| // output.h -- manage the output file for gold -*- C++ -*- |
| |
| // Copyright (C) 2006-2024 Free Software Foundation, Inc. |
| // Written by Ian Lance Taylor <iant@google.com>. |
| |
| // This file is part of gold. |
| |
| // This program is free software; you can redistribute it and/or modify |
| // it under the terms of the GNU General Public License as published by |
| // the Free Software Foundation; either version 3 of the License, or |
| // (at your option) any later version. |
| |
| // This program is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License |
| // along with this program; if not, write to the Free Software |
| // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| // MA 02110-1301, USA. |
| |
| #ifndef GOLD_OUTPUT_H |
| #define GOLD_OUTPUT_H |
| |
| #include <algorithm> |
| #include <list> |
| #include <vector> |
| |
| #include "elfcpp.h" |
| #include "mapfile.h" |
| #include "layout.h" |
| #include "reloc-types.h" |
| |
| namespace gold |
| { |
| |
| class General_options; |
| class Object; |
| class Symbol; |
| class Output_merge_base; |
| class Output_section; |
| class Relocatable_relocs; |
| class Target; |
| template<int size, bool big_endian> |
| class Sized_target; |
| template<int size, bool big_endian> |
| class Sized_relobj; |
| template<int size, bool big_endian> |
| class Sized_relobj_file; |
| |
| // This class represents the output file. |
| |
| class Output_file |
| { |
| public: |
| Output_file(const char* name); |
| |
| // Indicate that this is a temporary file which should not be |
| // output. |
| void |
| set_is_temporary() |
| { this->is_temporary_ = true; } |
| |
| // Try to open an existing file. Returns false if the file doesn't |
| // exist, has a size of 0 or can't be mmaped. This method is |
| // thread-unsafe. If BASE_NAME is not NULL, use the contents of |
| // that file as the base for incremental linking. |
| bool |
| open_base_file(const char* base_name, bool writable); |
| |
| // Open the output file. FILE_SIZE is the final size of the file. |
| // If the file already exists, it is deleted/truncated. This method |
| // is thread-unsafe. |
| void |
| open(off_t file_size); |
| |
| // Resize the output file. This method is thread-unsafe. |
| void |
| resize(off_t file_size); |
| |
| // Close the output file (flushing all buffered data) and make sure |
| // there are no errors. This method is thread-unsafe. |
| void |
| close(); |
| |
| // Return the size of this file. |
| off_t |
| filesize() |
| { return this->file_size_; } |
| |
| // Return the name of this file. |
| const char* |
| filename() |
| { return this->name_; } |
| |
| // We currently always use mmap which makes the view handling quite |
| // simple. In the future we may support other approaches. |
| |
| // Write data to the output file. |
| void |
| write(off_t offset, const void* data, size_t len) |
| { memcpy(this->base_ + offset, data, len); } |
| |
| // Get a buffer to use to write to the file, given the offset into |
| // the file and the size. |
| unsigned char* |
| get_output_view(off_t start, size_t size) |
| { |
| gold_assert(start >= 0 |
| && start + static_cast<off_t>(size) <= this->file_size_); |
| return this->base_ + start; |
| } |
| |
| // VIEW must have been returned by get_output_view. Write the |
| // buffer to the file, passing in the offset and the size. |
| void |
| write_output_view(off_t, size_t, unsigned char*) |
| { } |
| |
| // Get a read/write buffer. This is used when we want to write part |
| // of the file, read it in, and write it again. |
| unsigned char* |
| get_input_output_view(off_t start, size_t size) |
| { return this->get_output_view(start, size); } |
| |
| // Write a read/write buffer back to the file. |
| void |
| write_input_output_view(off_t, size_t, unsigned char*) |
| { } |
| |
| // Get a read buffer. This is used when we just want to read part |
| // of the file back it in. |
| const unsigned char* |
| get_input_view(off_t start, size_t size) |
| { return this->get_output_view(start, size); } |
| |
| // Release a read bfufer. |
| void |
| free_input_view(off_t, size_t, const unsigned char*) |
| { } |
| |
| private: |
| // Map the file into memory or, if that fails, allocate anonymous |
| // memory. |
| void |
| map(); |
| |
| // Allocate anonymous memory for the file. |
| bool |
| map_anonymous(); |
| |
| // Map the file into memory. |
| bool |
| map_no_anonymous(bool); |
| |
| // Unmap the file from memory (and flush to disk buffers). |
| void |
| unmap(); |
| |
| // File name. |
| const char* name_; |
| // File descriptor. |
| int o_; |
| // File size. |
| off_t file_size_; |
| // Base of file mapped into memory. |
| unsigned char* base_; |
| // True iff base_ points to a memory buffer rather than an output file. |
| bool map_is_anonymous_; |
| // True if base_ was allocated using new rather than mmap. |
| bool map_is_allocated_; |
| // True if this is a temporary file which should not be output. |
| bool is_temporary_; |
| }; |
| |
| // An abtract class for data which has to go into the output file. |
| |
| class Output_data |
| { |
| public: |
| explicit Output_data() |
| : address_(0), data_size_(0), offset_(-1), |
| is_address_valid_(false), is_data_size_valid_(false), |
| is_offset_valid_(false), is_data_size_fixed_(false), |
| has_dynamic_reloc_(false) |
| { } |
| |
| virtual |
| ~Output_data(); |
| |
| // Return the address. For allocated sections, this is only valid |
| // after Layout::finalize is finished. |
| uint64_t |
| address() const |
| { |
| gold_assert(this->is_address_valid_); |
| return this->address_; |
| } |
| |
| // Return the size of the data. For allocated sections, this must |
| // be valid after Layout::finalize calls set_address, but need not |
| // be valid before then. |
| off_t |
| data_size() const |
| { |
| gold_assert(this->is_data_size_valid_); |
| return this->data_size_; |
| } |
| |
| // Get the current data size. |
| off_t |
| current_data_size() const |
| { return this->current_data_size_for_child(); } |
| |
| // Return true if data size is fixed. |
| bool |
| is_data_size_fixed() const |
| { return this->is_data_size_fixed_; } |
| |
| // Return the file offset. This is only valid after |
| // Layout::finalize is finished. For some non-allocated sections, |
| // it may not be valid until near the end of the link. |
| off_t |
| offset() const |
| { |
| gold_assert(this->is_offset_valid_); |
| return this->offset_; |
| } |
| |
| // Reset the address, file offset and data size. This essentially |
| // disables the sanity testing about duplicate and unknown settings. |
| void |
| reset_address_and_file_offset() |
| { |
| this->is_address_valid_ = false; |
| this->is_offset_valid_ = false; |
| if (!this->is_data_size_fixed_) |
| this->is_data_size_valid_ = false; |
| this->do_reset_address_and_file_offset(); |
| } |
| |
| // As above, but just for data size. |
| void |
| reset_data_size() |
| { |
| if (!this->is_data_size_fixed_) |
| this->is_data_size_valid_ = false; |
| } |
| |
| // Return true if address and file offset already have reset values. In |
| // other words, calling reset_address_and_file_offset will not change them. |
| bool |
| address_and_file_offset_have_reset_values() const |
| { return this->do_address_and_file_offset_have_reset_values(); } |
| |
| // Return the required alignment. |
| uint64_t |
| addralign() const |
| { return this->do_addralign(); } |
| |
| // Return whether this has a load address. |
| bool |
| has_load_address() const |
| { return this->do_has_load_address(); } |
| |
| // Return the load address. |
| uint64_t |
| load_address() const |
| { return this->do_load_address(); } |
| |
| // Return whether this is an Output_section. |
| bool |
| is_section() const |
| { return this->do_is_section(); } |
| |
| // Return whether this is an Output_section of the specified type. |
| bool |
| is_section_type(elfcpp::Elf_Word stt) const |
| { return this->do_is_section_type(stt); } |
| |
| // Return whether this is an Output_section with the specified flag |
| // set. |
| bool |
| is_section_flag_set(elfcpp::Elf_Xword shf) const |
| { return this->do_is_section_flag_set(shf); } |
| |
| // Return the output section that this goes in, if there is one. |
| Output_section* |
| output_section() |
| { return this->do_output_section(); } |
| |
| const Output_section* |
| output_section() const |
| { return this->do_output_section(); } |
| |
| // Return the output section index, if there is an output section. |
| unsigned int |
| out_shndx() const |
| { return this->do_out_shndx(); } |
| |
| // Set the output section index, if this is an output section. |
| void |
| set_out_shndx(unsigned int shndx) |
| { this->do_set_out_shndx(shndx); } |
| |
| // Set the address and file offset of this data, and finalize the |
| // size of the data. This is called during Layout::finalize for |
| // allocated sections. |
| void |
| set_address_and_file_offset(uint64_t addr, off_t off) |
| { |
| this->set_address(addr); |
| this->set_file_offset(off); |
| this->finalize_data_size(); |
| } |
| |
| // Set the address. |
| void |
| set_address(uint64_t addr) |
| { |
| gold_assert(!this->is_address_valid_); |
| this->address_ = addr; |
| this->is_address_valid_ = true; |
| } |
| |
| // Set the file offset. |
| void |
| set_file_offset(off_t off) |
| { |
| gold_assert(!this->is_offset_valid_); |
| this->offset_ = off; |
| this->is_offset_valid_ = true; |
| } |
| |
| // Update the data size without finalizing it. |
| void |
| pre_finalize_data_size() |
| { |
| if (!this->is_data_size_valid_) |
| { |
| // Tell the child class to update the data size. |
| this->update_data_size(); |
| } |
| } |
| |
| // Finalize the data size. |
| void |
| finalize_data_size() |
| { |
| if (!this->is_data_size_valid_) |
| { |
| // Tell the child class to set the data size. |
| this->set_final_data_size(); |
| gold_assert(this->is_data_size_valid_); |
| } |
| } |
| |
| // Set the TLS offset. Called only for SHT_TLS sections. |
| void |
| set_tls_offset(uint64_t tls_base) |
| { this->do_set_tls_offset(tls_base); } |
| |
| // Return the TLS offset, relative to the base of the TLS segment. |
| // Valid only for SHT_TLS sections. |
| uint64_t |
| tls_offset() const |
| { return this->do_tls_offset(); } |
| |
| // Write the data to the output file. This is called after |
| // Layout::finalize is complete. |
| void |
| write(Output_file* file) |
| { this->do_write(file); } |
| |
| // This is called by Layout::finalize to note that the sizes of |
| // allocated sections must now be fixed. |
| static void |
| layout_complete() |
| { Output_data::allocated_sizes_are_fixed = true; } |
| |
| // Used to check that layout has been done. |
| static bool |
| is_layout_complete() |
| { return Output_data::allocated_sizes_are_fixed; } |
| |
| // Note that a dynamic reloc has been applied to this data. |
| void |
| add_dynamic_reloc() |
| { this->has_dynamic_reloc_ = true; } |
| |
| // Return whether a dynamic reloc has been applied. |
| bool |
| has_dynamic_reloc() const |
| { return this->has_dynamic_reloc_; } |
| |
| // Whether the address is valid. |
| bool |
| is_address_valid() const |
| { return this->is_address_valid_; } |
| |
| // Whether the file offset is valid. |
| bool |
| is_offset_valid() const |
| { return this->is_offset_valid_; } |
| |
| // Whether the data size is valid. |
| bool |
| is_data_size_valid() const |
| { return this->is_data_size_valid_; } |
| |
| // Print information to the map file. |
| void |
| print_to_mapfile(Mapfile* mapfile) const |
| { return this->do_print_to_mapfile(mapfile); } |
| |
| protected: |
| // Functions that child classes may or in some cases must implement. |
| |
| // Write the data to the output file. |
| virtual void |
| do_write(Output_file*) = 0; |
| |
| // Return the required alignment. |
| virtual uint64_t |
| do_addralign() const = 0; |
| |
| // Return whether this has a load address. |
| virtual bool |
| do_has_load_address() const |
| { return false; } |
| |
| // Return the load address. |
| virtual uint64_t |
| do_load_address() const |
| { gold_unreachable(); } |
| |
| // Return whether this is an Output_section. |
| virtual bool |
| do_is_section() const |
| { return false; } |
| |
| // Return whether this is an Output_section of the specified type. |
| // This only needs to be implement by Output_section. |
| virtual bool |
| do_is_section_type(elfcpp::Elf_Word) const |
| { return false; } |
| |
| // Return whether this is an Output_section with the specific flag |
| // set. This only needs to be implemented by Output_section. |
| virtual bool |
| do_is_section_flag_set(elfcpp::Elf_Xword) const |
| { return false; } |
| |
| // Return the output section, if there is one. |
