
case E_NFP_MACH_3200:
strcat (buf, ", NFP-32xx");
break;
case E_NFP_MACH_6000:
strcat (buf, ", NFP-6xxx");
break;
}
break;
case EM_RISCV:
if (e_flags & EF_RISCV_RVC)
strcat (buf, ", RVC");
if (e_flags & EF_RISCV_RVE)
strcat (buf, ", RVE");
switch (e_flags & EF_RISCV_FLOAT_ABI)
{
case EF_RISCV_FLOAT_ABI_SOFT:
strcat (buf, ", soft-float ABI");
break;
case EF_RISCV_FLOAT_ABI_SINGLE:
strcat (buf, ", single-float ABI");
break;
case EF_RISCV_FLOAT_ABI_DOUBLE:
strcat (buf, ", double-float ABI");
break;
case EF_RISCV_FLOAT_ABI_QUAD:
strcat (buf, ", quad-float ABI");
break;
}
break;
case EM_SH:
switch ((e_flags & EF_SH_MACH_MASK))
{
case EF_SH1: strcat (buf, ", sh1"); break;
case EF_SH2: strcat (buf, ", sh2"); break;
case EF_SH3: strcat (buf, ", sh3"); break;
case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
case EF_SH3E: strcat (buf, ", sh3e"); break;
case EF_SH4: strcat (buf, ", sh4"); break;
case EF_SH5: strcat (buf, ", sh5"); break;
case EF_SH2E: strcat (buf, ", sh2e"); break;
case EF_SH4A: strcat (buf, ", sh4a"); break;
case EF_SH2A: strcat (buf, ", sh2a"); break;
case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
default: strcat (buf, _(", unknown ISA")); break;
}
if (e_flags & EF_SH_PIC)
strcat (buf, ", pic");
if (e_flags & EF_SH_FDPIC)
strcat (buf, ", fdpic");
break;
case EM_OR1K:
if (e_flags & EF_OR1K_NODELAY)
strcat (buf, ", no delay");
break;
case EM_SPARCV9:
if (e_flags & EF_SPARC_32PLUS)
strcat (buf, ", v8+");
if (e_flags & EF_SPARC_SUN_US1)
strcat (buf, ", ultrasparcI");
if (e_flags & EF_SPARC_SUN_US3)
strcat (buf, ", ultrasparcIII");
if (e_flags & EF_SPARC_HAL_R1)
strcat (buf, ", halr1");
if (e_flags & EF_SPARC_LEDATA)
strcat (buf, ", ledata");
if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
strcat (buf, ", tso");
if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
strcat (buf, ", pso");
if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
strcat (buf, ", rmo");
break;
case EM_PARISC:
switch (e_flags & EF_PARISC_ARCH)
{
case EFA_PARISC_1_0:
strcpy (buf, ", PA-RISC 1.0");
break;
case EFA_PARISC_1_1:
strcpy (buf, ", PA-RISC 1.1");
break;
case EFA_PARISC_2_0:
strcpy (buf, ", PA-RISC 2.0");
break;
default:
break;
}
if (e_flags & EF_PARISC_TRAPNIL)
strcat (buf, ", trapnil");
if (e_flags & EF_PARISC_EXT)
strcat (buf, ", ext");
if (e_flags & EF_PARISC_LSB)
strcat (buf, ", lsb");
if (e_flags & EF_PARISC_WIDE)
strcat (buf, ", wide");
if (e_flags & EF_PARISC_NO_KABP)
strcat (buf, ", no kabp");
if (e_flags & EF_PARISC_LAZYSWAP)
strcat (buf, ", lazyswap");
break;
case EM_PJ:
case EM_PJ_OLD:
if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
strcat (buf, ", new calling convention");
if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
strcat (buf, ", gnu calling convention");
break;
case EM_IA_64:
if ((e_flags & EF_IA_64_ABI64))
strcat (buf, ", 64-bit");
else
strcat (buf, ", 32-bit");
if ((e_flags & EF_IA_64_REDUCEDFP))
strcat (buf, ", reduced fp model");
if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
strcat (buf, ", no function descriptors, constant gp");
else if ((e_flags & EF_IA_64_CONS_GP))
strcat (buf, ", constant gp");
if ((e_flags & EF_IA_64_ABSOLUTE))
strcat (buf, ", absolute");
if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
{
if ((e_flags & EF_IA_64_VMS_LINKAGES))
strcat (buf, ", vms_linkages");
switch ((e_flags & EF_IA_64_VMS_COMCOD))
{
case EF_IA_64_VMS_COMCOD_SUCCESS:
break;
case EF_IA_64_VMS_COMCOD_WARNING:
strcat (buf, ", warning");
break;
case EF_IA_64_VMS_COMCOD_ERROR:
strcat (buf, ", error");
break;
case EF_IA_64_VMS_COMCOD_ABORT:
strcat (buf, ", abort");
break;
default:
warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
e_flags & EF_IA_64_VMS_COMCOD);
strcat (buf, ", <unknown>");
}
}
break;
case EM_VAX:
if ((e_flags & EF_VAX_NONPIC))
strcat (buf, ", non-PIC");
if ((e_flags & EF_VAX_DFLOAT))
strcat (buf, ", D-Float");
if ((e_flags & EF_VAX_GFLOAT))
strcat (buf, ", G-Float");
break;
case EM_VISIUM:
if (e_flags & EF_VISIUM_ARCH_MCM)
strcat (buf, ", mcm");
else if (e_flags & EF_VISIUM_ARCH_MCM24)
strcat (buf, ", mcm24");
if (e_flags & EF_VISIUM_ARCH_GR6)
strcat (buf, ", gr6");
break;
case EM_RL78:
switch (e_flags & E_FLAG_RL78_CPU_MASK)
{
case E_FLAG_RL78_ANY_CPU: break;
case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
}
if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
strcat (buf, ", 64-bit doubles");
break;
case EM_RX:
if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
strcat (buf, ", 64-bit doubles");
if (e_flags & E_FLAG_RX_DSP)
strcat (buf, ", dsp");
if (e_flags & E_FLAG_RX_PID)
strcat (buf, ", pid");
if (e_flags & E_FLAG_RX_ABI)
strcat (buf, ", RX ABI");
if (e_flags & E_FLAG_RX_SINSNS_SET)
strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
? ", uses String instructions" : ", bans String instructions");
if (e_flags & E_FLAG_RX_V2)
strcat (buf, ", V2");
if (e_flags & E_FLAG_RX_V3)
strcat (buf, ", V3");
break;
case EM_S390:
if (e_flags & EF_S390_HIGH_GPRS)
strcat (buf, ", highgprs");
break;
case EM_TI_C6000:
if ((e_flags & EF_C6000_REL))
strcat (buf, ", relocatable module");
break;
case EM_MSP430:
strcat (buf, _(": architecture variant: "));
switch (e_flags & EF_MSP430_MACH)
{
case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
default:
strcat (buf, _(": unknown")); break;
}
if (e_flags & ~ EF_MSP430_MACH)
strcat (buf, _(": unknown extra flag bits also present"));
break;
case EM_Z80:
switch (e_flags & EF_Z80_MACH_MSK)
{
case EF_Z80_MACH_Z80: strcat (buf, ", Z80"); break;
case EF_Z80_MACH_Z180: strcat (buf, ", Z180"); break;
case EF_Z80_MACH_R800: strcat (buf, ", R800"); break;
case EF_Z80_MACH_EZ80_Z80: strcat (buf, ", EZ80"); break;
case EF_Z80_MACH_EZ80_ADL: strcat (buf, ", EZ80, ADL"); break;
case EF_Z80_MACH_GBZ80: strcat (buf, ", GBZ80"); break;
case EF_Z80_MACH_Z80N: strcat (buf, ", Z80N"); break;
default:
strcat (buf, _(", unknown")); break;
}
break;
}
}
return buf;
}
static const char *
get_osabi_name (Filedata * filedata, unsigned int osabi)
{
static char buff[32];
switch (osabi)
{
case ELFOSABI_NONE: return "UNIX - System V";
case ELFOSABI_HPUX: return "UNIX - HP-UX";
case ELFOSABI_NETBSD: return "UNIX - NetBSD";
case ELFOSABI_GNU: return "UNIX - GNU";
case ELFOSABI_SOLARIS: return "UNIX - Solaris";
case ELFOSABI_AIX: return "UNIX - AIX";
case ELFOSABI_IRIX: return "UNIX - IRIX";
case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
case ELFOSABI_TRU64: return "UNIX - TRU64";
case ELFOSABI_MODESTO: return "Novell - Modesto";
case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
case ELFOSABI_AROS: return "AROS";
case ELFOSABI_FENIXOS: return "FenixOS";
case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
default:
if (osabi >= 64)
switch (filedata->file_header.e_machine)
{
case EM_ARM:
switch (osabi)
{
case ELFOSABI_ARM: return "ARM";
case ELFOSABI_ARM_FDPIC: return "ARM FDPIC";
default:
break;
}
break;
case EM_MSP430:
case EM_MSP430_OLD:
case EM_VISIUM:
switch (osabi)
{
case ELFOSABI_STANDALONE: return _("Standalone App");
default:
break;
}
break;
case EM_TI_C6000:
switch (osabi)
{
case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
case ELFOSABI_C6000_LINUX: return "Linux C6000";
default:
break;
}
break;
default:
break;
}
snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
return buff;
}
}
static const char *
get_aarch64_segment_type (unsigned long type)
{
switch (type)
{
case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
default: return NULL;
}
}
static const char *
get_arm_segment_type (unsigned long type)
{
switch (type)
{
case PT_ARM_EXIDX: return "EXIDX";
default: return NULL;
}
}
static const char *
get_s390_segment_type (unsigned long type)
{
switch (type)
{
case PT_S390_PGSTE: return "S390_PGSTE";
default: return NULL;
}
}
static const char *
get_mips_segment_type (unsigned long type)
{
switch (type)
{
case PT_MIPS_REGINFO: return "REGINFO";
case PT_MIPS_RTPROC: return "RTPROC";
case PT_MIPS_OPTIONS: return "OPTIONS";
case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
default: return NULL;
}
}
static const char *
get_parisc_segment_type (unsigned long type)
{
switch (type)
{
case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
case PT_PARISC_UNWIND: return "PARISC_UNWIND";
case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
default: return NULL;
}
}
static const char *
get_ia64_segment_type (unsigned long type)
{
switch (type)
{
case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
case PT_IA_64_UNWIND: return "IA_64_UNWIND";
default: return NULL;
}
}
static const char *
get_tic6x_segment_type (unsigned long type)
{
switch (type)
{
case PT_C6000_PHATTR: return "C6000_PHATTR";
default: return NULL;
}
}
static const char *
get_riscv_segment_type (unsigned long type)
{
switch (type)
{
case PT_RISCV_ATTRIBUTES: return "RISCV_ATTRIBUTES";
default: return NULL;
}
}
static const char *
get_hpux_segment_type (unsigned long type, unsigned e_machine)
{
if (e_machine == EM_PARISC)
switch (type)
{
case PT_HP_TLS: return "HP_TLS";
case PT_HP_CORE_NONE: return "HP_CORE_NONE";
case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
case PT_HP_CORE_COMM: return "HP_CORE_COMM";
case PT_HP_CORE_PROC: return "HP_CORE_PROC";
case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
case PT_HP_CORE_STACK: return "HP_CORE_STACK";
case PT_HP_CORE_SHM: return "HP_CORE_SHM";
case PT_HP_CORE_MMF: return "HP_CORE_MMF";
case PT_HP_PARALLEL: return "HP_PARALLEL";
case PT_HP_FASTBIND: return "HP_FASTBIND";
case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
case PT_HP_STACK: return "HP_STACK";
case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
default: return NULL;
}
if (e_machine == EM_IA_64)
switch (type)
{
case PT_HP_TLS: return "HP_TLS";
case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
case PT_IA_64_HP_STACK: return "HP_STACK";
default: return NULL;
}
return NULL;
}
static const char *
get_solaris_segment_type (unsigned long type)
{
switch (type)
{
case 0x6464e550: return "PT_SUNW_UNWIND";
case 0x6474e550: return "PT_SUNW_EH_FRAME";
case 0x6ffffff7: return "PT_LOSUNW";
case 0x6ffffffa: return "PT_SUNWBSS";
case 0x6ffffffb: return "PT_SUNWSTACK";
case 0x6ffffffc: return "PT_SUNWDTRACE";
case 0x6ffffffd: return "PT_SUNWCAP";
case 0x6fffffff: return "PT_HISUNW";
default: return NULL;
}
}
static const char *
get_segment_type (Filedata * filedata, unsigned long p_type)
{
static char buff[32];
switch (p_type)
{
case PT_NULL: return "NULL";
case PT_LOAD: return "LOAD";
case PT_DYNAMIC: return "DYNAMIC";
case PT_INTERP: return "INTERP";
case PT_NOTE: return "NOTE";
case PT_SHLIB: return "SHLIB";
case PT_PHDR: return "PHDR";
case PT_TLS: return "TLS";
case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
case PT_GNU_STACK: return "GNU_STACK";
case PT_GNU_RELRO: return "GNU_RELRO";
case PT_GNU_PROPERTY: return "GNU_PROPERTY";
case PT_OPENBSD_RANDOMIZE: return "OPENBSD_RANDOMIZE";
case PT_OPENBSD_WXNEEDED: return "OPENBSD_WXNEEDED";
case PT_OPENBSD_BOOTDATA: return "OPENBSD_BOOTDATA";
default:
if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
{
const char * result;
switch (filedata->file_header.e_machine)
{
case EM_AARCH64:
result = get_aarch64_segment_type (p_type);
break;
case EM_ARM:
result = get_arm_segment_type (p_type);
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
result = get_mips_segment_type (p_type);
break;
case EM_PARISC:
result = get_parisc_segment_type (p_type);
break;
case EM_IA_64:
result = get_ia64_segment_type (p_type);
break;
case EM_TI_C6000:
result = get_tic6x_segment_type (p_type);
break;
case EM_S390:
case EM_S390_OLD:
result = get_s390_segment_type (p_type);
break;
case EM_RISCV:
result = get_riscv_segment_type (p_type);
break;
default:
result = NULL;
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
}
else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
{
const char * result = NULL;
switch (filedata->file_header.e_ident[EI_OSABI])
{
case ELFOSABI_GNU:
case ELFOSABI_FREEBSD:
if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
{
sprintf (buff, "GNU_MBIND+%#lx", p_type - PT_GNU_MBIND_LO);
result = buff;
}
break;
case ELFOSABI_HPUX:
result = get_hpux_segment_type (p_type,
filedata->file_header.e_machine);
break;
case ELFOSABI_SOLARIS:
result = get_solaris_segment_type (p_type);
break;
default:
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
}
else
snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
return buff;
}
}
static const char *
get_arc_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_ARC_ATTRIBUTES: return "ARC_ATTRIBUTES";
default:
break;
}
return NULL;
}
static const char *
get_mips_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
case SHT_MIPS_MSYM: return "MIPS_MSYM";
case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
case SHT_MIPS_UCODE: return "MIPS_UCODE";
case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
case SHT_MIPS_RELD: return "MIPS_RELD";
case SHT_MIPS_IFACE: return "MIPS_IFACE";
case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
case SHT_MIPS_SHDR: return "MIPS_SHDR";
case SHT_MIPS_FDESC: return "MIPS_FDESC";
case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
case SHT_MIPS_DENSE: return "MIPS_DENSE";
case SHT_MIPS_PDESC: return "MIPS_PDESC";
case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
case SHT_MIPS_LINE: return "MIPS_LINE";
case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
case SHT_MIPS_DWARF: return "MIPS_DWARF";
case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
case SHT_MIPS_XLATE: return "MIPS_XLATE";
case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
case SHT_MIPS_XHASH: return "MIPS_XHASH";
default:
break;
}
return NULL;
}
static const char *
get_parisc_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_PARISC_EXT: return "PARISC_EXT";
case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
case SHT_PARISC_DOC: return "PARISC_DOC";
case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
case SHT_PARISC_STUBS: return "PARISC_STUBS";
case SHT_PARISC_DLKM: return "PARISC_DLKM";
default: return NULL;
}
}
static const char *
get_ia64_section_type_name (Filedata * filedata, unsigned int sh_type)
{
/* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
return get_osabi_name (filedata, (sh_type & 0x00FF0000) >> 16);
switch (sh_type)
{
case SHT_IA_64_EXT: return "IA_64_EXT";
case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
default:
break;
}
return NULL;
}
static const char *
get_x86_64_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
default: return NULL;
}
}
static const char *
get_aarch64_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
default: return NULL;
}
}
static const char *
get_arm_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_ARM_EXIDX: return "ARM_EXIDX";
case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
default: return NULL;
}
}
static const char *
get_tic6x_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_C6000_UNWIND: return "C6000_UNWIND";
case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
case SHT_TI_ICODE: return "TI_ICODE";
case SHT_TI_XREF: return "TI_XREF";
case SHT_TI_HANDLER: return "TI_HANDLER";
case SHT_TI_INITINFO: return "TI_INITINFO";
case SHT_TI_PHATTRS: return "TI_PHATTRS";
default: return NULL;
}
}
static const char *
get_msp430_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
default: return NULL;
}
}
static const char *
get_nfp_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_NFP_MECONFIG: return "NFP_MECONFIG";
case SHT_NFP_INITREG: return "NFP_INITREG";
case SHT_NFP_UDEBUG: return "NFP_UDEBUG";
default: return NULL;
}
}
static const char *
get_v850_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_V850_SCOMMON: return "V850 Small Common";
case SHT_V850_TCOMMON: return "V850 Tiny Common";
case SHT_V850_ZCOMMON: return "V850 Zero Common";
case SHT_RENESAS_IOP: return "RENESAS IOP";
case SHT_RENESAS_INFO: return "RENESAS INFO";
default: return NULL;
}
}
static const char *
get_riscv_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_RISCV_ATTRIBUTES: return "RISCV_ATTRIBUTES";
default: return NULL;
}
}
static const char *
get_csky_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_CSKY_ATTRIBUTES: return "CSKY_ATTRIBUTES";
default: return NULL;
}
}
static const char *
get_section_type_name (Filedata * filedata, unsigned int sh_type)
{
static char buff[32];
const char * result;
switch (sh_type)
{
case SHT_NULL: return "NULL";
case SHT_PROGBITS: return "PROGBITS";
case SHT_SYMTAB: return "SYMTAB";
case SHT_STRTAB: return "STRTAB";
case SHT_RELA: return "RELA";
case SHT_HASH: return "HASH";
case SHT_DYNAMIC: return "DYNAMIC";
case SHT_NOTE: return "NOTE";
case SHT_NOBITS: return "NOBITS";
case SHT_REL: return "REL";
case SHT_SHLIB: return "SHLIB";
case SHT_DYNSYM: return "DYNSYM";
case SHT_INIT_ARRAY: return "INIT_ARRAY";
case SHT_FINI_ARRAY: return "FINI_ARRAY";
case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
case SHT_GNU_HASH: return "GNU_HASH";
case SHT_GROUP: return "GROUP";
case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICES";
case SHT_GNU_verdef: return "VERDEF";
case SHT_GNU_verneed: return "VERNEED";
case SHT_GNU_versym: return "VERSYM";
case 0x6ffffff0: return "VERSYM";
case 0x6ffffffc: return "VERDEF";
case 0x7ffffffd: return "AUXILIARY";
case 0x7fffffff: return "FILTER";
case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
default:
if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
{
switch (filedata->file_header.e_machine)
{
case EM_ARC:
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
result = get_arc_section_type_name (sh_type);
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
result = get_mips_section_type_name (sh_type);
break;
case EM_PARISC:
result = get_parisc_section_type_name (sh_type);
break;
case EM_IA_64:
result = get_ia64_section_type_name (filedata, sh_type);
break;
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
result = get_x86_64_section_type_name (sh_type);
break;
case EM_AARCH64:
result = get_aarch64_section_type_name (sh_type);
break;
case EM_ARM:
result = get_arm_section_type_name (sh_type);
break;
case EM_TI_C6000:
result = get_tic6x_section_type_name (sh_type);
break;
case EM_MSP430:
result = get_msp430_section_type_name (sh_type);
break;
case EM_NFP:
result = get_nfp_section_type_name (sh_type);
break;
case EM_V800:
case EM_V850:
case EM_CYGNUS_V850:
result = get_v850_section_type_name (sh_type);
break;
case EM_RISCV:
result = get_riscv_section_type_name (sh_type);
break;
case EM_CSKY:
result = get_csky_section_type_name (sh_type);
break;
default:
result = NULL;
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
}
else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
{
switch (filedata->file_header.e_machine)
{
case EM_IA_64:
result = get_ia64_section_type_name (filedata, sh_type);
break;
default:
if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
result = get_solaris_section_type (sh_type);
else
{
switch (sh_type)
{
case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
case SHT_GNU_HASH: result = "GNU_HASH"; break;
case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
default:
result = NULL;
break;
}
}
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
}
else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
{
switch (filedata->file_header.e_machine)
{
case EM_V800:
case EM_V850:
case EM_CYGNUS_V850:
result = get_v850_section_type_name (sh_type);
break;
default:
result = NULL;
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
}
else
/* This message is probably going to be displayed in a 15
character wide field, so put the hex value first. */
snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
return buff;
}
}
enum long_option_values
{
OPTION_DEBUG_DUMP = 512,
OPTION_DYN_SYMS,
OPTION_LTO_SYMS,
OPTION_DWARF_DEPTH,
OPTION_DWARF_START,
OPTION_DWARF_CHECK,
OPTION_CTF_DUMP,
OPTION_CTF_PARENT,
OPTION_CTF_SYMBOLS,
OPTION_CTF_STRINGS,
OPTION_WITH_SYMBOL_VERSIONS,
OPTION_RECURSE_LIMIT,
OPTION_NO_RECURSE_LIMIT,
OPTION_NO_DEMANGLING,
OPTION_SYM_BASE
};
static struct option options[] =
{
/* Note - This table is alpha-sorted on the 'val'
field in order to make adding new options easier. */
{"arch-specific", no_argument, 0, 'A'},
{"all", no_argument, 0, 'a'},
{"demangle", optional_argument, 0, 'C'},
{"archive-index", no_argument, 0, 'c'},
{"use-dynamic", no_argument, 0, 'D'},
{"dynamic", no_argument, 0, 'd'},
{"headers", no_argument, 0, 'e'},
{"section-groups", no_argument, 0, 'g'},
{"help", no_argument, 0, 'H'},
{"file-header", no_argument, 0, 'h'},
{"histogram", no_argument, 0, 'I'},
{"lint", no_argument, 0, 'L'},
{"enable-checks", no_argument, 0, 'L'},
{"program-headers", no_argument, 0, 'l'},
{"segments", no_argument, 0, 'l'},
{"full-section-name",no_argument, 0, 'N'},
{"notes", no_argument, 0, 'n'},
{"process-links", no_argument, 0, 'P'},
{"string-dump", required_argument, 0, 'p'},
{"relocated-dump", required_argument, 0, 'R'},
{"relocs", no_argument, 0, 'r'},
{"section-headers", no_argument, 0, 'S'},
{"sections", no_argument, 0, 'S'},
{"symbols", no_argument, 0, 's'},
{"syms", no_argument, 0, 's'},
{"silent-truncation",no_argument, 0, 'T'},
{"section-details", no_argument, 0, 't'},
{"unwind", no_argument, 0, 'u'},
{"version-info", no_argument, 0, 'V'},
{"version", no_argument, 0, 'v'},
{"wide", no_argument, 0, 'W'},
{"hex-dump", required_argument, 0, 'x'},
{"decompress", no_argument, 0, 'z'},
{"no-demangle", no_argument, 0, OPTION_NO_DEMANGLING},
{"recurse-limit", no_argument, NULL, OPTION_RECURSE_LIMIT},
{"no-recurse-limit", no_argument, NULL, OPTION_NO_RECURSE_LIMIT},
{"no-recursion-limit", no_argument, NULL, OPTION_NO_RECURSE_LIMIT},
{"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
{"lto-syms", no_argument, 0, OPTION_LTO_SYMS},
{"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
{"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
{"dwarf-start", required_argument, 0, OPTION_DWARF_START},
{"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
#ifdef ENABLE_LIBCTF
{"ctf", required_argument, 0, OPTION_CTF_DUMP},
{"ctf-symbols", required_argument, 0, OPTION_CTF_SYMBOLS},
{"ctf-strings", required_argument, 0, OPTION_CTF_STRINGS},
{"ctf-parent", required_argument, 0, OPTION_CTF_PARENT},
#endif
{"sym-base", optional_argument, 0, OPTION_SYM_BASE},
{0, no_argument, 0, 0}
};
static void
usage (FILE * stream)
{
fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
fprintf (stream, _(" Display information about the contents of ELF format files\n"));
fprintf (stream, _(" Options are:\n"));
fprintf (stream, _("\
-a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n"));
fprintf (stream, _("\
-h --file-header Display the ELF file header\n"));
fprintf (stream, _("\
-l --program-headers Display the program headers\n"));
fprintf (stream, _("\
--segments An alias for --program-headers\n"));
fprintf (stream, _("\
-S --section-headers Display the sections' header\n"));
fprintf (stream, _("\
--sections An alias for --section-headers\n"));
fprintf (stream, _("\
-g --section-groups Display the section groups\n"));
fprintf (stream, _("\
-t --section-details Display the section details\n"));
fprintf (stream, _("\
-e --headers Equivalent to: -h -l -S\n"));
fprintf (stream, _("\
-s --syms Display the symbol table\n"));
fprintf (stream, _("\
--symbols An alias for --syms\n"));
fprintf (stream, _("\
--dyn-syms Display the dynamic symbol table\n"));
fprintf (stream, _("\
--lto-syms Display LTO symbol tables\n"));
fprintf (stream, _("\
--sym-base=[0|8|10|16] \n\
Force base for symbol sizes. The options are \n\
mixed (the default), octal, decimal, hexadecimal.\n"));
fprintf (stream, _("\
-C --demangle[=STYLE] Decode low-level symbol names into user-level names\n\
The STYLE, if specified, can be `auto' (the default),\n\
`gnu', `lucid', `arm', `hp', `edg', `gnu-v3', `java'\n\
or `gnat'\n"));
fprintf (stream, _("\
--no-demangle Do not demangle low-level symbol names. (default)\n"));
fprintf (stream, _("\
--recurse-limit Enable a demangling recursion limit. (default)\n"));
fprintf (stream, _("\
--no-recurse-limit Disable a demangling recursion limit\n"));
fprintf (stream, _("\
-n --notes Display the core notes (if present)\n"));
fprintf (stream, _("\
-r --relocs Display the relocations (if present)\n"));
fprintf (stream, _("\
-u --unwind Display the unwind info (if present)\n"));
fprintf (stream, _("\
-d --dynamic Display the dynamic section (if present)\n"));
fprintf (stream, _("\
-V --version-info Display the version sections (if present)\n"));
fprintf (stream, _("\
-A --arch-specific Display architecture specific information (if any)\n"));
fprintf (stream, _("\
-c --archive-index Display the symbol/file index in an archive\n"));
fprintf (stream, _("\
-D --use-dynamic Use the dynamic section info when displaying symbols\n"));
fprintf (stream, _("\
-L --lint|--enable-checks\n\
Display warning messages for possible problems\n"));
fprintf (stream, _("\
-x --hex-dump=<number|name>\n\
Dump the contents of section <number|name> as bytes\n"));
fprintf (stream, _("\
-p --string-dump=<number|name>\n\
Dump the contents of section <number|name> as strings\n"));
fprintf (stream, _("\
-R --relocated-dump=<number|name>\n\
Dump the relocated contents of section <number|name>\n"));
fprintf (stream, _("\
-z --decompress Decompress section before dumping it\n"));
fprintf (stream, _("\
-w --debug-dump[a/=abbrev, A/=addr, r/=aranges, c/=cu_index, L/=decodedline,\n\
f/=frames, F/=frames-interp, g/=gdb_index, i/=info, o/=loc,\n\
m/=macro, p/=pubnames, t/=pubtypes, R/=Ranges, l/=rawline,\n\
s/=str, O/=str-offsets, u/=trace_abbrev, T/=trace_aranges,\n\
U/=trace_info]\n\
Display the contents of DWARF debug sections\n"));
fprintf (stream, _("\
-wk --debug-dump=links Display the contents of sections that link to separate\n\
debuginfo files\n"));
fprintf (stream, _("\
-P --process-links Display the contents of non-debug sections in separate\n\
debuginfo files. (Implies -wK)\n"));
#if DEFAULT_FOR_FOLLOW_LINKS
fprintf (stream, _("\
-wK --debug-dump=follow-links\n\
Follow links to separate debug info files (default)\n"));
fprintf (stream, _("\
-wN --debug-dump=no-follow-links\n\
Do not follow links to separate debug info files\n"));
#else
fprintf (stream, _("\
-wK --debug-dump=follow-links\n\
Follow links to separate debug info files\n"));
fprintf (stream, _("\
-wN --debug-dump=no-follow-links\n\
Do not follow links to separate debug info files\n\
(default)\n"));
#endif
fprintf (stream, _("\
--dwarf-depth=N Do not display DIEs at depth N or greater\n"));
fprintf (stream, _("\
--dwarf-start=N Display DIEs starting at offset N\n"));
#ifdef ENABLE_LIBCTF
fprintf (stream, _("\
--ctf=<number|name> Display CTF info from section <number|name>\n"));
fprintf (stream, _("\
--ctf-parent=<number|name>\n\
Use section <number|name> as the CTF parent\n"));
fprintf (stream, _("\
--ctf-symbols=<number|name>\n\
Use section <number|name> as the CTF external symtab\n"));
fprintf (stream, _("\
--ctf-strings=<number|name>\n\
Use section <number|name> as the CTF external strtab\n"));
#endif
#ifdef SUPPORT_DISASSEMBLY
fprintf (stream, _("\
-i --instruction-dump=<number|name>\n\
Disassemble the contents of section <number|name>\n"));
#endif
fprintf (stream, _("\
-I --histogram Display histogram of bucket list lengths\n"));
fprintf (stream, _("\
-W --wide Allow output width to exceed 80 characters\n"));
fprintf (stream, _("\
-T --silent-truncation If a symbol name is truncated, do not add [...] suffix\n"));
fprintf (stream, _("\
@<file> Read options from <file>\n"));
fprintf (stream, _("\
-H --help Display this information\n"));
fprintf (stream, _("\
-v --version Display the version number of readelf\n"));
if (REPORT_BUGS_TO[0] && stream == stdout)
fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
exit (stream == stdout ? 0 : 1);
}
/* Record the fact that the user wants the contents of section number
SECTION to be displayed using the method(s) encoded as flags bits
in TYPE. Note, TYPE can be zero if we are creating the array for
the first time. */
static void
request_dump_bynumber (struct dump_data *dumpdata,
unsigned int section, dump_type type)
{
if (section >= dumpdata->num_dump_sects)
{
dump_type * new_dump_sects;
new_dump_sects = (dump_type *) calloc (section + 1,
sizeof (* new_dump_sects));
if (new_dump_sects == NULL)
error (_("Out of memory allocating dump request table.\n"));
else
{
if (dumpdata->dump_sects)
{
/* Copy current flag settings. */
memcpy (new_dump_sects, dumpdata->dump_sects,
dumpdata->num_dump_sects * sizeof (* new_dump_sects));
free (dumpdata->dump_sects);
}
dumpdata->dump_sects = new_dump_sects;
dumpdata->num_dump_sects = section + 1;
}
}
if (dumpdata->dump_sects)
dumpdata->dump_sects[section] |= type;
}
/* Request a dump by section name. */
static void
request_dump_byname (const char * section, dump_type type)
{
struct dump_list_entry * new_request;
new_request = (struct dump_list_entry *)
malloc (sizeof (struct dump_list_entry));
if (!new_request)
error (_("Out of memory allocating dump request table.\n"));
new_request->name = strdup (section);
if (!new_request->name)
error (_("Out of memory allocating dump request table.\n"));
new_request->type = type;
new_request->next = dump_sects_byname;
dump_sects_byname = new_request;
}
static inline void
request_dump (struct dump_data *dumpdata, dump_type type)
{
int section;
char * cp;
do_dump = true;
section = strtoul (optarg, & cp, 0);
if (! *cp && section >= 0)
request_dump_bynumber (dumpdata, section, type);
else
request_dump_byname (optarg, type);
}
static void
parse_args (struct dump_data *dumpdata, int argc, char ** argv)
{
int c;
if (argc < 2)
usage (stderr);
while ((c = getopt_long
(argc, argv, "ACDHILNPR:STVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
{
switch (c)
{
case 0:
/* Long options. */
break;
case 'H':
usage (stdout);
break;
case 'a':
do_syms = true;
do_reloc = true;
do_unwind = true;
do_dynamic = true;
do_header = true;
do_sections = true;
do_section_groups = true;
do_segments = true;
do_version = true;
do_histogram = true;
do_arch = true;
do_notes = true;
break;
case 'g':
do_section_groups = true;
break;
case 't':
case 'N':
do_sections = true;
do_section_details = true;
break;
case 'e':
do_header = true;
do_sections = true;
do_segments = true;
break;
case 'A':
do_arch = true;
break;
case 'D':
do_using_dynamic = true;
break;
case 'r':
do_reloc = true;
break;
case 'u':
do_unwind = true;
break;
case 'h':
do_header = true;
break;
case 'l':
do_segments = true;
break;
case 's':
do_syms = true;
break;
case 'S':
do_sections = true;
break;
case 'd':
do_dynamic = true;
break;
case 'I':
do_histogram = true;
break;
case 'n':
do_notes = true;
break;
case 'c':
do_archive_index = true;
break;
case 'L':
do_checks = true;
break;
case 'P':
process_links = true;
do_follow_links = true;
break;
case 'x':
request_dump (dumpdata, HEX_DUMP);
break;
case 'p':
request_dump (dumpdata, STRING_DUMP);
break;
case 'R':
request_dump (dumpdata, RELOC_DUMP);
break;
case 'z':
decompress_dumps = true;
break;
case 'w':
do_dump = true;
if (optarg == NULL)
{
do_debugging = true;
dwarf_select_sections_all ();
}
else
{
do_debugging = false;
dwarf_select_sections_by_letters (optarg);
}
break;
case OPTION_DEBUG_DUMP:
do_dump = true;
if (optarg == NULL)
{
do_debugging = true;
dwarf_select_sections_all ();
}
else
{
do_debugging = false;
dwarf_select_sections_by_names (optarg);
}
break;
case OPTION_DWARF_DEPTH:
{
char *cp;
dwarf_cutoff_level = strtoul (optarg, & cp, 0);
}
break;
case OPTION_DWARF_START:
{
char *cp;
dwarf_start_die = strtoul (optarg, & cp, 0);
}
break;
case OPTION_DWARF_CHECK:
dwarf_check = true;
break;
case OPTION_CTF_DUMP:
do_ctf = true;
request_dump (dumpdata, CTF_DUMP);
break;
case OPTION_CTF_SYMBOLS:
free (dump_ctf_symtab_name);
dump_ctf_symtab_name = strdup (optarg);
break;
case OPTION_CTF_STRINGS:
free (dump_ctf_strtab_name);
dump_ctf_strtab_name = strdup (optarg);
break;
case OPTION_CTF_PARENT:
free (dump_ctf_parent_name);
dump_ctf_parent_name = strdup (optarg);
break;
case OPTION_DYN_SYMS:
do_dyn_syms = true;
break;
case OPTION_LTO_SYMS:
do_lto_syms = true;
break;
#ifdef SUPPORT_DISASSEMBLY
case 'i':
request_dump (dumpdata, DISASS_DUMP);
break;
#endif
case 'v':
print_version (program_name);
break;
case 'V':
do_version = true;
break;
case 'W':
do_wide = true;
break;
case 'T':
do_not_show_symbol_truncation = true;
break;
case 'C':
do_demangle = true;
if (optarg != NULL)
{
enum demangling_styles style;
style = cplus_demangle_name_to_style (optarg);
if (style == unknown_demangling)
error (_("unknown demangling style `%s'"), optarg);
cplus_demangle_set_style (style);
}
break;
case OPTION_NO_DEMANGLING:
do_demangle = false;
break;
case OPTION_RECURSE_LIMIT:
demangle_flags &= ~ DMGL_NO_RECURSE_LIMIT;
break;
case OPTION_NO_RECURSE_LIMIT:
demangle_flags |= DMGL_NO_RECURSE_LIMIT;
break;
case OPTION_WITH_SYMBOL_VERSIONS:
/* Ignored for backward compatibility. */
break;
case OPTION_SYM_BASE:
sym_base = 0;
if (optarg != NULL)
{
sym_base = strtoul (optarg, NULL, 0);
switch (sym_base)
{
case 0:
case 8:
case 10:
case 16:
break;
default:
sym_base = 0;
break;
}
}
break;
default:
/* xgettext:c-format */
error (_("Invalid option '-%c'\n"), c);
/* Fall through. */
case '?':
usage (stderr);
}
}
if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
&& !do_segments && !do_header && !do_dump && !do_version
&& !do_histogram && !do_debugging && !do_arch && !do_notes
&& !do_section_groups && !do_archive_index
&& !do_dyn_syms && !do_lto_syms)
{
if (do_checks)
{
check_all = true;
do_dynamic = do_syms = do_reloc = do_unwind = do_sections = true;
do_segments = do_header = do_dump = do_version = true;
do_histogram = do_debugging = do_arch = do_notes = true;
do_section_groups = do_archive_index = do_dyn_syms = true;
do_lto_syms = true;
}
else
usage (stderr);
}
}
static const char *
get_elf_class (unsigned int elf_class)
{
static char buff[32];
switch (elf_class)
{
case ELFCLASSNONE: return _("none");
case ELFCLASS32: return "ELF32";
case ELFCLASS64: return "ELF64";
default:
snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
return buff;
}
}
static const char *
get_data_encoding (unsigned int encoding)
{
static char buff[32];
switch (encoding)
{
case ELFDATANONE: return _("none");
case ELFDATA2LSB: return _("2's complement, little endian");
case ELFDATA2MSB: return _("2's complement, big endian");
default:
snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
return buff;
}
}
/* Decode the data held in 'filedata->file_header'. */
static bool
process_file_header (Filedata * filedata)
{
Elf_Internal_Ehdr * header = & filedata->file_header;
if ( header->e_ident[EI_MAG0] != ELFMAG0
|| header->e_ident[EI_MAG1] != ELFMAG1
|| header->e_ident[EI_MAG2] != ELFMAG2
|| header->e_ident[EI_MAG3] != ELFMAG3)
{
error
(_("Not an ELF file - it has the wrong magic bytes at the start\n"));
return false;
}
if (! filedata->is_separate)
init_dwarf_regnames_by_elf_machine_code (header->e_machine);
if (do_header)
{
unsigned i;
if (filedata->is_separate)
printf (_("ELF Header in linked file '%s':\n"), filedata->file_name);
else
printf (_("ELF Header:\n"));
printf (_(" Magic: "));
for (i = 0; i < EI_NIDENT; i++)
printf ("%2.2x ", header->e_ident[i]);
printf ("\n");
printf (_(" Class: %s\n"),
get_elf_class (header->e_ident[EI_CLASS]));
printf (_(" Data: %s\n"),
get_data_encoding (header->e_ident[EI_DATA]));
printf (_(" Version: %d%s\n"),
header->e_ident[EI_VERSION],
(header->e_ident[EI_VERSION] == EV_CURRENT
? _(" (current)")
: (header->e_ident[EI_VERSION] != EV_NONE
? _(" <unknown>")
: "")));
printf (_(" OS/ABI: %s\n"),
get_osabi_name (filedata, header->e_ident[EI_OSABI]));
printf (_(" ABI Version: %d\n"),
header->e_ident[EI_ABIVERSION]);
printf (_(" Type: %s\n"),
get_file_type (filedata));
printf (_(" Machine: %s\n"),
get_machine_name (header->e_machine));
printf (_(" Version: 0x%lx\n"),
header->e_version);
printf (_(" Entry point address: "));
print_vma (header->e_entry, PREFIX_HEX);
printf (_("\n Start of program headers: "));
print_vma (header->e_phoff, DEC);
printf (_(" (bytes into file)\n Start of section headers: "));
print_vma (header->e_shoff, DEC);
printf (_(" (bytes into file)\n"));
printf (_(" Flags: 0x%lx%s\n"),
header->e_flags,
get_machine_flags (filedata, header->e_flags, header->e_machine));
printf (_(" Size of this header: %u (bytes)\n"),
header->e_ehsize);
printf (_(" Size of program headers: %u (bytes)\n"),
header->e_phentsize);
printf (_(" Number of program headers: %u"),
header->e_phnum);
if (filedata->section_headers != NULL
&& header->e_phnum == PN_XNUM
&& filedata->section_headers[0].sh_info != 0)
{
header->e_phnum = filedata->section_headers[0].sh_info;
printf (" (%u)", header->e_phnum);
}
putc ('\n', stdout);
printf (_(" Size of section headers: %u (bytes)\n"),
header->e_shentsize);
printf (_(" Number of section headers: %u"),
header->e_shnum);
if (filedata->section_headers != NULL && header->e_shnum == SHN_UNDEF)
{
header->e_shnum = filedata->section_headers[0].sh_size;
printf (" (%u)", header->e_shnum);
}
putc ('\n', stdout);
printf (_(" Section header string table index: %u"),
header->e_shstrndx);
if (filedata->section_headers != NULL
&& header->e_shstrndx == (SHN_XINDEX & 0xffff))
{
header->e_shstrndx = filedata->section_headers[0].sh_link;
printf (" (%u)", header->e_shstrndx);
}
if (header->e_shstrndx != SHN_UNDEF
&& header->e_shstrndx >= header->e_shnum)
{
header->e_shstrndx = SHN_UNDEF;
printf (_(" <corrupt: out of range>"));
}
putc ('\n', stdout);
}
if (filedata->section_headers != NULL)
{
if (header->e_phnum == PN_XNUM
&& filedata->section_headers[0].sh_info != 0)
header->e_phnum = filedata->section_headers[0].sh_info;
if (header->e_shnum == SHN_UNDEF)
header->e_shnum = filedata->section_headers[0].sh_size;
if (header->e_shstrndx == (SHN_XINDEX & 0xffff))
header->e_shstrndx = filedata->section_headers[0].sh_link;
if (header->e_shstrndx >= header->e_shnum)
header->e_shstrndx = SHN_UNDEF;
}
return true;
}
/* Read in the program headers from FILEDATA and store them in PHEADERS.