| virtual Output_section* |
| do_output_section() |
| { return NULL; } |
| |
| virtual const Output_section* |
| do_output_section() const |
| { return NULL; } |
| |
| // Return the output section index, if there is an output section. |
| virtual unsigned int |
| do_out_shndx() const |
| { gold_unreachable(); } |
| |
| // Set the output section index, if this is an output section. |
| virtual void |
| do_set_out_shndx(unsigned int) |
| { gold_unreachable(); } |
| |
| // This is a hook for derived classes to set the preliminary data size. |
| // This is called by pre_finalize_data_size, normally called during |
| // Layout::finalize, before the section address is set, and is used |
| // during an incremental update, when we need to know the size of a |
| // section before allocating space in the output file. For classes |
| // where the current data size is up to date, this default version of |
| // the method can be inherited. |
| virtual void |
| update_data_size() |
| { } |
| |
| // This is a hook for derived classes to set the data size. This is |
| // called by finalize_data_size, normally called during |
| // Layout::finalize, when the section address is set. |
| virtual void |
| set_final_data_size() |
| { gold_unreachable(); } |
| |
| // A hook for resetting the address and file offset. |
| virtual void |
| do_reset_address_and_file_offset() |
| { } |
| |
| // Return true if address and file offset already have reset values. In |
| // other words, calling reset_address_and_file_offset will not change them. |
| // A child class overriding do_reset_address_and_file_offset may need to |
| // also override this. |
| virtual bool |
| do_address_and_file_offset_have_reset_values() const |
| { return !this->is_address_valid_ && !this->is_offset_valid_; } |
| |
| // Set the TLS offset. Called only for SHT_TLS sections. |
| virtual void |
| do_set_tls_offset(uint64_t) |
| { gold_unreachable(); } |
| |
| // Return the TLS offset, relative to the base of the TLS segment. |
| // Valid only for SHT_TLS sections. |
| virtual uint64_t |
| do_tls_offset() const |
| { gold_unreachable(); } |
| |
| // Print to the map file. This only needs to be implemented by |
| // classes which may appear in a PT_LOAD segment. |
| virtual void |
| do_print_to_mapfile(Mapfile*) const |
| { gold_unreachable(); } |
| |
| // Functions that child classes may call. |
| |
| // Reset the address. The Output_section class needs this when an |
| // SHF_ALLOC input section is added to an output section which was |
| // formerly not SHF_ALLOC. |
| void |
| mark_address_invalid() |
| { this->is_address_valid_ = false; } |
| |
| // Set the size of the data. |
| void |
| set_data_size(off_t data_size) |
| { |
| gold_assert(!this->is_data_size_valid_ |
| && !this->is_data_size_fixed_); |
| this->data_size_ = data_size; |
| this->is_data_size_valid_ = true; |
| } |
| |
| // Fix the data size. Once it is fixed, it cannot be changed |
| // and the data size remains always valid. |
| void |
| fix_data_size() |
| { |
| gold_assert(this->is_data_size_valid_); |
| this->is_data_size_fixed_ = true; |
| } |
| |
| // Get the current data size--this is for the convenience of |
| // sections which build up their size over time. |
| off_t |
| current_data_size_for_child() const |
| { return this->data_size_; } |
| |
| // Set the current data size--this is for the convenience of |
| // sections which build up their size over time. |
| void |
| set_current_data_size_for_child(off_t data_size) |
| { |
| gold_assert(!this->is_data_size_valid_); |
| this->data_size_ = data_size; |
| } |
| |
| // Return default alignment for the target size. |
| static uint64_t |
| default_alignment(); |
| |
| // Return default alignment for a specified size--32 or 64. |
| static uint64_t |
| default_alignment_for_size(int size); |
| |
| private: |
| Output_data(const Output_data&); |
| Output_data& operator=(const Output_data&); |
| |
| // This is used for verification, to make sure that we don't try to |
| // change any sizes of allocated sections after we set the section |
| // addresses. |
| static bool allocated_sizes_are_fixed; |
| |
| // Memory address in output file. |
| uint64_t address_; |
| // Size of data in output file. |
| off_t data_size_; |
| // File offset of contents in output file. |
| off_t offset_; |
| // Whether address_ is valid. |
| bool is_address_valid_ : 1; |
| // Whether data_size_ is valid. |
| bool is_data_size_valid_ : 1; |
| // Whether offset_ is valid. |
| bool is_offset_valid_ : 1; |
| // Whether data size is fixed. |
| bool is_data_size_fixed_ : 1; |
| // Whether any dynamic relocs have been applied to this section. |
| bool has_dynamic_reloc_ : 1; |
| }; |
| |
| // Output the section headers. |
| |
| class Output_section_headers : public Output_data |
| { |
| public: |
| Output_section_headers(const Layout*, |
| const Layout::Segment_list*, |
| const Layout::Section_list*, |
| const Layout::Section_list*, |
| const Stringpool*, |
| const Output_section*); |
| |
| protected: |
| // Write the data to the file. |
| void |
| do_write(Output_file*); |
| |
| // Return the required alignment. |
| uint64_t |
| do_addralign() const |
| { return Output_data::default_alignment(); } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** section headers")); } |
| |
| // Update the data size. |
| void |
| update_data_size() |
| { this->set_data_size(this->do_size()); } |
| |
| // Set final data size. |
| void |
| set_final_data_size() |
| { this->set_data_size(this->do_size()); } |
| |
| private: |
| // Write the data to the file with the right size and endianness. |
| template<int size, bool big_endian> |
| void |
| do_sized_write(Output_file*); |
| |
| // Compute data size. |
| off_t |
| do_size() const; |
| |
| const Layout* layout_; |
| const Layout::Segment_list* segment_list_; |
| const Layout::Section_list* section_list_; |
| const Layout::Section_list* unattached_section_list_; |
| const Stringpool* secnamepool_; |
| const Output_section* shstrtab_section_; |
| }; |
| |
| // Output the segment headers. |
| |
| class Output_segment_headers : public Output_data |
| { |
| public: |
| Output_segment_headers(const Layout::Segment_list& segment_list); |
| |
| protected: |
| // Write the data to the file. |
| void |
| do_write(Output_file*); |
| |
| // Return the required alignment. |
| uint64_t |
| do_addralign() const |
| { return Output_data::default_alignment(); } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** segment headers")); } |
| |
| // Set final data size. |
| void |
| set_final_data_size() |
| { this->set_data_size(this->do_size()); } |
| |
| private: |
| // Write the data to the file with the right size and endianness. |
| template<int size, bool big_endian> |
| void |
| do_sized_write(Output_file*); |
| |
| // Compute the current size. |
| off_t |
| do_size() const; |
| |
| const Layout::Segment_list& segment_list_; |
| }; |
| |
| // Output the ELF file header. |
| |
| class Output_file_header : public Output_data |
| { |
| public: |
| Output_file_header(Target*, |
| const Symbol_table*, |
| const Output_segment_headers*); |
| |
| // Add information about the section headers. We lay out the ELF |
| // file header before we create the section headers. |
| void set_section_info(const Output_section_headers*, |
| const Output_section* shstrtab); |
| |
| protected: |
| // Write the data to the file. |
| void |
| do_write(Output_file*); |
| |
| // Return the required alignment. |
| uint64_t |
| do_addralign() const |
| { return Output_data::default_alignment(); } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** file header")); } |
| |
| // Set final data size. |
| void |
| set_final_data_size(void) |
| { this->set_data_size(this->do_size()); } |
| |
| private: |
| // Write the data to the file with the right size and endianness. |
| template<int size, bool big_endian> |
| void |
| do_sized_write(Output_file*); |
| |
| // Return the value to use for the entry address. |
| template<int size> |
| typename elfcpp::Elf_types<size>::Elf_Addr |
| entry(); |
| |
| // Compute the current data size. |
| off_t |
| do_size() const; |
| |
| Target* target_; |
| const Symbol_table* symtab_; |
| const Output_segment_headers* segment_header_; |
| const Output_section_headers* section_header_; |
| const Output_section* shstrtab_; |
| }; |
| |
| // Output sections are mainly comprised of input sections. However, |
| // there are cases where we have data to write out which is not in an |
| // input section. Output_section_data is used in such cases. This is |
| // an abstract base class. |
| |
| class Output_section_data : public Output_data |
| { |
| public: |
| Output_section_data(off_t data_size, uint64_t addralign, |
| bool is_data_size_fixed) |
| : Output_data(), output_section_(NULL), addralign_(addralign) |
| { |
| this->set_data_size(data_size); |
| if (is_data_size_fixed) |
| this->fix_data_size(); |
| } |
| |
| Output_section_data(uint64_t addralign) |
| : Output_data(), output_section_(NULL), addralign_(addralign) |
| { } |
| |
| // Return the output section. |
| Output_section* |
| output_section() |
| { return this->output_section_; } |
| |
| const Output_section* |
| output_section() const |
| { return this->output_section_; } |
| |
| // Record the output section. |
| void |
| set_output_section(Output_section* os); |
| |
| // Add an input section, for SHF_MERGE sections. This returns true |
| // if the section was handled. |
| bool |
| add_input_section(Relobj* object, unsigned int shndx) |
| { return this->do_add_input_section(object, shndx); } |
| |
| // Given an input OBJECT, an input section index SHNDX within that |
| // object, and an OFFSET relative to the start of that input |
| // section, return whether or not the corresponding offset within |
| // the output section is known. If this function returns true, it |
| // sets *POUTPUT to the output offset. The value -1 indicates that |
| // this input offset is being discarded. |
| bool |
| output_offset(const Relobj* object, unsigned int shndx, |
| section_offset_type offset, |
| section_offset_type* poutput) const |
| { return this->do_output_offset(object, shndx, offset, poutput); } |
| |
| // Write the contents to a buffer. This is used for sections which |
| // require postprocessing, such as compression. |
| void |
| write_to_buffer(unsigned char* buffer) |
| { this->do_write_to_buffer(buffer); } |
| |
| // Print merge stats to stderr. This should only be called for |
| // SHF_MERGE sections. |
| void |
| print_merge_stats(const char* section_name) |
| { this->do_print_merge_stats(section_name); } |
| |
| protected: |
| // The child class must implement do_write. |
| |
| // The child class may implement specific adjustments to the output |
| // section. |
| virtual void |
| do_adjust_output_section(Output_section*) |
| { } |
| |
| // May be implemented by child class. Return true if the section |
| // was handled. |
| virtual bool |
| do_add_input_section(Relobj*, unsigned int) |
| { gold_unreachable(); } |
| |
| // The child class may implement output_offset. |
| virtual bool |
| do_output_offset(const Relobj*, unsigned int, section_offset_type, |
| section_offset_type*) const |
| { return false; } |
| |
| // The child class may implement write_to_buffer. Most child |
| // classes can not appear in a compressed section, and they do not |
| // implement this. |
| virtual void |
| do_write_to_buffer(unsigned char*) |
| { gold_unreachable(); } |
| |
| // Print merge statistics. |
| virtual void |
| do_print_merge_stats(const char*) |
| { gold_unreachable(); } |
| |
| // Return the required alignment. |
| uint64_t |
| do_addralign() const |
| { return this->addralign_; } |
| |
| // Return the output section. |
| Output_section* |
| do_output_section() |
| { return this->output_section_; } |
| |
| const Output_section* |
| do_output_section() const |
| { return this->output_section_; } |
| |
| // Return the section index of the output section. |
| unsigned int |
| do_out_shndx() const; |
| |
| // Set the alignment. |
| void |
| set_addralign(uint64_t addralign); |
| |
| private: |
| // The output section for this section. |
| Output_section* output_section_; |
| // The required alignment. |
| uint64_t addralign_; |
| }; |
| |
| // Some Output_section_data classes build up their data step by step, |
| // rather than all at once. This class provides an interface for |
| // them. |
| |
| class Output_section_data_build : public Output_section_data |
| { |
| public: |
| Output_section_data_build(uint64_t addralign) |
| : Output_section_data(addralign) |
| { } |
| |
| Output_section_data_build(off_t data_size, uint64_t addralign) |
| : Output_section_data(data_size, addralign, false) |
| { } |