Returns TRUE upon success, FALSE otherwise. Loads 32-bit headers. */
static bool
get_32bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
{
Elf32_External_Phdr * phdrs;
Elf32_External_Phdr * external;
Elf_Internal_Phdr * internal;
unsigned int i;
unsigned int size = filedata->file_header.e_phentsize;
unsigned int num = filedata->file_header.e_phnum;
/* PR binutils/17531: Cope with unexpected section header sizes. */
if (size == 0 || num == 0)
return false;
if (size < sizeof * phdrs)
{
error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
return false;
}
if (size > sizeof * phdrs)
warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
phdrs = (Elf32_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
size, num, _("program headers"));
if (phdrs == NULL)
return false;
for (i = 0, internal = pheaders, external = phdrs;
i < filedata->file_header.e_phnum;
i++, internal++, external++)
{
internal->p_type = BYTE_GET (external->p_type);
internal->p_offset = BYTE_GET (external->p_offset);
internal->p_vaddr = BYTE_GET (external->p_vaddr);
internal->p_paddr = BYTE_GET (external->p_paddr);
internal->p_filesz = BYTE_GET (external->p_filesz);
internal->p_memsz = BYTE_GET (external->p_memsz);
internal->p_flags = BYTE_GET (external->p_flags);
internal->p_align = BYTE_GET (external->p_align);
}
free (phdrs);
return true;
}
/* Read in the program headers from FILEDATA and store them in PHEADERS.
Returns TRUE upon success, FALSE otherwise. Loads 64-bit headers. */
static bool
get_64bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
{
Elf64_External_Phdr * phdrs;
Elf64_External_Phdr * external;
Elf_Internal_Phdr * internal;
unsigned int i;
unsigned int size = filedata->file_header.e_phentsize;
unsigned int num = filedata->file_header.e_phnum;
/* PR binutils/17531: Cope with unexpected section header sizes. */
if (size == 0 || num == 0)
return false;
if (size < sizeof * phdrs)
{
error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
return false;
}
if (size > sizeof * phdrs)
warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
phdrs = (Elf64_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
size, num, _("program headers"));
if (!phdrs)
return false;
for (i = 0, internal = pheaders, external = phdrs;
i < filedata->file_header.e_phnum;
i++, internal++, external++)
{
internal->p_type = BYTE_GET (external->p_type);
internal->p_flags = BYTE_GET (external->p_flags);
internal->p_offset = BYTE_GET (external->p_offset);
internal->p_vaddr = BYTE_GET (external->p_vaddr);
internal->p_paddr = BYTE_GET (external->p_paddr);
internal->p_filesz = BYTE_GET (external->p_filesz);
internal->p_memsz = BYTE_GET (external->p_memsz);
internal->p_align = BYTE_GET (external->p_align);
}
free (phdrs);
return true;
}
/* Returns TRUE if the program headers were read into `program_headers'. */
static bool
get_program_headers (Filedata * filedata)
{
Elf_Internal_Phdr * phdrs;
/* Check cache of prior read. */
if (filedata->program_headers != NULL)
return true;
/* Be kind to memory checkers by looking for
e_phnum values which we know must be invalid. */
if (filedata->file_header.e_phnum
* (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
>= filedata->file_size)
{
error (_("Too many program headers - %#x - the file is not that big\n"),
filedata->file_header.e_phnum);
return false;
}
phdrs = (Elf_Internal_Phdr *) cmalloc (filedata->file_header.e_phnum,
sizeof (Elf_Internal_Phdr));
if (phdrs == NULL)
{
error (_("Out of memory reading %u program headers\n"),
filedata->file_header.e_phnum);
return false;
}
if (is_32bit_elf
? get_32bit_program_headers (filedata, phdrs)
: get_64bit_program_headers (filedata, phdrs))
{
filedata->program_headers = phdrs;
return true;
}
free (phdrs);
return false;
}
/* Print program header info and locate dynamic section. */
static void
process_program_headers (Filedata * filedata)
{
Elf_Internal_Phdr * segment;
unsigned int i;
Elf_Internal_Phdr * previous_load = NULL;
if (filedata->file_header.e_phnum == 0)
{
/* PR binutils/12467. */
if (filedata->file_header.e_phoff != 0)
warn (_("possibly corrupt ELF header - it has a non-zero program"
" header offset, but no program headers\n"));
else if (do_segments)
{
if (filedata->is_separate)
printf (_("\nThere are no program headers in linked file '%s'.\n"),
filedata->file_name);
else
printf (_("\nThere are no program headers in this file.\n"));
}
goto no_headers;
}
if (do_segments && !do_header)
{
if (filedata->is_separate)
printf ("\nIn linked file '%s' the ELF file type is %s\n",
filedata->file_name, get_file_type (filedata));
else
printf (_("\nElf file type is %s\n"), get_file_type (filedata));
printf (_("Entry point 0x%s\n"), bfd_vmatoa ("x", filedata->file_header.e_entry));
printf (ngettext ("There is %d program header, starting at offset %s\n",
"There are %d program headers, starting at offset %s\n",
filedata->file_header.e_phnum),
filedata->file_header.e_phnum,
bfd_vmatoa ("u", filedata->file_header.e_phoff));
}
if (! get_program_headers (filedata))
goto no_headers;
if (do_segments)
{
if (filedata->file_header.e_phnum > 1)
printf (_("\nProgram Headers:\n"));
else
printf (_("\nProgram Headers:\n"));
if (is_32bit_elf)
printf
(_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
else if (do_wide)
printf
(_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
else
{
printf
(_(" Type Offset VirtAddr PhysAddr\n"));
printf
(_(" FileSiz MemSiz Flags Align\n"));
}
}
unsigned long dynamic_addr = 0;
bfd_size_type dynamic_size = 0;
for (i = 0, segment = filedata->program_headers;
i < filedata->file_header.e_phnum;
i++, segment++)
{
if (do_segments)
{
printf (" %-14.14s ", get_segment_type (filedata, segment->p_type));
if (is_32bit_elf)
{
printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
printf ("%c%c%c ",
(segment->p_flags & PF_R ? 'R' : ' '),
(segment->p_flags & PF_W ? 'W' : ' '),
(segment->p_flags & PF_X ? 'E' : ' '));
printf ("%#lx", (unsigned long) segment->p_align);
}
else if (do_wide)
{
if ((unsigned long) segment->p_offset == segment->p_offset)
printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
else
{
print_vma (segment->p_offset, FULL_HEX);
putchar (' ');
}
print_vma (segment->p_vaddr, FULL_HEX);
putchar (' ');
print_vma (segment->p_paddr, FULL_HEX);
putchar (' ');
if ((unsigned long) segment->p_filesz == segment->p_filesz)
printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
else
{
print_vma (segment->p_filesz, FULL_HEX);
putchar (' ');
}
if ((unsigned long) segment->p_memsz == segment->p_memsz)
printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
else
{
print_vma (segment->p_memsz, FULL_HEX);
}
printf (" %c%c%c ",
(segment->p_flags & PF_R ? 'R' : ' '),
(segment->p_flags & PF_W ? 'W' : ' '),
(segment->p_flags & PF_X ? 'E' : ' '));
if ((unsigned long) segment->p_align == segment->p_align)
printf ("%#lx", (unsigned long) segment->p_align);
else
{
print_vma (segment->p_align, PREFIX_HEX);
}
}
else
{
print_vma (segment->p_offset, FULL_HEX);
putchar (' ');
print_vma (segment->p_vaddr, FULL_HEX);
putchar (' ');
print_vma (segment->p_paddr, FULL_HEX);
printf ("\n ");
print_vma (segment->p_filesz, FULL_HEX);
putchar (' ');
print_vma (segment->p_memsz, FULL_HEX);
printf (" %c%c%c ",
(segment->p_flags & PF_R ? 'R' : ' '),
(segment->p_flags & PF_W ? 'W' : ' '),
(segment->p_flags & PF_X ? 'E' : ' '));
print_vma (segment->p_align, PREFIX_HEX);
}
putc ('\n', stdout);
}
switch (segment->p_type)
{
case PT_LOAD:
#if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
required by the ELF standard, several programs, including the Linux
kernel, make use of non-ordered segments. */
if (previous_load
&& previous_load->p_vaddr > segment->p_vaddr)
error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
#endif
if (segment->p_memsz < segment->p_filesz)
error (_("the segment's file size is larger than its memory size\n"));
previous_load = segment;
break;
case PT_PHDR:
/* PR 20815 - Verify that the program header is loaded into memory. */
if (i > 0 && previous_load != NULL)
error (_("the PHDR segment must occur before any LOAD segment\n"));
if (filedata->file_header.e_machine != EM_PARISC)
{
unsigned int j;
for (j = 1; j < filedata->file_header.e_phnum; j++)
{
Elf_Internal_Phdr *load = filedata->program_headers + j;
if (load->p_type == PT_LOAD
&& load->p_offset <= segment->p_offset
&& (load->p_offset + load->p_filesz
>= segment->p_offset + segment->p_filesz)
&& load->p_vaddr <= segment->p_vaddr
&& (load->p_vaddr + load->p_filesz
>= segment->p_vaddr + segment->p_filesz))
break;
}
if (j == filedata->file_header.e_phnum)
error (_("the PHDR segment is not covered by a LOAD segment\n"));
}
break;
case PT_DYNAMIC:
if (dynamic_addr)
error (_("more than one dynamic segment\n"));
/* By default, assume that the .dynamic section is the first
section in the DYNAMIC segment. */
dynamic_addr = segment->p_offset;
dynamic_size = segment->p_filesz;
/* Try to locate the .dynamic section. If there is
a section header table, we can easily locate it. */
if (filedata->section_headers != NULL)
{
Elf_Internal_Shdr * sec;
sec = find_section (filedata, ".dynamic");
if (sec == NULL || sec->sh_size == 0)
{
/* A corresponding .dynamic section is expected, but on
IA-64/OpenVMS it is OK for it to be missing. */
if (!is_ia64_vms (filedata))
error (_("no .dynamic section in the dynamic segment\n"));
break;
}
if (sec->sh_type == SHT_NOBITS)
{
dynamic_addr = 0;
dynamic_size = 0;
break;
}
dynamic_addr = sec->sh_offset;
dynamic_size = sec->sh_size;
/* The PT_DYNAMIC segment, which is used by the run-time
loader, should exactly match the .dynamic section. */
if (do_checks
&& (dynamic_addr != segment->p_offset
|| dynamic_size != segment->p_filesz))
warn (_("\
the .dynamic section is not the same as the dynamic segment\n"));
}
/* PR binutils/17512: Avoid corrupt dynamic section info in the
segment. Check this after matching against the section headers
so we don't warn on debuginfo file (which have NOBITS .dynamic
sections). */
if (dynamic_addr > filedata->file_size
|| (dynamic_size > filedata->file_size - dynamic_addr))
{
error (_("the dynamic segment offset + size exceeds the size of the file\n"));
dynamic_addr = 0;
dynamic_size = 0;
}
break;
case PT_INTERP:
if (segment->p_offset >= filedata->file_size
|| segment->p_filesz > filedata->file_size - segment->p_offset
|| segment->p_filesz - 1 >= (size_t) -2
|| fseek (filedata->handle,
filedata->archive_file_offset + (long) segment->p_offset,
SEEK_SET))
error (_("Unable to find program interpreter name\n"));
else
{
size_t len = segment->p_filesz;
free (filedata->program_interpreter);
filedata->program_interpreter = xmalloc (len + 1);
len = fread (filedata->program_interpreter, 1, len,
filedata->handle);
filedata->program_interpreter[len] = 0;
if (do_segments)
printf (_(" [Requesting program interpreter: %s]\n"),
filedata->program_interpreter);
}
break;
}
}
if (do_segments
&& filedata->section_headers != NULL
&& filedata->string_table != NULL)
{
printf (_("\n Section to Segment mapping:\n"));
printf (_(" Segment Sections...\n"));
for (i = 0; i < filedata->file_header.e_phnum; i++)
{
unsigned int j;
Elf_Internal_Shdr * section;
segment = filedata->program_headers + i;
section = filedata->section_headers + 1;
printf (" %2.2d ", i);
for (j = 1; j < filedata->file_header.e_shnum; j++, section++)
{
if (!ELF_TBSS_SPECIAL (section, segment)
&& ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
printf ("%s ", printable_section_name (filedata, section));
}
putc ('\n',stdout);
}
}
filedata->dynamic_addr = dynamic_addr;
filedata->dynamic_size = dynamic_size ? dynamic_size : 1;
return;
no_headers:
filedata->dynamic_addr = 0;
filedata->dynamic_size = 1;
}
/* Find the file offset corresponding to VMA by using the program headers. */
static long
offset_from_vma (Filedata * filedata, bfd_vma vma, bfd_size_type size)
{
Elf_Internal_Phdr * seg;
if (! get_program_headers (filedata))
{
warn (_("Cannot interpret virtual addresses without program headers.\n"));
return (long) vma;
}
for (seg = filedata->program_headers;
seg < filedata->program_headers + filedata->file_header.e_phnum;
++seg)
{
if (seg->p_type != PT_LOAD)
continue;
if (vma >= (seg->p_vaddr & -seg->p_align)
&& vma + size <= seg->p_vaddr + seg->p_filesz)
return vma - seg->p_vaddr + seg->p_offset;
}
warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
(unsigned long) vma);
return (long) vma;
}
/* Allocate memory and load the sections headers into FILEDATA->filedata->section_headers.
If PROBE is true, this is just a probe and we do not generate any error
messages if the load fails. */
static bool
get_32bit_section_headers (Filedata * filedata, bool probe)
{
Elf32_External_Shdr * shdrs;
Elf_Internal_Shdr * internal;
unsigned int i;
unsigned int size = filedata->file_header.e_shentsize;
unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
/* PR binutils/17531: Cope with unexpected section header sizes. */
if (size == 0 || num == 0)
return false;
if (size < sizeof * shdrs)
{
if (! probe)
error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
return false;
}
if (!probe && size > sizeof * shdrs)
warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
shdrs = (Elf32_External_Shdr *) get_data (NULL, filedata, filedata->file_header.e_shoff,
size, num,
probe ? NULL : _("section headers"));
if (shdrs == NULL)
return false;
filedata->section_headers = (Elf_Internal_Shdr *)
cmalloc (num, sizeof (Elf_Internal_Shdr));
if (filedata->section_headers == NULL)
{
if (!probe)
error (_("Out of memory reading %u section headers\n"), num);
free (shdrs);
return false;
}
for (i = 0, internal = filedata->section_headers;
i < num;
i++, internal++)
{
internal->sh_name = BYTE_GET (shdrs[i].sh_name);
internal->sh_type = BYTE_GET (shdrs[i].sh_type);
internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
internal->sh_size = BYTE_GET (shdrs[i].sh_size);
internal->sh_link = BYTE_GET (shdrs[i].sh_link);
internal->sh_info = BYTE_GET (shdrs[i].sh_info);
internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
if (!probe && internal->sh_link > num)
warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
}
free (shdrs);
return true;
}
/* Like get_32bit_section_headers, except that it fetches 64-bit headers. */
static bool
get_64bit_section_headers (Filedata * filedata, bool probe)
{
Elf64_External_Shdr * shdrs;
Elf_Internal_Shdr * internal;
unsigned int i;
unsigned int size = filedata->file_header.e_shentsize;
unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
/* PR binutils/17531: Cope with unexpected section header sizes. */
if (size == 0 || num == 0)
return false;
if (size < sizeof * shdrs)
{
if (! probe)
error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
return false;
}
if (! probe && size > sizeof * shdrs)
warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
shdrs = (Elf64_External_Shdr *) get_data (NULL, filedata,
filedata->file_header.e_shoff,
size, num,
probe ? NULL : _("section headers"));
if (shdrs == NULL)
return false;
filedata->section_headers = (Elf_Internal_Shdr *)
cmalloc (num, sizeof (Elf_Internal_Shdr));
if (filedata->section_headers == NULL)
{
if (! probe)
error (_("Out of memory reading %u section headers\n"), num);
free (shdrs);
return false;
}
for (i = 0, internal = filedata->section_headers;
i < num;
i++, internal++)
{
internal->sh_name = BYTE_GET (shdrs[i].sh_name);
internal->sh_type = BYTE_GET (shdrs[i].sh_type);
internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
internal->sh_size = BYTE_GET (shdrs[i].sh_size);
internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
internal->sh_link = BYTE_GET (shdrs[i].sh_link);
internal->sh_info = BYTE_GET (shdrs[i].sh_info);
internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
if (!probe && internal->sh_link > num)
warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
}
free (shdrs);
return true;
}
static bool
get_section_headers (Filedata *filedata, bool probe)
{
if (filedata->section_headers != NULL)
return true;
if (is_32bit_elf)
return get_32bit_section_headers (filedata, probe);
else
return get_64bit_section_headers (filedata, probe);
}
static Elf_Internal_Sym *
get_32bit_elf_symbols (Filedata * filedata,
Elf_Internal_Shdr * section,
unsigned long * num_syms_return)
{
unsigned long number = 0;
Elf32_External_Sym * esyms = NULL;
Elf_External_Sym_Shndx * shndx = NULL;
Elf_Internal_Sym * isyms = NULL;
Elf_Internal_Sym * psym;
unsigned int j;
elf_section_list * entry;
if (section->sh_size == 0)
{
if (num_syms_return != NULL)
* num_syms_return = 0;
return NULL;
}
/* Run some sanity checks first. */
if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
{
error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
printable_section_name (filedata, section),
(unsigned long) section->sh_entsize);
goto exit_point;
}
if (section->sh_size > filedata->file_size)
{
error (_("Section %s has an invalid sh_size of 0x%lx\n"),
printable_section_name (filedata, section),
(unsigned long) section->sh_size);
goto exit_point;
}
number = section->sh_size / section->sh_entsize;
if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
{
error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
(unsigned long) section->sh_size,
printable_section_name (filedata, section),
(unsigned long) section->sh_entsize);
goto exit_point;
}
esyms = (Elf32_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
section->sh_size, _("symbols"));
if (esyms == NULL)
goto exit_point;
shndx = NULL;
for (entry = filedata->symtab_shndx_list; entry != NULL; entry = entry->next)
{
if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
continue;
if (shndx != NULL)
{
error (_("Multiple symbol table index sections associated with the same symbol section\n"));
free (shndx);
}
shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
entry->hdr->sh_offset,
1, entry->hdr->sh_size,
_("symbol table section indices"));
if (shndx == NULL)
goto exit_point;
/* PR17531: file: heap-buffer-overflow */
if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
{
error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
printable_section_name (filedata, entry->hdr),
(unsigned long) entry->hdr->sh_size,
(unsigned long) section->sh_size);
goto exit_point;
}
}
isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
if (isyms == NULL)
{
error (_("Out of memory reading %lu symbols\n"),
(unsigned long) number);
goto exit_point;
}
for (j = 0, psym = isyms; j < number; j++, psym++)
{
psym->st_name = BYTE_GET (esyms[j].st_name);
psym->st_value = BYTE_GET (esyms[j].st_value);
psym->st_size = BYTE_GET (esyms[j].st_size);
psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
psym->st_shndx
= byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
psym->st_info = BYTE_GET (esyms[j].st_info);
psym->st_other = BYTE_GET (esyms[j].st_other);
}
exit_point:
free (shndx);
free (esyms);
if (num_syms_return != NULL)
* num_syms_return = isyms == NULL ? 0 : number;
return isyms;
}
static Elf_Internal_Sym *
get_64bit_elf_symbols (Filedata * filedata,
Elf_Internal_Shdr * section,
unsigned long * num_syms_return)
{
unsigned long number = 0;
Elf64_External_Sym * esyms = NULL;
Elf_External_Sym_Shndx * shndx = NULL;
Elf_Internal_Sym * isyms = NULL;
Elf_Internal_Sym * psym;
unsigned int j;
elf_section_list * entry;
if (section->sh_size == 0)
{
if (num_syms_return != NULL)
* num_syms_return = 0;
return NULL;
}
/* Run some sanity checks first. */
if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
{
error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
printable_section_name (filedata, section),
(unsigned long) section->sh_entsize);
goto exit_point;
}
if (section->sh_size > filedata->file_size)
{
error (_("Section %s has an invalid sh_size of 0x%lx\n"),
printable_section_name (filedata, section),
(unsigned long) section->sh_size);
goto exit_point;
}
number = section->sh_size / section->sh_entsize;
if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
{
error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
(unsigned long) section->sh_size,
printable_section_name (filedata, section),
(unsigned long) section->sh_entsize);
goto exit_point;
}
esyms = (Elf64_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
section->sh_size, _("symbols"));
if (!esyms)
goto exit_point;
shndx = NULL;
for (entry = filedata->symtab_shndx_list; entry != NULL; entry = entry->next)
{
if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
continue;
if (shndx != NULL)
{
error (_("Multiple symbol table index sections associated with the same symbol section\n"));
free (shndx);
}
shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
entry->hdr->sh_offset,
1, entry->hdr->sh_size,
_("symbol table section indices"));
if (shndx == NULL)
goto exit_point;
/* PR17531: file: heap-buffer-overflow */
if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
{
error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
printable_section_name (filedata, entry->hdr),
(unsigned long) entry->hdr->sh_size,
(unsigned long) section->sh_size);
goto exit_point;
}
}
isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
if (isyms == NULL)
{
error (_("Out of memory reading %lu symbols\n"),
(unsigned long) number);
goto exit_point;
}
for (j = 0, psym = isyms; j < number; j++, psym++)
{
psym->st_name = BYTE_GET (esyms[j].st_name);
psym->st_info = BYTE_GET (esyms[j].st_info);
psym->st_other = BYTE_GET (esyms[j].st_other);
psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
psym->st_shndx
= byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
psym->st_value = BYTE_GET (esyms[j].st_value);
psym->st_size = BYTE_GET (esyms[j].st_size);
}
exit_point:
free (shndx);
free (esyms);
if (num_syms_return != NULL)
* num_syms_return = isyms == NULL ? 0 : number;
return isyms;
}
static Elf_Internal_Sym *
get_elf_symbols (Filedata *filedata,
Elf_Internal_Shdr *section,
unsigned long *num_syms_return)
{
if (is_32bit_elf)
return get_32bit_elf_symbols (filedata, section, num_syms_return);
else
return get_64bit_elf_symbols (filedata, section, num_syms_return);
}
static const char *
get_elf_section_flags (Filedata * filedata, bfd_vma sh_flags)
{
static char buff[1024];
char * p = buff;
unsigned int field_size = is_32bit_elf ? 8 : 16;
signed int sindex;
unsigned int size = sizeof (buff) - (field_size + 4 + 1);
bfd_vma os_flags = 0;
bfd_vma proc_flags = 0;
bfd_vma unknown_flags = 0;
static const struct
{
const char * str;
unsigned int len;
}
flags [] =
{
/* 0 */ { STRING_COMMA_LEN ("WRITE") },
/* 1 */ { STRING_COMMA_LEN ("ALLOC") },
/* 2 */ { STRING_COMMA_LEN ("EXEC") },
/* 3 */ { STRING_COMMA_LEN ("MERGE") },
/* 4 */ { STRING_COMMA_LEN ("STRINGS") },
/* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
/* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
/* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
/* 8 */ { STRING_COMMA_LEN ("GROUP") },
/* 9 */ { STRING_COMMA_LEN ("TLS") },
/* IA-64 specific. */
/* 10 */ { STRING_COMMA_LEN ("SHORT") },
/* 11 */ { STRING_COMMA_LEN ("NORECOV") },
/* IA-64 OpenVMS specific. */
/* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
/* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
/* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
/* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
/* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
/* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
/* Generic. */
/* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
/* SPARC specific. */
/* 19 */ { STRING_COMMA_LEN ("ORDERED") },
/* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
/* ARM specific. */
/* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
/* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
/* 23 */ { STRING_COMMA_LEN ("COMDEF") },
/* GNU specific. */
/* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
/* VLE specific. */
/* 25 */ { STRING_COMMA_LEN ("VLE") },
/* GNU specific. */
/* 26 */ { STRING_COMMA_LEN ("GNU_RETAIN") },
};
if (do_section_details)
{
sprintf (buff, "[%*.*lx]: ",
field_size, field_size, (unsigned long) sh_flags);
p += field_size + 4;
}
while (sh_flags)
{
bfd_vma flag;
flag = sh_flags & - sh_flags;
sh_flags &= ~ flag;
if (do_section_details)
{
switch (flag)
{
case SHF_WRITE: sindex = 0; break;
case SHF_ALLOC: sindex = 1; break;
case SHF_EXECINSTR: sindex = 2; break;
case SHF_MERGE: sindex = 3; break;
case SHF_STRINGS: sindex = 4; break;
case SHF_INFO_LINK: sindex = 5; break;
case SHF_LINK_ORDER: sindex = 6; break;
case SHF_OS_NONCONFORMING: sindex = 7; break;
case SHF_GROUP: sindex = 8; break;
case SHF_TLS: sindex = 9; break;
case SHF_EXCLUDE: sindex = 18; break;
case SHF_COMPRESSED: sindex = 20; break;
default:
sindex = -1;
switch (filedata->file_header.e_machine)
{
case EM_IA_64:
if (flag == SHF_IA_64_SHORT)
sindex = 10;
else if (flag == SHF_IA_64_NORECOV)
sindex = 11;
#ifdef BFD64
else if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
switch (flag)
{
case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
case SHF_IA_64_VMS_SHARED: sindex = 14; break;
case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
default: break;
}
#endif
break;
case EM_386:
case EM_IAMCU:
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
case EM_OLD_SPARCV9:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
if (flag == SHF_ORDERED)
sindex = 19;
break;
case EM_ARM:
switch (flag)
{
case SHF_ENTRYSECT: sindex = 21; break;
case SHF_ARM_PURECODE: sindex = 22; break;
case SHF_COMDEF: sindex = 23; break;
default: break;
}
break;
case EM_PPC:
if (flag == SHF_PPC_VLE)
sindex = 25;
break;
default:
break;
}
switch (filedata->file_header.e_ident[EI_OSABI])
{
case ELFOSABI_GNU:
case ELFOSABI_FREEBSD:
if (flag == SHF_GNU_RETAIN)
sindex = 26;
/* Fall through */
case ELFOSABI_NONE:
if (flag == SHF_GNU_MBIND)
/* We should not recognize SHF_GNU_MBIND for
ELFOSABI_NONE, but binutils as of 2019-07-23 did
not set the EI_OSABI header byte. */
sindex = 24;
break;
default:
break;
}
break;
}
if (sindex != -1)
{
if (p != buff + field_size + 4)
{
if (size < (10 + 2))
{
warn (_("Internal error: not enough buffer room for section flag info"));
return _("<unknown>");
}
size -= 2;
*p++ = ',';
*p++ = ' ';
}
size -= flags [sindex].len;
p = stpcpy (p, flags [sindex].str);
}
else if (flag & SHF_MASKOS)
os_flags |= flag;
else if (flag & SHF_MASKPROC)
proc_flags |= flag;
else
unknown_flags |= flag;
}
else
{
switch (flag)
{
case SHF_WRITE: *p = 'W'; break;
case SHF_ALLOC: *p = 'A'; break;
case SHF_EXECINSTR: *p = 'X'; break;
case SHF_MERGE: *p = 'M'; break;
case SHF_STRINGS: *p = 'S'; break;
case SHF_INFO_LINK: *p = 'I'; break;
case SHF_LINK_ORDER: *p = 'L'; break;
case SHF_OS_NONCONFORMING: *p = 'O'; break;
case SHF_GROUP: *p = 'G'; break;
case SHF_TLS: *p = 'T'; break;
case SHF_EXCLUDE: *p = 'E'; break;
case SHF_COMPRESSED: *p = 'C'; break;
default:
if ((filedata->file_header.e_machine == EM_X86_64
|| filedata->file_header.e_machine == EM_L1OM
|| filedata->file_header.e_machine == EM_K1OM)
&& flag == SHF_X86_64_LARGE)
*p = 'l';
else if (filedata->file_header.e_machine == EM_ARM
&& flag == SHF_ARM_PURECODE)
*p = 'y';
else if (filedata->file_header.e_machine == EM_PPC
&& flag == SHF_PPC_VLE)
*p = 'v';
else if (flag & SHF_MASKOS)
{
switch (filedata->file_header.e_ident[EI_OSABI])
{
case ELFOSABI_GNU:
case ELFOSABI_FREEBSD:
if (flag == SHF_GNU_RETAIN)
{
*p = 'R';
break;
}
/* Fall through */
case ELFOSABI_NONE:
if (flag == SHF_GNU_MBIND)
{
/* We should not recognize SHF_GNU_MBIND for
ELFOSABI_NONE, but binutils as of 2019-07-23 did
not set the EI_OSABI header byte. */
*p = 'D';
break;
}
/* Fall through */
default:
*p = 'o';
sh_flags &= ~SHF_MASKOS;
break;
}
}
else if (flag & SHF_MASKPROC)
{
*p = 'p';
sh_flags &= ~ SHF_MASKPROC;
}
else
*p = 'x';
break;
}
p++;
}
}
if (do_section_details)
{
if (os_flags)
{
size -= 5 + field_size;
if (p != buff + field_size + 4)
{
if (size < (2 + 1))
{
warn (_("Internal error: not enough buffer room for section flag info"));
return _("<unknown>");
}
size -= 2;
*p++ = ',';
*p++ = ' ';
}
sprintf (p, "OS (%*.*lx)", field_size, field_size,
(unsigned long) os_flags);
p += 5 + field_size;
}
if (proc_flags)
{
size -= 7 + field_size;
if (p != buff + field_size + 4)
{
if (size < (2 + 1))
{
warn (_("Internal error: not enough buffer room for section flag info"));
return _("<unknown>");
}
size -= 2;
*p++ = ',';
*p++ = ' ';
}
sprintf (p, "PROC (%*.*lx)", field_size, field_size,
(unsigned long) proc_flags);
p += 7 + field_size;
}
if (unknown_flags)
{
size -= 10 + field_size;
if (p != buff + field_size + 4)
{
if (size < (2 + 1))
{
warn (_("Internal error: not enough buffer room for section flag info"));
return _("<unknown>");
}
size -= 2;
*p++ = ',';
*p++ = ' ';
}
sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
(unsigned long) unknown_flags);
p += 10 + field_size;
}
}
*p = '\0';
return buff;
}
static unsigned int ATTRIBUTE_WARN_UNUSED_RESULT
get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
{
if (is_32bit_elf)
{
Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
if (size < sizeof (* echdr))
{
error (_("Compressed section is too small even for a compression header\n"));
return 0;
}
chdr->ch_type = BYTE_GET (echdr->ch_type);
chdr->ch_size = BYTE_GET (echdr->ch_size);
chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
return sizeof (*echdr);
}
else
{
Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
if (size < sizeof (* echdr))
{
error (_("Compressed section is too small even for a compression header\n"));
return 0;
}
chdr->ch_type = BYTE_GET (echdr->ch_type);
chdr->ch_size = BYTE_GET (echdr->ch_size);
chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
return sizeof (*echdr);
}
}
static bool
process_section_headers (Filedata * filedata)
{
Elf_Internal_Shdr * section;
unsigned int i;
if (filedata->file_header.e_shnum == 0)
{
/* PR binutils/12467. */
if (filedata->file_header.e_shoff != 0)
{
warn (_("possibly corrupt ELF file header - it has a non-zero"
" section header offset, but no section headers\n"));
return false;
}
else if (do_sections)
printf (_("\nThere are no sections in this file.\n"));
return true;
}
if (do_sections && !do_header)
{
if (filedata->is_separate && process_links)
printf (_("In linked file '%s': "), filedata->file_name);
if (! filedata->is_separate || process_links)
printf (ngettext ("There is %d section header, "
"starting at offset 0x%lx:\n",
"There are %d section headers, "
"starting at offset 0x%lx:\n",
filedata->file_header.e_shnum),
filedata->file_header.e_shnum,
(unsigned long) filedata->file_header.e_shoff);
}
if (!get_section_headers (filedata, false))
return false;
/* Read in the string table, so that we have names to display. */
if (filedata->file_header.e_shstrndx != SHN_UNDEF
&& filedata->file_header.e_shstrndx < filedata->file_header.e_shnum)
{
section = filedata->section_headers + filedata->file_header.e_shstrndx;
if (section->sh_size != 0)
{
filedata->string_table = (char *) get_data (NULL, filedata, section->sh_offset,
1, section->sh_size,
_("string table"));
filedata->string_table_length = filedata->string_table != NULL ? section->sh_size : 0;
}
}
/* Scan the sections for the dynamic symbol table
and dynamic string table and debug sections. */
eh_addr_size = is_32bit_elf ? 4 : 8;
switch (filedata->file_header.e_machine)
{
case EM_MIPS:
case EM_MIPS_RS3_LE:
/* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
FDE addresses. However, the ABI also has a semi-official ILP32
variant for which the normal FDE address size rules apply.
GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
section, where XX is the size of longs in bits. Unfortunately,
earlier compilers provided no way of distinguishing ILP32 objects
from LP64 objects, so if there's any doubt, we should assume that
the official LP64 form is being used. */
if ((filedata->file_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
&& find_section (filedata, ".gcc_compiled_long32") == NULL)
eh_addr_size = 8;
break;
case EM_H8_300:
case EM_H8_300H:
switch (filedata->file_header.e_flags & EF_H8_MACH)
{
case E_H8_MACH_H8300:
case E_H8_MACH_H8300HN:
case E_H8_MACH_H8300SN:
case E_H8_MACH_H8300SXN:
eh_addr_size = 2;
break;
case E_H8_MACH_H8300H:
case E_H8_MACH_H8300S:
case E_H8_MACH_H8300SX:
eh_addr_size = 4;
break;
}
break;
case EM_M32C_OLD:
case EM_M32C:
switch (filedata->file_header.e_flags & EF_M32C_CPU_MASK)
{
case EF_M32C_CPU_M16C:
eh_addr_size = 2;
break;
}
break;
}
#define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
do \
{ \
bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
if (section->sh_entsize != expected_entsize) \
{ \
char buf[40]; \
sprintf_vma (buf, section->sh_entsize); \
/* Note: coded this way so that there is a single string for \
translation. */ \
error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
error (_("(Using the expected size of %u for the rest of this dump)\n"), \
(unsigned) expected_entsize); \
section->sh_entsize = expected_entsize; \
} \
} \
while (0)
#define CHECK_ENTSIZE(section, i, type) \
CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
sizeof (Elf64_External_##type))
for (i = 0, section = filedata->section_headers;
i < filedata->file_header.e_shnum;
i++, section++)
{
char * name = SECTION_NAME_PRINT (section);
/* Run some sanity checks on the headers and
possibly fill in some file data as well. */
switch (section->sh_type)
{
case SHT_DYNSYM:
if (filedata->dynamic_symbols != NULL)
{
error (_("File contains multiple dynamic symbol tables\n"));
continue;
}
CHECK_ENTSIZE (section, i, Sym);
filedata->dynamic_symbols
= get_elf_symbols (filedata, section, &filedata->num_dynamic_syms);
filedata->dynamic_symtab_section = section;
break;
case SHT_STRTAB:
if (streq (name, ".dynstr"))
{
if (filedata->dynamic_strings != NULL)
{
error (_("File contains multiple dynamic string tables\n"));
continue;
}
filedata->dynamic_strings
= (char *) get_data (NULL, filedata, section->sh_offset,
1, section->sh_size, _("dynamic strings"));
filedata->dynamic_strings_length
= filedata->dynamic_strings == NULL ? 0 : section->sh_size;
filedata->dynamic_strtab_section = section;
}
break;
case SHT_SYMTAB_SHNDX:
{
elf_section_list * entry = xmalloc (sizeof * entry);
entry->hdr = section;
entry->next = filedata->symtab_shndx_list;
filedata->symtab_shndx_list = entry;
}
break;
case SHT_SYMTAB:
CHECK_ENTSIZE (section, i, Sym);
break;
case SHT_GROUP:
CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
break;
case SHT_REL:
CHECK_ENTSIZE (section, i, Rel);
if (do_checks && section->sh_size == 0)
warn (_("Section '%s': zero-sized relocation section\n"), name);
break;
case SHT_RELA:
CHECK_ENTSIZE (section, i, Rela);
if (do_checks && section->sh_size == 0)
warn (_("Section '%s': zero-sized relocation section\n"), name);
break;
case SHT_NOTE:
case SHT_PROGBITS:
/* Having a zero sized section is not illegal according to the
ELF standard, but it might be an indication that something
is wrong. So issue a warning if we are running in lint mode. */
if (do_checks && section->sh_size == 0)
warn (_("Section '%s': has a size of zero - is this intended ?\n"), name);
break;
default:
break;
}
if ((do_debugging || do_debug_info || do_debug_abbrevs
|| do_debug_lines || do_debug_pubnames || do_debug_pubtypes
|| do_debug_aranges || do_debug_frames || do_debug_macinfo
|| do_debug_str || do_debug_str_offsets || do_debug_loc
|| do_debug_ranges
|| do_debug_addr || do_debug_cu_index || do_debug_links)
&& (startswith (name, ".debug_")
|| startswith (name, ".zdebug_")))
{
if (name[1] == 'z')
name += sizeof (".zdebug_") - 1;
else
name += sizeof (".debug_") - 1;
if (do_debugging
|| (do_debug_info && startswith (name, "info"))
|| (do_debug_info && startswith (name, "types"))
|| (do_debug_abbrevs && startswith (name, "abbrev"))
|| (do_debug_lines && strcmp (name, "line") == 0)
|| (do_debug_lines && startswith (name, "line."))
|| (do_debug_pubnames && startswith (name, "pubnames"))
|| (do_debug_pubtypes && startswith (name, "pubtypes"))
|| (do_debug_pubnames && startswith (name, "gnu_pubnames"))
|| (do_debug_pubtypes && startswith (name, "gnu_pubtypes"))
|| (do_debug_aranges && startswith (name, "aranges"))
|| (do_debug_ranges && startswith (name, "ranges"))
|| (do_debug_ranges && startswith (name, "rnglists"))
|| (do_debug_frames && startswith (name, "frame"))
|| (do_debug_macinfo && startswith (name, "macinfo"))
|| (do_debug_macinfo && startswith (name, "macro"))
|| (do_debug_str && startswith (name, "str"))
|| (do_debug_links && startswith (name, "sup"))
|| (do_debug_str_offsets && startswith (name, "str_offsets"))
|| (do_debug_loc && startswith (name, "loc"))
|| (do_debug_loc && startswith (name, "loclists"))
|| (do_debug_addr && startswith (name, "addr"))
|| (do_debug_cu_index && startswith (name, "cu_index"))
|| (do_debug_cu_index && startswith (name, "tu_index"))
)
request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP);
}
/* Linkonce section to be combined with .debug_info at link time. */
else if ((do_debugging || do_debug_info)
&& startswith (name, ".gnu.linkonce.wi."))
request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP);
else if (do_debug_frames && streq (name, ".eh_frame"))
request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP);
else if (do_gdb_index && (streq (name, ".gdb_index")
|| streq (name, ".debug_names")))
request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP);
/* Trace sections for Itanium VMS. */
else if ((do_debugging || do_trace_info || do_trace_abbrevs
|| do_trace_aranges)
&& startswith (name, ".trace_"))
{
name += sizeof (".trace_") - 1;
if (do_debugging
|| (do_trace_info && streq (name, "info"))
|| (do_trace_abbrevs && streq (name, "abbrev"))
|| (do_trace_aranges && streq (name, "aranges"))
)
request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP);
}
else if ((do_debugging || do_debug_links)
&& (startswith (name, ".gnu_debuglink")
|| startswith (name, ".gnu_debugaltlink")))
request_dump_bynumber (&filedata->dump, i, DEBUG_DUMP);
}
if (! do_sections)
return true;
if (filedata->is_separate && ! process_links)
return true;
if (filedata->is_separate)
printf (_("\nSection Headers in linked file '%s':\n"), filedata->file_name);
else if (filedata->file_header.e_shnum > 1)
printf (_("\nSection Headers:\n"));
else
printf (_("\nSection Header:\n"));
if (is_32bit_elf)
{
if (do_section_details)
{
printf (_(" [Nr] Name\n"));
printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
}
else
printf
(_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
}
else if (do_wide)
{
if (do_section_details)
{
printf (_(" [Nr] Name\n"));
printf (_(" Type Address Off Size ES Lk Inf Al\n"));
}
else
printf
(_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
}
else
{
if (do_section_details)
{
printf (_(" [Nr] Name\n"));
printf (_(" Type Address Offset Link\n"));
printf (_(" Size EntSize Info Align\n"));
}
else
{
printf (_(" [Nr] Name Type Address Offset\n"));
printf (_(" Size EntSize Flags Link Info Align\n"));
}
}
if (do_section_details)
printf (_(" Flags\n"));
for (i = 0, section = filedata->section_headers;
i < filedata->file_header.e_shnum;
i++, section++)
{
/* Run some sanity checks on the section header. */
/* Check the sh_link field. */
switch (section->sh_type)
{
case SHT_REL:
case SHT_RELA:
if (section->sh_link == 0
&& (filedata->file_header.e_type == ET_EXEC
|| filedata->file_header.e_type == ET_DYN))
/* A dynamic relocation section where all entries use a
zero symbol index need not specify a symtab section. */
break;
/* Fall through. */
case SHT_SYMTAB_SHNDX:
case SHT_GROUP:
case SHT_HASH:
case SHT_GNU_HASH:
case SHT_GNU_versym:
if (section->sh_link == 0
|| section->sh_link >= filedata->file_header.e_shnum
|| (filedata->section_headers[section->sh_link].sh_type != SHT_SYMTAB
&& filedata->section_headers[section->sh_link].sh_type != SHT_DYNSYM))
warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
i, section->sh_link);
break;
case SHT_DYNAMIC:
case SHT_SYMTAB:
case SHT_DYNSYM:
case SHT_GNU_verneed:
case SHT_GNU_verdef:
case SHT_GNU_LIBLIST:
if (section->sh_link == 0
|| section->sh_link >= filedata->file_header.e_shnum
|| filedata->section_headers[section->sh_link].sh_type != SHT_STRTAB)
warn (_("[%2u]: Link field (%u) should index a string section.\n"),
i, section->sh_link);
break;
case SHT_INIT_ARRAY:
case SHT_FINI_ARRAY:
case SHT_PREINIT_ARRAY:
if (section->sh_type < SHT_LOOS && section->sh_link != 0)
warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
i, section->sh_link);
break;
default:
/* FIXME: Add support for target specific section types. */
#if 0 /* Currently we do not check other section types as there are too
many special cases. Stab sections for example have a type
of SHT_PROGBITS but an sh_link field that links to the .stabstr
section. */
if (section->sh_type < SHT_LOOS && section->sh_link != 0)
warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
i, section->sh_link);
#endif
break;
}
/* Check the sh_info field. */
switch (section->sh_type)
{
case SHT_REL:
case SHT_RELA:
if (section->sh_info == 0
&& (filedata->file_header.e_type == ET_EXEC
|| filedata->file_header.e_type == ET_DYN))
/* Dynamic relocations apply to segments, so they do not
need to specify the section they relocate. */
break;
if (section->sh_info == 0
|| section->sh_info >= filedata->file_header.e_shnum
|| (filedata->section_headers[section->sh_info].sh_type != SHT_PROGBITS
&& filedata->section_headers[section->sh_info].sh_type != SHT_NOBITS
&& filedata->section_headers[section->sh_info].sh_type != SHT_NOTE
&& filedata->section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
&& filedata->section_headers[section->sh_info].sh_type != SHT_FINI_ARRAY
&& filedata->section_headers[section->sh_info].sh_type != SHT_PREINIT_ARRAY
/* FIXME: Are other section types valid ? */
&& filedata->section_headers[section->sh_info].sh_type < SHT_LOOS))
warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
i, section->sh_info);
break;
case SHT_DYNAMIC:
case SHT_HASH:
case SHT_SYMTAB_SHNDX:
case SHT_INIT_ARRAY:
case SHT_FINI_ARRAY:
case SHT_PREINIT_ARRAY:
if (section->sh_info != 0)
warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
i, section->sh_info);
break;
case SHT_GROUP:
case SHT_SYMTAB:
case SHT_DYNSYM:
/* A symbol index - we assume that it is valid. */
break;
default:
/* FIXME: Add support for target specific section types. */
if (section->sh_type == SHT_NOBITS)
/* NOBITS section headers with non-zero sh_info fields can be
created when a binary is stripped of everything but its debug
information. The stripped sections have their headers
preserved but their types set to SHT_NOBITS. So do not check
this type of section. */
;
else if (section->sh_flags & SHF_INFO_LINK)
{
if (section->sh_info < 1 || section->sh_info >= filedata->file_header.e_shnum)
warn (_("[%2u]: Expected link to another section in info field"), i);
}
else if (section->sh_type < SHT_LOOS
&& (section->sh_flags & SHF_GNU_MBIND) == 0
&& section->sh_info != 0)
warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
i, section->sh_info);
break;
}
/* Check the sh_size field. */
if (section->sh_size > filedata->file_size
&& section->sh_type != SHT_NOBITS
&& section->sh_type != SHT_NULL
&& section->sh_type < SHT_LOOS)
warn (_("Size of section %u is larger than the entire file!\n"), i);
printf (" [%2u] ", i);
if (do_section_details)
printf ("%s\n ", printable_section_name (filedata, section));
else
print_symbol (-17, SECTION_NAME_PRINT (section));
printf (do_wide ? " %-15s " : " %-15.15s ",
get_section_type_name (filedata, section->sh_type));
if (is_32bit_elf)
{
const char * link_too_big = NULL;
print_vma (section->sh_addr, LONG_HEX);
printf ( " %6.6lx %6.6lx %2.2lx",
(unsigned long) section->sh_offset,
(unsigned long) section->sh_size,
(unsigned long) section->sh_entsize);
if (do_section_details)
fputs (" ", stdout);
else
printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
if (section->sh_link >= filedata->file_header.e_shnum)
{
link_too_big = "";
/* The sh_link value is out of range. Normally this indicates
an error but it can have special values in Solaris binaries. */
switch (filedata->file_header.e_machine)
{
case EM_386:
case EM_IAMCU:
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
case EM_OLD_SPARCV9:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
if (section->sh_link == (SHN_BEFORE & 0xffff))
link_too_big = "BEFORE";
else if (section->sh_link == (SHN_AFTER & 0xffff))
link_too_big = "AFTER";
break;
default:
break;
}
}
if (do_section_details)
{
if (link_too_big != NULL && * link_too_big)
printf ("<%s> ", link_too_big);
else
printf ("%2u ", section->sh_link);
printf ("%3u %2lu\n", section->sh_info,
(unsigned long) section->sh_addralign);
}
else
printf ("%2u %3u %2lu\n",
section->sh_link,
section->sh_info,
(unsigned long) section->sh_addralign);
if (link_too_big && ! * link_too_big)
warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
i, section->sh_link);
}
else if (do_wide)
{
print_vma (section->sh_addr, LONG_HEX);
if ((long) section->sh_offset == section->sh_offset)
printf (" %6.6lx", (unsigned long) section->sh_offset);
else
{
putchar (' ');
print_vma (section->sh_offset, LONG_HEX);
}
if ((unsigned long) section->sh_size == section->sh_size)
printf (" %6.6lx", (unsigned long) section->sh_size);
else
{
putchar (' ');
print_vma (section->sh_size, LONG_HEX);
}
if ((unsigned long) section->sh_entsize == section->sh_entsize)
printf (" %2.2lx", (unsigned long) section->sh_entsize);
else
{
putchar (' ');
print_vma (section->sh_entsize, LONG_HEX);
}
if (do_section_details)
fputs (" ", stdout);
else
printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
printf ("%2u %3u ", section->sh_link, section->sh_info);
if ((unsigned long) section->sh_addralign == section->sh_addralign)
printf ("%2lu\n", (unsigned long) section->sh_addralign);
else
{
print_vma (section->sh_addralign, DEC);
putchar ('\n');
}
}
else if (do_section_details)
{
putchar (' ');
print_vma (section->sh_addr, LONG_HEX);
if ((long) section->sh_offset == section->sh_offset)
printf (" %16.16lx", (unsigned long) section->sh_offset);
else
{
printf (" ");
print_vma (section->sh_offset, LONG_HEX);
}
printf (" %u\n ", section->sh_link);
print_vma (section->sh_size, LONG_HEX);
putchar (' ');
print_vma (section->sh_entsize, LONG_HEX);
printf (" %-16u %lu\n",
section->sh_info,
(unsigned long) section->sh_addralign);
}
else
{
putchar (' ');
print_vma (section->sh_addr, LONG_HEX);
if ((long) section->sh_offset == section->sh_offset)
printf (" %8.8lx", (unsigned long) section->sh_offset);
else
{
printf (" ");
print_vma (section->sh_offset, LONG_HEX);
}
printf ("\n ");
print_vma (section->sh_size, LONG_HEX);
printf (" ");
print_vma (section->sh_entsize, LONG_HEX);
printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
printf (" %2u %3u %lu\n",
section->sh_link,
section->sh_info,
(unsigned long) section->sh_addralign);
}
if (do_section_details)
{
printf (" %s\n", get_elf_section_flags (filedata, section->sh_flags));
if ((section->sh_flags & SHF_COMPRESSED) != 0)
{
/* Minimum section size is 12 bytes for 32-bit compression
header + 12 bytes for compressed data header. */
unsigned char buf[24];
assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
if (get_data (&buf, filedata, section->sh_offset, 1,
sizeof (buf), _("compression header")))
{
Elf_Internal_Chdr chdr;
if (get_compression_header (&chdr, buf, sizeof (buf)) == 0)
printf (_(" [<corrupt>]\n"));
else
{
if (chdr.ch_type == ELFCOMPRESS_ZLIB)
printf (" ZLIB, ");
else
printf (_(" [<unknown>: 0x%x], "),
chdr.ch_type);
print_vma (chdr.ch_size, LONG_HEX);
printf (", %lu\n", (unsigned long) chdr.ch_addralign);
}
}
}
}
}
if (!do_section_details)
{
/* The ordering of the letters shown here matches the ordering of the
corresponding SHF_xxx values, and hence the order in which these
letters will be displayed to the user. */
printf (_("Key to Flags:\n\
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
L (link order), O (extra OS processing required), G (group), T (TLS),\n\
C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
switch (filedata->file_header.e_ident[EI_OSABI])
{
case ELFOSABI_GNU:
case ELFOSABI_FREEBSD:
printf (_("R (retain), "));
/* Fall through */
case ELFOSABI_NONE:
printf (_("D (mbind), "));
break;
default:
break;
}
if (filedata->file_header.e_machine == EM_X86_64
|| filedata->file_header.e_machine == EM_L1OM
|| filedata->file_header.e_machine == EM_K1OM)
printf (_("l (large), "));
else if (filedata->file_header.e_machine == EM_ARM)
printf (_("y (purecode), "));
else if (filedata->file_header.e_machine == EM_PPC)
printf (_("v (VLE), "));
printf ("p (processor specific)\n");
}
return true;
}
static bool
get_symtab (Filedata *filedata, Elf_Internal_Shdr *symsec,
Elf_Internal_Sym **symtab, unsigned long *nsyms,
char **strtab, unsigned long *strtablen)
{
*strtab = NULL;
*strtablen = 0;
*symtab = get_elf_symbols (filedata, symsec, nsyms);
if (*symtab == NULL)
return false;
if (symsec->sh_link != 0)
{
Elf_Internal_Shdr *strsec;
if (symsec->sh_link >= filedata->file_header.e_shnum)
{
error (_("Bad sh_link in symbol table section\n"));
free (*symtab);
*symtab = NULL;
*nsyms = 0;
return false;
}
strsec = filedata->section_headers + symsec->sh_link;
*strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
1, strsec->sh_size, _("string table"));
if (*strtab == NULL)
{
free (*symtab);
*symtab = NULL;
*nsyms = 0;
return false;
}
*strtablen = strsec->sh_size;
}
return true;
}
static const char *
get_group_flags (unsigned int flags)
{
static char buff[128];
if (flags == 0)
return "";
else if (flags == GRP_COMDAT)
return "COMDAT ";
snprintf (buff, sizeof buff, "[0x%x: %s%s%s]",
flags,
flags & GRP_MASKOS ? _("<OS specific>") : "",
flags & GRP_MASKPROC ? _("<PROC specific>") : "",
(flags & ~(GRP_COMDAT | GRP_MASKOS | GRP_MASKPROC)
? _("<unknown>") : ""));
return buff;
}
static bool
process_section_groups (Filedata * filedata)
{
Elf_Internal_Shdr * section;
unsigned int i;
struct group * group;
Elf_Internal_Shdr * symtab_sec;
Elf_Internal_Shdr * strtab_sec;
Elf_Internal_Sym * symtab;
unsigned long num_syms;
char * strtab;
size_t strtab_size;
/* Don't process section groups unless needed. */
if (!do_unwind && !do_section_groups)
return true;
if (filedata->file_header.e_shnum == 0)
{
if (do_section_groups)
{
if (filedata->is_separate)
printf (_("\nThere are no sections group in linked file '%s'.\n"),
filedata->file_name);
else
printf (_("\nThere are no section groups in this file.\n"));
}
return true;
}
if (filedata->section_headers == NULL)
{
error (_("Section headers are not available!\n"));
/* PR 13622: This can happen with a corrupt ELF header. */
return false;
}
filedata->section_headers_groups
= (struct group **) calloc (filedata->file_header.e_shnum,
sizeof (struct group *));
if (filedata->section_headers_groups == NULL)
{
error (_("Out of memory reading %u section group headers\n"),
filedata->file_header.e_shnum);
return false;
}
/* Scan the sections for the group section. */
filedata->group_count = 0;
for (i = 0, section = filedata->section_headers;
i < filedata->file_header.e_shnum;
i++, section++)
if (section->sh_type == SHT_GROUP)
filedata->group_count++;
if (filedata->group_count == 0)
{
if (do_section_groups)
{
if (filedata->is_separate)
printf (_("\nThere are no section groups in linked file '%s'.\n"),
filedata->file_name);
else
printf (_("\nThere are no section groups in this file.\n"));
}
return true;
}
filedata->section_groups = (struct group *) calloc (filedata->group_count,
sizeof (struct group));
if (filedata->section_groups == NULL)
{
error (_("Out of memory reading %lu groups\n"),
(unsigned long) filedata->group_count);
return false;
}
symtab_sec = NULL;
strtab_sec = NULL;
symtab = NULL;
num_syms = 0;
strtab = NULL;
strtab_size = 0;
if (filedata->is_separate)
printf (_("Section groups in linked file '%s'\n"), filedata->file_name);
for (i = 0, section = filedata->section_headers, group = filedata->section_groups;
i < filedata->file_header.e_shnum;
i++, section++)
{
if (section->sh_type == SHT_GROUP)
{
const char * name = printable_section_name (filedata, section);
const char * group_name;
unsigned char * start;
unsigned char * indices;
unsigned int entry, j, size;
Elf_Internal_Shdr * sec;
Elf_Internal_Sym * sym;
/* Get the symbol table. */
if (section->sh_link >= filedata->file_header.e_shnum
|| ((sec = filedata->section_headers + section->sh_link)->sh_type
!= SHT_SYMTAB))
{
error (_("Bad sh_link in group section `%s'\n"), name);
continue;
}
if (symtab_sec != sec)
{
symtab_sec = sec;
free (symtab);
symtab = get_elf_symbols (filedata, symtab_sec, & num_syms);
}
if (symtab == NULL)
{
error (_("Corrupt header in group section `%s'\n"), name);
continue;
}
if (section->sh_info >= num_syms)
{
error (_("Bad sh_info in group section `%s'\n"), name);
continue;
}
sym = symtab + section->sh_info;
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
if (sym->st_shndx == 0
|| sym->st_shndx >= filedata->file_header.e_shnum)
{
error (_("Bad sh_info in group section `%s'\n"), name);
continue;
}
group_name = SECTION_NAME_PRINT (filedata->section_headers
+ sym->st_shndx);
strtab_sec = NULL;
free (strtab);
strtab = NULL;
strtab_size = 0;
}
else
{
/* Get the string table. */
if (symtab_sec->sh_link >= filedata->file_header.e_shnum)
{
strtab_sec = NULL;
free (strtab);
strtab = NULL;
strtab_size = 0;
}
else if (strtab_sec
!= (sec = filedata->section_headers + symtab_sec->sh_link))
{
strtab_sec = sec;
free (strtab);
strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset,
1, strtab_sec->sh_size,
_("string table"));
strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
}
group_name = sym->st_name < strtab_size
? strtab + sym->st_name : _("<corrupt>");
}
/* PR 17531: file: loop. */
if (section->sh_entsize > section->sh_size)
{
error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
printable_section_name (filedata, section),
(unsigned long) section->sh_entsize,
(unsigned long) section->sh_size);
continue;
}
start = (unsigned char *) get_data (NULL, filedata, section->sh_offset,
1, section->sh_size,
_("section data"));
if (start == NULL)
continue;
indices = start;
size = (section->sh_size / section->sh_entsize) - 1;
entry = byte_get (indices, 4);
indices += 4;
if (do_section_groups)
{
printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
get_group_flags (entry), i, name, group_name, size);
printf (_(" [Index] Name\n"));
}
group->group_index = i;
for (j = 0; j < size; j++)
{
struct group_list * g;
entry = byte_get (indices, 4);
indices += 4;
if (entry >= filedata->file_header.e_shnum)
{
static unsigned num_group_errors = 0;
if (num_group_errors ++ < 10)
{
error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
entry, i, filedata->file_header.e_shnum - 1);
if (num_group_errors == 10)
warn (_("Further error messages about overlarge group section indices suppressed\n"));
}
continue;
}
if (filedata->section_headers_groups [entry] != NULL)
{
if (entry)
{
static unsigned num_errs = 0;
if (num_errs ++ < 10)
{
error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
entry, i,
filedata->section_headers_groups [entry]->group_index);
if (num_errs == 10)
warn (_("Further error messages about already contained group sections suppressed\n"));
}
continue;
}
else
{
/* Intel C/C++ compiler may put section 0 in a
section group. We just warn it the first time
and ignore it afterwards. */
static bool warned = false;
if (!warned)
{
error (_("section 0 in group section [%5u]\n"),
filedata->section_headers_groups [entry]->group_index);
warned = true;
}
}
}
filedata->section_headers_groups [entry] = group;
if (do_section_groups)
{
sec = filedata->section_headers + entry;
printf (" [%5u] %s\n", entry, printable_section_name (filedata, sec));
}
g = (struct group_list *) xmalloc (sizeof (struct group_list));
g->section_index = entry;
g->next = group->root;
group->root = g;
}
free (start);
group++;
}
}
free (symtab);
free (strtab);
return true;
}
/* Data used to display dynamic fixups. */
struct ia64_vms_dynfixup
{
bfd_vma needed_ident; /* Library ident number. */
bfd_vma needed; /* Index in the dstrtab of the library name. */
bfd_vma fixup_needed; /* Index of the library. */
bfd_vma fixup_rela_cnt; /* Number of fixups. */
bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
};
/* Data used to display dynamic relocations. */
struct ia64_vms_dynimgrela
{
bfd_vma img_rela_cnt; /* Number of relocations. */
bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
};
/* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
library). */
static bool
dump_ia64_vms_dynamic_fixups (Filedata * filedata,
struct ia64_vms_dynfixup * fixup,
const char * strtab,
unsigned int strtab_sz)
{
Elf64_External_VMS_IMAGE_FIXUP * imfs;
long i;
const char * lib_name;
imfs = get_data (NULL, filedata,
filedata->dynamic_addr + fixup->fixup_rela_off,
sizeof (*imfs), fixup->fixup_rela_cnt,
_("dynamic section image fixups"));
if (!imfs)
return false;
if (fixup->needed < strtab_sz)
lib_name = strtab + fixup->needed;
else
{
warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
(unsigned long) fixup->needed);
lib_name = "???";
}
printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
(int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
printf
(_("Seg Offset Type SymVec DataType\n"));
for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
{
unsigned int type;
const char *rtype;
printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
type = BYTE_GET (imfs [i].type);
rtype = elf_ia64_reloc_type (type);
if (rtype == NULL)
printf (" 0x%08x ", type);
else
printf (" %-32s ", rtype);
printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
}
free (imfs);
return true;
}
/* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
static bool
dump_ia64_vms_dynamic_relocs (Filedata * filedata, struct ia64_vms_dynimgrela *imgrela)
{
Elf64_External_VMS_IMAGE_RELA *imrs;
long i;
imrs = get_data (NULL, filedata,
filedata->dynamic_addr + imgrela->img_rela_off,
sizeof (*imrs), imgrela->img_rela_cnt,
_("dynamic section image relocations"));
if (!imrs)
return false;
printf (_("\nImage relocs\n"));
printf
(_("Seg Offset Type Addend Seg Sym Off\n"));
for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
{
unsigned int type;
const char *rtype;
printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
printf ("%08" BFD_VMA_FMT "x ",
(bfd_vma) BYTE_GET (imrs [i].rela_offset));
type = BYTE_GET (imrs [i].type);
rtype = elf_ia64_reloc_type (type);
if (rtype == NULL)
printf ("0x%08x ", type);
else
printf ("%-31s ", rtype);
print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
printf ("%08" BFD_VMA_FMT "x\n",
(bfd_vma) BYTE_GET (imrs [i].sym_offset));
}
free (imrs);
return true;
}
/* Display IA-64 OpenVMS dynamic relocations and fixups. */
static bool
process_ia64_vms_dynamic_relocs (Filedata * filedata)
{
struct ia64_vms_dynfixup fixup;
struct ia64_vms_dynimgrela imgrela;
Elf_Internal_Dyn *entry;
bfd_vma strtab_off = 0;
bfd_vma strtab_sz = 0;
char *strtab = NULL;
bool res = true;
memset (&fixup, 0, sizeof (fixup));
memset (&imgrela, 0, sizeof (imgrela));
/* Note: the order of the entries is specified by the OpenVMS specs. */
for (entry = filedata->dynamic_section;
entry < filedata->dynamic_section + filedata->dynamic_nent;
entry++)
{