| |
| // Set the current data size. |
| void |
| set_current_data_size(off_t data_size) |
| { this->set_current_data_size_for_child(data_size); } |
| |
| protected: |
| // Set the final data size. |
| virtual void |
| set_final_data_size() |
| { this->set_data_size(this->current_data_size_for_child()); } |
| }; |
| |
| // A simple case of Output_data in which we have constant data to |
| // output. |
| |
| class Output_data_const : public Output_section_data |
| { |
| public: |
| Output_data_const(const std::string& data, uint64_t addralign) |
| : Output_section_data(data.size(), addralign, true), data_(data) |
| { } |
| |
| Output_data_const(const char* p, off_t len, uint64_t addralign) |
| : Output_section_data(len, addralign, true), data_(p, len) |
| { } |
| |
| Output_data_const(const unsigned char* p, off_t len, uint64_t addralign) |
| : Output_section_data(len, addralign, true), |
| data_(reinterpret_cast<const char*>(p), len) |
| { } |
| |
| protected: |
| // Write the data to the output file. |
| void |
| do_write(Output_file*); |
| |
| // Write the data to a buffer. |
| void |
| do_write_to_buffer(unsigned char* buffer) |
| { memcpy(buffer, this->data_.data(), this->data_.size()); } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** fill")); } |
| |
| private: |
| std::string data_; |
| }; |
| |
| // Another version of Output_data with constant data, in which the |
| // buffer is allocated by the caller. |
| |
| class Output_data_const_buffer : public Output_section_data |
| { |
| public: |
| Output_data_const_buffer(const unsigned char* p, off_t len, |
| uint64_t addralign, const char* map_name) |
| : Output_section_data(len, addralign, true), |
| p_(p), map_name_(map_name) |
| { } |
| |
| protected: |
| // Write the data the output file. |
| void |
| do_write(Output_file*); |
| |
| // Write the data to a buffer. |
| void |
| do_write_to_buffer(unsigned char* buffer) |
| { memcpy(buffer, this->p_, this->data_size()); } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _(this->map_name_)); } |
| |
| private: |
| // The data to output. |
| const unsigned char* p_; |
| // Name to use in a map file. Maps are a rarely used feature, but |
| // the space usage is minor as aren't very many of these objects. |
| const char* map_name_; |
| }; |
| |
| // A place holder for a fixed amount of data written out via some |
| // other mechanism. |
| |
| class Output_data_fixed_space : public Output_section_data |
| { |
| public: |
| Output_data_fixed_space(off_t data_size, uint64_t addralign, |
| const char* map_name) |
| : Output_section_data(data_size, addralign, true), |
| map_name_(map_name) |
| { } |
| |
| protected: |
| // Write out the data--the actual data must be written out |
| // elsewhere. |
| void |
| do_write(Output_file*) |
| { } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _(this->map_name_)); } |
| |
| private: |
| // Name to use in a map file. Maps are a rarely used feature, but |
| // the space usage is minor as aren't very many of these objects. |
| const char* map_name_; |
| }; |
| |
| // A place holder for variable sized data written out via some other |
| // mechanism. |
| |
| class Output_data_space : public Output_section_data_build |
| { |
| public: |
| explicit Output_data_space(uint64_t addralign, const char* map_name) |
| : Output_section_data_build(addralign), |
| map_name_(map_name) |
| { } |
| |
| explicit Output_data_space(off_t data_size, uint64_t addralign, |
| const char* map_name) |
| : Output_section_data_build(data_size, addralign), |
| map_name_(map_name) |
| { } |
| |
| // Set the alignment. |
| void |
| set_space_alignment(uint64_t align) |
| { this->set_addralign(align); } |
| |
| protected: |
| // Write out the data--the actual data must be written out |
| // elsewhere. |
| void |
| do_write(Output_file*) |
| { } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _(this->map_name_)); } |
| |
| private: |
| // Name to use in a map file. Maps are a rarely used feature, but |
| // the space usage is minor as aren't very many of these objects. |
| const char* map_name_; |
| }; |
| |
| // Fill fixed space with zeroes. This is just like |
| // Output_data_fixed_space, except that the map name is known. |
| |
| class Output_data_zero_fill : public Output_section_data |
| { |
| public: |
| Output_data_zero_fill(off_t data_size, uint64_t addralign) |
| : Output_section_data(data_size, addralign, true) |
| { } |
| |
| protected: |
| // There is no data to write out. |
| void |
| do_write(Output_file*) |
| { } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, "** zero fill"); } |
| }; |
| |
| // A string table which goes into an output section. |
| |
| class Output_data_strtab : public Output_section_data |
| { |
| public: |
| Output_data_strtab(Stringpool* strtab) |
| : Output_section_data(1), strtab_(strtab) |
| { } |
| |
| protected: |
| // This is called to update the section size prior to assigning |
| // the address and file offset. |
| void |
| update_data_size() |
| { this->set_final_data_size(); } |
| |
| // This is called to set the address and file offset. Here we make |
| // sure that the Stringpool is finalized. |
| void |
| set_final_data_size(); |
| |
| // Write out the data. |
| void |
| do_write(Output_file*); |
| |
| // Write the data to a buffer. |
| void |
| do_write_to_buffer(unsigned char* buffer) |
| { this->strtab_->write_to_buffer(buffer, this->data_size()); } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** string table")); } |
| |
| private: |
| Stringpool* strtab_; |
| }; |
| |
| // This POD class is used to represent a single reloc in the output |
| // file. This could be a private class within Output_data_reloc, but |
| // the templatization is complex enough that I broke it out into a |
| // separate class. The class is templatized on either elfcpp::SHT_REL |
| // or elfcpp::SHT_RELA, and also on whether this is a dynamic |
| // relocation or an ordinary relocation. |
| |
| // A relocation can be against a global symbol, a local symbol, a |
| // local section symbol, an output section, or the undefined symbol at |
| // index 0. We represent the latter by using a NULL global symbol. |
| |
| template<int sh_type, bool dynamic, int size, bool big_endian> |
| class Output_reloc; |
| |
| template<bool dynamic, int size, bool big_endian> |
| class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> |
| { |
| public: |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend; |
| |
| static const Address invalid_address = static_cast<Address>(0) - 1; |
| |
| // An uninitialized entry. We need this because we want to put |
| // instances of this class into an STL container. |
| Output_reloc() |
| : local_sym_index_(INVALID_CODE) |
| { } |
| |
| // We have a bunch of different constructors. They come in pairs |
| // depending on how the address of the relocation is specified. It |
| // can either be an offset in an Output_data or an offset in an |
| // input section. |
| |
| // A reloc against a global symbol. |
| |
| Output_reloc(Symbol* gsym, unsigned int type, Output_data* od, |
| Address address, bool is_relative, bool is_symbolless, |
| bool use_plt_offset); |
| |
| Output_reloc(Symbol* gsym, unsigned int type, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, bool is_relative, |
| bool is_symbolless, bool use_plt_offset); |
| |
| // A reloc against a local symbol or local section symbol. |
| |
| Output_reloc(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, Address address, bool is_relative, |
| bool is_symbolless, bool is_section_symbol, |
| bool use_plt_offset); |
| |
| Output_reloc(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| unsigned int shndx, Address address, bool is_relative, |
| bool is_symbolless, bool is_section_symbol, |
| bool use_plt_offset); |
| |
| // A reloc against the STT_SECTION symbol of an output section. |
| |
| Output_reloc(Output_section* os, unsigned int type, Output_data* od, |
| Address address, bool is_relative); |
| |
| Output_reloc(Output_section* os, unsigned int type, |
| Sized_relobj<size, big_endian>* relobj, unsigned int shndx, |
| Address address, bool is_relative); |
| |
| // An absolute or relative relocation with no symbol. |
| |
| Output_reloc(unsigned int type, Output_data* od, Address address, |
| bool is_relative); |
| |
| Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, bool is_relative); |
| |
| // A target specific relocation. The target will be called to get |
| // the symbol index, passing ARG. The type and offset will be set |
| // as for other relocation types. |
| |
| Output_reloc(unsigned int type, void* arg, Output_data* od, |
| Address address); |
| |
| Output_reloc(unsigned int type, void* arg, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address); |
| |
| // Return the reloc type. |
| unsigned int |
| type() const |
| { return this->type_; } |
| |
| // Return whether this is a RELATIVE relocation. |
| bool |
| is_relative() const |
| { return this->is_relative_; } |
| |
| // Return whether this is a relocation which should not use |
| // a symbol, but which obtains its addend from a symbol. |
| bool |
| is_symbolless() const |
| { return this->is_symbolless_; } |
| |
| // Return whether this is against a local section symbol. |
| bool |
| is_local_section_symbol() const |
| { |
| return (this->local_sym_index_ != GSYM_CODE |
| && this->local_sym_index_ != SECTION_CODE |
| && this->local_sym_index_ != INVALID_CODE |
| && this->local_sym_index_ != TARGET_CODE |
| && this->is_section_symbol_); |
| } |
| |
| // Return whether this is a target specific relocation. |
| bool |
| is_target_specific() const |
| { return this->local_sym_index_ == TARGET_CODE; } |
| |
| // Return the argument to pass to the target for a target specific |
| // relocation. |
| void* |
| target_arg() const |
| { |
| gold_assert(this->local_sym_index_ == TARGET_CODE); |
| return this->u1_.arg; |
| } |
| |
| // For a local section symbol, return the offset of the input |
| // section within the output section. ADDEND is the addend being |
| // applied to the input section. |
| Address |
| local_section_offset(Addend addend) const; |
| |
| // Get the value of the symbol referred to by a Rel relocation when |
| // we are adding the given ADDEND. |
| Address |
| symbol_value(Addend addend) const; |
| |
| // If this relocation is against an input section, return the |
| // relocatable object containing the input section. |
| Sized_relobj<size, big_endian>* |
| get_relobj() const |
| { |
| if (this->shndx_ == INVALID_CODE) |
| return NULL; |
| return this->u2_.relobj; |
| } |
| |
| // Write the reloc entry to an output view. |
| void |
| write(unsigned char* pov) const; |
| |
| // Write the offset and info fields to Write_rel. |
| template<typename Write_rel> |
| void write_rel(Write_rel*) const; |
| |
| // This is used when sorting dynamic relocs. Return -1 to sort this |
| // reloc before R2, 0 to sort the same as R2, 1 to sort after R2. |
| int |
| compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2) |
| const; |
| |
| // Return whether this reloc should be sorted before the argument |
| // when sorting dynamic relocs. |
| bool |
| sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& |
| r2) const |
| { return this->compare(r2) < 0; } |
| |
| // Return the symbol index. |
| unsigned int |
| get_symbol_index() const; |
| |
| // Return the output address. |
| Address |
| get_address() const; |
| |
| private: |
| // Record that we need a dynamic symbol index. |
| void |
| set_needs_dynsym_index(); |
| |
| // Codes for local_sym_index_. |
| enum |
| { |
| // Global symbol. |
| GSYM_CODE = -1U, |
| // Output section. |
| SECTION_CODE = -2U, |
| // Target specific. |
| TARGET_CODE = -3U, |
| // Invalid uninitialized entry. |
| INVALID_CODE = -4U |
| }; |
| |
| union |
| { |
| // For a local symbol or local section symbol |
| // (this->local_sym_index_ >= 0), the object. We will never |
| // generate a relocation against a local symbol in a dynamic |
| // object; that doesn't make sense. And our callers will always |
| // be templatized, so we use Sized_relobj here. |
| Sized_relobj<size, big_endian>* relobj; |
| // For a global symbol (this->local_sym_index_ == GSYM_CODE, the |
| // symbol. If this is NULL, it indicates a relocation against the |
| // undefined 0 symbol. |
| Symbol* gsym; |
| // For a relocation against an output section |
| // (this->local_sym_index_ == SECTION_CODE), the output section. |
| Output_section* os; |
| // For a target specific relocation, an argument to pass to the |
| // target. |
| void* arg; |
| } u1_; |
| union |
| { |
| // If this->shndx_ is not INVALID CODE, the object which holds the |
| // input section being used to specify the reloc address. |