switch (entry->d_tag)
{
case DT_IA_64_VMS_STRTAB_OFFSET:
strtab_off = entry->d_un.d_val;
break;
case DT_STRSZ:
strtab_sz = entry->d_un.d_val;
if (strtab == NULL)
strtab = get_data (NULL, filedata,
filedata->dynamic_addr + strtab_off,
1, strtab_sz, _("dynamic string section"));
if (strtab == NULL)
strtab_sz = 0;
break;
case DT_IA_64_VMS_NEEDED_IDENT:
fixup.needed_ident = entry->d_un.d_val;
break;
case DT_NEEDED:
fixup.needed = entry->d_un.d_val;
break;
case DT_IA_64_VMS_FIXUP_NEEDED:
fixup.fixup_needed = entry->d_un.d_val;
break;
case DT_IA_64_VMS_FIXUP_RELA_CNT:
fixup.fixup_rela_cnt = entry->d_un.d_val;
break;
case DT_IA_64_VMS_FIXUP_RELA_OFF:
fixup.fixup_rela_off = entry->d_un.d_val;
if (! dump_ia64_vms_dynamic_fixups (filedata, &fixup, strtab, strtab_sz))
res = false;
break;
case DT_IA_64_VMS_IMG_RELA_CNT:
imgrela.img_rela_cnt = entry->d_un.d_val;
break;
case DT_IA_64_VMS_IMG_RELA_OFF:
imgrela.img_rela_off = entry->d_un.d_val;
if (! dump_ia64_vms_dynamic_relocs (filedata, &imgrela))
res = false;
break;
default:
break;
}
}
free (strtab);
return res;
}
static struct
{
const char * name;
int reloc;
int size;
int rela;
}
dynamic_relocations [] =
{
{ "REL", DT_REL, DT_RELSZ, false },
{ "RELA", DT_RELA, DT_RELASZ, true },
{ "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
};
/* Process the reloc section. */
static bool
process_relocs (Filedata * filedata)
{
unsigned long rel_size;
unsigned long rel_offset;
if (!do_reloc)
return true;
if (do_using_dynamic)
{
int is_rela;
const char * name;
bool has_dynamic_reloc;
unsigned int i;
has_dynamic_reloc = false;
for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
{
is_rela = dynamic_relocations [i].rela;
name = dynamic_relocations [i].name;
rel_size = filedata->dynamic_info[dynamic_relocations [i].size];
rel_offset = filedata->dynamic_info[dynamic_relocations [i].reloc];
if (rel_size)
has_dynamic_reloc = true;
if (is_rela == UNKNOWN)
{
if (dynamic_relocations [i].reloc == DT_JMPREL)
switch (filedata->dynamic_info[DT_PLTREL])
{
case DT_REL:
is_rela = false;
break;
case DT_RELA:
is_rela = true;
break;
}
}
if (rel_size)
{
if (filedata->is_separate)
printf
(_("\nIn linked file '%s' section '%s' at offset 0x%lx contains %ld bytes:\n"),
filedata->file_name, name, rel_offset, rel_size);
else
printf
(_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
name, rel_offset, rel_size);
dump_relocations (filedata,
offset_from_vma (filedata, rel_offset, rel_size),
rel_size,
filedata->dynamic_symbols,
filedata->num_dynamic_syms,
filedata->dynamic_strings,
filedata->dynamic_strings_length,
is_rela, true /* is_dynamic */);
}
}
if (is_ia64_vms (filedata))
if (process_ia64_vms_dynamic_relocs (filedata))
has_dynamic_reloc = true;
if (! has_dynamic_reloc)
{
if (filedata->is_separate)
printf (_("\nThere are no dynamic relocations in linked file '%s'.\n"),
filedata->file_name);
else
printf (_("\nThere are no dynamic relocations in this file.\n"));
}
}
else
{
Elf_Internal_Shdr * section;
unsigned long i;
bool found = false;
for (i = 0, section = filedata->section_headers;
i < filedata->file_header.e_shnum;
i++, section++)
{
if ( section->sh_type != SHT_RELA
&& section->sh_type != SHT_REL)
continue;
rel_offset = section->sh_offset;
rel_size = section->sh_size;
if (rel_size)
{
int is_rela;
unsigned long num_rela;
if (filedata->is_separate)
printf (_("\nIn linked file '%s' relocation section "),
filedata->file_name);
else
printf (_("\nRelocation section "));
if (filedata->string_table == NULL)
printf ("%d", section->sh_name);
else
printf ("'%s'", printable_section_name (filedata, section));
num_rela = rel_size / section->sh_entsize;
printf (ngettext (" at offset 0x%lx contains %lu entry:\n",
" at offset 0x%lx contains %lu entries:\n",
num_rela),
rel_offset, num_rela);
is_rela = section->sh_type == SHT_RELA;
if (section->sh_link != 0
&& section->sh_link < filedata->file_header.e_shnum)
{
Elf_Internal_Shdr * symsec;
Elf_Internal_Sym * symtab;
unsigned long nsyms;
unsigned long strtablen = 0;
char * strtab = NULL;
symsec = filedata->section_headers + section->sh_link;
if (symsec->sh_type != SHT_SYMTAB
&& symsec->sh_type != SHT_DYNSYM)
continue;
if (!get_symtab (filedata, symsec,
&symtab, &nsyms, &strtab, &strtablen))
continue;
dump_relocations (filedata, rel_offset, rel_size,
symtab, nsyms, strtab, strtablen,
is_rela,
symsec->sh_type == SHT_DYNSYM);
free (strtab);
free (symtab);
}
else
dump_relocations (filedata, rel_offset, rel_size,
NULL, 0, NULL, 0, is_rela,
false /* is_dynamic */);
found = true;
}
}
if (! found)
{
/* Users sometimes forget the -D option, so try to be helpful. */
for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
{
if (filedata->dynamic_info[dynamic_relocations [i].size])
{
if (filedata->is_separate)
printf (_("\nThere are no static relocations in linked file '%s'."),
filedata->file_name);
else
printf (_("\nThere are no static relocations in this file."));
printf (_("\nTo see the dynamic relocations add --use-dynamic to the command line.\n"));
break;
}
}
if (i == ARRAY_SIZE (dynamic_relocations))
{
if (filedata->is_separate)
printf (_("\nThere are no relocations in linked file '%s'.\n"),
filedata->file_name);
else
printf (_("\nThere are no relocations in this file.\n"));
}
}
}
return true;
}
/* An absolute address consists of a section and an offset. If the
section is NULL, the offset itself is the address, otherwise, the
address equals to LOAD_ADDRESS(section) + offset. */
struct absaddr
{
unsigned short section;
bfd_vma offset;
};
/* Find the nearest symbol at or below ADDR. Returns the symbol
name, if found, and the offset from the symbol to ADDR. */
static void
find_symbol_for_address (Filedata * filedata,
Elf_Internal_Sym * symtab,
unsigned long nsyms,
const char * strtab,
unsigned long strtab_size,
struct absaddr addr,
const char ** symname,
bfd_vma * offset)
{
bfd_vma dist = 0x100000;
Elf_Internal_Sym * sym;
Elf_Internal_Sym * beg;
Elf_Internal_Sym * end;
Elf_Internal_Sym * best = NULL;
REMOVE_ARCH_BITS (addr.offset);
beg = symtab;
end = symtab + nsyms;
while (beg < end)
{
bfd_vma value;
sym = beg + (end - beg) / 2;
value = sym->st_value;
REMOVE_ARCH_BITS (value);
if (sym->st_name != 0
&& (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
&& addr.offset >= value
&& addr.offset - value < dist)
{
best = sym;
dist = addr.offset - value;
if (!dist)
break;
}
if (addr.offset < value)
end = sym;
else
beg = sym + 1;
}
if (best)
{
*symname = (best->st_name >= strtab_size
? _("<corrupt>") : strtab + best->st_name);
*offset = dist;
return;
}
*symname = NULL;
*offset = addr.offset;
}
static /* signed */ int
symcmp (const void *p, const void *q)
{
Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
}
/* Process the unwind section. */
#include "unwind-ia64.h"
struct ia64_unw_table_entry
{
struct absaddr start;
struct absaddr end;
struct absaddr info;
};
struct ia64_unw_aux_info
{
struct ia64_unw_table_entry * table; /* Unwind table. */
unsigned long table_len; /* Length of unwind table. */
unsigned char * info; /* Unwind info. */
unsigned long info_size; /* Size of unwind info. */
bfd_vma info_addr; /* Starting address of unwind info. */
bfd_vma seg_base; /* Starting address of segment. */
Elf_Internal_Sym * symtab; /* The symbol table. */
unsigned long nsyms; /* Number of symbols. */
Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
unsigned long nfuns; /* Number of entries in funtab. */
char * strtab; /* The string table. */
unsigned long strtab_size; /* Size of string table. */
};
static bool
dump_ia64_unwind (Filedata * filedata, struct ia64_unw_aux_info * aux)
{
struct ia64_unw_table_entry * tp;
unsigned long j, nfuns;
int in_body;
bool res = true;
aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
for (nfuns = 0, j = 0; j < aux->nsyms; j++)
if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
aux->funtab[nfuns++] = aux->symtab[j];
aux->nfuns = nfuns;
qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
{
bfd_vma stamp;
bfd_vma offset;
const unsigned char * dp;
const unsigned char * head;
const unsigned char * end;
const char * procname;
find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
aux->strtab_size, tp->start, &procname, &offset);
fputs ("\n<", stdout);
if (procname)
{
fputs (procname, stdout);
if (offset)
printf ("+%lx", (unsigned long) offset);
}
fputs (">: [", stdout);
print_vma (tp->start.offset, PREFIX_HEX);
fputc ('-', stdout);
print_vma (tp->end.offset, PREFIX_HEX);
printf ("], info at +0x%lx\n",
(unsigned long) (tp->info.offset - aux->seg_base));
/* PR 17531: file: 86232b32. */
if (aux->info == NULL)
continue;
offset = tp->info.offset;
if (tp->info.section)
{
if (tp->info.section >= filedata->file_header.e_shnum)
{
warn (_("Invalid section %u in table entry %ld\n"),
tp->info.section, (long) (tp - aux->table));
res = false;
continue;
}
offset += filedata->section_headers[tp->info.section].sh_addr;
}
offset -= aux->info_addr;
/* PR 17531: file: 0997b4d1. */
if (offset >= aux->info_size
|| aux->info_size - offset < 8)
{
warn (_("Invalid offset %lx in table entry %ld\n"),
(long) tp->info.offset, (long) (tp - aux->table));
res = false;
continue;
}
head = aux->info + offset;
stamp = byte_get ((unsigned char *) head, sizeof (stamp));
printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
(unsigned) UNW_VER (stamp),
(unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
(unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
if (UNW_VER (stamp) != 1)
{
printf (_("\tUnknown version.\n"));
continue;
}
in_body = 0;
end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
/* PR 17531: file: 16ceda89. */
if (end > aux->info + aux->info_size)
end = aux->info + aux->info_size;
for (dp = head + 8; dp < end;)
dp = unw_decode (dp, in_body, & in_body, end);
}
free (aux->funtab);
return res;
}
static bool
slurp_ia64_unwind_table (Filedata * filedata,
struct ia64_unw_aux_info * aux,
Elf_Internal_Shdr * sec)
{
unsigned long size, nrelas, i;
Elf_Internal_Phdr * seg;
struct ia64_unw_table_entry * tep;
Elf_Internal_Shdr * relsec;
Elf_Internal_Rela * rela;
Elf_Internal_Rela * rp;
unsigned char * table;
unsigned char * tp;
Elf_Internal_Sym * sym;
const char * relname;
aux->table_len = 0;
/* First, find the starting address of the segment that includes
this section: */
if (filedata->file_header.e_phnum)
{
if (! get_program_headers (filedata))
return false;
for (seg = filedata->program_headers;
seg < filedata->program_headers + filedata->file_header.e_phnum;
++seg)
{
if (seg->p_type != PT_LOAD)
continue;
if (sec->sh_addr >= seg->p_vaddr
&& (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
{
aux->seg_base = seg->p_vaddr;
break;
}
}
}
/* Second, build the unwind table from the contents of the unwind section: */
size = sec->sh_size;
table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
_("unwind table"));
if (!table)
return false;
aux->table_len = size / (3 * eh_addr_size);
aux->table = (struct ia64_unw_table_entry *)
xcmalloc (aux->table_len, sizeof (aux->table[0]));
tep = aux->table;
for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
{
tep->start.section = SHN_UNDEF;
tep->end.section = SHN_UNDEF;
tep->info.section = SHN_UNDEF;
tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
tep->start.offset += aux->seg_base;
tep->end.offset += aux->seg_base;
tep->info.offset += aux->seg_base;
}
free (table);
/* Third, apply any relocations to the unwind table: */
for (relsec = filedata->section_headers;
relsec < filedata->section_headers + filedata->file_header.e_shnum;
++relsec)
{
if (relsec->sh_type != SHT_RELA
|| relsec->sh_info >= filedata->file_header.e_shnum
|| filedata->section_headers + relsec->sh_info != sec)
continue;
if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
& rela, & nrelas))
{
free (aux->table);
aux->table = NULL;
aux->table_len = 0;
return false;
}
for (rp = rela; rp < rela + nrelas; ++rp)
{
unsigned int sym_ndx;
unsigned int r_type = get_reloc_type (filedata, rp->r_info);
relname = elf_ia64_reloc_type (r_type);
/* PR 17531: file: 9fa67536. */
if (relname == NULL)
{
warn (_("Skipping unknown relocation type: %u\n"), r_type);
continue;
}
if (! startswith (relname, "R_IA64_SEGREL"))
{
warn (_("Skipping unexpected relocation type: %s\n"), relname);
continue;
}
i = rp->r_offset / (3 * eh_addr_size);
/* PR 17531: file: 5bc8d9bf. */
if (i >= aux->table_len)
{
warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
continue;
}
sym_ndx = get_reloc_symindex (rp->r_info);
if (sym_ndx >= aux->nsyms)
{
warn (_("Skipping reloc with invalid symbol index: %u\n"),
sym_ndx);
continue;
}
sym = aux->symtab + sym_ndx;
switch (rp->r_offset / eh_addr_size % 3)
{
case 0:
aux->table[i].start.section = sym->st_shndx;
aux->table[i].start.offset = rp->r_addend + sym->st_value;
break;
case 1:
aux->table[i].end.section = sym->st_shndx;
aux->table[i].end.offset = rp->r_addend + sym->st_value;
break;
case 2:
aux->table[i].info.section = sym->st_shndx;
aux->table[i].info.offset = rp->r_addend + sym->st_value;
break;
default:
break;
}
}
free (rela);
}
return true;
}
static bool
ia64_process_unwind (Filedata * filedata)
{
Elf_Internal_Shdr * sec;
Elf_Internal_Shdr * unwsec = NULL;
unsigned long i, unwcount = 0, unwstart = 0;
struct ia64_unw_aux_info aux;
bool res = true;
memset (& aux, 0, sizeof (aux));
for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
{
if (sec->sh_type == SHT_SYMTAB)
{
if (aux.symtab)
{
error (_("Multiple symbol tables encountered\n"));
free (aux.symtab);
aux.symtab = NULL;
free (aux.strtab);
aux.strtab = NULL;
}
if (!get_symtab (filedata, sec, &aux.symtab, &aux.nsyms,
&aux.strtab, &aux.strtab_size))
return false;
}
else if (sec->sh_type == SHT_IA_64_UNWIND)
unwcount++;
}
if (!unwcount)
printf (_("\nThere are no unwind sections in this file.\n"));
while (unwcount-- > 0)
{
char * suffix;
size_t len, len2;
for (i = unwstart, sec = filedata->section_headers + unwstart, unwsec = NULL;
i < filedata->file_header.e_shnum; ++i, ++sec)
if (sec->sh_type == SHT_IA_64_UNWIND)
{
unwsec = sec;
break;
}
/* We have already counted the number of SHT_IA64_UNWIND
sections so the loop above should never fail. */
assert (unwsec != NULL);
unwstart = i + 1;
len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
if ((unwsec->sh_flags & SHF_GROUP) != 0)
{
/* We need to find which section group it is in. */
struct group_list * g;
if (filedata->section_headers_groups == NULL
|| filedata->section_headers_groups[i] == NULL)
i = filedata->file_header.e_shnum;
else
{
g = filedata->section_headers_groups[i]->root;
for (; g != NULL; g = g->next)
{
sec = filedata->section_headers + g->section_index;
if (SECTION_NAME_VALID (sec)
&& streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
break;
}
if (g == NULL)
i = filedata->file_header.e_shnum;
}
}
else if (SECTION_NAME_VALID (unwsec)
&& startswith (SECTION_NAME (unwsec),
ELF_STRING_ia64_unwind_once))
{
/* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
suffix = SECTION_NAME (unwsec) + len;
for (i = 0, sec = filedata->section_headers;
i < filedata->file_header.e_shnum;
++i, ++sec)
if (SECTION_NAME_VALID (sec)
&& startswith (SECTION_NAME (sec),
ELF_STRING_ia64_unwind_info_once)
&& streq (SECTION_NAME (sec) + len2, suffix))
break;
}
else
{
/* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
.IA_64.unwind or BAR -> .IA_64.unwind_info. */
len = sizeof (ELF_STRING_ia64_unwind) - 1;
len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
suffix = "";
if (SECTION_NAME_VALID (unwsec)
&& startswith (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind))
suffix = SECTION_NAME (unwsec) + len;
for (i = 0, sec = filedata->section_headers;
i < filedata->file_header.e_shnum;
++i, ++sec)
if (SECTION_NAME_VALID (sec)
&& startswith (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info)
&& streq (SECTION_NAME (sec) + len2, suffix))
break;
}
if (i == filedata->file_header.e_shnum)
{
printf (_("\nCould not find unwind info section for "));
if (filedata->string_table == NULL)
printf ("%d", unwsec->sh_name);
else
printf ("'%s'", printable_section_name (filedata, unwsec));
}
else
{
aux.info_addr = sec->sh_addr;
aux.info = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1,
sec->sh_size,
_("unwind info"));
aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
printf (_("\nUnwind section "));
if (filedata->string_table == NULL)
printf ("%d", unwsec->sh_name);
else
printf ("'%s'", printable_section_name (filedata, unwsec));
printf (_(" at offset 0x%lx contains %lu entries:\n"),
(unsigned long) unwsec->sh_offset,
(unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
if (slurp_ia64_unwind_table (filedata, & aux, unwsec)
&& aux.table_len > 0)
dump_ia64_unwind (filedata, & aux);
free ((char *) aux.table);
free ((char *) aux.info);
aux.table = NULL;
aux.info = NULL;
}
}
free (aux.symtab);
free ((char *) aux.strtab);
return res;
}
struct hppa_unw_table_entry
{
struct absaddr start;
struct absaddr end;
unsigned int Cannot_unwind:1; /* 0 */
unsigned int Millicode:1; /* 1 */
unsigned int Millicode_save_sr0:1; /* 2 */
unsigned int Region_description:2; /* 3..4 */
unsigned int reserved1:1; /* 5 */
unsigned int Entry_SR:1; /* 6 */
unsigned int Entry_FR:4; /* Number saved 7..10 */
unsigned int Entry_GR:5; /* Number saved 11..15 */
unsigned int Args_stored:1; /* 16 */
unsigned int Variable_Frame:1; /* 17 */
unsigned int Separate_Package_Body:1; /* 18 */
unsigned int Frame_Extension_Millicode:1; /* 19 */
unsigned int Stack_Overflow_Check:1; /* 20 */
unsigned int Two_Instruction_SP_Increment:1; /* 21 */
unsigned int Ada_Region:1; /* 22 */
unsigned int cxx_info:1; /* 23 */
unsigned int cxx_try_catch:1; /* 24 */
unsigned int sched_entry_seq:1; /* 25 */
unsigned int reserved2:1; /* 26 */
unsigned int Save_SP:1; /* 27 */
unsigned int Save_RP:1; /* 28 */
unsigned int Save_MRP_in_frame:1; /* 29 */
unsigned int extn_ptr_defined:1; /* 30 */
unsigned int Cleanup_defined:1; /* 31 */
unsigned int MPE_XL_interrupt_marker:1; /* 0 */
unsigned int HP_UX_interrupt_marker:1; /* 1 */
unsigned int Large_frame:1; /* 2 */
unsigned int Pseudo_SP_Set:1; /* 3 */
unsigned int reserved4:1; /* 4 */
unsigned int Total_frame_size:27; /* 5..31 */
};
struct hppa_unw_aux_info
{
struct hppa_unw_table_entry * table; /* Unwind table. */
unsigned long table_len; /* Length of unwind table. */
bfd_vma seg_base; /* Starting address of segment. */
Elf_Internal_Sym * symtab; /* The symbol table. */
unsigned long nsyms; /* Number of symbols. */
Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
unsigned long nfuns; /* Number of entries in funtab. */
char * strtab; /* The string table. */
unsigned long strtab_size; /* Size of string table. */
};
static bool
dump_hppa_unwind (Filedata * filedata, struct hppa_unw_aux_info * aux)
{
struct hppa_unw_table_entry * tp;
unsigned long j, nfuns;
bool res = true;
aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
for (nfuns = 0, j = 0; j < aux->nsyms; j++)
if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
aux->funtab[nfuns++] = aux->symtab[j];
aux->nfuns = nfuns;
qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
{
bfd_vma offset;
const char * procname;
find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
aux->strtab_size, tp->start, &procname,
&offset);
fputs ("\n<", stdout);
if (procname)
{
fputs (procname, stdout);
if (offset)
printf ("+%lx", (unsigned long) offset);
}
fputs (">: [", stdout);
print_vma (tp->start.offset, PREFIX_HEX);
fputc ('-', stdout);
print_vma (tp->end.offset, PREFIX_HEX);
printf ("]\n\t");
#define PF(_m) if (tp->_m) printf (#_m " ");
#define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
PF(Cannot_unwind);
PF(Millicode);
PF(Millicode_save_sr0);
/* PV(Region_description); */
PF(Entry_SR);
PV(Entry_FR);
PV(Entry_GR);
PF(Args_stored);
PF(Variable_Frame);
PF(Separate_Package_Body);
PF(Frame_Extension_Millicode);
PF(Stack_Overflow_Check);
PF(Two_Instruction_SP_Increment);
PF(Ada_Region);
PF(cxx_info);
PF(cxx_try_catch);
PF(sched_entry_seq);
PF(Save_SP);
PF(Save_RP);
PF(Save_MRP_in_frame);
PF(extn_ptr_defined);
PF(Cleanup_defined);
PF(MPE_XL_interrupt_marker);
PF(HP_UX_interrupt_marker);
PF(Large_frame);
PF(Pseudo_SP_Set);
PV(Total_frame_size);
#undef PF
#undef PV
}
printf ("\n");
free (aux->funtab);
return res;
}
static bool
slurp_hppa_unwind_table (Filedata * filedata,
struct hppa_unw_aux_info * aux,
Elf_Internal_Shdr * sec)
{
unsigned long size, unw_ent_size, nentries, nrelas, i;
Elf_Internal_Phdr * seg;
struct hppa_unw_table_entry * tep;
Elf_Internal_Shdr * relsec;
Elf_Internal_Rela * rela;
Elf_Internal_Rela * rp;
unsigned char * table;
unsigned char * tp;
Elf_Internal_Sym * sym;
const char * relname;
/* First, find the starting address of the segment that includes
this section. */
if (filedata->file_header.e_phnum)
{
if (! get_program_headers (filedata))
return false;
for (seg = filedata->program_headers;
seg < filedata->program_headers + filedata->file_header.e_phnum;
++seg)
{
if (seg->p_type != PT_LOAD)
continue;
if (sec->sh_addr >= seg->p_vaddr
&& (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
{
aux->seg_base = seg->p_vaddr;
break;
}
}
}
/* Second, build the unwind table from the contents of the unwind
section. */
size = sec->sh_size;
table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
_("unwind table"));
if (!table)
return false;
unw_ent_size = 16;
nentries = size / unw_ent_size;
size = unw_ent_size * nentries;
aux->table_len = nentries;
tep = aux->table = (struct hppa_unw_table_entry *)
xcmalloc (nentries, sizeof (aux->table[0]));
for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
{
unsigned int tmp1, tmp2;
tep->start.section = SHN_UNDEF;
tep->end.section = SHN_UNDEF;
tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
tmp1 = byte_get ((unsigned char *) tp + 8, 4);
tmp2 = byte_get ((unsigned char *) tp + 12, 4);
tep->start.offset += aux->seg_base;
tep->end.offset += aux->seg_base;
tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
tep->Millicode = (tmp1 >> 30) & 0x1;
tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
tep->Region_description = (tmp1 >> 27) & 0x3;
tep->reserved1 = (tmp1 >> 26) & 0x1;
tep->Entry_SR = (tmp1 >> 25) & 0x1;
tep->Entry_FR = (tmp1 >> 21) & 0xf;
tep->Entry_GR = (tmp1 >> 16) & 0x1f;
tep->Args_stored = (tmp1 >> 15) & 0x1;
tep->Variable_Frame = (tmp1 >> 14) & 0x1;
tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
tep->Ada_Region = (tmp1 >> 9) & 0x1;
tep->cxx_info = (tmp1 >> 8) & 0x1;
tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
tep->reserved2 = (tmp1 >> 5) & 0x1;
tep->Save_SP = (tmp1 >> 4) & 0x1;
tep->Save_RP = (tmp1 >> 3) & 0x1;
tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
tep->Cleanup_defined = tmp1 & 0x1;
tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
tep->Large_frame = (tmp2 >> 29) & 0x1;
tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
tep->reserved4 = (tmp2 >> 27) & 0x1;
tep->Total_frame_size = tmp2 & 0x7ffffff;
}
free (table);
/* Third, apply any relocations to the unwind table. */
for (relsec = filedata->section_headers;
relsec < filedata->section_headers + filedata->file_header.e_shnum;
++relsec)
{
if (relsec->sh_type != SHT_RELA
|| relsec->sh_info >= filedata->file_header.e_shnum
|| filedata->section_headers + relsec->sh_info != sec)
continue;
if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
& rela, & nrelas))
return false;
for (rp = rela; rp < rela + nrelas; ++rp)
{
unsigned int sym_ndx;
unsigned int r_type = get_reloc_type (filedata, rp->r_info);
relname = elf_hppa_reloc_type (r_type);
if (relname == NULL)
{
warn (_("Skipping unknown relocation type: %u\n"), r_type);
continue;
}
/* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
if (! startswith (relname, "R_PARISC_SEGREL"))
{
warn (_("Skipping unexpected relocation type: %s\n"), relname);
continue;
}
i = rp->r_offset / unw_ent_size;
if (i >= aux->table_len)
{
warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
continue;
}
sym_ndx = get_reloc_symindex (rp->r_info);
if (sym_ndx >= aux->nsyms)
{
warn (_("Skipping reloc with invalid symbol index: %u\n"),
sym_ndx);
continue;
}
sym = aux->symtab + sym_ndx;
switch ((rp->r_offset % unw_ent_size) / 4)
{
case 0:
aux->table[i].start.section = sym->st_shndx;
aux->table[i].start.offset = sym->st_value + rp->r_addend;
break;
case 1:
aux->table[i].end.section = sym->st_shndx;
aux->table[i].end.offset = sym->st_value + rp->r_addend;
break;
default:
break;
}
}
free (rela);
}
return true;
}
static bool
hppa_process_unwind (Filedata * filedata)
{
struct hppa_unw_aux_info aux;
Elf_Internal_Shdr * unwsec = NULL;
Elf_Internal_Shdr * sec;
unsigned long i;
bool res = true;
if (filedata->string_table == NULL)
return false;
memset (& aux, 0, sizeof (aux));
for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
{
if (sec->sh_type == SHT_SYMTAB)
{
if (aux.symtab)
{
error (_("Multiple symbol tables encountered\n"));
free (aux.symtab);
aux.symtab = NULL;
free (aux.strtab);
aux.strtab = NULL;
}
if (!get_symtab (filedata, sec, &aux.symtab, &aux.nsyms,
&aux.strtab, &aux.strtab_size))
return false;
}
else if (SECTION_NAME_VALID (sec)
&& streq (SECTION_NAME (sec), ".PARISC.unwind"))
unwsec = sec;
}
if (!unwsec)
printf (_("\nThere are no unwind sections in this file.\n"));
for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
{
if (SECTION_NAME_VALID (sec)
&& streq (SECTION_NAME (sec), ".PARISC.unwind"))
{
unsigned long num_unwind = sec->sh_size / 16;
printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
"contains %lu entry:\n",
"\nUnwind section '%s' at offset 0x%lx "
"contains %lu entries:\n",
num_unwind),
printable_section_name (filedata, sec),
(unsigned long) sec->sh_offset,
num_unwind);
if (! slurp_hppa_unwind_table (filedata, &aux, sec))
res = false;
if (res && aux.table_len > 0)
{
if (! dump_hppa_unwind (filedata, &aux))
res = false;
}
free ((char *) aux.table);
aux.table = NULL;
}
}
free (aux.symtab);
free ((char *) aux.strtab);
return res;
}
struct arm_section
{
unsigned char * data; /* The unwind data. */
Elf_Internal_Shdr * sec; /* The cached unwind section header. */
Elf_Internal_Rela * rela; /* The cached relocations for this section. */
unsigned long nrelas; /* The number of relocations. */
unsigned int rel_type; /* REL or RELA ? */
Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
};
struct arm_unw_aux_info
{
Filedata * filedata; /* The file containing the unwind sections. */
Elf_Internal_Sym * symtab; /* The file's symbol table. */
unsigned long nsyms; /* Number of symbols. */
Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
unsigned long nfuns; /* Number of these symbols. */
char * strtab; /* The file's string table. */
unsigned long strtab_size; /* Size of string table. */
};
static const char *
arm_print_vma_and_name (Filedata * filedata,
struct arm_unw_aux_info * aux,
bfd_vma fn,
struct absaddr addr)
{
const char *procname;
bfd_vma sym_offset;
if (addr.section == SHN_UNDEF)
addr.offset = fn;
find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
aux->strtab_size, addr, &procname,
&sym_offset);
print_vma (fn, PREFIX_HEX);
if (procname)
{
fputs (" <", stdout);
fputs (procname, stdout);
if (sym_offset)
printf ("+0x%lx", (unsigned long) sym_offset);
fputc ('>', stdout);
}
return procname;
}
static void
arm_free_section (struct arm_section *arm_sec)
{
free (arm_sec->data);
free (arm_sec->rela);
}
/* 1) If SEC does not match the one cached in ARM_SEC, then free the current
cached section and install SEC instead.
2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
and return its valued in * WORDP, relocating if necessary.
3) Update the NEXT_RELA field in ARM_SEC and store the section index and
relocation's offset in ADDR.
4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
into the string table of the symbol associated with the reloc. If no
reloc was applied store -1 there.