| Sized_relobj<size, big_endian>* relobj; |
| // If this->shndx_ is INVALID_CODE, the output data being used to |
| // specify the reloc address. This may be NULL if the reloc |
| // address is absolute. |
| Output_data* od; |
| } u2_; |
| // The address offset within the input section or the Output_data. |
| Address address_; |
| // This is GSYM_CODE for a global symbol, or SECTION_CODE for a |
| // relocation against an output section, or TARGET_CODE for a target |
| // specific relocation, or INVALID_CODE for an uninitialized value. |
| // Otherwise, for a local symbol (this->is_section_symbol_ is |
| // false), the local symbol index. For a local section symbol |
| // (this->is_section_symbol_ is true), the section index in the |
| // input file. |
| unsigned int local_sym_index_; |
| // The reloc type--a processor specific code. |
| unsigned int type_ : 28; |
| // True if the relocation is a RELATIVE relocation. |
| bool is_relative_ : 1; |
| // True if the relocation is one which should not use |
| // a symbol, but which obtains its addend from a symbol. |
| bool is_symbolless_ : 1; |
| // True if the relocation is against a section symbol. |
| bool is_section_symbol_ : 1; |
| // True if the addend should be the PLT offset. |
| // (Used only for RELA, but stored here for space.) |
| bool use_plt_offset_ : 1; |
| // If the reloc address is an input section in an object, the |
| // section index. This is INVALID_CODE if the reloc address is |
| // specified in some other way. |
| unsigned int shndx_; |
| }; |
| |
| // The SHT_RELA version of Output_reloc<>. This is just derived from |
| // the SHT_REL version of Output_reloc, but it adds an addend. |
| |
| template<bool dynamic, int size, bool big_endian> |
| class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian> |
| { |
| public: |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend; |
| |
| // An uninitialized entry. |
| Output_reloc() |
| : rel_() |
| { } |
| |
| // A reloc against a global symbol. |
| |
| Output_reloc(Symbol* gsym, unsigned int type, Output_data* od, |
| Address address, Addend addend, bool is_relative, |
| bool is_symbolless, bool use_plt_offset) |
| : rel_(gsym, type, od, address, is_relative, is_symbolless, |
| use_plt_offset), |
| addend_(addend) |
| { } |
| |
| Output_reloc(Symbol* gsym, unsigned int type, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, Addend addend, |
| bool is_relative, bool is_symbolless, bool use_plt_offset) |
| : rel_(gsym, type, relobj, shndx, address, is_relative, |
| is_symbolless, use_plt_offset), addend_(addend) |
| { } |
| |
| // A reloc against a local symbol. |
| |
| Output_reloc(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, Address address, |
| Addend addend, bool is_relative, |
| bool is_symbolless, bool is_section_symbol, |
| bool use_plt_offset) |
| : rel_(relobj, local_sym_index, type, od, address, is_relative, |
| is_symbolless, is_section_symbol, use_plt_offset), |
| addend_(addend) |
| { } |
| |
| Output_reloc(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| unsigned int shndx, Address address, |
| Addend addend, bool is_relative, |
| bool is_symbolless, bool is_section_symbol, |
| bool use_plt_offset) |
| : rel_(relobj, local_sym_index, type, shndx, address, is_relative, |
| is_symbolless, is_section_symbol, use_plt_offset), |
| addend_(addend) |
| { } |
| |
| // A reloc against the STT_SECTION symbol of an output section. |
| |
| Output_reloc(Output_section* os, unsigned int type, Output_data* od, |
| Address address, Addend addend, bool is_relative) |
| : rel_(os, type, od, address, is_relative), addend_(addend) |
| { } |
| |
| Output_reloc(Output_section* os, unsigned int type, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, Addend addend, |
| bool is_relative) |
| : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend) |
| { } |
| |
| // An absolute or relative relocation with no symbol. |
| |
| Output_reloc(unsigned int type, Output_data* od, Address address, |
| Addend addend, bool is_relative) |
| : rel_(type, od, address, is_relative), addend_(addend) |
| { } |
| |
| Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, Addend addend, |
| bool is_relative) |
| : rel_(type, relobj, shndx, address, is_relative), addend_(addend) |
| { } |
| |
| // A target specific relocation. The target will be called to get |
| // the symbol index and the addend, passing ARG. The type and |
| // offset will be set as for other relocation types. |
| |
| Output_reloc(unsigned int type, void* arg, Output_data* od, |
| Address address, Addend addend) |
| : rel_(type, arg, od, address), addend_(addend) |
| { } |
| |
| Output_reloc(unsigned int type, void* arg, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, Addend addend) |
| : rel_(type, arg, relobj, shndx, address), addend_(addend) |
| { } |
| |
| // Return whether this is a RELATIVE relocation. |
| bool |
| is_relative() const |
| { return this->rel_.is_relative(); } |
| |
| // Return whether this is a relocation which should not use |
| // a symbol, but which obtains its addend from a symbol. |
| bool |
| is_symbolless() const |
| { return this->rel_.is_symbolless(); } |
| |
| // If this relocation is against an input section, return the |
| // relocatable object containing the input section. |
| Sized_relobj<size, big_endian>* |
| get_relobj() const |
| { return this->rel_.get_relobj(); } |
| |
| // Write the reloc entry to an output view. |
| void |
| write(unsigned char* pov) const; |
| |
| // Return whether this reloc should be sorted before the argument |
| // when sorting dynamic relocs. |
| bool |
| sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>& |
| r2) const |
| { |
| int i = this->rel_.compare(r2.rel_); |
| if (i < 0) |
| return true; |
| else if (i > 0) |
| return false; |
| else |
| return this->addend_ < r2.addend_; |
| } |
| |
| private: |
| // The basic reloc. |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_; |
| // The addend. |
| Addend addend_; |
| }; |
| |
| // Output_data_reloc_generic is a non-template base class for |
| // Output_data_reloc_base. This gives the generic code a way to hold |
| // a pointer to a reloc section. |
| |
| class Output_data_reloc_generic : public Output_section_data_build |
| { |
| public: |
| Output_data_reloc_generic(int size, bool sort_relocs) |
| : Output_section_data_build(Output_data::default_alignment_for_size(size)), |
| relative_reloc_count_(0), sort_relocs_(sort_relocs) |
| { } |
| |
| // Return the number of relative relocs in this section. |
| size_t |
| relative_reloc_count() const |
| { return this->relative_reloc_count_; } |
| |
| // Whether we should sort the relocs. |
| bool |
| sort_relocs() const |
| { return this->sort_relocs_; } |
| |
| // Add a reloc of type TYPE against the global symbol GSYM. The |
| // relocation applies to the data at offset ADDRESS within OD. |
| virtual void |
| add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, |
| uint64_t address, uint64_t addend) = 0; |
| |
| // Add a reloc of type TYPE against the global symbol GSYM. The |
| // relocation applies to data at offset ADDRESS within section SHNDX |
| // of object file RELOBJ. OD is the associated output section. |
| virtual void |
| add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, |
| Relobj* relobj, unsigned int shndx, uint64_t address, |
| uint64_t addend) = 0; |
| |
| // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX |
| // in RELOBJ. The relocation applies to the data at offset ADDRESS |
| // within OD. |
| virtual void |
| add_local_generic(Relobj* relobj, unsigned int local_sym_index, |
| unsigned int type, Output_data* od, uint64_t address, |
| uint64_t addend) = 0; |
| |
| // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX |
| // in RELOBJ. The relocation applies to the data at offset ADDRESS |
| // within section SHNDX of RELOBJ. OD is the associated output |
| // section. |
| virtual void |
| add_local_generic(Relobj* relobj, unsigned int local_sym_index, |
| unsigned int type, Output_data* od, unsigned int shndx, |
| uint64_t address, uint64_t addend) = 0; |
| |
| // Add a reloc of type TYPE against the STT_SECTION symbol of the |
| // output section OS. The relocation applies to the data at offset |
| // ADDRESS within OD. |
| virtual void |
| add_output_section_generic(Output_section *os, unsigned int type, |
| Output_data* od, uint64_t address, |
| uint64_t addend) = 0; |
| |
| // Add a reloc of type TYPE against the STT_SECTION symbol of the |
| // output section OS. The relocation applies to the data at offset |
| // ADDRESS within section SHNDX of RELOBJ. OD is the associated |
| // output section. |
| virtual void |
| add_output_section_generic(Output_section* os, unsigned int type, |
| Output_data* od, Relobj* relobj, |
| unsigned int shndx, uint64_t address, |
| uint64_t addend) = 0; |
| |
| protected: |
| // Note that we've added another relative reloc. |
| void |
| bump_relative_reloc_count() |
| { ++this->relative_reloc_count_; } |
| |
| private: |
| // The number of relative relocs added to this section. This is to |
| // support DT_RELCOUNT. |
| size_t relative_reloc_count_; |
| // Whether to sort the relocations when writing them out, to make |
| // the dynamic linker more efficient. |
| bool sort_relocs_; |
| }; |
| |
| // Output_data_reloc is used to manage a section containing relocs. |
| // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC |
| // indicates whether this is a dynamic relocation or a normal |
| // relocation. Output_data_reloc_base is a base class. |
| // Output_data_reloc is the real class, which we specialize based on |
| // the reloc type. |
| |
| template<int sh_type, bool dynamic, int size, bool big_endian> |
| class Output_data_reloc_base : public Output_data_reloc_generic |
| { |
| public: |
| typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type; |
| typedef typename Output_reloc_type::Address Address; |
| static const int reloc_size = |
| Reloc_types<sh_type, size, big_endian>::reloc_size; |
| |
| // Construct the section. |
| Output_data_reloc_base(bool sort_relocs) |
| : Output_data_reloc_generic(size, sort_relocs) |
| { } |
| |
| protected: |
| // Write out the data. |
| void |
| do_write(Output_file*); |
| |
| // Generic implementation of do_write, allowing a customized |
| // class for writing the output relocation (e.g., for MIPS-64). |
| template<class Output_reloc_writer> |
| void |
| do_write_generic(Output_file* of) |
| { |
| const off_t off = this->offset(); |
| const off_t oview_size = this->data_size(); |
| unsigned char* const oview = of->get_output_view(off, oview_size); |
| |
| if (this->sort_relocs()) |
| { |
| gold_assert(dynamic); |
| std::sort(this->relocs_.begin(), this->relocs_.end(), |
| Sort_relocs_comparison()); |
| } |
| |
| unsigned char* pov = oview; |
| for (typename Relocs::const_iterator p = this->relocs_.begin(); |
| p != this->relocs_.end(); |
| ++p) |
| { |
| Output_reloc_writer::write(p, pov); |
| pov += reloc_size; |
| } |
| |
| gold_assert(pov - oview == oview_size); |
| |
| of->write_output_view(off, oview_size, oview); |
| |
| // We no longer need the relocation entries. |
| this->relocs_.clear(); |
| } |
| |
| // Set the entry size and the link. |
| void |
| do_adjust_output_section(Output_section* os); |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { |
| mapfile->print_output_data(this, |
| (dynamic |
| ? _("** dynamic relocs") |
| : _("** relocs"))); |
| } |
| |
| // Add a relocation entry. |
| void |
| add(Output_data* od, const Output_reloc_type& reloc) |
| { |
| this->relocs_.push_back(reloc); |
| this->set_current_data_size(this->relocs_.size() * reloc_size); |
| if (dynamic) |
| od->add_dynamic_reloc(); |
| if (reloc.is_relative()) |
| this->bump_relative_reloc_count(); |
| Sized_relobj<size, big_endian>* relobj = reloc.get_relobj(); |
| if (relobj != NULL) |
| relobj->add_dyn_reloc(this->relocs_.size() - 1); |
| } |
| |
| private: |
| typedef std::vector<Output_reloc_type> Relocs; |
| |
| // The class used to sort the relocations. |
| struct Sort_relocs_comparison |
| { |
| bool |
| operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const |
| { return r1.sort_before(r2); } |
| }; |
| |
| // The relocations in this section. |
| Relocs relocs_; |
| }; |
| |
| // The class which callers actually create. |
| |
| template<int sh_type, bool dynamic, int size, bool big_endian> |
| class Output_data_reloc; |
| |
| // The SHT_REL version of Output_data_reloc. |
| |
| template<bool dynamic, int size, bool big_endian> |
| class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> |
| : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian> |
| { |
| private: |
| typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, |
| big_endian> Base; |
| |
| public: |
| typedef typename Base::Output_reloc_type Output_reloc_type; |
| typedef typename Output_reloc_type::Address Address; |
| |
| Output_data_reloc(bool sr) |
| : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr) |
| { } |
| |
| // Add a reloc against a global symbol. |
| |
| void |
| add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address) |
| { |
| this->add(od, Output_reloc_type(gsym, type, od, address, |
| false, false, false)); |
| } |
| |
| void |
| add_global(Symbol* gsym, unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address) |
| { |
| this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, |
| false, false, false)); |
| } |
| |
| void |
| add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, |
| uint64_t address, uint64_t addend) |
| { |
| gold_assert(addend == 0); |
| this->add(od, Output_reloc_type(gsym, type, od, |
| convert_types<Address, uint64_t>(address), |
| false, false, false)); |
| } |
| |
| void |
| add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, |
| Relobj* relobj, unsigned int shndx, uint64_t address, |
| uint64_t addend) |
| { |
| gold_assert(addend == 0); |
| Sized_relobj<size, big_endian>* sized_relobj = |
| static_cast<Sized_relobj<size, big_endian>*>(relobj); |
| this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx, |
| convert_types<Address, uint64_t>(address), |
| false, false, false)); |
| } |
| |
| // Add a RELATIVE reloc against a global symbol. The final relocation |
| // will not reference the symbol. |
| |
| void |
| add_global_relative(Symbol* gsym, unsigned int type, Output_data* od, |
| Address address) |
| { |
| this->add(od, Output_reloc_type(gsym, type, od, address, true, true, |
| false)); |
| } |
| |
| void |
| add_global_relative(Symbol* gsym, unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address) |
| { |
| this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, |
| true, true, false)); |
| } |
| |
| // Add a global relocation which does not use a symbol for the relocation, |
| // but which gets its addend from a symbol. |
| |
| void |
| add_symbolless_global_addend(Symbol* gsym, unsigned int type, |
| Output_data* od, Address address) |
| { |
| this->add(od, Output_reloc_type(gsym, type, od, address, false, true, |
| false)); |
| } |
| |
| void |
| add_symbolless_global_addend(Symbol* gsym, unsigned int type, |
| Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address) |
| { |
| this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, |
| false, true, false)); |
| } |
| |
| // Add a reloc against a local symbol. |
| |
| void |
| add_local(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, Address address) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, |
| address, false, false, false, false)); |
| } |
| |
| void |
| add_local(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, unsigned int shndx, Address address) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, |
| address, false, false, false, false)); |
| } |
| |
| void |
| add_local_generic(Relobj* relobj, unsigned int local_sym_index, |
| unsigned int type, Output_data* od, uint64_t address, |
| uint64_t addend) |
| { |
| gold_assert(addend == 0); |
| Sized_relobj<size, big_endian>* sized_relobj = |
| static_cast<Sized_relobj<size, big_endian> *>(relobj); |
| this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od, |
| convert_types<Address, uint64_t>(address), |
| false, false, false, false)); |
| } |
| |
| void |
| add_local_generic(Relobj* relobj, unsigned int local_sym_index, |
| unsigned int type, Output_data* od, unsigned int shndx, |
| uint64_t address, uint64_t addend) |
| { |
| gold_assert(addend == 0); |
| Sized_relobj<size, big_endian>* sized_relobj = |
| static_cast<Sized_relobj<size, big_endian>*>(relobj); |
| this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx, |
| convert_types<Address, uint64_t>(address), |
| false, false, false, false)); |
| } |
| |
| // Add a RELATIVE reloc against a local symbol. |
| |
| void |
| add_local_relative(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, Address address) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, |
| address, true, true, false, false)); |
| } |
| |
| void |
| add_local_relative(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, unsigned int shndx, Address address) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, |
| address, true, true, false, false)); |
| } |
| |
| void |
| add_local_relative(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, unsigned int shndx, Address address, |
| bool use_plt_offset) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, |
| address, true, true, false, |
| use_plt_offset)); |
| } |
| |
| // Add a local relocation which does not use a symbol for the relocation, |
| // but which gets its addend from a symbol. |
| |
| void |
| add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, Address address) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, |
| address, false, true, false, false)); |
| } |
| |
| void |
| add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, unsigned int shndx, |
| Address address) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, |
| address, false, true, false, false)); |
| } |
| |
| // Add a reloc against a local section symbol. This will be |
| // converted into a reloc against the STT_SECTION symbol of the |
| // output section. |
| |
| void |
| add_local_section(Sized_relobj<size, big_endian>* relobj, |
| unsigned int input_shndx, unsigned int type, |
| Output_data* od, Address address) |
| { |
| this->add(od, Output_reloc_type(relobj, input_shndx, type, od, |
| address, false, false, true, false)); |
| } |
| |
| void |
| add_local_section(Sized_relobj<size, big_endian>* relobj, |
| unsigned int input_shndx, unsigned int type, |
| Output_data* od, unsigned int shndx, Address address) |
| { |
| this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx, |
| address, false, false, true, false)); |
| } |
| |
| // A reloc against the STT_SECTION symbol of an output section. |
| // OS is the Output_section that the relocation refers to; OD is |
| // the Output_data object being relocated. |
| |
| void |
| add_output_section(Output_section* os, unsigned int type, |
| Output_data* od, Address address) |
| { this->add(od, Output_reloc_type(os, type, od, address, false)); } |
| |
| void |
| add_output_section(Output_section* os, unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address) |
| { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); } |
| |
| void |
| add_output_section_generic(Output_section* os, unsigned int type, |
| Output_data* od, uint64_t address, |
| uint64_t addend) |
| { |
| gold_assert(addend == 0); |
| this->add(od, Output_reloc_type(os, type, od, |
| convert_types<Address, uint64_t>(address), |
| false)); |
| } |
| |
| void |
| add_output_section_generic(Output_section* os, unsigned int type, |
| Output_data* od, Relobj* relobj, |
| unsigned int shndx, uint64_t address, |
| uint64_t addend) |
| { |
| gold_assert(addend == 0); |
| Sized_relobj<size, big_endian>* sized_relobj = |
| static_cast<Sized_relobj<size, big_endian>*>(relobj); |
| this->add(od, Output_reloc_type(os, type, sized_relobj, shndx, |
| convert_types<Address, uint64_t>(address), |
| false)); |
| } |
| |
| // As above, but the reloc TYPE is relative |
| |
| void |
| add_output_section_relative(Output_section* os, unsigned int type, |
| Output_data* od, Address address) |
| { this->add(od, Output_reloc_type(os, type, od, address, true)); } |
| |
| void |
| add_output_section_relative(Output_section* os, unsigned int type, |
| Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address) |
| { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); } |
| |
| // Add an absolute relocation. |
| |
| void |
| add_absolute(unsigned int type, Output_data* od, Address address) |
| { this->add(od, Output_reloc_type(type, od, address, false)); } |
| |
| void |
| add_absolute(unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address) |
| { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); } |
| |
| // Add a relative relocation |
| |
| void |
| add_relative(unsigned int type, Output_data* od, Address address) |
| { this->add(od, Output_reloc_type(type, od, address, true)); } |
| |
| void |
| add_relative(unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address) |
| { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); } |
| |
| // Add a target specific relocation. A target which calls this must |
| // define the reloc_symbol_index and reloc_addend virtual functions. |
| |
| void |
| add_target_specific(unsigned int type, void* arg, Output_data* od, |
| Address address) |
| { this->add(od, Output_reloc_type(type, arg, od, address)); } |
| |
| void |
| add_target_specific(unsigned int type, void* arg, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address) |
| { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); } |
| }; |
| |
| // The SHT_RELA version of Output_data_reloc. |
| |
| template<bool dynamic, int size, bool big_endian> |
| class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian> |
| : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian> |
| { |
| private: |
| typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, |
| big_endian> Base; |
| |
| public: |
| typedef typename Base::Output_reloc_type Output_reloc_type; |
| typedef typename Output_reloc_type::Address Address; |
| typedef typename Output_reloc_type::Addend Addend; |
| |
| Output_data_reloc(bool sr) |
| : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr) |
| { } |
| |
| // Add a reloc against a global symbol. |
| |
| void |
| add_global(Symbol* gsym, unsigned int type, Output_data* od, |
| Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(gsym, type, od, address, addend, |
| false, false, false)); |
| } |
| |
| void |
| add_global(Symbol* gsym, unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, |
| Addend addend) |
| { |
| this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, |
| addend, false, false, false)); |
| } |
| |
| void |
| add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, |
| uint64_t address, uint64_t addend) |
| { |
| this->add(od, Output_reloc_type(gsym, type, od, |
| convert_types<Address, uint64_t>(address), |
| convert_types<Addend, uint64_t>(addend), |
| false, false, false)); |
| } |
| |
| void |
| add_global_generic(Symbol* gsym, unsigned int type, Output_data* od, |
| Relobj* relobj, unsigned int shndx, uint64_t address, |
| uint64_t addend) |
| { |
| Sized_relobj<size, big_endian>* sized_relobj = |
| static_cast<Sized_relobj<size, big_endian>*>(relobj); |
| this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx, |
| convert_types<Address, uint64_t>(address), |
| convert_types<Addend, uint64_t>(addend), |
| false, false, false)); |
| } |
| |
| // Add a RELATIVE reloc against a global symbol. The final output |
| // relocation will not reference the symbol, but we must keep the symbol |
| // information long enough to set the addend of the relocation correctly |
| // when it is written. |
| |
| void |
| add_global_relative(Symbol* gsym, unsigned int type, Output_data* od, |
| Address address, Addend addend, bool use_plt_offset) |
| { |
| this->add(od, Output_reloc_type(gsym, type, od, address, addend, true, |
| true, use_plt_offset)); |
| } |
| |
| void |
| add_global_relative(Symbol* gsym, unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, Addend addend, |
| bool use_plt_offset) |
| { |
| this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, |
| addend, true, true, use_plt_offset)); |
| } |
| |
| // Add a global relocation which does not use a symbol for the relocation, |
| // but which gets its addend from a symbol. |
| |
| void |
| add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od, |
| Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(gsym, type, od, address, addend, |
| false, true, false)); |
| } |
| |
| void |
| add_symbolless_global_addend(Symbol* gsym, unsigned int type, |
| Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, |
| Addend addend) |
| { |
| this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address, |
| addend, false, true, false)); |
| } |
| |
| // Add a reloc against a local symbol. |
| |
| void |
| add_local(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address, |
| addend, false, false, false, false)); |
| } |
| |
| void |
| add_local(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, unsigned int shndx, Address address, |
| Addend addend) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, |
| address, addend, false, false, false, |
| false)); |
| } |
| |
| void |