5) Return TRUE upon success, FALSE otherwise. */
static bool
get_unwind_section_word (Filedata * filedata,
struct arm_unw_aux_info * aux,
struct arm_section * arm_sec,
Elf_Internal_Shdr * sec,
bfd_vma word_offset,
unsigned int * wordp,
struct absaddr * addr,
bfd_vma * sym_name)
{
Elf_Internal_Rela *rp;
Elf_Internal_Sym *sym;
const char * relname;
unsigned int word;
bool wrapped;
if (sec == NULL || arm_sec == NULL)
return false;
addr->section = SHN_UNDEF;
addr->offset = 0;
if (sym_name != NULL)
*sym_name = (bfd_vma) -1;
/* If necessary, update the section cache. */
if (sec != arm_sec->sec)
{
Elf_Internal_Shdr *relsec;
arm_free_section (arm_sec);
arm_sec->sec = sec;
arm_sec->data = get_data (NULL, aux->filedata, sec->sh_offset, 1,
sec->sh_size, _("unwind data"));
arm_sec->rela = NULL;
arm_sec->nrelas = 0;
for (relsec = filedata->section_headers;
relsec < filedata->section_headers + filedata->file_header.e_shnum;
++relsec)
{
if (relsec->sh_info >= filedata->file_header.e_shnum
|| filedata->section_headers + relsec->sh_info != sec
/* PR 15745: Check the section type as well. */
|| (relsec->sh_type != SHT_REL
&& relsec->sh_type != SHT_RELA))
continue;
arm_sec->rel_type = relsec->sh_type;
if (relsec->sh_type == SHT_REL)
{
if (!slurp_rel_relocs (aux->filedata, relsec->sh_offset,
relsec->sh_size,
& arm_sec->rela, & arm_sec->nrelas))
return false;
}
else /* relsec->sh_type == SHT_RELA */
{
if (!slurp_rela_relocs (aux->filedata, relsec->sh_offset,
relsec->sh_size,
& arm_sec->rela, & arm_sec->nrelas))
return false;
}
break;
}
arm_sec->next_rela = arm_sec->rela;
}
/* If there is no unwind data we can do nothing. */
if (arm_sec->data == NULL)
return false;
/* If the offset is invalid then fail. */
if (/* PR 21343 *//* PR 18879 */
sec->sh_size < 4
|| word_offset > (sec->sh_size - 4)
|| ((bfd_signed_vma) word_offset) < 0)
return false;
/* Get the word at the required offset. */
word = byte_get (arm_sec->data + word_offset, 4);
/* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
if (arm_sec->rela == NULL)
{
* wordp = word;
return true;
}
/* Look through the relocs to find the one that applies to the provided offset. */
wrapped = false;
for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
{
bfd_vma prelval, offset;
if (rp->r_offset > word_offset && !wrapped)
{
rp = arm_sec->rela;
wrapped = true;
}
if (rp->r_offset > word_offset)
break;
if (rp->r_offset & 3)
{
warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
(unsigned long) rp->r_offset);
continue;
}
if (rp->r_offset < word_offset)
continue;
/* PR 17531: file: 027-161405-0.004 */
if (aux->symtab == NULL)
continue;
if (arm_sec->rel_type == SHT_REL)
{
offset = word & 0x7fffffff;
if (offset & 0x40000000)
offset |= ~ (bfd_vma) 0x7fffffff;
}
else if (arm_sec->rel_type == SHT_RELA)
offset = rp->r_addend;
else
{
error (_("Unknown section relocation type %d encountered\n"),
arm_sec->rel_type);
break;
}
/* PR 17531 file: 027-1241568-0.004. */
if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
{
error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
(unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
break;
}
sym = aux->symtab + ELF32_R_SYM (rp->r_info);
offset += sym->st_value;
prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
/* Check that we are processing the expected reloc type. */
if (filedata->file_header.e_machine == EM_ARM)
{
relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
if (relname == NULL)
{
warn (_("Skipping unknown ARM relocation type: %d\n"),
(int) ELF32_R_TYPE (rp->r_info));
continue;
}
if (streq (relname, "R_ARM_NONE"))
continue;
if (! streq (relname, "R_ARM_PREL31"))
{
warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
continue;
}
}
else if (filedata->file_header.e_machine == EM_TI_C6000)
{
relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
if (relname == NULL)
{
warn (_("Skipping unknown C6000 relocation type: %d\n"),
(int) ELF32_R_TYPE (rp->r_info));
continue;
}
if (streq (relname, "R_C6000_NONE"))
continue;
if (! streq (relname, "R_C6000_PREL31"))
{
warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
continue;
}
prelval >>= 1;
}
else
{
/* This function currently only supports ARM and TI unwinders. */
warn (_("Only TI and ARM unwinders are currently supported\n"));
break;
}
word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
addr->section = sym->st_shndx;
addr->offset = offset;
if (sym_name)
* sym_name = sym->st_name;
break;
}
*wordp = word;
arm_sec->next_rela = rp;
return true;
}
static const char *tic6x_unwind_regnames[16] =
{
"A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
"A14", "A13", "A12", "A11", "A10",
"[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
};
static void
decode_tic6x_unwind_regmask (unsigned int mask)
{
int i;
for (i = 12; mask; mask >>= 1, i--)
{
if (mask & 1)
{
fputs (tic6x_unwind_regnames[i], stdout);
if (mask > 1)
fputs (", ", stdout);
}
}
}
#define ADVANCE \
if (remaining == 0 && more_words) \
{ \
data_offset += 4; \
if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, \
data_offset, & word, & addr, NULL)) \
return false; \
remaining = 4; \
more_words--; \
} \
#define GET_OP(OP) \
ADVANCE; \
if (remaining) \
{ \
remaining--; \
(OP) = word >> 24; \
word <<= 8; \
} \
else \
{ \
printf (_("[Truncated opcode]\n")); \
return false; \
} \
printf ("0x%02x ", OP)
static bool
decode_arm_unwind_bytecode (Filedata * filedata,
struct arm_unw_aux_info * aux,
unsigned int word,
unsigned int remaining,
unsigned int more_words,
bfd_vma data_offset,
Elf_Internal_Shdr * data_sec,
struct arm_section * data_arm_sec)
{
struct absaddr addr;
bool res = true;
/* Decode the unwinding instructions. */
while (1)
{
unsigned int op, op2;
ADVANCE;
if (remaining == 0)
break;
remaining--;
op = word >> 24;
word <<= 8;
printf (" 0x%02x ", op);
if ((op & 0xc0) == 0x00)
{
int offset = ((op & 0x3f) << 2) + 4;
printf (" vsp = vsp + %d", offset);
}
else if ((op & 0xc0) == 0x40)
{
int offset = ((op & 0x3f) << 2) + 4;
printf (" vsp = vsp - %d", offset);
}
else if ((op & 0xf0) == 0x80)
{
GET_OP (op2);
if (op == 0x80 && op2 == 0)
printf (_("Refuse to unwind"));
else
{
unsigned int mask = ((op & 0x0f) << 8) | op2;
bool first = true;
int i;
printf ("pop {");
for (i = 0; i < 12; i++)
if (mask & (1 << i))
{
if (first)
first = false;
else
printf (", ");
printf ("r%d", 4 + i);
}
printf ("}");
}
}
else if ((op & 0xf0) == 0x90)
{
if (op == 0x9d || op == 0x9f)
printf (_(" [Reserved]"));
else
printf (" vsp = r%d", op & 0x0f);
}
else if ((op & 0xf0) == 0xa0)
{
int end = 4 + (op & 0x07);
bool first = true;
int i;
printf (" pop {");
for (i = 4; i <= end; i++)
{
if (first)
first = false;
else
printf (", ");
printf ("r%d", i);
}
if (op & 0x08)
{
if (!first)
printf (", ");
printf ("r14");
}
printf ("}");
}
else if (op == 0xb0)
printf (_(" finish"));
else if (op == 0xb1)
{
GET_OP (op2);
if (op2 == 0 || (op2 & 0xf0) != 0)
printf (_("[Spare]"));
else
{
unsigned int mask = op2 & 0x0f;
bool first = true;
int i;
printf ("pop {");
for (i = 0; i < 12; i++)
if (mask & (1 << i))
{
if (first)
first = false;
else
printf (", ");
printf ("r%d", i);
}
printf ("}");
}
}
else if (op == 0xb2)
{
unsigned char buf[9];
unsigned int i, len;
unsigned long offset;
for (i = 0; i < sizeof (buf); i++)
{
GET_OP (buf[i]);
if ((buf[i] & 0x80) == 0)
break;
}
if (i == sizeof (buf))
{
error (_("corrupt change to vsp\n"));
res = false;
}
else
{
offset = read_leb128 (buf, buf + i + 1, false, &len, NULL);
assert (len == i + 1);
offset = offset * 4 + 0x204;
printf ("vsp = vsp + %ld", offset);
}
}
else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
{
unsigned int first, last;
GET_OP (op2);
first = op2 >> 4;
last = op2 & 0x0f;
if (op == 0xc8)
first = first + 16;
printf ("pop {D%d", first);
if (last)
printf ("-D%d", first + last);
printf ("}");
}
else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
{
unsigned int count = op & 0x07;
printf ("pop {D8");
if (count)
printf ("-D%d", 8 + count);
printf ("}");
}
else if (op >= 0xc0 && op <= 0xc5)
{
unsigned int count = op & 0x07;
printf (" pop {wR10");
if (count)
printf ("-wR%d", 10 + count);
printf ("}");
}
else if (op == 0xc6)
{
unsigned int first, last;
GET_OP (op2);
first = op2 >> 4;
last = op2 & 0x0f;
printf ("pop {wR%d", first);
if (last)
printf ("-wR%d", first + last);
printf ("}");
}
else if (op == 0xc7)
{
GET_OP (op2);
if (op2 == 0 || (op2 & 0xf0) != 0)
printf (_("[Spare]"));
else
{
unsigned int mask = op2 & 0x0f;
bool first = true;
int i;
printf ("pop {");
for (i = 0; i < 4; i++)
if (mask & (1 << i))
{
if (first)
first = false;
else
printf (", ");
printf ("wCGR%d", i);
}
printf ("}");
}
}
else
{
printf (_(" [unsupported opcode]"));
res = false;
}
printf ("\n");
}
return res;
}
static bool
decode_tic6x_unwind_bytecode (Filedata * filedata,
struct arm_unw_aux_info * aux,
unsigned int word,
unsigned int remaining,
unsigned int more_words,
bfd_vma data_offset,
Elf_Internal_Shdr * data_sec,
struct arm_section * data_arm_sec)
{
struct absaddr addr;
/* Decode the unwinding instructions. */
while (1)
{
unsigned int op, op2;
ADVANCE;
if (remaining == 0)
break;
remaining--;
op = word >> 24;
word <<= 8;
printf (" 0x%02x ", op);
if ((op & 0xc0) == 0x00)
{
int offset = ((op & 0x3f) << 3) + 8;
printf (" sp = sp + %d", offset);
}
else if ((op & 0xc0) == 0x80)
{
GET_OP (op2);
if (op == 0x80 && op2 == 0)
printf (_("Refuse to unwind"));
else
{
unsigned int mask = ((op & 0x1f) << 8) | op2;
if (op & 0x20)
printf ("pop compact {");
else
printf ("pop {");
decode_tic6x_unwind_regmask (mask);
printf("}");
}
}
else if ((op & 0xf0) == 0xc0)
{
unsigned int reg;
unsigned int nregs;
unsigned int i;
const char *name;
struct
{
unsigned int offset;
unsigned int reg;
} regpos[16];
/* Scan entire instruction first so that GET_OP output is not
interleaved with disassembly. */
nregs = 0;
for (i = 0; nregs < (op & 0xf); i++)
{
GET_OP (op2);
reg = op2 >> 4;
if (reg != 0xf)
{
regpos[nregs].offset = i * 2;
regpos[nregs].reg = reg;
nregs++;
}
reg = op2 & 0xf;
if (reg != 0xf)
{
regpos[nregs].offset = i * 2 + 1;
regpos[nregs].reg = reg;
nregs++;
}
}
printf (_("pop frame {"));
if (nregs == 0)
{
printf (_("*corrupt* - no registers specified"));
}
else
{
reg = nregs - 1;
for (i = i * 2; i > 0; i--)
{
if (regpos[reg].offset == i - 1)
{
name = tic6x_unwind_regnames[regpos[reg].reg];
if (reg > 0)
reg--;
}
else
name = _("[pad]");
fputs (name, stdout);
if (i > 1)
printf (", ");
}
}
printf ("}");
}
else if (op == 0xd0)
printf (" MOV FP, SP");
else if (op == 0xd1)
printf (" __c6xabi_pop_rts");
else if (op == 0xd2)
{
unsigned char buf[9];
unsigned int i, len;
unsigned long offset;
for (i = 0; i < sizeof (buf); i++)
{
GET_OP (buf[i]);
if ((buf[i] & 0x80) == 0)
break;
}
/* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
if (i == sizeof (buf))
{
warn (_("Corrupt stack pointer adjustment detected\n"));
return false;
}
offset = read_leb128 (buf, buf + i + 1, false, &len, NULL);
assert (len == i + 1);
offset = offset * 8 + 0x408;
printf (_("sp = sp + %ld"), offset);
}
else if ((op & 0xf0) == 0xe0)
{
if ((op & 0x0f) == 7)
printf (" RETURN");
else
printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
}
else
{
printf (_(" [unsupported opcode]"));
}
putchar ('\n');
}
return true;
}
static bfd_vma
arm_expand_prel31 (Filedata * filedata, bfd_vma word, bfd_vma where)
{
bfd_vma offset;
offset = word & 0x7fffffff;
if (offset & 0x40000000)
offset |= ~ (bfd_vma) 0x7fffffff;
if (filedata->file_header.e_machine == EM_TI_C6000)
offset <<= 1;
return offset + where;
}
static bool
decode_arm_unwind (Filedata * filedata,
struct arm_unw_aux_info * aux,
unsigned int word,
unsigned int remaining,
bfd_vma data_offset,
Elf_Internal_Shdr * data_sec,
struct arm_section * data_arm_sec)
{
int per_index;
unsigned int more_words = 0;
struct absaddr addr;
bfd_vma sym_name = (bfd_vma) -1;
bool res = true;
if (remaining == 0)
{
/* Fetch the first word.
Note - when decoding an object file the address extracted
here will always be 0. So we also pass in the sym_name
parameter so that we can find the symbol associated with
the personality routine. */
if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, data_offset,
& word, & addr, & sym_name))
return false;
remaining = 4;
}
else
{
addr.section = SHN_UNDEF;
addr.offset = 0;
}
if ((word & 0x80000000) == 0)
{
/* Expand prel31 for personality routine. */
bfd_vma fn;
const char *procname;
fn = arm_expand_prel31 (filedata, word, data_sec->sh_addr + data_offset);
printf (_(" Personality routine: "));
if (fn == 0
&& addr.section == SHN_UNDEF && addr.offset == 0
&& sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
{
procname = aux->strtab + sym_name;
print_vma (fn, PREFIX_HEX);
if (procname)
{
fputs (" <", stdout);
fputs (procname, stdout);
fputc ('>', stdout);
}
}
else
procname = arm_print_vma_and_name (filedata, aux, fn, addr);
fputc ('\n', stdout);
/* The GCC personality routines use the standard compact
encoding, starting with one byte giving the number of
words. */
if (procname != NULL
&& (startswith (procname, "__gcc_personality_v0")
|| startswith (procname, "__gxx_personality_v0")
|| startswith (procname, "__gcj_personality_v0")
|| startswith (procname, "__gnu_objc_personality_v0")))
{
remaining = 0;
more_words = 1;
ADVANCE;
if (!remaining)
{
printf (_(" [Truncated data]\n"));
return false;
}
more_words = word >> 24;
word <<= 8;
remaining--;
per_index = -1;
}
else
return true;
}
else
{
/* ARM EHABI Section 6.3:
An exception-handling table entry for the compact model looks like:
31 30-28 27-24 23-0
-- ----- ----- ----
1 0 index Data for personalityRoutine[index] */
if (filedata->file_header.e_machine == EM_ARM
&& (word & 0x70000000))
{
warn (_("Corrupt ARM compact model table entry: %x \n"), word);
res = false;
}
per_index = (word >> 24) & 0x7f;
printf (_(" Compact model index: %d\n"), per_index);
if (per_index == 0)
{
more_words = 0;
word <<= 8;
remaining--;
}
else if (per_index < 3)
{
more_words = (word >> 16) & 0xff;
word <<= 16;
remaining -= 2;
}
}
switch (filedata->file_header.e_machine)
{
case EM_ARM:
if (per_index < 3)
{
if (! decode_arm_unwind_bytecode (filedata, aux, word, remaining, more_words,
data_offset, data_sec, data_arm_sec))
res = false;
}
else
{
warn (_("Unknown ARM compact model index encountered\n"));
printf (_(" [reserved]\n"));
res = false;
}
break;
case EM_TI_C6000:
if (per_index < 3)
{
if (! decode_tic6x_unwind_bytecode (filedata, aux, word, remaining, more_words,
data_offset, data_sec, data_arm_sec))
res = false;
}
else if (per_index < 5)
{
if (((word >> 17) & 0x7f) == 0x7f)
printf (_(" Restore stack from frame pointer\n"));
else
printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
printf (_(" Registers restored: "));
if (per_index == 4)
printf (" (compact) ");
decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
putchar ('\n');
printf (_(" Return register: %s\n"),
tic6x_unwind_regnames[word & 0xf]);
}
else
printf (_(" [reserved (%d)]\n"), per_index);
break;
default:
error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
filedata->file_header.e_machine);
res = false;
}
/* Decode the descriptors. Not implemented. */
return res;
}
static bool
dump_arm_unwind (Filedata * filedata,
struct arm_unw_aux_info * aux,
Elf_Internal_Shdr * exidx_sec)
{
struct arm_section exidx_arm_sec, extab_arm_sec;
unsigned int i, exidx_len;
unsigned long j, nfuns;
bool res = true;
memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
exidx_len = exidx_sec->sh_size / 8;
aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
for (nfuns = 0, j = 0; j < aux->nsyms; j++)
if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
aux->funtab[nfuns++] = aux->symtab[j];
aux->nfuns = nfuns;
qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
for (i = 0; i < exidx_len; i++)
{
unsigned int exidx_fn, exidx_entry;
struct absaddr fn_addr, entry_addr;
bfd_vma fn;
fputc ('\n', stdout);
if (! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
8 * i, & exidx_fn, & fn_addr, NULL)
|| ! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
8 * i + 4, & exidx_entry, & entry_addr, NULL))
{
free (aux->funtab);
arm_free_section (& exidx_arm_sec);
arm_free_section (& extab_arm_sec);
return false;
}
/* ARM EHABI, Section 5:
An index table entry consists of 2 words.
The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
if (exidx_fn & 0x80000000)
{
warn (_("corrupt index table entry: %x\n"), exidx_fn);
res = false;
}
fn = arm_expand_prel31 (filedata, exidx_fn, exidx_sec->sh_addr + 8 * i);
arm_print_vma_and_name (filedata, aux, fn, fn_addr);
fputs (": ", stdout);
if (exidx_entry == 1)
{
print_vma (exidx_entry, PREFIX_HEX);
fputs (" [cantunwind]\n", stdout);
}
else if (exidx_entry & 0x80000000)
{
print_vma (exidx_entry, PREFIX_HEX);
fputc ('\n', stdout);
decode_arm_unwind (filedata, aux, exidx_entry, 4, 0, NULL, NULL);
}
else
{
bfd_vma table, table_offset = 0;
Elf_Internal_Shdr *table_sec;
fputs ("@", stdout);
table = arm_expand_prel31 (filedata, exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
print_vma (table, PREFIX_HEX);
printf ("\n");
/* Locate the matching .ARM.extab. */
if (entry_addr.section != SHN_UNDEF
&& entry_addr.section < filedata->file_header.e_shnum)
{
table_sec = filedata->section_headers + entry_addr.section;
table_offset = entry_addr.offset;
/* PR 18879 */
if (table_offset > table_sec->sh_size
|| ((bfd_signed_vma) table_offset) < 0)
{
warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
(unsigned long) table_offset,
printable_section_name (filedata, table_sec));
res = false;
continue;
}
}
else
{
table_sec = find_section_by_address (filedata, table);
if (table_sec != NULL)
table_offset = table - table_sec->sh_addr;
}
if (table_sec == NULL)
{
warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
(unsigned long) table);
res = false;
continue;
}
if (! decode_arm_unwind (filedata, aux, 0, 0, table_offset, table_sec,
&extab_arm_sec))
res = false;
}
}
printf ("\n");
free (aux->funtab);
arm_free_section (&exidx_arm_sec);
arm_free_section (&extab_arm_sec);
return res;
}
/* Used for both ARM and C6X unwinding tables. */
static bool
arm_process_unwind (Filedata * filedata)
{
struct arm_unw_aux_info aux;
Elf_Internal_Shdr *unwsec = NULL;
Elf_Internal_Shdr *sec;
unsigned long i;
unsigned int sec_type;
bool res = true;
switch (filedata->file_header.e_machine)
{
case EM_ARM:
sec_type = SHT_ARM_EXIDX;
break;
case EM_TI_C6000:
sec_type = SHT_C6000_UNWIND;
break;
default:
error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
filedata->file_header.e_machine);
return false;
}
if (filedata->string_table == NULL)
return false;
memset (& aux, 0, sizeof (aux));
aux.filedata = filedata;
for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
{
if (sec->sh_type == SHT_SYMTAB)
{
if (aux.symtab)
{
error (_("Multiple symbol tables encountered\n"));
free (aux.symtab);
aux.symtab = NULL;
free (aux.strtab);
aux.strtab = NULL;
}
if (!get_symtab (filedata, sec, &aux.symtab, &aux.nsyms,
&aux.strtab, &aux.strtab_size))
return false;
}
else if (sec->sh_type == sec_type)
unwsec = sec;
}
if (unwsec == NULL)
printf (_("\nThere are no unwind sections in this file.\n"));
else
for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
{
if (sec->sh_type == sec_type)
{
unsigned long num_unwind = sec->sh_size / (2 * eh_addr_size);
printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
"contains %lu entry:\n",
"\nUnwind section '%s' at offset 0x%lx "
"contains %lu entries:\n",
num_unwind),
printable_section_name (filedata, sec),
(unsigned long) sec->sh_offset,
num_unwind);
if (! dump_arm_unwind (filedata, &aux, sec))
res = false;
}
}
free (aux.symtab);
free ((char *) aux.strtab);
return res;
}
static bool
no_processor_specific_unwind (Filedata * filedata ATTRIBUTE_UNUSED)
{
printf (_("No processor specific unwind information to decode\n"));
return true;
}
static bool
process_unwind (Filedata * filedata)
{
struct unwind_handler
{
unsigned int machtype;
bool (* handler)(Filedata *);
} handlers[] =
{
{ EM_ARM, arm_process_unwind },
{ EM_IA_64, ia64_process_unwind },
{ EM_PARISC, hppa_process_unwind },
{ EM_TI_C6000, arm_process_unwind },
{ EM_386, no_processor_specific_unwind },
{ EM_X86_64, no_processor_specific_unwind },
{ 0, NULL }
};
int i;
if (!do_unwind)
return true;
for (i = 0; handlers[i].handler != NULL; i++)
if (filedata->file_header.e_machine == handlers[i].machtype)
return handlers[i].handler (filedata);
printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
get_machine_name (filedata->file_header.e_machine));
return true;
}
static void
dynamic_section_aarch64_val (Elf_Internal_Dyn * entry)
{
switch (entry->d_tag)
{
case DT_AARCH64_BTI_PLT:
case DT_AARCH64_PAC_PLT:
break;
default:
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
break;
}
putchar ('\n');
}
static void
dynamic_section_mips_val (Filedata * filedata, Elf_Internal_Dyn * entry)
{
switch (entry->d_tag)
{
case DT_MIPS_FLAGS:
if (entry->d_un.d_val == 0)
printf (_("NONE"));
else
{
static const char * opts[] =
{
"QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
"NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
"GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
"REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
"RLD_ORDER_SAFE"
};
unsigned int cnt;
bool first = true;
for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
if (entry->d_un.d_val & (1 << cnt))
{
printf ("%s%s", first ? "" : " ", opts[cnt]);
first = false;
}
}
break;
case DT_MIPS_IVERSION:
if (VALID_DYNAMIC_NAME (filedata, entry->d_un.d_val))
printf (_("Interface Version: %s"),
GET_DYNAMIC_NAME (filedata, entry->d_un.d_val));
else
{
char buf[40];
sprintf_vma (buf, entry->d_un.d_ptr);
/* Note: coded this way so that there is a single string for translation. */
printf (_("<corrupt: %s>"), buf);
}
break;
case DT_MIPS_TIME_STAMP:
{
char timebuf[128];
struct tm * tmp;
time_t atime = entry->d_un.d_val;
tmp = gmtime (&atime);
/* PR 17531: file: 6accc532. */
if (tmp == NULL)
snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
else
snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
printf (_("Time Stamp: %s"), timebuf);
}
break;
case DT_MIPS_RLD_VERSION:
case DT_MIPS_LOCAL_GOTNO:
case DT_MIPS_CONFLICTNO:
case DT_MIPS_LIBLISTNO:
case DT_MIPS_SYMTABNO:
case DT_MIPS_UNREFEXTNO:
case DT_MIPS_HIPAGENO:
case DT_MIPS_DELTA_CLASS_NO:
case DT_MIPS_DELTA_INSTANCE_NO:
case DT_MIPS_DELTA_RELOC_NO:
case DT_MIPS_DELTA_SYM_NO:
case DT_MIPS_DELTA_CLASSSYM_NO:
case DT_MIPS_COMPACT_SIZE:
print_vma (entry->d_un.d_val, DEC);
break;
case DT_MIPS_XHASH:
filedata->dynamic_info_DT_MIPS_XHASH = entry->d_un.d_val;
filedata->dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
/* Falls through. */
default:
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
}
putchar ('\n');
}
static void
dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
{
switch (entry->d_tag)
{
case DT_HP_DLD_FLAGS:
{
static struct
{
long int bit;
const char * str;
}
flags[] =
{
{ DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
{ DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
{ DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
{ DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
{ DT_HP_BIND_NOW, "HP_BIND_NOW" },
{ DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
{ DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
{ DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
{ DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
{ DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
{ DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
{ DT_HP_GST, "HP_GST" },
{ DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
{ DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
{ DT_HP_NODELETE, "HP_NODELETE" },
{ DT_HP_GROUP, "HP_GROUP" },
{ DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
};
bool first = true;
size_t cnt;
bfd_vma val = entry->d_un.d_val;
for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
if (val & flags[cnt].bit)
{
if (! first)
putchar (' ');
fputs (flags[cnt].str, stdout);
first = false;
val ^= flags[cnt].bit;
}
if (val != 0 || first)
{
if (! first)
putchar (' ');
print_vma (val, HEX);
}
}
break;
default:
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
break;
}
putchar ('\n');
}
#ifdef BFD64
/* VMS vs Unix time offset and factor. */
#define VMS_EPOCH_OFFSET 35067168000000000LL
#define VMS_GRANULARITY_FACTOR 10000000
#ifndef INT64_MIN
#define INT64_MIN (-9223372036854775807LL - 1)
#endif
/* Display a VMS time in a human readable format. */
static void
print_vms_time (bfd_int64_t vmstime)
{
struct tm *tm = NULL;
time_t unxtime;
if (vmstime >= INT64_MIN + VMS_EPOCH_OFFSET)
{
vmstime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
unxtime = vmstime;
if (unxtime == vmstime)
tm = gmtime (&unxtime);
}
if (tm != NULL)
printf ("%04u-%02u-%02uT%02u:%02u:%02u",
tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
}
#endif /* BFD64 */
static void
dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
{
switch (entry->d_tag)
{
case DT_IA_64_PLT_RESERVE:
/* First 3 slots reserved. */
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
printf (" -- ");
print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
break;
case DT_IA_64_VMS_LINKTIME:
#ifdef BFD64
print_vms_time (entry->d_un.d_val);
#endif
break;
case DT_IA_64_VMS_LNKFLAGS:
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
printf (" CALL_DEBUG");
if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
printf (" NOP0BUFS");
if (entry->d_un.d_val & VMS_LF_P0IMAGE)
printf (" P0IMAGE");
if (entry->d_un.d_val & VMS_LF_MKTHREADS)
printf (" MKTHREADS");
if (entry->d_un.d_val & VMS_LF_UPCALLS)
printf (" UPCALLS");
if (entry->d_un.d_val & VMS_LF_IMGSTA)
printf (" IMGSTA");
if (entry->d_un.d_val & VMS_LF_INITIALIZE)
printf (" INITIALIZE");
if (entry->d_un.d_val & VMS_LF_MAIN)
printf (" MAIN");
if (entry->d_un.d_val & VMS_LF_EXE_INIT)
printf (" EXE_INIT");
if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
printf (" TBK_IN_IMG");
if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
printf (" DBG_IN_IMG");
if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
printf (" TBK_IN_DSF");
if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
printf (" DBG_IN_DSF");
if (entry->d_un.d_val & VMS_LF_SIGNATURES)
printf (" SIGNATURES");
if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
printf (" REL_SEG_OFF");
break;
default:
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
break;
}
putchar ('\n');
}
static bool
get_32bit_dynamic_section (Filedata * filedata)
{
Elf32_External_Dyn * edyn;
Elf32_External_Dyn * ext;
Elf_Internal_Dyn * entry;
edyn = (Elf32_External_Dyn *) get_data (NULL, filedata,
filedata->dynamic_addr, 1,
filedata->dynamic_size,
_("dynamic section"));
if (!edyn)
return false;
/* SGI's ELF has more than one section in the DYNAMIC segment, and we
might not have the luxury of section headers. Look for the DT_NULL
terminator to determine the number of entries. */
for (ext = edyn, filedata->dynamic_nent = 0;
(char *) (ext + 1) <= (char *) edyn + filedata->dynamic_size;
ext++)
{
filedata->dynamic_nent++;
if (BYTE_GET (ext->d_tag) == DT_NULL)
break;
}
filedata->dynamic_section
= (Elf_Internal_Dyn *) cmalloc (filedata->dynamic_nent, sizeof (* entry));
if (filedata->dynamic_section == NULL)
{
error (_("Out of memory allocating space for %lu dynamic entries\n"),
(unsigned long) filedata->dynamic_nent);
free (edyn);
return false;
}
for (ext = edyn, entry = filedata->dynamic_section;
entry < filedata->dynamic_section + filedata->dynamic_nent;
ext++, entry++)
{
entry->d_tag = BYTE_GET (ext->d_tag);
entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
}
free (edyn);
return true;
}
static bool
get_64bit_dynamic_section (Filedata * filedata)
{
Elf64_External_Dyn * edyn;
Elf64_External_Dyn * ext;
Elf_Internal_Dyn * entry;
/* Read in the data. */
edyn = (Elf64_External_Dyn *) get_data (NULL, filedata,
filedata->dynamic_addr, 1,
filedata->dynamic_size,
_("dynamic section"));
if (!edyn)
return false;
/* SGI's ELF has more than one section in the DYNAMIC segment, and we
might not have the luxury of section headers. Look for the DT_NULL
terminator to determine the number of entries. */
for (ext = edyn, filedata->dynamic_nent = 0;
/* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
(char *) (ext + 1) <= (char *) edyn + filedata->dynamic_size;
ext++)
{
filedata->dynamic_nent++;
if (BYTE_GET (ext->d_tag) == DT_NULL)
break;
}
filedata->dynamic_section
= (Elf_Internal_Dyn *) cmalloc (filedata->dynamic_nent, sizeof (* entry));
if (filedata->dynamic_section == NULL)
{
error (_("Out of memory allocating space for %lu dynamic entries\n"),
(unsigned long) filedata->dynamic_nent);
free (edyn);
return false;
}
/* Convert from external to internal formats. */
for (ext = edyn, entry = filedata->dynamic_section;
entry < filedata->dynamic_section + filedata->dynamic_nent;
ext++, entry++)
{
entry->d_tag = BYTE_GET (ext->d_tag);
entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
}
free (edyn);
return true;
}
static bool
get_dynamic_section (Filedata *filedata)
{
if (filedata->dynamic_section)
return true;
if (is_32bit_elf)
return get_32bit_dynamic_section (filedata);
else
return get_64bit_dynamic_section (filedata);
}
static void
print_dynamic_flags (bfd_vma flags)
{
bool first = true;
while (flags)
{
bfd_vma flag;
flag = flags & - flags;
flags &= ~ flag;
if (first)
first = false;
else
putc (' ', stdout);
switch (flag)
{
case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
default: fputs (_("unknown"), stdout); break;
}
}
puts ("");
}
static bfd_vma *
get_dynamic_data (Filedata * filedata, bfd_size_type number, unsigned int ent_size)
{
unsigned char * e_data;
bfd_vma * i_data;
/* If the size_t type is smaller than the bfd_size_type, eg because
you are building a 32-bit tool on a 64-bit host, then make sure
that when (number) is cast to (size_t) no information is lost. */
if (sizeof (size_t) < sizeof (bfd_size_type)
&& (bfd_size_type) ((size_t) number) != number)
{
error (_("Size truncation prevents reading %s elements of size %u\n"),
bfd_vmatoa ("u", number), ent_size);
return NULL;
}
/* Be kind to memory checkers (eg valgrind, address sanitizer) by not
attempting to allocate memory when the read is bound to fail. */
if (ent_size * number > filedata->file_size)
{
error (_("Invalid number of dynamic entries: %s\n"),
bfd_vmatoa ("u", number));
return NULL;
}
e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
if (e_data == NULL)
{
error (_("Out of memory reading %s dynamic entries\n"),
bfd_vmatoa ("u", number));
return NULL;
}
if (fread (e_data, ent_size, (size_t) number, filedata->handle) != number)
{
error (_("Unable to read in %s bytes of dynamic data\n"),
bfd_vmatoa ("u", number * ent_size));
free (e_data);
return NULL;
}
i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
if (i_data == NULL)
{
error (_("Out of memory allocating space for %s dynamic entries\n"),
bfd_vmatoa ("u", number));
free (e_data);
return NULL;
}
while (number--)
i_data[number] = byte_get (e_data + number * ent_size, ent_size);
free (e_data);
return i_data;
}
static unsigned long
get_num_dynamic_syms (Filedata * filedata)
{
unsigned long num_of_syms = 0;
if (!do_histogram && (!do_using_dynamic || do_dyn_syms))
return num_of_syms;
if (filedata->dynamic_info[DT_HASH])
{
unsigned char nb[8];
unsigned char nc[8];
unsigned int hash_ent_size = 4;
if ((filedata->file_header.e_machine == EM_ALPHA
|| filedata->file_header.e_machine == EM_S390
|| filedata->file_header.e_machine == EM_S390_OLD)
&& filedata->file_header.e_ident[EI_CLASS] == ELFCLASS64)
hash_ent_size = 8;
if (fseek (filedata->handle,
(filedata->archive_file_offset
+ offset_from_vma (filedata, filedata->dynamic_info[DT_HASH],
sizeof nb + sizeof nc)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_hash;
}
if (fread (nb, hash_ent_size, 1, filedata->handle) != 1)
{
error (_("Failed to read in number of buckets\n"));
goto no_hash;
}
if (fread (nc, hash_ent_size, 1, filedata->handle) != 1)
{
error (_("Failed to read in number of chains\n"));
goto no_hash;
}
filedata->nbuckets = byte_get (nb, hash_ent_size);
filedata->nchains = byte_get (nc, hash_ent_size);
if (filedata->nbuckets != 0 && filedata->nchains != 0)
{
filedata->buckets = get_dynamic_data (filedata, filedata->nbuckets,
hash_ent_size);
filedata->chains = get_dynamic_data (filedata, filedata->nchains,
hash_ent_size);
if (filedata->buckets != NULL && filedata->chains != NULL)
num_of_syms = filedata->nchains;
}
no_hash:
if (num_of_syms == 0)
{
free (filedata->buckets);
filedata->buckets = NULL;
free (filedata->chains);
filedata->chains = NULL;
filedata->nbuckets = 0;
}
}
if (filedata->dynamic_info_DT_GNU_HASH)
{
unsigned char nb[16];
bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
bfd_vma buckets_vma;
unsigned long hn;
if (fseek (filedata->handle,
(filedata->archive_file_offset
+ offset_from_vma (filedata,
filedata->dynamic_info_DT_GNU_HASH,
sizeof nb)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_gnu_hash;
}
if (fread (nb, 16, 1, filedata->handle) != 1)
{
error (_("Failed to read in number of buckets\n"));
goto no_gnu_hash;
}
filedata->ngnubuckets = byte_get (nb, 4);
filedata->gnusymidx = byte_get (nb + 4, 4);
bitmaskwords = byte_get (nb + 8, 4);
buckets_vma = filedata->dynamic_info_DT_GNU_HASH + 16;
if (is_32bit_elf)
buckets_vma += bitmaskwords * 4;
else
buckets_vma += bitmaskwords * 8;
if (fseek (filedata->handle,
(filedata->archive_file_offset
+ offset_from_vma (filedata, buckets_vma, 4)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_gnu_hash;
}
filedata->gnubuckets
= get_dynamic_data (filedata, filedata->ngnubuckets, 4);
if (filedata->gnubuckets == NULL)
goto no_gnu_hash;
for (i = 0; i < filedata->ngnubuckets; i++)
if (filedata->gnubuckets[i] != 0)
{
if (filedata->gnubuckets[i] < filedata->gnusymidx)
goto no_gnu_hash;
if (maxchain == 0xffffffff || filedata->gnubuckets[i] > maxchain)
maxchain = filedata->gnubuckets[i];
}
if (maxchain == 0xffffffff)
goto no_gnu_hash;
maxchain -= filedata->gnusymidx;
if (fseek (filedata->handle,
(filedata->archive_file_offset
+ offset_from_vma (filedata,
buckets_vma + 4 * (filedata->ngnubuckets
+ maxchain),
4)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_gnu_hash;
}
do
{
if (fread (nb, 4, 1, filedata->handle) != 1)
{
error (_("Failed to determine last chain length\n"));
goto no_gnu_hash;
}
if (maxchain + 1 == 0)
goto no_gnu_hash;
++maxchain;
}
while ((byte_get (nb, 4) & 1) == 0);
if (fseek (filedata->handle,
(filedata->archive_file_offset
+ offset_from_vma (filedata, (buckets_vma
+ 4 * filedata->ngnubuckets),
4)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_gnu_hash;
}
filedata->gnuchains = get_dynamic_data (filedata, maxchain, 4);
filedata->ngnuchains = maxchain;
if (filedata->gnuchains == NULL)
goto no_gnu_hash;
if (filedata->dynamic_info_DT_MIPS_XHASH)
{
if (fseek (filedata->handle,
(filedata->archive_file_offset
+ offset_from_vma (filedata, (buckets_vma
+ 4 * (filedata->ngnubuckets
+ maxchain)), 4)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_gnu_hash;
}
filedata->mipsxlat = get_dynamic_data (filedata, maxchain, 4);
if (filedata->mipsxlat == NULL)
goto no_gnu_hash;
}
for (hn = 0; hn < filedata->ngnubuckets; ++hn)
if (filedata->gnubuckets[hn] != 0)
{
bfd_vma si = filedata->gnubuckets[hn];
bfd_vma off = si - filedata->gnusymidx;
do
{
if (filedata->dynamic_info_DT_MIPS_XHASH)
{
if (off < filedata->ngnuchains
&& filedata->mipsxlat[off] >= num_of_syms)
num_of_syms = filedata->mipsxlat[off] + 1;
}
else
{
if (si >= num_of_syms)
num_of_syms = si + 1;
}
si++;
}
while (off < filedata->ngnuchains
&& (filedata->gnuchains[off++] & 1) == 0);
}
if (num_of_syms == 0)
{
no_gnu_hash:
free (filedata->mipsxlat);
filedata->mipsxlat = NULL;
free (filedata->gnuchains);
filedata->gnuchains = NULL;
free (filedata->gnubuckets);
filedata->gnubuckets = NULL;
filedata->ngnubuckets = 0;
filedata->ngnuchains = 0;
}
}
return num_of_syms;
}
/* Parse and display the contents of the dynamic section. */
static bool
process_dynamic_section (Filedata * filedata)
{
Elf_Internal_Dyn * entry;
if (filedata->dynamic_size <= 1)
{
if (do_dynamic)
{
if (filedata->is_separate)
printf (_("\nThere is no dynamic section in linked file '%s'.\n"),
filedata->file_name);
else
printf (_("\nThere is no dynamic section in this file.\n"));
}
return true;
}
if (!get_dynamic_section (filedata))
return false;
/* Find the appropriate symbol table. */
if (filedata->dynamic_symbols == NULL || do_histogram)
{
unsigned long num_of_syms;
for (entry = filedata->dynamic_section;
entry < filedata->dynamic_section + filedata->dynamic_nent;
++entry)
if (entry->d_tag == DT_SYMTAB)
filedata->dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
else if (entry->d_tag == DT_SYMENT)
filedata->dynamic_info[DT_SYMENT] = entry->d_un.d_val;
else if (entry->d_tag == DT_HASH)
filedata->dynamic_info[DT_HASH] = entry->d_un.d_val;
else if (entry->d_tag == DT_GNU_HASH)
filedata->dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
else if ((filedata->file_header.e_machine == EM_MIPS
|| filedata->file_header.e_machine == EM_MIPS_RS3_LE)
&& entry->d_tag == DT_MIPS_XHASH)
{
filedata->dynamic_info_DT_MIPS_XHASH = entry->d_un.d_val;
filedata->dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
}
num_of_syms = get_num_dynamic_syms (filedata);
if (num_of_syms != 0
&& filedata->dynamic_symbols == NULL
&& filedata->dynamic_info[DT_SYMTAB]
&& filedata->dynamic_info[DT_SYMENT])
{
Elf_Internal_Phdr *seg;
bfd_vma vma = filedata->dynamic_info[DT_SYMTAB];
if (! get_program_headers (filedata))
{
error (_("Cannot interpret virtual addresses "
"without program headers.\n"));
return false;
}
for (seg = filedata->program_headers;
seg < filedata->program_headers + filedata->file_header.e_phnum;
++seg)
{
if (seg->p_type != PT_LOAD)
continue;
if (seg->p_offset + seg->p_filesz > filedata->file_size)
{
/* See PR 21379 for a reproducer. */
error (_("Invalid PT_LOAD entry\n"));
return false;
}
if (vma >= (seg->p_vaddr & -seg->p_align)
&& vma < seg->p_vaddr + seg->p_filesz)
{
/* Since we do not know how big the symbol table is,
we default to reading in up to the end of PT_LOAD
segment and processing that. This is overkill, I
know, but it should work. */
Elf_Internal_Shdr section;
section.sh_offset = (vma - seg->p_vaddr
+ seg->p_offset);
section.sh_size = (num_of_syms
* filedata->dynamic_info[DT_SYMENT]);
section.sh_entsize = filedata->dynamic_info[DT_SYMENT];
if (do_checks
&& filedata->dynamic_symtab_section != NULL
&& ((filedata->dynamic_symtab_section->sh_offset
!= section.sh_offset)
|| (filedata->dynamic_symtab_section->sh_size
!= section.sh_size)
|| (filedata->dynamic_symtab_section->sh_entsize
!= section.sh_entsize)))
warn (_("\
the .dynsym section doesn't match the DT_SYMTAB and DT_SYMENT tags\n"));
section.sh_name = filedata->string_table_length;
filedata->dynamic_symbols
= get_elf_symbols (filedata, &section,
&filedata->num_dynamic_syms);
if (filedata->dynamic_symbols == NULL
|| filedata->num_dynamic_syms != num_of_syms)
{
error (_("Corrupt DT_SYMTAB dynamic entry\n"));
return false;
}
break;
}
}
}
}
/* Similarly find a string table. */
if (filedata->dynamic_strings == NULL)
for (entry = filedata->dynamic_section;
entry < filedata->dynamic_section + filedata->dynamic_nent;
++entry)
{
if (entry->d_tag == DT_STRTAB)
filedata->dynamic_info[DT_STRTAB] = entry->d_un.d_val;
if (entry->d_tag == DT_STRSZ)
filedata->dynamic_info[DT_STRSZ] = entry->d_un.d_val;
if (filedata->dynamic_info[DT_STRTAB]
&& filedata->dynamic_info[DT_STRSZ])
{
unsigned long offset;
bfd_size_type str_tab_len = filedata->dynamic_info[DT_STRSZ];
offset = offset_from_vma (filedata,
filedata->dynamic_info[DT_STRTAB],
str_tab_len);
if (do_checks
&& filedata->dynamic_strtab_section
&& ((filedata->dynamic_strtab_section->sh_offset
!= (file_ptr) offset)
|| (filedata->dynamic_strtab_section->sh_size
!= str_tab_len)))
warn (_("\
the .dynstr section doesn't match the DT_STRTAB and DT_STRSZ tags\n"));
filedata->dynamic_strings
= (char *) get_data (NULL, filedata, offset, 1, str_tab_len,
_("dynamic string table"));
if (filedata->dynamic_strings == NULL)
{
error (_("Corrupt DT_STRTAB dynamic entry\n"));
break;
}
filedata->dynamic_strings_length = str_tab_len;
break;
}
}
/* And find the syminfo section if available. */
if (filedata->dynamic_syminfo == NULL)
{
unsigned long syminsz = 0;
for (entry = filedata->dynamic_section;
entry < filedata->dynamic_section + filedata->dynamic_nent;
++entry)
{
if (entry->d_tag == DT_SYMINENT)
{
/* Note: these braces are necessary to avoid a syntax
error from the SunOS4 C compiler. */
/* PR binutils/17531: A corrupt file can trigger this test.