| add_local_generic(Relobj* relobj, unsigned int local_sym_index, |
| unsigned int type, Output_data* od, uint64_t address, |
| uint64_t addend) |
| { |
| Sized_relobj<size, big_endian>* sized_relobj = |
| static_cast<Sized_relobj<size, big_endian> *>(relobj); |
| this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od, |
| convert_types<Address, uint64_t>(address), |
| convert_types<Addend, uint64_t>(addend), |
| false, false, false, false)); |
| } |
| |
| void |
| add_local_generic(Relobj* relobj, unsigned int local_sym_index, |
| unsigned int type, Output_data* od, unsigned int shndx, |
| uint64_t address, uint64_t addend) |
| { |
| Sized_relobj<size, big_endian>* sized_relobj = |
| static_cast<Sized_relobj<size, big_endian>*>(relobj); |
| this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx, |
| convert_types<Address, uint64_t>(address), |
| convert_types<Addend, uint64_t>(addend), |
| false, false, false, false)); |
| } |
| |
| // Add a RELATIVE reloc against a local symbol. |
| |
| void |
| add_local_relative(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, Address address, Addend addend, |
| bool use_plt_offset) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address, |
| addend, true, true, false, |
| use_plt_offset)); |
| } |
| |
| void |
| add_local_relative(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, unsigned int shndx, Address address, |
| Addend addend, bool use_plt_offset) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, |
| address, addend, true, true, false, |
| use_plt_offset)); |
| } |
| |
| // Add a local relocation which does not use a symbol for the relocation, |
| // but which gets it's addend from a symbol. |
| |
| void |
| add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address, |
| addend, false, true, false, false)); |
| } |
| |
| void |
| add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, unsigned int type, |
| Output_data* od, unsigned int shndx, |
| Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx, |
| address, addend, false, true, false, |
| false)); |
| } |
| |
| // Add a reloc against a local section symbol. This will be |
| // converted into a reloc against the STT_SECTION symbol of the |
| // output section. |
| |
| void |
| add_local_section(Sized_relobj<size, big_endian>* relobj, |
| unsigned int input_shndx, unsigned int type, |
| Output_data* od, Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address, |
| addend, false, false, true, false)); |
| } |
| |
| void |
| add_local_section(Sized_relobj<size, big_endian>* relobj, |
| unsigned int input_shndx, unsigned int type, |
| Output_data* od, unsigned int shndx, Address address, |
| Addend addend) |
| { |
| this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx, |
| address, addend, false, false, true, |
| false)); |
| } |
| |
| // A reloc against the STT_SECTION symbol of an output section. |
| |
| void |
| add_output_section(Output_section* os, unsigned int type, Output_data* od, |
| Address address, Addend addend) |
| { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); } |
| |
| void |
| add_output_section(Output_section* os, unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(os, type, relobj, shndx, address, |
| addend, false)); |
| } |
| |
| void |
| add_output_section_generic(Output_section* os, unsigned int type, |
| Output_data* od, uint64_t address, |
| uint64_t addend) |
| { |
| this->add(od, Output_reloc_type(os, type, od, |
| convert_types<Address, uint64_t>(address), |
| convert_types<Addend, uint64_t>(addend), |
| false)); |
| } |
| |
| void |
| add_output_section_generic(Output_section* os, unsigned int type, |
| Output_data* od, Relobj* relobj, |
| unsigned int shndx, uint64_t address, |
| uint64_t addend) |
| { |
| Sized_relobj<size, big_endian>* sized_relobj = |
| static_cast<Sized_relobj<size, big_endian>*>(relobj); |
| this->add(od, Output_reloc_type(os, type, sized_relobj, shndx, |
| convert_types<Address, uint64_t>(address), |
| convert_types<Addend, uint64_t>(addend), |
| false)); |
| } |
| |
| // As above, but the reloc TYPE is relative |
| |
| void |
| add_output_section_relative(Output_section* os, unsigned int type, |
| Output_data* od, Address address, Addend addend) |
| { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); } |
| |
| void |
| add_output_section_relative(Output_section* os, unsigned int type, |
| Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, |
| Addend addend) |
| { |
| this->add(od, Output_reloc_type(os, type, relobj, shndx, |
| address, addend, true)); |
| } |
| |
| // Add an absolute relocation. |
| |
| void |
| add_absolute(unsigned int type, Output_data* od, Address address, |
| Addend addend) |
| { this->add(od, Output_reloc_type(type, od, address, addend, false)); } |
| |
| void |
| add_absolute(unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(type, relobj, shndx, address, addend, |
| false)); |
| } |
| |
| // Add a relative relocation |
| |
| void |
| add_relative(unsigned int type, Output_data* od, Address address, |
| Addend addend) |
| { this->add(od, Output_reloc_type(type, od, address, addend, true)); } |
| |
| void |
| add_relative(unsigned int type, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(type, relobj, shndx, address, addend, |
| true)); |
| } |
| |
| // Add a target specific relocation. A target which calls this must |
| // define the reloc_symbol_index and reloc_addend virtual functions. |
| |
| void |
| add_target_specific(unsigned int type, void* arg, Output_data* od, |
| Address address, Addend addend) |
| { this->add(od, Output_reloc_type(type, arg, od, address, addend)); } |
| |
| void |
| add_target_specific(unsigned int type, void* arg, Output_data* od, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Address address, Addend addend) |
| { |
| this->add(od, Output_reloc_type(type, arg, relobj, shndx, address, |
| addend)); |
| } |
| }; |
| |
| // Output_relocatable_relocs represents a relocation section in a |
| // relocatable link. The actual data is written out in the target |
| // hook relocate_relocs. This just saves space for it. |
| |
| template<int sh_type, int size, bool big_endian> |
| class Output_relocatable_relocs : public Output_section_data |
| { |
| public: |
| Output_relocatable_relocs(Relocatable_relocs* rr) |
| : Output_section_data(Output_data::default_alignment_for_size(size)), |
| rr_(rr) |
| { } |
| |
| void |
| set_final_data_size(); |
| |
| // Write out the data. There is nothing to do here. |
| void |
| do_write(Output_file*) |
| { } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** relocs")); } |
| |
| private: |
| // The relocs associated with this input section. |
| Relocatable_relocs* rr_; |
| }; |
| |
| // Handle a GROUP section. |
| |
| template<int size, bool big_endian> |
| class Output_data_group : public Output_section_data |
| { |
| public: |
| // The constructor clears *INPUT_SHNDXES. |
| Output_data_group(Sized_relobj_file<size, big_endian>* relobj, |
| section_size_type entry_count, |
| elfcpp::Elf_Word flags, |
| std::vector<unsigned int>* input_shndxes); |
| |
| void |
| do_write(Output_file*); |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** group")); } |
| |
| // Set final data size. |
| void |
| set_final_data_size() |
| { this->set_data_size((this->input_shndxes_.size() + 1) * 4); } |
| |
| private: |
| // The input object. |
| Sized_relobj_file<size, big_endian>* relobj_; |
| // The group flag word. |
| elfcpp::Elf_Word flags_; |
| // The section indexes of the input sections in this group. |
| std::vector<unsigned int> input_shndxes_; |
| }; |
| |
| // Output_data_got is used to manage a GOT. Each entry in the GOT is |
| // for one symbol--either a global symbol or a local symbol in an |
| // object. The target specific code adds entries to the GOT as |
| // needed. The GOT_SIZE template parameter is the size in bits of a |
| // GOT entry, typically 32 or 64. |
| |
| class Output_data_got_base : public Output_section_data_build |
| { |
| public: |
| Output_data_got_base(uint64_t align) |
| : Output_section_data_build(align) |
| { } |
| |
| Output_data_got_base(off_t data_size, uint64_t align) |
| : Output_section_data_build(data_size, align) |
| { } |
| |
| // Reserve the slot at index I in the GOT. |
| void |
| reserve_slot(unsigned int i) |
| { this->do_reserve_slot(i); } |
| |
| protected: |
| // Reserve the slot at index I in the GOT. |
| virtual void |
| do_reserve_slot(unsigned int i) = 0; |
| }; |
| |
| template<int got_size, bool big_endian> |
| class Output_data_got : public Output_data_got_base |
| { |
| public: |
| typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype; |
| |
| Output_data_got() |
| : Output_data_got_base(Output_data::default_alignment_for_size(got_size)), |
| entries_(), free_list_() |
| { } |
| |
| Output_data_got(off_t data_size) |
| : Output_data_got_base(data_size, |
| Output_data::default_alignment_for_size(got_size)), |
| entries_(), free_list_() |
| { |
| // For an incremental update, we have an existing GOT section. |
| // Initialize the list of entries and the free list. |
| this->entries_.resize(data_size / (got_size / 8)); |
| this->free_list_.init(data_size, false); |
| } |
| |
| // Add an entry for a global symbol GSYM plus ADDEND to the GOT. |
| // Return true if this is a new GOT entry, false if the symbol plus |
| // addend was already in the GOT. |
| bool |
| add_global(Symbol* gsym, unsigned int got_type, uint64_t addend = 0); |
| |
| // Like add_global, but use the PLT offset of the global symbol if |
| // it has one. |
| bool |
| add_global_plt(Symbol* gsym, unsigned int got_type, uint64_t addend = 0); |
| |
| // Like add_global, but for a TLS symbol where the value will be |
| // offset using Target::tls_offset_for_global. |
| bool |
| add_global_tls(Symbol* gsym, unsigned int got_type, uint64_t addend = 0) |
| { return this->add_global_plt(gsym, got_type, addend); } |
| |
| // Add an entry for a global symbol GSYM plus ADDEND to the GOT, and |
| // add a dynamic relocation of type R_TYPE for the GOT entry. |
| void |
| add_global_with_rel(Symbol* gsym, unsigned int got_type, |
| Output_data_reloc_generic* rel_dyn, unsigned int r_type, |
| uint64_t addend = 0); |
| |
| // Add a pair of entries for a global symbol GSYM plus ADDEND to the |
| // GOT, and add dynamic relocations of type R_TYPE_1 and R_TYPE_2, |
| // respectively. |
| void |
| add_global_pair_with_rel(Symbol* gsym, unsigned int got_type, |
| Output_data_reloc_generic* rel_dyn, |
| unsigned int r_type_1, unsigned int r_type_2, |
| uint64_t addend = 0); |
| |
| // Add an entry for a local symbol plus ADDEND to the GOT. This returns |
| // true if this is a new GOT entry, false if the symbol already has a GOT |
| // entry. |
| bool |
| add_local(Relobj* object, unsigned int sym_index, unsigned int got_type, |
| uint64_t addend = 0); |
| |
| // Like add_local, but use the PLT offset of the local symbol if it |
| // has one. |
| bool |
| add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type, |
| uint64_t addend = 0); |
| |
| // Like add_local, but for a TLS symbol where the value will be |
| // offset using Target::tls_offset_for_local. |
| bool |
| add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type, |
| uint64_t addend = 0) |
| { return this->add_local_plt(object, sym_index, got_type, addend); } |
| |
| // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic |
| // relocation of type R_TYPE for the GOT entry. |
| void |
| add_local_with_rel(Relobj* object, unsigned int sym_index, |
| unsigned int got_type, Output_data_reloc_generic* rel_dyn, |
| unsigned int r_type, uint64_t addend = 0); |
| |
| // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add |
| // a dynamic relocation of type R_TYPE using the section symbol of |
| // the output section to which input section SHNDX maps, on the first. |
| // The first got entry will have a value of zero, the second the |
| // value of the local symbol. |
| void |
| add_local_pair_with_rel(Relobj* object, unsigned int sym_index, |
| unsigned int shndx, unsigned int got_type, |
| Output_data_reloc_generic* rel_dyn, |
| unsigned int r_type, uint64_t addend = 0); |
| |
| // Add a pair of entries for a local symbol plus ADDEND to the GOT, |
| // and add a dynamic relocation of type R_TYPE using STN_UNDEF on |
| // the first. The first got entry will have a value of zero, the |
| // second the value of the local symbol plus ADDEND offset by |
| // Target::tls_offset_for_local. |
| void |
| add_local_tls_pair(Relobj* object, unsigned int sym_index, |
| unsigned int got_type, |
| Output_data_reloc_generic* rel_dyn, |
| unsigned int r_type, uint64_t addend = 0); |
| |
| // Add a constant to the GOT. This returns the offset of the new |