So do not use an assert, instead generate an error message. */
if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
error (_("Bad value (%d) for SYMINENT entry\n"),
(int) entry->d_un.d_val);
}
else if (entry->d_tag == DT_SYMINSZ)
syminsz = entry->d_un.d_val;
else if (entry->d_tag == DT_SYMINFO)
filedata->dynamic_syminfo_offset
= offset_from_vma (filedata, entry->d_un.d_val, syminsz);
}
if (filedata->dynamic_syminfo_offset != 0 && syminsz != 0)
{
Elf_External_Syminfo * extsyminfo;
Elf_External_Syminfo * extsym;
Elf_Internal_Syminfo * syminfo;
/* There is a syminfo section. Read the data. */
extsyminfo = (Elf_External_Syminfo *)
get_data (NULL, filedata, filedata->dynamic_syminfo_offset,
1, syminsz, _("symbol information"));
if (!extsyminfo)
return false;
if (filedata->dynamic_syminfo != NULL)
{
error (_("Multiple dynamic symbol information sections found\n"));
free (filedata->dynamic_syminfo);
}
filedata->dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
if (filedata->dynamic_syminfo == NULL)
{
error (_("Out of memory allocating %lu bytes "
"for dynamic symbol info\n"),
(unsigned long) syminsz);
return false;
}
filedata->dynamic_syminfo_nent
= syminsz / sizeof (Elf_External_Syminfo);
for (syminfo = filedata->dynamic_syminfo, extsym = extsyminfo;
syminfo < (filedata->dynamic_syminfo
+ filedata->dynamic_syminfo_nent);
++syminfo, ++extsym)
{
syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
syminfo->si_flags = BYTE_GET (extsym->si_flags);
}
free (extsyminfo);
}
}
if (do_dynamic && filedata->dynamic_addr)
{
if (filedata->is_separate)
printf (ngettext ("\nIn linked file '%s' the dynamic section at offset 0x%lx contains %lu entry:\n",
"\nIn linked file '%s' the dynamic section at offset 0x%lx contains %lu entries:\n",
(unsigned long) filedata->dynamic_nent),
filedata->file_name,
filedata->dynamic_addr,
(unsigned long) filedata->dynamic_nent);
else
printf (ngettext ("\nDynamic section at offset 0x%lx contains %lu entry:\n",
"\nDynamic section at offset 0x%lx contains %lu entries:\n",
(unsigned long) filedata->dynamic_nent),
filedata->dynamic_addr,
(unsigned long) filedata->dynamic_nent);
}
if (do_dynamic)
printf (_(" Tag Type Name/Value\n"));
for (entry = filedata->dynamic_section;
entry < filedata->dynamic_section + filedata->dynamic_nent;
entry++)
{
if (do_dynamic)
{
const char * dtype;
putchar (' ');
print_vma (entry->d_tag, FULL_HEX);
dtype = get_dynamic_type (filedata, entry->d_tag);
printf (" (%s)%*s", dtype,
((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
}
switch (entry->d_tag)
{
case DT_FLAGS:
if (do_dynamic)
print_dynamic_flags (entry->d_un.d_val);
break;
case DT_AUXILIARY:
case DT_FILTER:
case DT_CONFIG:
case DT_DEPAUDIT:
case DT_AUDIT:
if (do_dynamic)
{
switch (entry->d_tag)
{
case DT_AUXILIARY:
printf (_("Auxiliary library"));
break;
case DT_FILTER:
printf (_("Filter library"));
break;
case DT_CONFIG:
printf (_("Configuration file"));
break;
case DT_DEPAUDIT:
printf (_("Dependency audit library"));
break;
case DT_AUDIT:
printf (_("Audit library"));
break;
}
if (VALID_DYNAMIC_NAME (filedata, entry->d_un.d_val))
printf (": [%s]\n",
GET_DYNAMIC_NAME (filedata, entry->d_un.d_val));
else
{
printf (": ");
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
}
break;
case DT_FEATURE:
if (do_dynamic)
{
printf (_("Flags:"));
if (entry->d_un.d_val == 0)
printf (_(" None\n"));
else
{
unsigned long int val = entry->d_un.d_val;
if (val & DTF_1_PARINIT)
{
printf (" PARINIT");
val ^= DTF_1_PARINIT;
}
if (val & DTF_1_CONFEXP)
{
printf (" CONFEXP");
val ^= DTF_1_CONFEXP;
}
if (val != 0)
printf (" %lx", val);
puts ("");
}
}
break;
case DT_POSFLAG_1:
if (do_dynamic)
{
printf (_("Flags:"));
if (entry->d_un.d_val == 0)
printf (_(" None\n"));
else
{
unsigned long int val = entry->d_un.d_val;
if (val & DF_P1_LAZYLOAD)
{
printf (" LAZYLOAD");
val ^= DF_P1_LAZYLOAD;
}
if (val & DF_P1_GROUPPERM)
{
printf (" GROUPPERM");
val ^= DF_P1_GROUPPERM;
}
if (val != 0)
printf (" %lx", val);
puts ("");
}
}
break;
case DT_FLAGS_1:
if (do_dynamic)
{
printf (_("Flags:"));
if (entry->d_un.d_val == 0)
printf (_(" None\n"));
else
{
unsigned long int val = entry->d_un.d_val;
if (val & DF_1_NOW)
{
printf (" NOW");
val ^= DF_1_NOW;
}
if (val & DF_1_GLOBAL)
{
printf (" GLOBAL");
val ^= DF_1_GLOBAL;
}
if (val & DF_1_GROUP)
{
printf (" GROUP");
val ^= DF_1_GROUP;
}
if (val & DF_1_NODELETE)
{
printf (" NODELETE");
val ^= DF_1_NODELETE;
}
if (val & DF_1_LOADFLTR)
{
printf (" LOADFLTR");
val ^= DF_1_LOADFLTR;
}
if (val & DF_1_INITFIRST)
{
printf (" INITFIRST");
val ^= DF_1_INITFIRST;
}
if (val & DF_1_NOOPEN)
{
printf (" NOOPEN");
val ^= DF_1_NOOPEN;
}
if (val & DF_1_ORIGIN)
{
printf (" ORIGIN");
val ^= DF_1_ORIGIN;
}
if (val & DF_1_DIRECT)
{
printf (" DIRECT");
val ^= DF_1_DIRECT;
}
if (val & DF_1_TRANS)
{
printf (" TRANS");
val ^= DF_1_TRANS;
}
if (val & DF_1_INTERPOSE)
{
printf (" INTERPOSE");
val ^= DF_1_INTERPOSE;
}
if (val & DF_1_NODEFLIB)
{
printf (" NODEFLIB");
val ^= DF_1_NODEFLIB;
}
if (val & DF_1_NODUMP)
{
printf (" NODUMP");
val ^= DF_1_NODUMP;
}
if (val & DF_1_CONFALT)
{
printf (" CONFALT");
val ^= DF_1_CONFALT;
}
if (val & DF_1_ENDFILTEE)
{
printf (" ENDFILTEE");
val ^= DF_1_ENDFILTEE;
}
if (val & DF_1_DISPRELDNE)
{
printf (" DISPRELDNE");
val ^= DF_1_DISPRELDNE;
}
if (val & DF_1_DISPRELPND)
{
printf (" DISPRELPND");
val ^= DF_1_DISPRELPND;
}
if (val & DF_1_NODIRECT)
{
printf (" NODIRECT");
val ^= DF_1_NODIRECT;
}
if (val & DF_1_IGNMULDEF)
{
printf (" IGNMULDEF");
val ^= DF_1_IGNMULDEF;
}
if (val & DF_1_NOKSYMS)
{
printf (" NOKSYMS");
val ^= DF_1_NOKSYMS;
}
if (val & DF_1_NOHDR)
{
printf (" NOHDR");
val ^= DF_1_NOHDR;
}
if (val & DF_1_EDITED)
{
printf (" EDITED");
val ^= DF_1_EDITED;
}
if (val & DF_1_NORELOC)
{
printf (" NORELOC");
val ^= DF_1_NORELOC;
}
if (val & DF_1_SYMINTPOSE)
{
printf (" SYMINTPOSE");
val ^= DF_1_SYMINTPOSE;
}
if (val & DF_1_GLOBAUDIT)
{
printf (" GLOBAUDIT");
val ^= DF_1_GLOBAUDIT;
}
if (val & DF_1_SINGLETON)
{
printf (" SINGLETON");
val ^= DF_1_SINGLETON;
}
if (val & DF_1_STUB)
{
printf (" STUB");
val ^= DF_1_STUB;
}
if (val & DF_1_PIE)
{
printf (" PIE");
val ^= DF_1_PIE;
}
if (val & DF_1_KMOD)
{
printf (" KMOD");
val ^= DF_1_KMOD;
}
if (val & DF_1_WEAKFILTER)
{
printf (" WEAKFILTER");
val ^= DF_1_WEAKFILTER;
}
if (val & DF_1_NOCOMMON)
{
printf (" NOCOMMON");
val ^= DF_1_NOCOMMON;
}
if (val != 0)
printf (" %lx", val);
puts ("");
}
}
break;
case DT_PLTREL:
filedata->dynamic_info[entry->d_tag] = entry->d_un.d_val;
if (do_dynamic)
puts (get_dynamic_type (filedata, entry->d_un.d_val));
break;
case DT_NULL :
case DT_NEEDED :
case DT_PLTGOT :
case DT_HASH :
case DT_STRTAB :
case DT_SYMTAB :
case DT_RELA :
case DT_INIT :
case DT_FINI :
case DT_SONAME :
case DT_RPATH :
case DT_SYMBOLIC:
case DT_REL :
case DT_DEBUG :
case DT_TEXTREL :
case DT_JMPREL :
case DT_RUNPATH :
filedata->dynamic_info[entry->d_tag] = entry->d_un.d_val;
if (do_dynamic)
{
char * name;
if (VALID_DYNAMIC_NAME (filedata, entry->d_un.d_val))
name = GET_DYNAMIC_NAME (filedata, entry->d_un.d_val);
else
name = NULL;
if (name)
{
switch (entry->d_tag)
{
case DT_NEEDED:
printf (_("Shared library: [%s]"), name);
if (filedata->program_interpreter
&& streq (name, filedata->program_interpreter))
printf (_(" program interpreter"));
break;
case DT_SONAME:
printf (_("Library soname: [%s]"), name);
break;
case DT_RPATH:
printf (_("Library rpath: [%s]"), name);
break;
case DT_RUNPATH:
printf (_("Library runpath: [%s]"), name);
break;
default:
print_vma (entry->d_un.d_val, PREFIX_HEX);
break;
}
}
else
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
break;
case DT_PLTRELSZ:
case DT_RELASZ :
case DT_STRSZ :
case DT_RELSZ :
case DT_RELAENT :
case DT_SYMENT :
case DT_RELENT :
filedata->dynamic_info[entry->d_tag] = entry->d_un.d_val;
/* Fall through. */
case DT_PLTPADSZ:
case DT_MOVEENT :
case DT_MOVESZ :
case DT_INIT_ARRAYSZ:
case DT_FINI_ARRAYSZ:
case DT_GNU_CONFLICTSZ:
case DT_GNU_LIBLISTSZ:
if (do_dynamic)
{
print_vma (entry->d_un.d_val, UNSIGNED);
printf (_(" (bytes)\n"));
}
break;
case DT_VERDEFNUM:
case DT_VERNEEDNUM:
case DT_RELACOUNT:
case DT_RELCOUNT:
if (do_dynamic)
{
print_vma (entry->d_un.d_val, UNSIGNED);
putchar ('\n');
}
break;
case DT_SYMINSZ:
case DT_SYMINENT:
case DT_SYMINFO:
case DT_USED:
case DT_INIT_ARRAY:
case DT_FINI_ARRAY:
if (do_dynamic)
{
if (entry->d_tag == DT_USED
&& VALID_DYNAMIC_NAME (filedata, entry->d_un.d_val))
{
char * name = GET_DYNAMIC_NAME (filedata, entry->d_un.d_val);
if (*name)
{
printf (_("Not needed object: [%s]\n"), name);
break;
}
}
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
break;
case DT_BIND_NOW:
/* The value of this entry is ignored. */
if (do_dynamic)
putchar ('\n');
break;
case DT_GNU_PRELINKED:
if (do_dynamic)
{
struct tm * tmp;
time_t atime = entry->d_un.d_val;
tmp = gmtime (&atime);
/* PR 17533 file: 041-1244816-0.004. */
if (tmp == NULL)
printf (_("<corrupt time val: %lx"),
(unsigned long) atime);
else
printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
}
break;
case DT_GNU_HASH:
filedata->dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
if (do_dynamic)
{
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
break;
case DT_GNU_FLAGS_1:
if (do_dynamic)
{
printf (_("Flags:"));
if (entry->d_un.d_val == 0)
printf (_(" None\n"));
else
{
unsigned long int val = entry->d_un.d_val;
if (val & DF_GNU_1_UNIQUE)
{
printf (" UNIQUE");
val ^= DF_GNU_1_UNIQUE;
}
if (val != 0)
printf (" %lx", val);
puts ("");
}
}
break;
default:
if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
filedata->version_info[DT_VERSIONTAGIDX (entry->d_tag)]
= entry->d_un.d_val;
if (do_dynamic)
{
switch (filedata->file_header.e_machine)
{
case EM_AARCH64:
dynamic_section_aarch64_val (entry);
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
dynamic_section_mips_val (filedata, entry);
break;
case EM_PARISC:
dynamic_section_parisc_val (entry);
break;
case EM_IA_64:
dynamic_section_ia64_val (entry);
break;
default:
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
}
break;
}
}
return true;
}
static char *
get_ver_flags (unsigned int flags)
{
static char buff[128];
buff[0] = 0;
if (flags == 0)
return _("none");
if (flags & VER_FLG_BASE)
strcat (buff, "BASE");
if (flags & VER_FLG_WEAK)
{
if (flags & VER_FLG_BASE)
strcat (buff, " | ");
strcat (buff, "WEAK");
}
if (flags & VER_FLG_INFO)
{
if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
strcat (buff, " | ");
strcat (buff, "INFO");
}
if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
{
if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
strcat (buff, " | ");
strcat (buff, _("<unknown>"));
}
return buff;
}
/* Display the contents of the version sections. */
static bool
process_version_sections (Filedata * filedata)
{
Elf_Internal_Shdr * section;
unsigned i;
bool found = false;
if (! do_version)
return true;
for (i = 0, section = filedata->section_headers;
i < filedata->file_header.e_shnum;
i++, section++)
{
switch (section->sh_type)
{
case SHT_GNU_verdef:
{
Elf_External_Verdef * edefs;
unsigned long idx;
unsigned long cnt;
char * endbuf;
found = true;
if (filedata->is_separate)
printf (ngettext ("\nIn linked file '%s' the version definition section '%s' contains %u entry:\n",
"\nIn linked file '%s' the version definition section '%s' contains %u entries:\n",
section->sh_info),
filedata->file_name,
printable_section_name (filedata, section),
section->sh_info);
else
printf (ngettext ("\nVersion definition section '%s' "
"contains %u entry:\n",
"\nVersion definition section '%s' "
"contains %u entries:\n",
section->sh_info),
printable_section_name (filedata, section),
section->sh_info);
printf (_(" Addr: 0x"));
printf_vma (section->sh_addr);
printf (_(" Offset: %#08lx Link: %u (%s)\n"),
(unsigned long) section->sh_offset, section->sh_link,
printable_section_name_from_index (filedata, section->sh_link));
edefs = (Elf_External_Verdef *)
get_data (NULL, filedata, section->sh_offset, 1,section->sh_size,
_("version definition section"));
if (!edefs)
break;
endbuf = (char *) edefs + section->sh_size;
for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
{
char * vstart;
Elf_External_Verdef * edef;
Elf_Internal_Verdef ent;
Elf_External_Verdaux * eaux;
Elf_Internal_Verdaux aux;
unsigned long isum;
int j;
vstart = ((char *) edefs) + idx;
if (vstart + sizeof (*edef) > endbuf)
break;
edef = (Elf_External_Verdef *) vstart;
ent.vd_version = BYTE_GET (edef->vd_version);
ent.vd_flags = BYTE_GET (edef->vd_flags);
ent.vd_ndx = BYTE_GET (edef->vd_ndx);
ent.vd_cnt = BYTE_GET (edef->vd_cnt);
ent.vd_hash = BYTE_GET (edef->vd_hash);
ent.vd_aux = BYTE_GET (edef->vd_aux);
ent.vd_next = BYTE_GET (edef->vd_next);
printf (_(" %#06lx: Rev: %d Flags: %s"),
idx, ent.vd_version, get_ver_flags (ent.vd_flags));
printf (_(" Index: %d Cnt: %d "),
ent.vd_ndx, ent.vd_cnt);
/* Check for overflow. */
if (ent.vd_aux > (size_t) (endbuf - vstart))
break;
vstart += ent.vd_aux;
if (vstart + sizeof (*eaux) > endbuf)
break;
eaux = (Elf_External_Verdaux *) vstart;
aux.vda_name = BYTE_GET (eaux->vda_name);
aux.vda_next = BYTE_GET (eaux->vda_next);
if (VALID_DYNAMIC_NAME (filedata, aux.vda_name))
printf (_("Name: %s\n"),
GET_DYNAMIC_NAME (filedata, aux.vda_name));
else
printf (_("Name index: %ld\n"), aux.vda_name);
isum = idx + ent.vd_aux;
for (j = 1; j < ent.vd_cnt; j++)
{
if (aux.vda_next < sizeof (*eaux)
&& !(j == ent.vd_cnt - 1 && aux.vda_next == 0))
{
warn (_("Invalid vda_next field of %lx\n"),
aux.vda_next);
j = ent.vd_cnt;
break;
}
/* Check for overflow. */
if (aux.vda_next > (size_t) (endbuf - vstart))
break;
isum += aux.vda_next;
vstart += aux.vda_next;
if (vstart + sizeof (*eaux) > endbuf)
break;
eaux = (Elf_External_Verdaux *) vstart;
aux.vda_name = BYTE_GET (eaux->vda_name);
aux.vda_next = BYTE_GET (eaux->vda_next);
if (VALID_DYNAMIC_NAME (filedata, aux.vda_name))
printf (_(" %#06lx: Parent %d: %s\n"),
isum, j,
GET_DYNAMIC_NAME (filedata, aux.vda_name));
else
printf (_(" %#06lx: Parent %d, name index: %ld\n"),
isum, j, aux.vda_name);
}
if (j < ent.vd_cnt)
printf (_(" Version def aux past end of section\n"));
/* PR 17531:
file: id:000001,src:000172+005151,op:splice,rep:2. */
if (ent.vd_next < sizeof (*edef)
&& !(cnt == section->sh_info - 1 && ent.vd_next == 0))
{
warn (_("Invalid vd_next field of %lx\n"), ent.vd_next);
cnt = section->sh_info;
break;
}
if (ent.vd_next > (size_t) (endbuf - ((char *) edefs + idx)))
break;
idx += ent.vd_next;
}
if (cnt < section->sh_info)
printf (_(" Version definition past end of section\n"));
free (edefs);
}
break;
case SHT_GNU_verneed:
{
Elf_External_Verneed * eneed;
unsigned long idx;
unsigned long cnt;
char * endbuf;
found = true;
if (filedata->is_separate)
printf (ngettext ("\nIn linked file '%s' the version needs section '%s' contains %u entry:\n",
"\nIn linked file '%s' the version needs section '%s' contains %u entries:\n",
section->sh_info),
filedata->file_name,
printable_section_name (filedata, section),
section->sh_info);
else
printf (ngettext ("\nVersion needs section '%s' "
"contains %u entry:\n",
"\nVersion needs section '%s' "
"contains %u entries:\n",
section->sh_info),
printable_section_name (filedata, section),
section->sh_info);
printf (_(" Addr: 0x"));
printf_vma (section->sh_addr);
printf (_(" Offset: %#08lx Link: %u (%s)\n"),
(unsigned long) section->sh_offset, section->sh_link,
printable_section_name_from_index (filedata, section->sh_link));
eneed = (Elf_External_Verneed *) get_data (NULL, filedata,
section->sh_offset, 1,
section->sh_size,
_("Version Needs section"));
if (!eneed)
break;
endbuf = (char *) eneed + section->sh_size;
for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
{
Elf_External_Verneed * entry;
Elf_Internal_Verneed ent;
unsigned long isum;
int j;
char * vstart;
vstart = ((char *) eneed) + idx;
if (vstart + sizeof (*entry) > endbuf)
break;
entry = (Elf_External_Verneed *) vstart;
ent.vn_version = BYTE_GET (entry->vn_version);
ent.vn_cnt = BYTE_GET (entry->vn_cnt);
ent.vn_file = BYTE_GET (entry->vn_file);
ent.vn_aux = BYTE_GET (entry->vn_aux);
ent.vn_next = BYTE_GET (entry->vn_next);
printf (_(" %#06lx: Version: %d"), idx, ent.vn_version);
if (VALID_DYNAMIC_NAME (filedata, ent.vn_file))
printf (_(" File: %s"),
GET_DYNAMIC_NAME (filedata, ent.vn_file));
else
printf (_(" File: %lx"), ent.vn_file);
printf (_(" Cnt: %d\n"), ent.vn_cnt);
/* Check for overflow. */
if (ent.vn_aux > (size_t) (endbuf - vstart))
break;
vstart += ent.vn_aux;
for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
{
Elf_External_Vernaux * eaux;
Elf_Internal_Vernaux aux;
if (vstart + sizeof (*eaux) > endbuf)
break;
eaux = (Elf_External_Vernaux *) vstart;
aux.vna_hash = BYTE_GET (eaux->vna_hash);
aux.vna_flags = BYTE_GET (eaux->vna_flags);
aux.vna_other = BYTE_GET (eaux->vna_other);
aux.vna_name = BYTE_GET (eaux->vna_name);
aux.vna_next = BYTE_GET (eaux->vna_next);
if (VALID_DYNAMIC_NAME (filedata, aux.vna_name))
printf (_(" %#06lx: Name: %s"),
isum, GET_DYNAMIC_NAME (filedata, aux.vna_name));
else
printf (_(" %#06lx: Name index: %lx"),
isum, aux.vna_name);
printf (_(" Flags: %s Version: %d\n"),
get_ver_flags (aux.vna_flags), aux.vna_other);
if (aux.vna_next < sizeof (*eaux)
&& !(j == ent.vn_cnt - 1 && aux.vna_next == 0))
{
warn (_("Invalid vna_next field of %lx\n"),
aux.vna_next);
j = ent.vn_cnt;
break;
}
/* Check for overflow. */
if (aux.vna_next > (size_t) (endbuf - vstart))
break;
isum += aux.vna_next;
vstart += aux.vna_next;
}
if (j < ent.vn_cnt)
warn (_("Missing Version Needs auxiliary information\n"));
if (ent.vn_next < sizeof (*entry)
&& !(cnt == section->sh_info - 1 && ent.vn_next == 0))
{
warn (_("Invalid vn_next field of %lx\n"), ent.vn_next);
cnt = section->sh_info;
break;
}
if (ent.vn_next > (size_t) (endbuf - ((char *) eneed + idx)))
break;
idx += ent.vn_next;
}
if (cnt < section->sh_info)
warn (_("Missing Version Needs information\n"));
free (eneed);
}
break;
case SHT_GNU_versym:
{
Elf_Internal_Shdr * link_section;
size_t total;
unsigned int cnt;
unsigned char * edata;
unsigned short * data;
char * strtab;
Elf_Internal_Sym * symbols;
Elf_Internal_Shdr * string_sec;
unsigned long num_syms;
long off;
if (section->sh_link >= filedata->file_header.e_shnum)
break;
link_section = filedata->section_headers + section->sh_link;
total = section->sh_size / sizeof (Elf_External_Versym);
if (link_section->sh_link >= filedata->file_header.e_shnum)
break;
found = true;
symbols = get_elf_symbols (filedata, link_section, & num_syms);
if (symbols == NULL)
break;
string_sec = filedata->section_headers + link_section->sh_link;
strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1,
string_sec->sh_size,
_("version string table"));
if (!strtab)
{
free (symbols);
break;
}
if (filedata->is_separate)
printf (ngettext ("\nIn linked file '%s' the version symbols section '%s' contains %lu entry:\n",
"\nIn linked file '%s' the version symbols section '%s' contains %lu entries:\n",
total),
filedata->file_name,
printable_section_name (filedata, section),
(unsigned long) total);
else
printf (ngettext ("\nVersion symbols section '%s' "
"contains %lu entry:\n",
"\nVersion symbols section '%s' "
"contains %lu entries:\n",
total),
printable_section_name (filedata, section),
(unsigned long) total);
printf (_(" Addr: 0x"));
printf_vma (section->sh_addr);
printf (_(" Offset: %#08lx Link: %u (%s)\n"),
(unsigned long) section->sh_offset, section->sh_link,
printable_section_name (filedata, link_section));
off = offset_from_vma (filedata,
filedata->version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
total * sizeof (short));
edata = (unsigned char *) get_data (NULL, filedata, off,
sizeof (short), total,
_("version symbol data"));
if (!edata)
{
free (strtab);
free (symbols);
break;
}
data = (short unsigned int *) cmalloc (total, sizeof (short));
for (cnt = total; cnt --;)
data[cnt] = byte_get (edata + cnt * sizeof (short),
sizeof (short));
free (edata);
for (cnt = 0; cnt < total; cnt += 4)
{
int j, nn;
char *name;
char *invalid = _("*invalid*");
printf (" %03x:", cnt);
for (j = 0; (j < 4) && (cnt + j) < total; ++j)
switch (data[cnt + j])
{
case 0:
fputs (_(" 0 (*local*) "), stdout);
break;
case 1:
fputs (_(" 1 (*global*) "), stdout);
break;
default:
nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
/* If this index value is greater than the size of the symbols
array, break to avoid an out-of-bounds read. */
if ((unsigned long)(cnt + j) >= num_syms)
{
warn (_("invalid index into symbol array\n"));
break;
}
name = NULL;
if (filedata->version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
{
Elf_Internal_Verneed ivn;
unsigned long offset;
offset = offset_from_vma
(filedata,
filedata->version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
sizeof (Elf_External_Verneed));
do
{
Elf_Internal_Vernaux ivna;
Elf_External_Verneed evn;
Elf_External_Vernaux evna;
unsigned long a_off;
if (get_data (&evn, filedata, offset, sizeof (evn), 1,
_("version need")) == NULL)
break;
ivn.vn_aux = BYTE_GET (evn.vn_aux);
ivn.vn_next = BYTE_GET (evn.vn_next);
a_off = offset + ivn.vn_aux;
do
{
if (get_data (&evna, filedata, a_off, sizeof (evna),
1, _("version need aux (2)")) == NULL)
{
ivna.vna_next = 0;
ivna.vna_other = 0;
}
else
{
ivna.vna_next = BYTE_GET (evna.vna_next);
ivna.vna_other = BYTE_GET (evna.vna_other);
}
a_off += ivna.vna_next;
}
while (ivna.vna_other != data[cnt + j]
&& ivna.vna_next != 0);
if (ivna.vna_other == data[cnt + j])
{
ivna.vna_name = BYTE_GET (evna.vna_name);
if (ivna.vna_name >= string_sec->sh_size)
name = invalid;
else
name = strtab + ivna.vna_name;
break;
}
offset += ivn.vn_next;
}
while (ivn.vn_next);
}
if (data[cnt + j] != 0x8001
&& filedata->version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
{
Elf_Internal_Verdef ivd;
Elf_External_Verdef evd;
unsigned long offset;
offset = offset_from_vma
(filedata,
filedata->version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
sizeof evd);
do
{
if (get_data (&evd, filedata, offset, sizeof (evd), 1,
_("version def")) == NULL)
{
ivd.vd_next = 0;
/* PR 17531: file: 046-1082287-0.004. */
ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
break;
}
else
{
ivd.vd_next = BYTE_GET (evd.vd_next);
ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
}
offset += ivd.vd_next;
}
while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
&& ivd.vd_next != 0);
if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
{
Elf_External_Verdaux evda;
Elf_Internal_Verdaux ivda;
ivd.vd_aux = BYTE_GET (evd.vd_aux);
if (get_data (&evda, filedata,
offset - ivd.vd_next + ivd.vd_aux,
sizeof (evda), 1,
_("version def aux")) == NULL)
break;
ivda.vda_name = BYTE_GET (evda.vda_name);
if (ivda.vda_name >= string_sec->sh_size)
name = invalid;
else if (name != NULL && name != invalid)
name = _("*both*");
else
name = strtab + ivda.vda_name;
}
}
if (name != NULL)
nn += printf ("(%s%-*s",
name,
12 - (int) strlen (name),
")");
if (nn < 18)
printf ("%*c", 18 - nn, ' ');
}
putchar ('\n');
}
free (data);
free (strtab);
free (symbols);
}
break;
default:
break;
}
}
if (! found)
{
if (filedata->is_separate)
printf (_("\nNo version information found in linked file '%s'.\n"),
filedata->file_name);
else
printf (_("\nNo version information found in this file.\n"));
}
return true;
}
static const char *
get_symbol_binding (Filedata * filedata, unsigned int binding)
{
static char buff[64];
switch (binding)
{
case STB_LOCAL: return "LOCAL";
case STB_GLOBAL: return "GLOBAL";
case STB_WEAK: return "WEAK";
default:
if (binding >= STB_LOPROC && binding <= STB_HIPROC)
snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
binding);
else if (binding >= STB_LOOS && binding <= STB_HIOS)
{
if (binding == STB_GNU_UNIQUE
&& filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU)
return "UNIQUE";
snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
}
else
snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
return buff;
}
}
static const char *
get_symbol_type (Filedata * filedata, unsigned int type)
{
static char buff[64];
switch (type)
{
case STT_NOTYPE: return "NOTYPE";
case STT_OBJECT: return "OBJECT";
case STT_FUNC: return "FUNC";
case STT_SECTION: return "SECTION";
case STT_FILE: return "FILE";
case STT_COMMON: return "COMMON";
case STT_TLS: return "TLS";
case STT_RELC: return "RELC";
case STT_SRELC: return "SRELC";
default:
if (type >= STT_LOPROC && type <= STT_HIPROC)
{
if (filedata->file_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
return "THUMB_FUNC";
if (filedata->file_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
return "REGISTER";
if (filedata->file_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
return "PARISC_MILLI";
snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
}
else if (type >= STT_LOOS && type <= STT_HIOS)
{
if (filedata->file_header.e_machine == EM_PARISC)
{
if (type == STT_HP_OPAQUE)
return "HP_OPAQUE";
if (type == STT_HP_STUB)
return "HP_STUB";
}
if (type == STT_GNU_IFUNC
&& (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU
|| filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD))
return "IFUNC";
snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
}
else
snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
return buff;
}
}
static const char *
get_symbol_visibility (unsigned int visibility)
{
switch (visibility)
{
case STV_DEFAULT: return "DEFAULT";
case STV_INTERNAL: return "INTERNAL";
case STV_HIDDEN: return "HIDDEN";
case STV_PROTECTED: return "PROTECTED";
default:
error (_("Unrecognized visibility value: %u\n"), visibility);
return _("<unknown>");
}
}
static const char *
get_alpha_symbol_other (unsigned int other)
{
switch (other)
{
case STO_ALPHA_NOPV: return "NOPV";
case STO_ALPHA_STD_GPLOAD: return "STD GPLOAD";
default:
error (_("Unrecognized alpha specific other value: %u\n"), other);
return _("<unknown>");
}
}
static const char *
get_solaris_symbol_visibility (unsigned int visibility)
{
switch (visibility)
{
case 4: return "EXPORTED";
case 5: return "SINGLETON";
case 6: return "ELIMINATE";
default: return get_symbol_visibility (visibility);
}
}
static const char *
get_aarch64_symbol_other (unsigned int other)
{
static char buf[32];
if (other & STO_AARCH64_VARIANT_PCS)
{
other &= ~STO_AARCH64_VARIANT_PCS;
if (other == 0)
return "VARIANT_PCS";
snprintf (buf, sizeof buf, "VARIANT_PCS | %x", other);
return buf;
}
return NULL;
}
static const char *
get_mips_symbol_other (unsigned int other)
{
switch (other)
{
case STO_OPTIONAL: return "OPTIONAL";
case STO_MIPS_PLT: return "MIPS PLT";
case STO_MIPS_PIC: return "MIPS PIC";
case STO_MICROMIPS: return "MICROMIPS";
case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
case STO_MIPS16: return "MIPS16";
default: return NULL;
}
}
static const char *
get_ia64_symbol_other (Filedata * filedata, unsigned int other)
{
if (is_ia64_vms (filedata))
{
static char res[32];
res[0] = 0;
/* Function types is for images and .STB files only. */
switch (filedata->file_header.e_type)
{
case ET_DYN:
case ET_EXEC:
switch (VMS_ST_FUNC_TYPE (other))
{
case VMS_SFT_CODE_ADDR:
strcat (res, " CA");
break;
case VMS_SFT_SYMV_IDX:
strcat (res, " VEC");
break;
case VMS_SFT_FD:
strcat (res, " FD");
break;
case VMS_SFT_RESERVE:
strcat (res, " RSV");
break;
default:
warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
VMS_ST_FUNC_TYPE (other));
strcat (res, " <unknown>");
break;
}
break;
default:
break;
}
switch (VMS_ST_LINKAGE (other))
{
case VMS_STL_IGNORE:
strcat (res, " IGN");
break;
case VMS_STL_RESERVE:
strcat (res, " RSV");
break;
case VMS_STL_STD:
strcat (res, " STD");
break;
case VMS_STL_LNK:
strcat (res, " LNK");
break;
default:
warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
VMS_ST_LINKAGE (other));
strcat (res, " <unknown>");
break;
}
if (res[0] != 0)
return res + 1;
else
return res;
}
return NULL;
}
static const char *
get_ppc64_symbol_other (unsigned int other)
{
if ((other & ~STO_PPC64_LOCAL_MASK) != 0)
return NULL;
other >>= STO_PPC64_LOCAL_BIT;
if (other <= 6)
{
static char buf[64];
if (other >= 2)
other = ppc64_decode_local_entry (other);
snprintf (buf, sizeof buf, _("<localentry>: %d"), other);
return buf;
}
return NULL;
}
static const char *
get_symbol_other (Filedata * filedata, unsigned int other)
{
const char * result = NULL;
static char buff [64];
if (other == 0)
return "";
switch (filedata->file_header.e_machine)
{
case EM_ALPHA:
result = get_alpha_symbol_other (other);
break;
case EM_AARCH64:
result = get_aarch64_symbol_other (other);
break;
case EM_MIPS:
result = get_mips_symbol_other (other);
break;
case EM_IA_64:
result = get_ia64_symbol_other (filedata, other);
break;
case EM_PPC64:
result = get_ppc64_symbol_other (other);
break;
default:
result = NULL;
break;
}
if (result)
return result;
snprintf (buff, sizeof buff, _("<other>: %x"), other);
return buff;
}
static const char *
get_symbol_index_type (Filedata * filedata, unsigned int type)
{
static char buff[32];
switch (type)
{
case SHN_UNDEF: return "UND";
case SHN_ABS: return "ABS";
case SHN_COMMON: return "COM";
default:
if (type == SHN_IA_64_ANSI_COMMON
&& filedata->file_header.e_machine == EM_IA_64
&& filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
return "ANSI_COM";
else if ((filedata->file_header.e_machine == EM_X86_64
|| filedata->file_header.e_machine == EM_L1OM
|| filedata->file_header.e_machine == EM_K1OM)
&& type == SHN_X86_64_LCOMMON)
return "LARGE_COM";
else if ((type == SHN_MIPS_SCOMMON
&& filedata->file_header.e_machine == EM_MIPS)
|| (type == SHN_TIC6X_SCOMMON
&& filedata->file_header.e_machine == EM_TI_C6000))
return "SCOM";
else if (type == SHN_MIPS_SUNDEFINED
&& filedata->file_header.e_machine == EM_MIPS)
return "SUND";
else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
sprintf (buff, "PRC[0x%04x]", type & 0xffff);
else if (type >= SHN_LOOS && type <= SHN_HIOS)
sprintf (buff, "OS [0x%04x]", type & 0xffff);
else if (type >= SHN_LORESERVE)
sprintf (buff, "RSV[0x%04x]", type & 0xffff);
else if (filedata->file_header.e_shnum != 0
&& type >= filedata->file_header.e_shnum)
sprintf (buff, _("bad section index[%3d]"), type);
else
sprintf (buff, "%3d", type);
break;
}
return buff;
}
static const char *
get_symbol_version_string (Filedata * filedata,
bool is_dynsym,
const char * strtab,
unsigned long int strtab_size,
unsigned int si,
Elf_Internal_Sym * psym,
enum versioned_symbol_info * sym_info,
unsigned short * vna_other)
{
unsigned char data[2];
unsigned short vers_data;
unsigned long offset;
unsigned short max_vd_ndx;
if (!is_dynsym
|| filedata->version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
return NULL;
offset = offset_from_vma (filedata,
filedata->version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
sizeof data + si * sizeof (vers_data));
if (get_data (&data, filedata, offset + si * sizeof (vers_data),
sizeof (data), 1, _("version data")) == NULL)
return NULL;
vers_data = byte_get (data, 2);
if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data == 0)
return NULL;
*sym_info = (vers_data & VERSYM_HIDDEN) != 0 ? symbol_hidden : symbol_public;
max_vd_ndx = 0;
/* Usually we'd only see verdef for defined symbols, and verneed for
undefined symbols. However, symbols defined by the linker in
.dynbss for variables copied from a shared library in order to
avoid text relocations are defined yet have verneed. We could
use a heuristic to detect the special case, for example, check
for verneed first on symbols defined in SHT_NOBITS sections, but
it is simpler and more reliable to just look for both verdef and
verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
if (psym->st_shndx != SHN_UNDEF
&& vers_data != 0x8001
&& filedata->version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
{
Elf_Internal_Verdef ivd;
Elf_Internal_Verdaux ivda;
Elf_External_Verdaux evda;
unsigned long off;
off = offset_from_vma (filedata,
filedata->version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
sizeof (Elf_External_Verdef));
do
{
Elf_External_Verdef evd;
if (get_data (&evd, filedata, off, sizeof (evd), 1,
_("version def")) == NULL)
{
ivd.vd_ndx = 0;
ivd.vd_aux = 0;
ivd.vd_next = 0;
ivd.vd_flags = 0;
}
else
{
ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
ivd.vd_aux = BYTE_GET (evd.vd_aux);
ivd.vd_next = BYTE_GET (evd.vd_next);
ivd.vd_flags = BYTE_GET (evd.vd_flags);
}
if ((ivd.vd_ndx & VERSYM_VERSION) > max_vd_ndx)
max_vd_ndx = ivd.vd_ndx & VERSYM_VERSION;
off += ivd.vd_next;
}
while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
{
if (ivd.vd_ndx == 1 && ivd.vd_flags == VER_FLG_BASE)
return NULL;
off -= ivd.vd_next;
off += ivd.vd_aux;
if (get_data (&evda, filedata, off, sizeof (evda), 1,
_("version def aux")) != NULL)
{
ivda.vda_name = BYTE_GET (evda.vda_name);
if (psym->st_name != ivda.vda_name)
return (ivda.vda_name < strtab_size
? strtab + ivda.vda_name : _("<corrupt>"));
}
}
}
if (filedata->version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
{
Elf_External_Verneed evn;
Elf_Internal_Verneed ivn;
Elf_Internal_Vernaux ivna;
offset = offset_from_vma (filedata,
filedata->version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
sizeof evn);
do
{
unsigned long vna_off;
if (get_data (&evn, filedata, offset, sizeof (evn), 1,
_("version need")) == NULL)
{
ivna.vna_next = 0;
ivna.vna_other = 0;
ivna.vna_name = 0;
break;
}
ivn.vn_aux = BYTE_GET (evn.vn_aux);
ivn.vn_next = BYTE_GET (evn.vn_next);
vna_off = offset + ivn.vn_aux;
do
{
Elf_External_Vernaux evna;
if (get_data (&evna, filedata, vna_off, sizeof (evna), 1,
_("version need aux (3)")) == NULL)
{
ivna.vna_next = 0;
ivna.vna_other = 0;
ivna.vna_name = 0;
}
else
{
ivna.vna_other = BYTE_GET (evna.vna_other);
ivna.vna_next = BYTE_GET (evna.vna_next);
ivna.vna_name = BYTE_GET (evna.vna_name);
}
vna_off += ivna.vna_next;
}
while (ivna.vna_other != vers_data && ivna.vna_next != 0);
if (ivna.vna_other == vers_data)
break;
offset += ivn.vn_next;
}
while (ivn.vn_next != 0);
if (ivna.vna_other == vers_data)
{
*sym_info = symbol_undefined;
*vna_other = ivna.vna_other;
return (ivna.vna_name < strtab_size
? strtab + ivna.vna_name : _("<corrupt>"));
}
else if ((max_vd_ndx || (vers_data & VERSYM_VERSION) != 1)
&& (vers_data & VERSYM_VERSION) > max_vd_ndx)
return _("<corrupt>");
}
return NULL;
}
/* Display a symbol size on stdout. Format is based on --sym-base setting. */
static unsigned int
print_dynamic_symbol_size (bfd_vma vma, int base)
{
switch (base)
{
case 8:
return print_vma (vma, OCTAL_5);
case 10:
return print_vma (vma, UNSIGNED_5);
case 16:
return print_vma (vma, PREFIX_HEX_5);
case 0:
default:
return print_vma (vma, DEC_5);
}
}
static void
print_dynamic_symbol (Filedata *filedata, unsigned long si,
Elf_Internal_Sym *symtab,
Elf_Internal_Shdr *section,
char *strtab, size_t strtab_size)
{
const char *version_string;
enum versioned_symbol_info sym_info;
unsigned short vna_other;
bool is_valid;
const char * sstr;
Elf_Internal_Sym *psym = symtab + si;
printf ("%6ld: ", si);
print_vma (psym->st_value, LONG_HEX);
putchar (' ');
print_dynamic_symbol_size (psym->st_size, sym_base);
printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)));
printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info)));
if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
else
{
unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
printf (" %-7s", get_symbol_visibility (vis));
/* Check to see if any other bits in the st_other field are set.
Note - displaying this information disrupts the layout of the
table being generated, but for the moment this case is very rare. */
if (psym->st_other ^ vis)
printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis));
}
printf (" %4s ", get_symbol_index_type (filedata, psym->st_shndx));
if (ELF_ST_TYPE (psym->st_info) == STT_SECTION
&& psym->st_shndx < filedata->file_header.e_shnum
&& psym->st_name == 0)
{
is_valid = SECTION_NAME_VALID (filedata->section_headers + psym->st_shndx);
sstr = is_valid ?
SECTION_NAME_PRINT (filedata->section_headers + psym->st_shndx)
: _("<corrupt>");
}
else
{
is_valid = VALID_SYMBOL_NAME (strtab, strtab_size, psym->st_name);
sstr = is_valid ? strtab + psym->st_name : _("<corrupt>");
}
version_string
= get_symbol_version_string (filedata,
(section == NULL
|| section->sh_type == SHT_DYNSYM),
strtab, strtab_size, si,
psym, &sym_info, &vna_other);
int len_avail = 21;
if (! do_wide && version_string != NULL)
{
char buffer[16];
len_avail -= 1 + strlen (version_string);
if (sym_info == symbol_undefined)
len_avail -= sprintf (buffer," (%d)", vna_other);
else if (sym_info != symbol_hidden)
len_avail -= 1;
}
print_symbol (len_avail, sstr);
if (version_string)
{
if (sym_info == symbol_undefined)
printf ("@%s (%d)", version_string, vna_other);
else
printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
version_string);
}
putchar ('\n');
if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
&& section != NULL
&& si >= section->sh_info
/* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
&& filedata->file_header.e_machine != EM_MIPS
/* Solaris binaries have been found to violate this requirement as
well. Not sure if this is a bug or an ABI requirement. */
&& filedata->file_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
warn (_("local symbol %lu found at index >= %s's sh_info value of %u\n"),
si, printable_section_name (filedata, section), section->sh_info);
}
static const char *
get_lto_kind (unsigned int kind)
{
switch (kind)
{
case 0: return "DEF";
case 1: return "WEAKDEF";
case 2: return "UNDEF";
case 3: return "WEAKUNDEF";
case 4: return "COMMON";
default:
break;
}
static char buffer[30];
error (_("Unknown LTO symbol definition encountered: %u\n"), kind);
sprintf (buffer, "<unknown: %u>", kind);
return buffer;
}
static const char *
get_lto_visibility (unsigned int visibility)
{
switch (visibility)
{
case 0: return "DEFAULT";
case 1: return "PROTECTED";
case 2: return "INTERNAL";
case 3: return "HIDDEN";
default:
break;
}
static char buffer[30];
error (_("Unknown LTO symbol visibility encountered: %u\n"), visibility);
sprintf (buffer, "<unknown: %u>", visibility);
return buffer;
}
static const char *
get_lto_sym_type (unsigned int sym_type)
{
switch (sym_type)
{
case 0: return "UNKNOWN";
case 1: return "FUNCTION";
case 2: return "VARIABLE";
default:
break;
}
static char buffer[30];
error (_("Unknown LTO symbol type encountered: %u\n"), sym_type);
sprintf (buffer, "<unknown: %u>", sym_type);
return buffer;
}
/* Display an LTO format symbol table.
FIXME: The format of LTO symbol tables is not formalized.
So this code could need changing in the future. */
static bool
display_lto_symtab (Filedata * filedata,
Elf_Internal_Shdr * section)
{
if (section->sh_size == 0)
{
if (filedata->is_separate)
printf (_("\nThe LTO Symbol table section '%s' in linked file '%s' is empty!\n"),
printable_section_name (filedata, section),
filedata->file_name);
else
printf (_("\nLTO Symbol table '%s' is empty!\n"),
printable_section_name (filedata, section));
return true;
}
if (section->sh_size > filedata->file_size)
{
error (_("Section %s has an invalid sh_size of 0x%lx\n"),
printable_section_name (filedata, section),
(unsigned long) section->sh_size);
return false;
}
void * alloced_data = get_data (NULL, filedata, section->sh_offset,
section->sh_size, 1, _("LTO symbols"));
if (alloced_data == NULL)
return false;
/* Look for extended data for the symbol table. */
Elf_Internal_Shdr * ext;
void * ext_data_orig = NULL;
char * ext_data = NULL;
char * ext_data_end = NULL;
char * ext_name = NULL;
if (asprintf (& ext_name, ".gnu.lto_.ext_symtab.%s",
SECTION_NAME (section) + sizeof (".gnu.lto_.symtab.") - 1) > 0
&& ext_name != NULL /* Paranoia. */
&& (ext = find_section (filedata, ext_name)) != NULL)
{
if (ext->sh_size < 3)
error (_("LTO Symbol extension table '%s' is empty!\n"),
printable_section_name (filedata, ext));
else
{
ext_data_orig = ext_data = get_data (NULL, filedata, ext->sh_offset,
ext->sh_size, 1,
_("LTO ext symbol data"));
if (ext_data != NULL)
{
ext_data_end = ext_data + ext->sh_size;
if (* ext_data++ != 1)
error (_("Unexpected version number in symbol extension table\n"));
}
}
}
const unsigned char * data = (const unsigned char *) alloced_data;
const unsigned char * end = data + section->sh_size;
if (filedata->is_separate)
printf (_("\nIn linked file '%s': "), filedata->file_name);
else
printf ("\n");
if (ext_data_orig != NULL)
{
if (do_wide)
printf (_("LTO Symbol table '%s' and extension table '%s' contain:\n"),
printable_section_name (filedata, section),
printable_section_name (filedata, ext));
else
{
printf (_("LTO Symbol table '%s'\n"),
printable_section_name (filedata, section));
printf (_(" and extension table '%s' contain:\n"),
printable_section_name (filedata, ext));
}
}
else
printf (_("LTO Symbol table '%s' contains:\n"),
printable_section_name (filedata, section));
/* FIXME: Add a wide version. */
if (ext_data_orig != NULL)
printf (_(" Comdat_Key Kind Visibility Size Slot Type Section Name\n"));
else
printf (_(" Comdat_Key Kind Visibility Size Slot Name\n"));
/* FIXME: We do not handle style prefixes. */
while (data < end)
{
const unsigned char * sym_name = data;
data += strnlen ((const char *) sym_name, end - data) + 1;
if (data >= end)
goto fail;
const unsigned char * comdat_key = data;
data += strnlen ((const char *) comdat_key, end - data) + 1;
if (data >= end)
goto fail;
if (data + 2 + 8 + 4 > end)
goto fail;
unsigned int kind = *data++;
unsigned int visibility = *data++;
elf_vma size = byte_get (data, 8);
data += 8;
elf_vma slot = byte_get (data, 4);
data += 4;
if (ext_data != NULL)
{
if (ext_data < (ext_data_end - 1))
{
unsigned int sym_type = * ext_data ++;
unsigned int sec_kind = * ext_data ++;
printf (" %10s %10s %11s %08lx %08lx %9s %08lx _",
* comdat_key == 0 ? "-" : (char *) comdat_key,
get_lto_kind (kind),
get_lto_visibility (visibility),
(long) size,
(long) slot,
get_lto_sym_type (sym_type),
(long) sec_kind);
print_symbol (6, (const char *) sym_name);
}
else
{
error (_("Ran out of LTO symbol extension data\n"));
ext_data = NULL;
/* FIXME: return FAIL result ? */
}
}
else
{
printf (" %10s %10s %11s %08lx %08lx _",
* comdat_key == 0 ? "-" : (char *) comdat_key,
get_lto_kind (kind),
get_lto_visibility (visibility),
(long) size,
(long) slot);
print_symbol (21, (const char *) sym_name);
}
putchar ('\n');
}
if (ext_data != NULL && ext_data < ext_data_end)
{
error (_("Data remains in the LTO symbol extension table\n"));
goto fail;
}
free (alloced_data);
free (ext_data_orig);
free (ext_name);
return true;
fail:
error (_("Buffer overrun encountered whilst decoding LTO symbol table\n"));
free (alloced_data);
free (ext_data_orig);
free (ext_name);
return false;
}
/* Display LTO symbol tables. */
static bool
process_lto_symbol_tables (Filedata * filedata)
{
Elf_Internal_Shdr * section;
unsigned int i;
bool res = true;
if (!do_lto_syms)
return true;
if (filedata->section_headers == NULL)
return true;
for (i = 0, section = filedata->section_headers;
i < filedata->file_header.e_shnum;
i++, section++)
if (SECTION_NAME_VALID (section)
&& startswith (SECTION_NAME (section), ".gnu.lto_.symtab."))
res &= display_lto_symtab (filedata, section);
return res;
}
/* Dump the symbol table. */
static bool
process_symbol_table (Filedata * filedata)
{
Elf_Internal_Shdr * section;
if (!do_syms && !do_dyn_syms && !do_histogram)
return true;
if ((filedata->dynamic_info[DT_HASH] || filedata->dynamic_info_DT_GNU_HASH)
&& do_syms
&& do_using_dynamic
&& filedata->dynamic_strings != NULL
&& filedata->dynamic_symbols != NULL)
{
unsigned long si;
if (filedata->is_separate)
{
printf (ngettext ("\nIn linked file '%s' the dynamic symbol table contains %lu entry:\n",
"\nIn linked file '%s' the dynamic symbol table contains %lu entries:\n",
filedata->num_dynamic_syms),
filedata->file_name,
filedata->num_dynamic_syms);
}
else
{
printf (ngettext ("\nSymbol table for image contains %lu entry:\n",
"\nSymbol table for image contains %lu entries:\n",
filedata->num_dynamic_syms),
filedata->num_dynamic_syms);
}
if (is_32bit_elf)
printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
else
printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
for (si = 0; si < filedata->num_dynamic_syms; si++)
print_dynamic_symbol (filedata, si, filedata->dynamic_symbols, NULL,
filedata->dynamic_strings,
filedata->dynamic_strings_length);
}
else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
&& filedata->section_headers != NULL)
{
unsigned int i;
for (i = 0, section = filedata->section_headers;
i < filedata->file_header.e_shnum;
i++, section++)
{
char * strtab = NULL;
unsigned long int strtab_size = 0;
Elf_Internal_Sym * symtab;
unsigned long si, num_syms;
if ((section->sh_type != SHT_SYMTAB
&& section->sh_type != SHT_DYNSYM)
|| (!do_syms
&& section->sh_type == SHT_SYMTAB))
continue;
if (section->sh_entsize == 0)
{
printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
printable_section_name (filedata, section));
continue;
}
num_syms = section->sh_size / section->sh_entsize;
if (filedata->is_separate)
printf (ngettext ("\nIn linked file '%s' symbol section '%s' contains %lu entry:\n",
"\nIn linked file '%s' symbol section '%s' contains %lu entries:\n",
num_syms),
filedata->file_name,
printable_section_name (filedata, section),
num_syms);
else
printf (ngettext ("\nSymbol table '%s' contains %lu entry:\n",
"\nSymbol table '%s' contains %lu entries:\n",
num_syms),
printable_section_name (filedata, section),
num_syms);
if (is_32bit_elf)
printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
else
printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
symtab = get_elf_symbols (filedata, section, & num_syms);
if (symtab == NULL)
continue;
if (section->sh_link == filedata->file_header.e_shstrndx)
{
strtab = filedata->string_table;
strtab_size = filedata->string_table_length;
}
else if (section->sh_link < filedata->file_header.e_shnum)
{
Elf_Internal_Shdr * string_sec;
string_sec = filedata->section_headers + section->sh_link;
strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset,
1, string_sec->sh_size,
_("string table"));
strtab_size = strtab != NULL ? string_sec->sh_size : 0;
}
for (si = 0; si < num_syms; si++)
print_dynamic_symbol (filedata, si, symtab, section,
strtab, strtab_size);
free (symtab);
if (strtab != filedata->string_table)
free (strtab);
}
}
else if (do_syms)
printf
(_("\nDynamic symbol information is not available for displaying symbols.\n"));
if (do_histogram && filedata->buckets != NULL)
{
unsigned long * lengths;
unsigned long * counts;
unsigned long hn;
bfd_vma si;
unsigned long maxlength = 0;
unsigned long nzero_counts = 0;
unsigned long nsyms = 0;
char *visited;
printf (ngettext ("\nHistogram for bucket list length "
"(total of %lu bucket):\n",
"\nHistogram for bucket list length "
"(total of %lu buckets):\n",
(unsigned long) filedata->nbuckets),
(unsigned long) filedata->nbuckets);
lengths = (unsigned long *) calloc (filedata->nbuckets,
sizeof (*lengths));
if (lengths == NULL)
{
error (_("Out of memory allocating space for histogram buckets\n"));
goto err_out;
}
visited = xcmalloc (filedata->nchains, 1);
memset (visited, 0, filedata->nchains);
printf (_(" Length Number %% of total Coverage\n"));
for (hn = 0; hn < filedata->nbuckets; ++hn)
{
for (si = filedata->buckets[hn]; si > 0; si = filedata->chains[si])
{
++nsyms;
if (maxlength < ++lengths[hn])
++maxlength;
if (si >= filedata->nchains || visited[si])
{
error (_("histogram chain is corrupt\n"));
break;
}
visited[si] = 1;
}
}
free (visited);
counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
if (counts == NULL)
{
free (lengths);
error (_("Out of memory allocating space for histogram counts\n"));
goto err_out;
}
for (hn = 0; hn < filedata->nbuckets; ++hn)
++counts[lengths[hn]];
if (filedata->nbuckets > 0)
{
unsigned long i;
printf (" 0 %-10lu (%5.1f%%)\n",
counts[0], (counts[0] * 100.0) / filedata->nbuckets);
for (i = 1; i <= maxlength; ++i)
{
nzero_counts += counts[i] * i;
printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
i, counts[i], (counts[i] * 100.0) / filedata->nbuckets,
(nzero_counts * 100.0) / nsyms);
}
}
free (counts);
free (lengths);
}
free (filedata->buckets);
filedata->buckets = NULL;
filedata->nbuckets = 0;
free (filedata->chains);
filedata->chains = NULL;
if (do_histogram && filedata->gnubuckets != NULL)
{
unsigned long * lengths;
unsigned long * counts;
unsigned long hn;
unsigned long maxlength = 0;
unsigned long nzero_counts = 0;
unsigned long nsyms = 0;
printf (ngettext ("\nHistogram for `%s' bucket list length "
"(total of %lu bucket):\n",
"\nHistogram for `%s' bucket list length "
"(total of %lu buckets):\n",
(unsigned long) filedata->ngnubuckets),
GNU_HASH_SECTION_NAME (filedata),
(unsigned long) filedata->ngnubuckets);
lengths = (unsigned long *) calloc (filedata->ngnubuckets,
sizeof (*lengths));
if (lengths == NULL)
{
error (_("Out of memory allocating space for gnu histogram buckets\n"));
goto err_out;
}
printf (_(" Length Number %% of total Coverage\n"));
for (hn = 0; hn < filedata->ngnubuckets; ++hn)
if (filedata->gnubuckets[hn] != 0)
{
bfd_vma off, length = 1;
for (off = filedata->gnubuckets[hn] - filedata->gnusymidx;
/* PR 17531 file: 010-77222-0.004. */
off < filedata->ngnuchains
&& (filedata->gnuchains[off] & 1) == 0;
++off)
++length;
lengths[hn] = length;
if (length > maxlength)
maxlength = length;
nsyms += length;
}
counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
if (counts == NULL)
{
free (lengths);
error (_("Out of memory allocating space for gnu histogram counts\n"));
goto err_out;
}
for (hn = 0; hn < filedata->ngnubuckets; ++hn)
++counts[lengths[hn]];
if (filedata->ngnubuckets > 0)
{
unsigned long j;
printf (" 0 %-10lu (%5.1f%%)\n",
counts[0], (counts[0] * 100.0) / filedata->ngnubuckets);
for (j = 1; j <= maxlength; ++j)
{
nzero_counts += counts[j] * j;
printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
j, counts[j], (counts[j] * 100.0) / filedata->ngnubuckets,
(nzero_counts * 100.0) / nsyms);
}
}
free (counts);
free (lengths);
}
free (filedata->gnubuckets);
filedata->gnubuckets = NULL;
filedata->ngnubuckets = 0;
free (filedata->gnuchains);
filedata->gnuchains = NULL;
filedata->ngnuchains = 0;
free (filedata->mipsxlat);
filedata->mipsxlat = NULL;
return true;
err_out:
free (filedata->gnubuckets);
filedata->gnubuckets = NULL;
filedata->ngnubuckets = 0;
free (filedata->gnuchains);
filedata->gnuchains = NULL;
filedata->ngnuchains = 0;
free (filedata->mipsxlat);
filedata->mipsxlat = NULL;
free (filedata->buckets);
filedata->buckets = NULL;
filedata->nbuckets = 0;
free (filedata->chains);
filedata->chains = NULL;
return false;
}
static bool
process_syminfo (Filedata * filedata)
{
unsigned int i;
if (filedata->dynamic_syminfo == NULL
|| !do_dynamic)
/* No syminfo, this is ok. */
return true;
/* There better should be a dynamic symbol section. */
if (filedata->dynamic_symbols == NULL || filedata->dynamic_strings == NULL)
return false;
if (filedata->is_separate)
printf (ngettext ("\nIn linked file '%s: the dynamic info segment at offset 0x%lx contains %d entry:\n",
"\nIn linked file '%s: the dynamic info segment at offset 0x%lx contains %d entries:\n",
filedata->dynamic_syminfo_nent),
filedata->file_name,
filedata->dynamic_syminfo_offset,
filedata->dynamic_syminfo_nent);
else
printf (ngettext ("\nDynamic info segment at offset 0x%lx "
"contains %d entry:\n",
"\nDynamic info segment at offset 0x%lx "
"contains %d entries:\n",
filedata->dynamic_syminfo_nent),
filedata->dynamic_syminfo_offset,
filedata->dynamic_syminfo_nent);
printf (_(" Num: Name BoundTo Flags\n"));
for (i = 0; i < filedata->dynamic_syminfo_nent; ++i)
{
unsigned short int flags = filedata->dynamic_syminfo[i].si_flags;
printf ("%4d: ", i);
if (i >= filedata->num_dynamic_syms)
printf (_("<corrupt index>"));
else if (VALID_DYNAMIC_NAME (filedata, filedata->dynamic_symbols[i].st_name))
print_symbol (30, GET_DYNAMIC_NAME (filedata,
filedata->dynamic_symbols[i].st_name));
else
printf (_("<corrupt: %19ld>"), filedata->dynamic_symbols[i].st_name);
putchar (' ');
switch (filedata->dynamic_syminfo[i].si_boundto)
{
case SYMINFO_BT_SELF:
fputs ("SELF ", stdout);
break;
case SYMINFO_BT_PARENT:
fputs ("PARENT ", stdout);
break;
default:
if (filedata->dynamic_syminfo[i].si_boundto > 0
&& filedata->dynamic_syminfo[i].si_boundto < filedata->dynamic_nent
&& VALID_DYNAMIC_NAME (filedata,
filedata->dynamic_section[filedata->dynamic_syminfo[i].si_boundto].d_un.d_val))
{
print_symbol (10, GET_DYNAMIC_NAME (filedata,
filedata->dynamic_section[filedata->dynamic_syminfo[i].si_boundto].d_un.d_val));
putchar (' ' );
}
else
printf ("%-10d ", filedata->dynamic_syminfo[i].si_boundto);
break;
}
if (flags & SYMINFO_FLG_DIRECT)
printf (" DIRECT");
if (flags & SYMINFO_FLG_PASSTHRU)
printf (" PASSTHRU");
if (flags & SYMINFO_FLG_COPY)
printf (" COPY");
if (flags & SYMINFO_FLG_LAZYLOAD)
printf (" LAZYLOAD");
puts ("");
}
return true;
}
/* A macro which evaluates to TRUE if the region ADDR .. ADDR + NELEM
is contained by the region START .. END. The types of ADDR, START
and END should all be the same. Note both ADDR + NELEM and END
point to just beyond the end of the regions that are being tested. */
#define IN_RANGE(START,END,ADDR,NELEM) \
(((ADDR) >= (START)) && ((ADDR) < (END)) && ((ADDR) + (NELEM) <= (END)))
/* Check to see if the given reloc needs to be handled in a target specific
manner. If so then process the reloc and return TRUE otherwise return
FALSE.
If called with reloc == NULL, then this is a signal that reloc processing
for the current section has finished, and any saved state should be
discarded. */
static bool
target_specific_reloc_handling (Filedata * filedata,
Elf_Internal_Rela * reloc,
unsigned char * start,
unsigned char * end,
Elf_Internal_Sym * symtab,
unsigned long num_syms)
{
unsigned int reloc_type = 0;
unsigned long sym_index = 0;
if (reloc)
{
reloc_type = get_reloc_type (filedata, reloc->r_info);
sym_index = get_reloc_symindex (reloc->r_info);
}
switch (filedata->file_header.e_machine)
{
case EM_MSP430:
case EM_MSP430_OLD:
{
static Elf_Internal_Sym * saved_sym = NULL;
if (reloc == NULL)
{
saved_sym = NULL;
return true;
}
switch (reloc_type)
{
case 10: /* R_MSP430_SYM_DIFF */
case 12: /* R_MSP430_GNU_SUB_ULEB128 */
if (uses_msp430x_relocs (filedata))
break;
/* Fall through. */
case 21: /* R_MSP430X_SYM_DIFF */
case 23: /* R_MSP430X_GNU_SUB_ULEB128 */
/* PR 21139. */
if (sym_index >= num_syms)
error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
sym_index);
else
saved_sym = symtab + sym_index;
return true;
case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
goto handle_sym_diff;
case 5: /* R_MSP430_16_BYTE */
case 9: /* R_MSP430_8 */
case 11: /* R_MSP430_GNU_SET_ULEB128 */
if (uses_msp430x_relocs (filedata))
break;
goto handle_sym_diff;
case 2: /* R_MSP430_ABS16 */
case 15: /* R_MSP430X_ABS16 */
case 22: /* R_MSP430X_GNU_SET_ULEB128 */
if (! uses_msp430x_relocs (filedata))
break;
goto handle_sym_diff;
handle_sym_diff:
if (saved_sym != NULL)
{
bfd_vma value;
unsigned int reloc_size = 0;
int leb_ret = 0;
switch (reloc_type)
{
case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
reloc_size = 4;
break;
case 11: /* R_MSP430_GNU_SET_ULEB128 */
case 22: /* R_MSP430X_GNU_SET_ULEB128 */
if (reloc->r_offset < (size_t) (end - start))
read_leb128 (start + reloc->r_offset, end, false,
&reloc_size, &leb_ret);
break;
default:
reloc_size = 2;
break;
}
if (leb_ret != 0 || reloc_size == 0 || reloc_size > 8)
error (_("MSP430 ULEB128 field at 0x%lx contains invalid "
"ULEB128 value\n"),
(long) reloc->r_offset);
else if (sym_index >= num_syms)
error (_("MSP430 reloc contains invalid symbol index %lu\n"),
sym_index);
else
{
value = reloc->r_addend + (symtab[sym_index].st_value
- saved_sym->st_value);
if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
byte_put (start + reloc->r_offset, value, reloc_size);
else
/* PR 21137 */
error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
(long) reloc->r_offset);
}
saved_sym = NULL;
return true;
}
break;
default:
if (saved_sym != NULL)
error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
break;
}
break;
}
case EM_MN10300:
case EM_CYGNUS_MN10300:
{
static Elf_Internal_Sym * saved_sym = NULL;
if (reloc == NULL)
{
saved_sym = NULL;
return true;
}
switch (reloc_type)
{
case 34: /* R_MN10300_ALIGN */
return true;
case 33: /* R_MN10300_SYM_DIFF */
if (sym_index >= num_syms)
error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
sym_index);
else
saved_sym = symtab + sym_index;
return true;
case 1: /* R_MN10300_32 */
case 2: /* R_MN10300_16 */
if (saved_sym != NULL)
{
int reloc_size = reloc_type == 1 ? 4 : 2;
bfd_vma value;
if (sym_index >= num_syms)
error (_("MN10300 reloc contains invalid symbol index %lu\n"),
sym_index);
else
{
value = reloc->r_addend + (symtab[sym_index].st_value
- saved_sym->st_value);
if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
byte_put (start + reloc->r_offset, value, reloc_size);
else
error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
(long) reloc->r_offset);
}
saved_sym = NULL;
return true;
}
break;
default:
if (saved_sym != NULL)
error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
break;
}
break;
}
case EM_RL78:
{
static bfd_vma saved_sym1 = 0;
static bfd_vma saved_sym2 = 0;
static bfd_vma value;
if (reloc == NULL)
{
saved_sym1 = saved_sym2 = 0;
return true;
}
switch (reloc_type)
{
case 0x80: /* R_RL78_SYM. */
saved_sym1 = saved_sym2;
if (sym_index >= num_syms)
error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
sym_index);
else
{
saved_sym2 = symtab[sym_index].st_value;
saved_sym2 += reloc->r_addend;
}
return true;
case 0x83: /* R_RL78_OPsub. */
value = saved_sym1 - saved_sym2;
saved_sym2 = saved_sym1 = 0;
return true;
break;
case 0x41: /* R_RL78_ABS32. */
if (IN_RANGE (start, end, start + reloc->r_offset, 4))
byte_put (start + reloc->r_offset, value, 4);
else
error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
(long) reloc->r_offset);
value = 0;
return true;
case 0x43: /* R_RL78_ABS16. */
if (IN_RANGE (start, end, start + reloc->r_offset, 2))
byte_put (start + reloc->r_offset, value, 2);
else
error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
(long) reloc->r_offset);
value = 0;
return true;
default:
break;
}
break;
}
}
return false;
}
/* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
DWARF debug sections. This is a target specific test. Note - we do not
go through the whole including-target-headers-multiple-times route, (as
we have already done with <elf/h8.h>) because this would become very
messy and even then this function would have to contain target specific
information (the names of the relocs instead of their numeric values).