| // entry from the start of the GOT. |
| unsigned int |
| add_constant(Valtype constant) |
| { return this->add_got_entry(Got_entry(constant)); } |
| |
| // Add a pair of constants to the GOT. This returns the offset of |
| // the new entry from the start of the GOT. |
| unsigned int |
| add_constant_pair(Valtype c1, Valtype c2) |
| { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); } |
| |
| // Replace GOT entry I with a new constant. |
| void |
| replace_constant(unsigned int i, Valtype constant) |
| { |
| this->replace_got_entry(i, Got_entry(constant)); |
| } |
| |
| // Reserve a slot in the GOT for a local symbol plus ADDEND. |
| void |
| reserve_local(unsigned int i, Relobj* object, unsigned int sym_index, |
| unsigned int got_type, uint64_t addend = 0); |
| |
| // Reserve a slot in the GOT for a global symbol plus ADDEND. |
| void |
| reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type, |
| uint64_t addend = 0); |
| |
| protected: |
| // Write out the GOT table. |
| void |
| do_write(Output_file*); |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** GOT")); } |
| |
| // Reserve the slot at index I in the GOT. |
| virtual void |
| do_reserve_slot(unsigned int i) |
| { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); } |
| |
| // Return the number of words in the GOT. |
| unsigned int |
| num_entries () const |
| { return this->entries_.size(); } |
| |
| // Return the offset into the GOT of GOT entry I. |
| unsigned int |
| got_offset(unsigned int i) const |
| { return i * (got_size / 8); } |
| |
| private: |
| // This POD class holds a single GOT entry. |
| class Got_entry |
| { |
| public: |
| // Create a zero entry. |
| Got_entry() |
| : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false), |
| addend_(0) |
| { this->u_.constant = 0; } |
| |
| // Create a global symbol entry. |
| Got_entry(Symbol* gsym, bool use_plt_or_tls_offset, uint64_t addend) |
| : local_sym_index_(GSYM_CODE), |
| use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend) |
| { this->u_.gsym = gsym; } |
| |
| // Create a local symbol entry. |
| Got_entry(Relobj* object, unsigned int local_sym_index, |
| bool use_plt_or_tls_offset, uint64_t addend) |
| : local_sym_index_(local_sym_index), |
| use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend) |
| { |
| gold_assert(local_sym_index != GSYM_CODE |
| && local_sym_index != CONSTANT_CODE |
| && local_sym_index != RESERVED_CODE |
| && local_sym_index == this->local_sym_index_); |
| this->u_.object = object; |
| } |
| |
| // Create a constant entry. The constant is a host value--it will |
| // be swapped, if necessary, when it is written out. |
| explicit Got_entry(Valtype constant) |
| : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false) |
| { this->u_.constant = constant; } |
| |
| // Write the GOT entry to an output view. |
| void |
| write(Output_data_got_base* got, unsigned int got_indx, |
| unsigned char* pov) const; |
| |
| private: |
| enum |
| { |
| GSYM_CODE = 0x7fffffff, |
| CONSTANT_CODE = 0x7ffffffe, |
| RESERVED_CODE = 0x7ffffffd |
| }; |
| |
| union |
| { |
| // For a local symbol, the object. |
| Relobj* object; |
| // For a global symbol, the symbol. |
| Symbol* gsym; |
| // For a constant, the constant. |
| Valtype constant; |
| } u_; |
| // For a local symbol, the local symbol index. This is GSYM_CODE |
| // for a global symbol, or CONSTANT_CODE for a constant. |
| unsigned int local_sym_index_ : 31; |
| // Whether to use the PLT offset of the symbol if it has one. |
| // For TLS symbols, whether to offset the symbol value. |
| bool use_plt_or_tls_offset_ : 1; |
| // The addend. |
| uint64_t addend_; |
| }; |
| |
| typedef std::vector<Got_entry> Got_entries; |
| |
| // Create a new GOT entry and return its offset. |
| unsigned int |
| add_got_entry(Got_entry got_entry); |
| |
| // Create a pair of new GOT entries and return the offset of the first. |
| unsigned int |
| add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2); |
| |
| // Replace GOT entry I with a new value. |
| void |
| replace_got_entry(unsigned int i, Got_entry got_entry); |
| |
| // Return the offset into the GOT of the last entry added. |
| unsigned int |
| last_got_offset() const |
| { return this->got_offset(this->num_entries() - 1); } |
| |
| // Set the size of the section. |
| void |
| set_got_size() |
| { this->set_current_data_size(this->got_offset(this->num_entries())); } |
| |
| // The list of GOT entries. |
| Got_entries entries_; |
| |
| // List of available regions within the section, for incremental |
| // update links. |
| Free_list free_list_; |
| }; |
| |
| // Output_data_dynamic is used to hold the data in SHT_DYNAMIC |
| // section. |
| |
| class Output_data_dynamic : public Output_section_data |
| { |
| public: |
| Output_data_dynamic(Stringpool* pool) |
| : Output_section_data(Output_data::default_alignment()), |
| entries_(), pool_(pool) |
| { } |
| |
| // Add a new dynamic entry with a fixed numeric value. |
| void |
| add_constant(elfcpp::DT tag, unsigned int val) |
| { this->add_entry(Dynamic_entry(tag, val)); } |
| |
| // Add a new dynamic entry with the address of output data. |
| void |
| add_section_address(elfcpp::DT tag, const Output_data* od) |
| { this->add_entry(Dynamic_entry(tag, od, false)); } |
| |
| // Add a new dynamic entry with the address of output data |
| // plus a constant offset. |
| void |
| add_section_plus_offset(elfcpp::DT tag, const Output_data* od, |
| unsigned int offset) |
| { this->add_entry(Dynamic_entry(tag, od, offset)); } |
| |
| // Add a new dynamic entry with the size of output data. |
| void |
| add_section_size(elfcpp::DT tag, const Output_data* od) |
| { this->add_entry(Dynamic_entry(tag, od, true)); } |
| |
| // Add a new dynamic entry with the total size of two output datas. |
| void |
| add_section_size(elfcpp::DT tag, const Output_data* od, |
| const Output_data* od2) |
| { this->add_entry(Dynamic_entry(tag, od, od2)); } |
| |
| // Add a new dynamic entry with the address of a symbol. |
| void |
| add_symbol(elfcpp::DT tag, const Symbol* sym) |
| { this->add_entry(Dynamic_entry(tag, sym)); } |
| |
| // Add a new dynamic entry with a string. |
| void |
| add_string(elfcpp::DT tag, const char* str) |
| { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); } |
| |
| void |
| add_string(elfcpp::DT tag, const std::string& str) |
| { this->add_string(tag, str.c_str()); } |
| |
| // Add a new dynamic entry with custom value. |
| void |
| add_custom(elfcpp::DT tag) |
| { this->add_entry(Dynamic_entry(tag)); } |
| |
| // Get a dynamic entry offset. |
| unsigned int |
| get_entry_offset(elfcpp::DT tag) const; |
| |
| protected: |
| // Adjust the output section to set the entry size. |
| void |
| do_adjust_output_section(Output_section*); |
| |
| // Set the final data size. |
| void |
| set_final_data_size(); |
| |
| // Write out the dynamic entries. |
| void |
| do_write(Output_file*); |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** dynamic")); } |
| |
| private: |
| // This POD class holds a single dynamic entry. |
| class Dynamic_entry |
| { |
| public: |
| // Create an entry with a fixed numeric value. |
| Dynamic_entry(elfcpp::DT tag, unsigned int val) |
| : tag_(tag), offset_(DYNAMIC_NUMBER) |
| { this->u_.val = val; } |
| |
| // Create an entry with the size or address of a section. |
| Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size) |
| : tag_(tag), |
| offset_(section_size |
| ? DYNAMIC_SECTION_SIZE |
| : DYNAMIC_SECTION_ADDRESS) |
| { |
| this->u_.od = od; |
| this->od2 = NULL; |
| } |
| |
| // Create an entry with the size of two sections. |
| Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2) |
| : tag_(tag), |
| offset_(DYNAMIC_SECTION_SIZE) |
| { |
| this->u_.od = od; |
| this->od2 = od2; |
| } |
| |
| // Create an entry with the address of a section plus a constant offset. |
| Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset) |
| : tag_(tag), |
| offset_(offset) |
| { this->u_.od = od; } |
| |
| // Create an entry with the address of a symbol. |
| Dynamic_entry(elfcpp::DT tag, const Symbol* sym) |
| : tag_(tag), offset_(DYNAMIC_SYMBOL) |
| { this->u_.sym = sym; } |
| |
| // Create an entry with a string. |
| Dynamic_entry(elfcpp::DT tag, const char* str) |
| : tag_(tag), offset_(DYNAMIC_STRING) |
| { this->u_.str = str; } |
| |
| // Create an entry with a custom value. |
| Dynamic_entry(elfcpp::DT tag) |
| : tag_(tag), offset_(DYNAMIC_CUSTOM) |
| { } |
| |
| // Return the tag of this entry. |
| elfcpp::DT |
| tag() const |
| { return this->tag_; } |
| |
| // Write the dynamic entry to an output view. |
| template<int size, bool big_endian> |
| void |
| write(unsigned char* pov, const Stringpool*) const; |
| |
| private: |
| // Classification is encoded in the OFFSET field. |
| enum Classification |
| { |
| // Section address. |
| DYNAMIC_SECTION_ADDRESS = 0, |
| // Number. |
| DYNAMIC_NUMBER = -1U, |
| // Section size. |
| DYNAMIC_SECTION_SIZE = -2U, |
| // Symbol address. |
| DYNAMIC_SYMBOL = -3U, |
| // String. |
| DYNAMIC_STRING = -4U, |
| // Custom value. |
| DYNAMIC_CUSTOM = -5U |
| // Any other value indicates a section address plus OFFSET. |
| }; |
| |
| union |
| { |
| // For DYNAMIC_NUMBER. |
| unsigned int val; |
| // For DYNAMIC_SECTION_SIZE and section address plus OFFSET. |
| const Output_data* od; |
| // For DYNAMIC_SYMBOL. |
| const Symbol* sym; |
| // For DYNAMIC_STRING. |
| const char* str; |
| } u_; |
| // For DYNAMIC_SYMBOL with two sections. |
| const Output_data* od2; |
| // The dynamic tag. |
| elfcpp::DT tag_; |
| // The type of entry (Classification) or offset within a section. |
| unsigned int offset_; |
| }; |
| |
| // Add an entry to the list. |
| void |
| add_entry(const Dynamic_entry& entry) |
| { this->entries_.push_back(entry); } |
| |
| // Sized version of write function. |
| template<int size, bool big_endian> |
| void |
| sized_write(Output_file* of); |
| |
| // The type of the list of entries. |
| typedef std::vector<Dynamic_entry> Dynamic_entries; |
| |
| // The entries. |
| Dynamic_entries entries_; |
| // The pool used for strings. |
| Stringpool* pool_; |
| }; |
| |
| // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections, |
| // which may be required if the object file has more than |
| // SHN_LORESERVE sections. |
| |
| class Output_symtab_xindex : public Output_section_data |
| { |
| public: |
| Output_symtab_xindex(size_t symcount) |
| : Output_section_data(symcount * 4, 4, true), |
| entries_() |
| { } |
| |
| // Add an entry: symbol number SYMNDX has section SHNDX. |
| void |
| add(unsigned int symndx, unsigned int shndx) |
| { this->entries_.push_back(std::make_pair(symndx, shndx)); } |
| |
| protected: |
| void |
| do_write(Output_file*); |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _("** symtab xindex")); } |
| |
| private: |
| template<bool big_endian> |
| void |
| endian_do_write(unsigned char*); |
| |
| // It is likely that most symbols will not require entries. Rather |
| // than keep a vector for all symbols, we keep pairs of symbol index |
| // and section index. |
| typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries; |
| |
| // The entries we need. |
| Xindex_entries entries_; |
| }; |
| |
| // A relaxed input section. |
| class Output_relaxed_input_section : public Output_section_data_build |
| { |
| public: |
| // We would like to call relobj->section_addralign(shndx) to get the |
| // alignment but we do not want the constructor to fail. So callers |
| // are repsonsible for ensuring that. |
| Output_relaxed_input_section(Relobj* relobj, unsigned int shndx, |
| uint64_t addralign) |
| : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx) |
| { } |
| |
| // Return the Relobj of this relaxed input section. |
| Relobj* |
| relobj() const |
| { return this->relobj_; } |
| |
| // Return the section index of this relaxed input section. |
| unsigned int |
| shndx() const |
| { return this->shndx_; } |
| |
| protected: |
| void |
| set_relobj(Relobj* relobj) |
| { this->relobj_ = relobj; } |
| |
| void |
| set_shndx(unsigned int shndx) |
| { this->shndx_ = shndx; } |
| |
| private: |
| Relobj* relobj_; |
| unsigned int shndx_; |
| }; |
| |
| // This class describes properties of merge data sections. It is used |
| // as a key type for maps. |
| class Merge_section_properties |
| { |
| public: |
| Merge_section_properties(bool is_string, uint64_t entsize, |
| uint64_t addralign) |
| : is_string_(is_string), entsize_(entsize), addralign_(addralign) |
| { } |
| |
| // Whether this equals to another Merge_section_properties MSP. |
| bool |
| eq(const Merge_section_properties& msp) const |
| { |
| return ((this->is_string_ == msp.is_string_) |
| && (this->entsize_ == msp.entsize_) |