FIXME: This is not the correct way to solve this problem. The proper way
is to have target specific reloc sizing and typing functions created by
the reloc-macros.h header, in the same way that it already creates the
reloc naming functions. */
static bool
is_32bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_386:
case EM_IAMCU:
return reloc_type == 1; /* R_386_32. */
case EM_68K:
return reloc_type == 1; /* R_68K_32. */
case EM_860:
return reloc_type == 1; /* R_860_32. */
case EM_960:
return reloc_type == 2; /* R_960_32. */
case EM_AARCH64:
return (reloc_type == 258
|| reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
case EM_BPF:
return reloc_type == 11; /* R_BPF_DATA_32 */
case EM_ADAPTEVA_EPIPHANY:
return reloc_type == 3;
case EM_ALPHA:
return reloc_type == 1; /* R_ALPHA_REFLONG. */
case EM_ARC:
return reloc_type == 1; /* R_ARC_32. */
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
return reloc_type == 4; /* R_ARC_32. */
case EM_ARM:
return reloc_type == 2; /* R_ARM_ABS32 */
case EM_AVR_OLD:
case EM_AVR:
return reloc_type == 1;
case EM_BLACKFIN:
return reloc_type == 0x12; /* R_byte4_data. */
case EM_CRIS:
return reloc_type == 3; /* R_CRIS_32. */
case EM_CR16:
return reloc_type == 3; /* R_CR16_NUM32. */
case EM_CRX:
return reloc_type == 15; /* R_CRX_NUM32. */
case EM_CSKY:
return reloc_type == 1; /* R_CKCORE_ADDR32. */
case EM_CYGNUS_FRV:
return reloc_type == 1;
case EM_CYGNUS_D10V:
case EM_D10V:
return reloc_type == 6; /* R_D10V_32. */
case EM_CYGNUS_D30V:
case EM_D30V:
return reloc_type == 12; /* R_D30V_32_NORMAL. */
case EM_DLX:
return reloc_type == 3; /* R_DLX_RELOC_32. */
case EM_CYGNUS_FR30:
case EM_FR30:
return reloc_type == 3; /* R_FR30_32. */
case EM_FT32:
return reloc_type == 1; /* R_FT32_32. */
case EM_H8S:
case EM_H8_300:
case EM_H8_300H:
return reloc_type == 1; /* R_H8_DIR32. */
case EM_IA_64:
return (reloc_type == 0x64 /* R_IA64_SECREL32MSB. */
|| reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
|| reloc_type == 0x24 /* R_IA64_DIR32MSB. */
|| reloc_type == 0x25 /* R_IA64_DIR32LSB. */);
case EM_IP2K_OLD:
case EM_IP2K:
return reloc_type == 2; /* R_IP2K_32. */
case EM_IQ2000:
return reloc_type == 2; /* R_IQ2000_32. */
case EM_LATTICEMICO32:
return reloc_type == 3; /* R_LM32_32. */
case EM_M32C_OLD:
case EM_M32C:
return reloc_type == 3; /* R_M32C_32. */
case EM_M32R:
return reloc_type == 34; /* R_M32R_32_RELA. */
case EM_68HC11:
case EM_68HC12:
return reloc_type == 6; /* R_M68HC11_32. */
case EM_S12Z:
return reloc_type == 7 || /* R_S12Z_EXT32 */
reloc_type == 6; /* R_S12Z_CW32. */
case EM_MCORE:
return reloc_type == 1; /* R_MCORE_ADDR32. */
case EM_CYGNUS_MEP:
return reloc_type == 4; /* R_MEP_32. */
case EM_METAG:
return reloc_type == 2; /* R_METAG_ADDR32. */
case EM_MICROBLAZE:
return reloc_type == 1; /* R_MICROBLAZE_32. */
case EM_MIPS:
return reloc_type == 2; /* R_MIPS_32. */
case EM_MMIX:
return reloc_type == 4; /* R_MMIX_32. */
case EM_CYGNUS_MN10200:
case EM_MN10200:
return reloc_type == 1; /* R_MN10200_32. */
case EM_CYGNUS_MN10300:
case EM_MN10300:
return reloc_type == 1; /* R_MN10300_32. */
case EM_MOXIE:
return reloc_type == 1; /* R_MOXIE_32. */
case EM_MSP430_OLD:
case EM_MSP430:
return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
case EM_MT:
return reloc_type == 2; /* R_MT_32. */
case EM_NDS32:
return reloc_type == 20; /* R_NDS32_RELA. */
case EM_ALTERA_NIOS2:
return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
case EM_NIOS32:
return reloc_type == 1; /* R_NIOS_32. */
case EM_OR1K:
return reloc_type == 1; /* R_OR1K_32. */
case EM_PARISC:
return (reloc_type == 1 /* R_PARISC_DIR32. */
|| reloc_type == 2 /* R_PARISC_DIR21L. */
|| reloc_type == 41); /* R_PARISC_SECREL32. */
case EM_PJ:
case EM_PJ_OLD:
return reloc_type == 1; /* R_PJ_DATA_DIR32. */
case EM_PPC64:
return reloc_type == 1; /* R_PPC64_ADDR32. */
case EM_PPC:
return reloc_type == 1; /* R_PPC_ADDR32. */
case EM_TI_PRU:
return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
case EM_RISCV:
return reloc_type == 1; /* R_RISCV_32. */
case EM_RL78:
return reloc_type == 1; /* R_RL78_DIR32. */
case EM_RX:
return reloc_type == 1; /* R_RX_DIR32. */
case EM_S370:
return reloc_type == 1; /* R_I370_ADDR31. */
case EM_S390_OLD:
case EM_S390:
return reloc_type == 4; /* R_S390_32. */
case EM_SCORE:
return reloc_type == 8; /* R_SCORE_ABS32. */
case EM_SH:
return reloc_type == 1; /* R_SH_DIR32. */
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
return reloc_type == 3 /* R_SPARC_32. */
|| reloc_type == 23; /* R_SPARC_UA32. */
case EM_SPU:
return reloc_type == 6; /* R_SPU_ADDR32 */
case EM_TI_C6000:
return reloc_type == 1; /* R_C6000_ABS32. */
case EM_TILEGX:
return reloc_type == 2; /* R_TILEGX_32. */
case EM_TILEPRO:
return reloc_type == 1; /* R_TILEPRO_32. */
case EM_CYGNUS_V850:
case EM_V850:
return reloc_type == 6; /* R_V850_ABS32. */
case EM_V800:
return reloc_type == 0x33; /* R_V810_WORD. */
case EM_VAX:
return reloc_type == 1; /* R_VAX_32. */
case EM_VISIUM:
return reloc_type == 3; /* R_VISIUM_32. */
case EM_WEBASSEMBLY:
return reloc_type == 1; /* R_WASM32_32. */
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
return reloc_type == 10; /* R_X86_64_32. */
case EM_XC16X:
case EM_C166:
return reloc_type == 3; /* R_XC16C_ABS_32. */
case EM_XGATE:
return reloc_type == 4; /* R_XGATE_32. */
case EM_XSTORMY16:
return reloc_type == 1; /* R_XSTROMY16_32. */
case EM_XTENSA_OLD:
case EM_XTENSA:
return reloc_type == 1; /* R_XTENSA_32. */
case EM_Z80:
return reloc_type == 6; /* R_Z80_32. */
default:
{
static unsigned int prev_warn = 0;
/* Avoid repeating the same warning multiple times. */
if (prev_warn != filedata->file_header.e_machine)
error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
filedata->file_header.e_machine);
prev_warn = filedata->file_header.e_machine;
return false;
}
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
static bool
is_32bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
{
switch (filedata->file_header.e_machine)
/* Please keep this table alpha-sorted for ease of visual lookup. */
{
case EM_386:
case EM_IAMCU:
return reloc_type == 2; /* R_386_PC32. */
case EM_68K:
return reloc_type == 4; /* R_68K_PC32. */
case EM_AARCH64:
return reloc_type == 261; /* R_AARCH64_PREL32 */
case EM_ADAPTEVA_EPIPHANY:
return reloc_type == 6;
case EM_ALPHA:
return reloc_type == 10; /* R_ALPHA_SREL32. */
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
return reloc_type == 49; /* R_ARC_32_PCREL. */
case EM_ARM:
return reloc_type == 3; /* R_ARM_REL32 */
case EM_AVR_OLD:
case EM_AVR:
return reloc_type == 36; /* R_AVR_32_PCREL. */
case EM_MICROBLAZE:
return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
case EM_OR1K:
return reloc_type == 9; /* R_OR1K_32_PCREL. */
case EM_PARISC:
return reloc_type == 9; /* R_PARISC_PCREL32. */
case EM_PPC:
return reloc_type == 26; /* R_PPC_REL32. */
case EM_PPC64:
return reloc_type == 26; /* R_PPC64_REL32. */
case EM_RISCV:
return reloc_type == 57; /* R_RISCV_32_PCREL. */
case EM_S390_OLD:
case EM_S390:
return reloc_type == 5; /* R_390_PC32. */
case EM_SH:
return reloc_type == 2; /* R_SH_REL32. */
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
return reloc_type == 6; /* R_SPARC_DISP32. */
case EM_SPU:
return reloc_type == 13; /* R_SPU_REL32. */
case EM_TILEGX:
return reloc_type == 6; /* R_TILEGX_32_PCREL. */
case EM_TILEPRO:
return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
case EM_VISIUM:
return reloc_type == 6; /* R_VISIUM_32_PCREL */
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
return reloc_type == 2; /* R_X86_64_PC32. */
case EM_VAX:
return reloc_type == 4; /* R_VAX_PCREL32. */
case EM_XTENSA_OLD:
case EM_XTENSA:
return reloc_type == 14; /* R_XTENSA_32_PCREL. */
default:
/* Do not abort or issue an error message here. Not all targets use
pc-relative 32-bit relocs in their DWARF debug information and we
have already tested for target coverage in is_32bit_abs_reloc. A
more helpful warning message will be generated by apply_relocations
anyway, so just return. */
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 64-bit absolute RELA relocation used in DWARF debug sections. */
static bool
is_64bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
{
switch (filedata->file_header.e_machine)
{
case EM_AARCH64:
return reloc_type == 257; /* R_AARCH64_ABS64. */
case EM_ALPHA:
return reloc_type == 2; /* R_ALPHA_REFQUAD. */
case EM_IA_64:
return (reloc_type == 0x26 /* R_IA64_DIR64MSB. */
|| reloc_type == 0x27 /* R_IA64_DIR64LSB. */);
case EM_PARISC:
return reloc_type == 80; /* R_PARISC_DIR64. */
case EM_PPC64:
return reloc_type == 38; /* R_PPC64_ADDR64. */
case EM_RISCV:
return reloc_type == 2; /* R_RISCV_64. */
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
return reloc_type == 32 /* R_SPARC_64. */
|| reloc_type == 54; /* R_SPARC_UA64. */
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
return reloc_type == 1; /* R_X86_64_64. */
case EM_S390_OLD:
case EM_S390:
return reloc_type == 22; /* R_S390_64. */
case EM_TILEGX:
return reloc_type == 1; /* R_TILEGX_64. */
case EM_MIPS:
return reloc_type == 18; /* R_MIPS_64. */
default:
return false;
}
}
/* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
static bool
is_64bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
{
switch (filedata->file_header.e_machine)
{
case EM_AARCH64:
return reloc_type == 260; /* R_AARCH64_PREL64. */
case EM_ALPHA:
return reloc_type == 11; /* R_ALPHA_SREL64. */
case EM_IA_64:
return (reloc_type == 0x4e /* R_IA64_PCREL64MSB. */
|| reloc_type == 0x4f /* R_IA64_PCREL64LSB. */);
case EM_PARISC:
return reloc_type == 72; /* R_PARISC_PCREL64. */
case EM_PPC64:
return reloc_type == 44; /* R_PPC64_REL64. */
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
return reloc_type == 46; /* R_SPARC_DISP64. */
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
return reloc_type == 24; /* R_X86_64_PC64. */
case EM_S390_OLD:
case EM_S390:
return reloc_type == 23; /* R_S390_PC64. */
case EM_TILEGX:
return reloc_type == 5; /* R_TILEGX_64_PCREL. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 24-bit absolute RELA relocation used in DWARF debug sections. */
static bool
is_24bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
{
switch (filedata->file_header.e_machine)
{
case EM_CYGNUS_MN10200:
case EM_MN10200:
return reloc_type == 4; /* R_MN10200_24. */
case EM_FT32:
return reloc_type == 5; /* R_FT32_20. */
case EM_Z80:
return reloc_type == 5; /* R_Z80_24. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 16-bit absolute RELA relocation used in DWARF debug sections. */
static bool
is_16bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_ARC:
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
return reloc_type == 2; /* R_ARC_16. */
case EM_ADAPTEVA_EPIPHANY:
return reloc_type == 5;
case EM_AVR_OLD:
case EM_AVR:
return reloc_type == 4; /* R_AVR_16. */
case EM_CYGNUS_D10V:
case EM_D10V:
return reloc_type == 3; /* R_D10V_16. */
case EM_FT32:
return reloc_type == 2; /* R_FT32_16. */
case EM_H8S:
case EM_H8_300:
case EM_H8_300H:
return reloc_type == R_H8_DIR16;
case EM_IP2K_OLD:
case EM_IP2K:
return reloc_type == 1; /* R_IP2K_16. */
case EM_M32C_OLD:
case EM_M32C:
return reloc_type == 1; /* R_M32C_16 */
case EM_CYGNUS_MN10200:
case EM_MN10200:
return reloc_type == 2; /* R_MN10200_16. */
case EM_CYGNUS_MN10300:
case EM_MN10300:
return reloc_type == 2; /* R_MN10300_16. */
case EM_MSP430:
if (uses_msp430x_relocs (filedata))
return reloc_type == 2; /* R_MSP430_ABS16. */
/* Fall through. */
case EM_MSP430_OLD:
return reloc_type == 5; /* R_MSP430_16_BYTE. */
case EM_NDS32:
return reloc_type == 19; /* R_NDS32_RELA. */
case EM_ALTERA_NIOS2:
return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
case EM_NIOS32:
return reloc_type == 9; /* R_NIOS_16. */
case EM_OR1K:
return reloc_type == 2; /* R_OR1K_16. */
case EM_RISCV:
return reloc_type == 55; /* R_RISCV_SET16. */
case EM_TI_PRU:
return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
case EM_TI_C6000:
return reloc_type == 2; /* R_C6000_ABS16. */
case EM_VISIUM:
return reloc_type == 2; /* R_VISIUM_16. */
case EM_XC16X:
case EM_C166:
return reloc_type == 2; /* R_XC16C_ABS_16. */
case EM_XGATE:
return reloc_type == 3; /* R_XGATE_16. */
case EM_Z80:
return reloc_type == 4; /* R_Z80_16. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 8-bit absolute RELA relocation used in DWARF debug sections. */
static bool
is_8bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
{
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 54; /* R_RISCV_SET8. */
case EM_Z80:
return reloc_type == 1; /* R_Z80_8. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 6-bit absolute RELA relocation used in DWARF debug sections. */
static bool
is_6bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
{
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 53; /* R_RISCV_SET6. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 32-bit inplace add RELA relocation used in DWARF debug sections. */
static bool
is_32bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 35; /* R_RISCV_ADD32. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 32-bit inplace sub RELA relocation used in DWARF debug sections. */
static bool
is_32bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 39; /* R_RISCV_SUB32. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 64-bit inplace add RELA relocation used in DWARF debug sections. */
static bool
is_64bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 36; /* R_RISCV_ADD64. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 64-bit inplace sub RELA relocation used in DWARF debug sections. */
static bool
is_64bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 40; /* R_RISCV_SUB64. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 16-bit inplace add RELA relocation used in DWARF debug sections. */
static bool
is_16bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 34; /* R_RISCV_ADD16. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 16-bit inplace sub RELA relocation used in DWARF debug sections. */
static bool
is_16bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 38; /* R_RISCV_SUB16. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 8-bit inplace add RELA relocation used in DWARF debug sections. */
static bool
is_8bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 33; /* R_RISCV_ADD8. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 8-bit inplace sub RELA relocation used in DWARF debug sections. */
static bool
is_8bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 37; /* R_RISCV_SUB8. */
default:
return false;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 6-bit inplace sub RELA relocation used in DWARF debug sections. */
static bool
is_6bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
{
switch (filedata->file_header.e_machine)
{
case EM_RISCV:
return reloc_type == 52; /* R_RISCV_SUB6. */
default:
return false;
}
}
/* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
relocation entries (possibly formerly used for SHT_GROUP sections). */
static bool
is_none_reloc (Filedata * filedata, unsigned int reloc_type)
{
switch (filedata->file_header.e_machine)
{
case EM_386: /* R_386_NONE. */
case EM_68K: /* R_68K_NONE. */
case EM_ADAPTEVA_EPIPHANY:
case EM_ALPHA: /* R_ALPHA_NONE. */
case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
case EM_ARC: /* R_ARC_NONE. */
case EM_ARC_COMPACT2: /* R_ARC_NONE. */
case EM_ARC_COMPACT: /* R_ARC_NONE. */
case EM_ARM: /* R_ARM_NONE. */
case EM_C166: /* R_XC16X_NONE. */
case EM_CRIS: /* R_CRIS_NONE. */
case EM_FT32: /* R_FT32_NONE. */
case EM_IA_64: /* R_IA64_NONE. */
case EM_K1OM: /* R_X86_64_NONE. */
case EM_L1OM: /* R_X86_64_NONE. */
case EM_M32R: /* R_M32R_NONE. */
case EM_MIPS: /* R_MIPS_NONE. */
case EM_MN10300: /* R_MN10300_NONE. */
case EM_MOXIE: /* R_MOXIE_NONE. */
case EM_NIOS32: /* R_NIOS_NONE. */
case EM_OR1K: /* R_OR1K_NONE. */
case EM_PARISC: /* R_PARISC_NONE. */
case EM_PPC64: /* R_PPC64_NONE. */
case EM_PPC: /* R_PPC_NONE. */
case EM_RISCV: /* R_RISCV_NONE. */
case EM_S390: /* R_390_NONE. */
case EM_S390_OLD:
case EM_SH: /* R_SH_NONE. */
case EM_SPARC32PLUS:
case EM_SPARC: /* R_SPARC_NONE. */
case EM_SPARCV9:
case EM_TILEGX: /* R_TILEGX_NONE. */
case EM_TILEPRO: /* R_TILEPRO_NONE. */
case EM_TI_C6000:/* R_C6000_NONE. */
case EM_X86_64: /* R_X86_64_NONE. */
case EM_XC16X:
case EM_Z80: /* R_Z80_NONE. */
case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
return reloc_type == 0;
case EM_AARCH64:
return reloc_type == 0 || reloc_type == 256;
case EM_AVR_OLD:
case EM_AVR:
return (reloc_type == 0 /* R_AVR_NONE. */
|| reloc_type == 30 /* R_AVR_DIFF8. */
|| reloc_type == 31 /* R_AVR_DIFF16. */
|| reloc_type == 32 /* R_AVR_DIFF32. */);
case EM_METAG:
return reloc_type == 3; /* R_METAG_NONE. */
case EM_NDS32:
return (reloc_type == 0 /* R_XTENSA_NONE. */
|| reloc_type == 204 /* R_NDS32_DIFF8. */
|| reloc_type == 205 /* R_NDS32_DIFF16. */
|| reloc_type == 206 /* R_NDS32_DIFF32. */
|| reloc_type == 207 /* R_NDS32_ULEB128. */);
case EM_TI_PRU:
return (reloc_type == 0 /* R_PRU_NONE. */
|| reloc_type == 65 /* R_PRU_DIFF8. */
|| reloc_type == 66 /* R_PRU_DIFF16. */
|| reloc_type == 67 /* R_PRU_DIFF32. */);
case EM_XTENSA_OLD:
case EM_XTENSA:
return (reloc_type == 0 /* R_XTENSA_NONE. */
|| reloc_type == 17 /* R_XTENSA_DIFF8. */
|| reloc_type == 18 /* R_XTENSA_DIFF16. */
|| reloc_type == 19 /* R_XTENSA_DIFF32. */
|| reloc_type == 57 /* R_XTENSA_PDIFF8. */
|| reloc_type == 58 /* R_XTENSA_PDIFF16. */
|| reloc_type == 59 /* R_XTENSA_PDIFF32. */
|| reloc_type == 60 /* R_XTENSA_NDIFF8. */
|| reloc_type == 61 /* R_XTENSA_NDIFF16. */
|| reloc_type == 62 /* R_XTENSA_NDIFF32. */);
}
return false;
}
/* Returns TRUE if there is a relocation against
section NAME at OFFSET bytes. */
bool
reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
{
Elf_Internal_Rela * relocs;
Elf_Internal_Rela * rp;
if (dsec == NULL || dsec->reloc_info == NULL)
return false;
relocs = (Elf_Internal_Rela *) dsec->reloc_info;
for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
if (rp->r_offset == offset)
return true;
return false;
}
/* Apply relocations to a section.
Returns TRUE upon success, FALSE otherwise.
If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
will be set to the number of relocs loaded.
Note: So far support has been added only for those relocations
which can be found in debug sections. FIXME: Add support for
more relocations ? */
static bool
apply_relocations (Filedata * filedata,
const Elf_Internal_Shdr * section,
unsigned char * start,
bfd_size_type size,
void ** relocs_return,
unsigned long * num_relocs_return)
{
Elf_Internal_Shdr * relsec;
unsigned char * end = start + size;
if (relocs_return != NULL)
{
* (Elf_Internal_Rela **) relocs_return = NULL;
* num_relocs_return = 0;
}
if (filedata->file_header.e_type != ET_REL)
/* No relocs to apply. */
return true;
/* Find the reloc section associated with the section. */
for (relsec = filedata->section_headers;
relsec < filedata->section_headers + filedata->file_header.e_shnum;
++relsec)
{
bool is_rela;
unsigned long num_relocs;
Elf_Internal_Rela * relocs;
Elf_Internal_Rela * rp;
Elf_Internal_Shdr * symsec;
Elf_Internal_Sym * symtab;
unsigned long num_syms;
Elf_Internal_Sym * sym;
if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
|| relsec->sh_info >= filedata->file_header.e_shnum
|| filedata->section_headers + relsec->sh_info != section
|| relsec->sh_size == 0
|| relsec->sh_link >= filedata->file_header.e_shnum)
continue;
symsec = filedata->section_headers + relsec->sh_link;
if (symsec->sh_type != SHT_SYMTAB
&& symsec->sh_type != SHT_DYNSYM)
return false;
is_rela = relsec->sh_type == SHT_RELA;
if (is_rela)
{
if (!slurp_rela_relocs (filedata, relsec->sh_offset,
relsec->sh_size, & relocs, & num_relocs))
return false;
}
else
{
if (!slurp_rel_relocs (filedata, relsec->sh_offset,
relsec->sh_size, & relocs, & num_relocs))
return false;
}
/* SH uses RELA but uses in place value instead of the addend field. */
if (filedata->file_header.e_machine == EM_SH)
is_rela = false;
symtab = get_elf_symbols (filedata, symsec, & num_syms);
for (rp = relocs; rp < relocs + num_relocs; ++rp)
{
bfd_vma addend;
unsigned int reloc_type;
unsigned int reloc_size;
bool reloc_inplace = false;
bool reloc_subtract = false;
unsigned char *rloc;
unsigned long sym_index;
reloc_type = get_reloc_type (filedata, rp->r_info);
if (target_specific_reloc_handling (filedata, rp, start, end, symtab, num_syms))
continue;
else if (is_none_reloc (filedata, reloc_type))
continue;
else if (is_32bit_abs_reloc (filedata, reloc_type)
|| is_32bit_pcrel_reloc (filedata, reloc_type))
reloc_size = 4;
else if (is_64bit_abs_reloc (filedata, reloc_type)
|| is_64bit_pcrel_reloc (filedata, reloc_type))
reloc_size = 8;
else if (is_24bit_abs_reloc (filedata, reloc_type))
reloc_size = 3;
else if (is_16bit_abs_reloc (filedata, reloc_type))
reloc_size = 2;
else if (is_8bit_abs_reloc (filedata, reloc_type)
|| is_6bit_abs_reloc (filedata, reloc_type))
reloc_size = 1;
else if ((reloc_subtract = is_32bit_inplace_sub_reloc (filedata,
reloc_type))
|| is_32bit_inplace_add_reloc (filedata, reloc_type))
{
reloc_size = 4;
reloc_inplace = true;
}
else if ((reloc_subtract = is_64bit_inplace_sub_reloc (filedata,
reloc_type))
|| is_64bit_inplace_add_reloc (filedata, reloc_type))
{
reloc_size = 8;
reloc_inplace = true;
}
else if ((reloc_subtract = is_16bit_inplace_sub_reloc (filedata,
reloc_type))
|| is_16bit_inplace_add_reloc (filedata, reloc_type))
{
reloc_size = 2;
reloc_inplace = true;
}
else if ((reloc_subtract = is_8bit_inplace_sub_reloc (filedata,
reloc_type))
|| is_8bit_inplace_add_reloc (filedata, reloc_type))
{
reloc_size = 1;
reloc_inplace = true;
}
else if ((reloc_subtract = is_6bit_inplace_sub_reloc (filedata,
reloc_type)))
{
reloc_size = 1;
reloc_inplace = true;
}
else
{
static unsigned int prev_reloc = 0;
if (reloc_type != prev_reloc)
warn (_("unable to apply unsupported reloc type %d to section %s\n"),
reloc_type, printable_section_name (filedata, section));
prev_reloc = reloc_type;
continue;
}
rloc = start + rp->r_offset;
if (!IN_RANGE (start, end, rloc, reloc_size))
{
warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
(unsigned long) rp->r_offset,
printable_section_name (filedata, section));
continue;
}
sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
if (sym_index >= num_syms)
{
warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
sym_index, printable_section_name (filedata, section));
continue;
}
sym = symtab + sym_index;
/* If the reloc has a symbol associated with it,
make sure that it is of an appropriate type.
Relocations against symbols without type can happen.
Gcc -feliminate-dwarf2-dups may generate symbols
without type for debug info.
Icc generates relocations against function symbols
instead of local labels.
Relocations against object symbols can happen, eg when
referencing a global array. For an example of this see
the _clz.o binary in libgcc.a. */
if (sym != symtab
&& ELF_ST_TYPE (sym->st_info) != STT_COMMON
&& ELF_ST_TYPE (sym->st_info) > STT_SECTION)
{
warn (_("skipping unexpected symbol type %s in section %s relocation %ld\n"),
get_symbol_type (filedata, ELF_ST_TYPE (sym->st_info)),
printable_section_name (filedata, relsec),
(long int)(rp - relocs));
continue;
}
addend = 0;
if (is_rela)
addend += rp->r_addend;
/* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
partial_inplace. */
if (!is_rela
|| (filedata->file_header.e_machine == EM_XTENSA
&& reloc_type == 1)
|| ((filedata->file_header.e_machine == EM_PJ
|| filedata->file_header.e_machine == EM_PJ_OLD)
&& reloc_type == 1)
|| ((filedata->file_header.e_machine == EM_D30V
|| filedata->file_header.e_machine == EM_CYGNUS_D30V)
&& reloc_type == 12)
|| reloc_inplace)
{
if (is_6bit_inplace_sub_reloc (filedata, reloc_type))
addend += byte_get (rloc, reloc_size) & 0x3f;
else
addend += byte_get (rloc, reloc_size);
}
if (is_32bit_pcrel_reloc (filedata, reloc_type)
|| is_64bit_pcrel_reloc (filedata, reloc_type))
{
/* On HPPA, all pc-relative relocations are biased by 8. */
if (filedata->file_header.e_machine == EM_PARISC)
addend -= 8;
byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
reloc_size);
}
else if (is_6bit_abs_reloc (filedata, reloc_type)
|| is_6bit_inplace_sub_reloc (filedata, reloc_type))
{
if (reloc_subtract)
addend -= sym->st_value;
else
addend += sym->st_value;
addend = (addend & 0x3f) | (byte_get (rloc, reloc_size) & 0xc0);
byte_put (rloc, addend, reloc_size);
}
else if (reloc_subtract)
byte_put (rloc, addend - sym->st_value, reloc_size);
else
byte_put (rloc, addend + sym->st_value, reloc_size);
}
free (symtab);
/* Let the target specific reloc processing code know that
we have finished with these relocs. */
target_specific_reloc_handling (filedata, NULL, NULL, NULL, NULL, 0);
if (relocs_return)
{
* (Elf_Internal_Rela **) relocs_return = relocs;
* num_relocs_return = num_relocs;
}
else
free (relocs);
break;
}
return true;
}
#ifdef SUPPORT_DISASSEMBLY
static bool
disassemble_section (Elf_Internal_Shdr * section, Filedata * filedata)
{
printf (_("\nAssembly dump of section %s\n"), printable_section_name (filedata, section));
/* FIXME: XXX -- to be done --- XXX */
return true;
}
#endif
/* Reads in the contents of SECTION from FILE, returning a pointer
to a malloc'ed buffer or NULL if something went wrong. */
static char *
get_section_contents (Elf_Internal_Shdr * section, Filedata * filedata)
{
bfd_size_type num_bytes = section->sh_size;
if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
{
printf (_("Section '%s' has no data to dump.\n"),
printable_section_name (filedata, section));
return NULL;
}
return (char *) get_data (NULL, filedata, section->sh_offset, 1, num_bytes,
_("section contents"));
}
/* Uncompresses a section that was compressed using zlib, in place. */
static bool
uncompress_section_contents (unsigned char ** buffer,
dwarf_size_type uncompressed_size,
dwarf_size_type * size)
{
dwarf_size_type compressed_size = *size;
unsigned char * compressed_buffer = *buffer;
unsigned char * uncompressed_buffer;
z_stream strm;
int rc;
/* It is possible the section consists of several compressed
buffers concatenated together, so we uncompress in a loop. */
/* PR 18313: The state field in the z_stream structure is supposed
to be invisible to the user (ie us), but some compilers will
still complain about it being used without initialisation. So
we first zero the entire z_stream structure and then set the fields
that we need. */
memset (& strm, 0, sizeof strm);
strm.avail_in = compressed_size;
strm.next_in = (Bytef *) compressed_buffer;
strm.avail_out = uncompressed_size;
uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
rc = inflateInit (& strm);
while (strm.avail_in > 0)
{
if (rc != Z_OK)
break;
strm.next_out = ((Bytef *) uncompressed_buffer
+ (uncompressed_size - strm.avail_out));
rc = inflate (&strm, Z_FINISH);
if (rc != Z_STREAM_END)
break;
rc = inflateReset (& strm);
}
if (inflateEnd (& strm) != Z_OK
|| rc != Z_OK
|| strm.avail_out != 0)
goto fail;
*buffer = uncompressed_buffer;
*size = uncompressed_size;
return true;
fail:
free (uncompressed_buffer);
/* Indicate decompression failure. */
*buffer = NULL;
return false;
}
static bool
dump_section_as_strings (Elf_Internal_Shdr * section, Filedata * filedata)
{
Elf_Internal_Shdr *relsec;
bfd_size_type num_bytes;
unsigned char *data;
unsigned char *end;
unsigned char *real_start;
unsigned char *start;
bool some_strings_shown;
real_start = start = (unsigned char *) get_section_contents (section, filedata);
if (start == NULL)
/* PR 21820: Do not fail if the section was empty. */
return section->sh_size == 0 || section->sh_type == SHT_NOBITS;
num_bytes = section->sh_size;
if (filedata->is_separate)
printf (_("\nString dump of section '%s' in linked file %s:\n"),
printable_section_name (filedata, section),
filedata->file_name);
else
printf (_("\nString dump of section '%s':\n"),
printable_section_name (filedata, section));
if (decompress_dumps)
{
dwarf_size_type new_size = num_bytes;
dwarf_size_type uncompressed_size = 0;
if ((section->sh_flags & SHF_COMPRESSED) != 0)
{
Elf_Internal_Chdr chdr;
unsigned int compression_header_size
= get_compression_header (& chdr, (unsigned char *) start,
num_bytes);
if (compression_header_size == 0)
/* An error message will have already been generated
by get_compression_header. */
goto error_out;
if (chdr.ch_type != ELFCOMPRESS_ZLIB)
{
warn (_("section '%s' has unsupported compress type: %d\n"),
printable_section_name (filedata, section), chdr.ch_type);
goto error_out;
}
uncompressed_size = chdr.ch_size;
start += compression_header_size;
new_size -= compression_header_size;
}
else if (new_size > 12 && streq ((char *) start, "ZLIB"))
{
/* Read the zlib header. In this case, it should be "ZLIB"
followed by the uncompressed section size, 8 bytes in
big-endian order. */
uncompressed_size = start[4]; uncompressed_size <<= 8;
uncompressed_size += start[5]; uncompressed_size <<= 8;
uncompressed_size += start[6]; uncompressed_size <<= 8;
uncompressed_size += start[7]; uncompressed_size <<= 8;
uncompressed_size += start[8]; uncompressed_size <<= 8;
uncompressed_size += start[9]; uncompressed_size <<= 8;
uncompressed_size += start[10]; uncompressed_size <<= 8;
uncompressed_size += start[11];
start += 12;
new_size -= 12;
}
if (uncompressed_size)
{
if (uncompress_section_contents (& start,
uncompressed_size, & new_size))
num_bytes = new_size;
else
{
error (_("Unable to decompress section %s\n"),
printable_section_name (filedata, section));
goto error_out;
}
}