| && (this->addralign_ == msp.addralign_)); |
| } |
| |
| // Compute a hash value for this using 64-bit FNV-1a hash. |
| size_t |
| hash_value() const |
| { |
| uint64_t h = 14695981039346656037ULL; // FNV offset basis. |
| uint64_t prime = 1099511628211ULL; |
| h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime; |
| h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime; |
| h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime; |
| return h; |
| } |
| |
| // Functors for associative containers. |
| struct equal_to |
| { |
| bool |
| operator()(const Merge_section_properties& msp1, |
| const Merge_section_properties& msp2) const |
| { return msp1.eq(msp2); } |
| }; |
| |
| struct hash |
| { |
| size_t |
| operator()(const Merge_section_properties& msp) const |
| { return msp.hash_value(); } |
| }; |
| |
| private: |
| // Whether this merge data section is for strings. |
| bool is_string_; |
| // Entsize of this merge data section. |
| uint64_t entsize_; |
| // Address alignment. |
| uint64_t addralign_; |
| }; |
| |
| // This class is used to speed up look up of special input sections in an |
| // Output_section. |
| |
| class Output_section_lookup_maps |
| { |
| public: |
| Output_section_lookup_maps() |
| : is_valid_(true), merge_sections_by_properties_(), |
| relaxed_input_sections_by_id_() |
| { } |
| |
| // Whether the maps are valid. |
| bool |
| is_valid() const |
| { return this->is_valid_; } |
| |
| // Invalidate the maps. |
| void |
| invalidate() |
| { this->is_valid_ = false; } |
| |
| // Clear the maps. |
| void |
| clear() |
| { |
| this->merge_sections_by_properties_.clear(); |
| this->relaxed_input_sections_by_id_.clear(); |
| // A cleared map is valid. |
| this->is_valid_ = true; |
| } |
| |
| // Find a merge section by merge section properties. Return NULL if none |
| // is found. |
| Output_merge_base* |
| find_merge_section(const Merge_section_properties& msp) const |
| { |
| gold_assert(this->is_valid_); |
| Merge_sections_by_properties::const_iterator p = |
| this->merge_sections_by_properties_.find(msp); |
| return p != this->merge_sections_by_properties_.end() ? p->second : NULL; |
| } |
| |
| // Add a merge section pointed by POMB with properties MSP. |
| void |
| add_merge_section(const Merge_section_properties& msp, |
| Output_merge_base* pomb) |
| { |
| std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb); |
| std::pair<Merge_sections_by_properties::iterator, bool> result = |
| this->merge_sections_by_properties_.insert(value); |
| gold_assert(result.second); |
| } |
| |
| // Find a relaxed input section of OBJECT with index SHNDX. |
| Output_relaxed_input_section* |
| find_relaxed_input_section(const Relobj* object, unsigned int shndx) const |
| { |
| gold_assert(this->is_valid_); |
| Relaxed_input_sections_by_id::const_iterator p = |
| this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx)); |
| return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL; |
| } |
| |
| // Add a relaxed input section pointed by POMB and whose original input |
| // section is in OBJECT with index SHNDX. |
| void |
| add_relaxed_input_section(const Relobj* relobj, unsigned int shndx, |
| Output_relaxed_input_section* poris) |
| { |
| Const_section_id csid(relobj, shndx); |
| std::pair<Const_section_id, Output_relaxed_input_section*> |
| value(csid, poris); |
| std::pair<Relaxed_input_sections_by_id::iterator, bool> result = |
| this->relaxed_input_sections_by_id_.insert(value); |
| gold_assert(result.second); |
| } |
| |
| private: |
| typedef Unordered_map<Merge_section_properties, Output_merge_base*, |
| Merge_section_properties::hash, |
| Merge_section_properties::equal_to> |
| Merge_sections_by_properties; |
| |
| typedef Unordered_map<Const_section_id, Output_relaxed_input_section*, |
| Const_section_id_hash> |
| Relaxed_input_sections_by_id; |
| |
| // Whether this is valid |
| bool is_valid_; |
| // Merge sections by merge section properties. |
| Merge_sections_by_properties merge_sections_by_properties_; |
| // Relaxed sections by section IDs. |
| Relaxed_input_sections_by_id relaxed_input_sections_by_id_; |
| }; |
| |
| // This abstract base class defines the interface for the |
| // types of methods used to fill free space left in an output |
| // section during an incremental link. These methods are used |
| // to insert dummy compilation units into debug info so that |
| // debug info consumers can scan the debug info serially. |
| |
| class Output_fill |
| { |
| public: |
| Output_fill() |
| : is_big_endian_(parameters->target().is_big_endian()) |
| { } |
| |
| virtual |
| ~Output_fill() |
| { } |
| |
| // Return the smallest size chunk of free space that can be |
| // filled with a dummy compilation unit. |
| size_t |
| minimum_hole_size() const |
| { return this->do_minimum_hole_size(); } |
| |
| // Write a fill pattern of length LEN at offset OFF in the file. |
| void |
| write(Output_file* of, off_t off, size_t len) const |
| { this->do_write(of, off, len); } |
| |
| protected: |
| virtual size_t |
| do_minimum_hole_size() const = 0; |
| |
| virtual void |
| do_write(Output_file* of, off_t off, size_t len) const = 0; |
| |
| bool |
| is_big_endian() const |
| { return this->is_big_endian_; } |
| |
| private: |
| bool is_big_endian_; |
| }; |
| |
| // Fill method that introduces a dummy compilation unit in |
| // a .debug_info or .debug_types section. |
| |
| class Output_fill_debug_info : public Output_fill |
| { |
| public: |
| Output_fill_debug_info(bool is_debug_types) |
| : is_debug_types_(is_debug_types) |
| { } |
| |
| protected: |
| virtual size_t |
| do_minimum_hole_size() const; |
| |
| virtual void |
| do_write(Output_file* of, off_t off, size_t len) const; |
| |
| private: |
| // Version of the header. |
| static const int version = 4; |
| // True if this is a .debug_types section. |
| bool is_debug_types_; |
| }; |
| |
| // Fill method that introduces a dummy compilation unit in |
| // a .debug_line section. |
| |
| class Output_fill_debug_line : public Output_fill |
| { |
| public: |
| Output_fill_debug_line() |
| { } |
| |
| protected: |
| virtual size_t |
| do_minimum_hole_size() const; |
| |
| virtual void |
| do_write(Output_file* of, off_t off, size_t len) const; |
| |
| private: |
| // Version of the header. We write a DWARF-3 header because it's smaller |
| // and many tools have not yet been updated to understand the DWARF-4 header. |
| static const int version = 3; |
| // Length of the portion of the header that follows the header_length |
| // field. This includes the following fields: |
| // minimum_instruction_length, default_is_stmt, line_base, line_range, |
| // opcode_base, standard_opcode_lengths[], include_directories, filenames. |
| // The standard_opcode_lengths array is 12 bytes long, and the |
| // include_directories and filenames fields each contain only a single |
| // null byte. |
| static const size_t header_length = 19; |
| }; |
| |
| // An output section. We don't expect to have too many output |
| // sections, so we don't bother to do a template on the size. |
| |
| class Output_section : public Output_data |
| { |
| public: |
| // Create an output section, giving the name, type, and flags. |
| Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword); |
| virtual ~Output_section(); |
| |
| // Add a new input section SHNDX, named NAME, with header SHDR, from |
| // object OBJECT. RELOC_SHNDX is the index of a relocation section |
| // which applies to this section, or 0 if none, or -1 if more than |
| // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause |
| // in a linker script; in that case we need to keep track of input |
| // sections associated with an output section. Return the offset |
| // within the output section. |
| template<int size, bool big_endian> |
| off_t |
| add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object, |
| unsigned int shndx, const char* name, |
| const elfcpp::Shdr<size, big_endian>& shdr, |
| unsigned int reloc_shndx, bool have_sections_script); |
| |
| // Add generated data POSD to this output section. |
| void |
| add_output_section_data(Output_section_data* posd); |
| |
| // Add a relaxed input section PORIS called NAME to this output section |
| // with LAYOUT. |
| void |
| add_relaxed_input_section(Layout* layout, |
| Output_relaxed_input_section* poris, |
| const std::string& name); |
| |
| // Return the section name. |
| const char* |
| name() const |
| { return this->name_; } |
| |
| // Return the section type. |
| elfcpp::Elf_Word |
| type() const |
| { return this->type_; } |
| |
| // Return the section flags. |
| elfcpp::Elf_Xword |
| flags() const |
| { return this->flags_; } |
| |
| typedef std::map<Section_id, unsigned int> Section_layout_order; |
| |
| void |
| update_section_layout(const Section_layout_order* order_map); |
| |
| // Update the output section flags based on input section flags. |
| void |
| update_flags_for_input_section(elfcpp::Elf_Xword flags); |
| |
| // Set the output section flags. |
| void |
| set_flags(elfcpp::Elf_Xword flags) |
| { this->flags_ = flags; } |
| |
| // Return the entsize field. |
| uint64_t |
| entsize() const |
| { return this->entsize_; } |
| |
| // Set the entsize field. |
| void |
| set_entsize(uint64_t v); |
| |
| // Set the load address. |
| void |
| set_load_address(uint64_t load_address) |
| { |
| this->load_address_ = load_address; |
| this->has_load_address_ = true; |
| } |
| |
| // Set the link field to the output section index of a section. |
| void |
| set_link_section(const Output_data* od) |
| { |
| gold_assert(this->link_ == 0 |
| && !this->should_link_to_symtab_ |
| && !this->should_link_to_dynsym_); |
| this->link_section_ = od; |
| } |
| |
| // Set the link field to a constant. |
| void |
| set_link(unsigned int v) |
| { |
| gold_assert(this->link_section_ == NULL |
| && !this->should_link_to_symtab_ |
| && !this->should_link_to_dynsym_); |
| this->link_ = v; |
| } |
| |
| // Record that this section should link to the normal symbol table. |
| void |
| set_should_link_to_symtab() |
| { |
| gold_assert(this->link_section_ == NULL |
| && this->link_ == 0 |
| && !this->should_link_to_dynsym_); |
| this->should_link_to_symtab_ = true; |
| } |
| |
| // Record that this section should link to the dynamic symbol table. |
| void |
| set_should_link_to_dynsym() |
| { |
| gold_assert(this->link_section_ == NULL |
| && this->link_ == 0 |
| && !this->should_link_to_symtab_); |
| this->should_link_to_dynsym_ = true; |
| } |
| |
| // Return the info field. |
| unsigned int |
| info() const |
| { |
| gold_assert(this->info_section_ == NULL |
| && this->info_symndx_ == NULL); |
| return this->info_; |
| } |
| |
| // Set the info field to the output section index of a section. |
| void |
| set_info_section(const Output_section* os) |
| { |
| gold_assert((this->info_section_ == NULL |
| || (this->info_section_ == os |
| && this->info_uses_section_index_)) |
| && this->info_symndx_ == NULL |
| && this->info_ == 0); |
| this->info_section_ = os; |
| this->info_uses_section_index_= true; |
| } |
| |
| // Set the info field to the symbol table index of a symbol. |
| void |
| set_info_symndx(const Symbol* sym) |
| { |
| gold_assert(this->info_section_ == NULL |
| && (this->info_symndx_ == NULL |
| || this->info_symndx_ == sym) |
| && this->info_ == 0); |
| this->info_symndx_ = sym; |
| } |
| |
| // Set the info field to the symbol table index of a section symbol. |
| void |
| set_info_section_symndx(const Output_section* os) |
| { |
| gold_assert((this->info_section_ == NULL |
| || (this->info_section_ == os |
| && !this->info_uses_section_index_)) |
| && this->info_symndx_ == NULL |
| && this->info_ == 0); |
| this->info_section_ = os; |
| this->info_uses_section_index_ = false; |
| } |
| |
| // Set the info field to a constant. |
| void |
| set_info(unsigned int v) |
| { |
| gold_assert(this->info_section_ == NULL |
| && this->info_symndx_ == NULL |
| && (this->info_ == 0 |
| || this->info_ == v)); |
| this->info_ = v; |
| } |
| |
| // Set the addralign field. |
| void |
| set_addralign(uint64_t v) |
| { this->addralign_ = v; } |
| |
| void |
| checkpoint_set_addralign(uint64_t val) |
| { |
| if (this->checkpoint_ != NULL) |
| this->checkpoint_->set_addralign(val); |
| } |
| |
| // Whether the output section index has been set. |
| bool |
| has_out_shndx() const |
| { return this->out_shndx_ != -1U; } |
| |
| // Indicate that we need a symtab index. |
| void |
| set_needs_symtab_index() |
| { this->needs_symtab_index_ = true; } |
| |
| // Return whether we need a symtab index. |
| bool |
| needs_symtab_index() const |
| { return this->needs_symtab_index_; } |
| |
| // Get the symtab index. |
| unsigned int |
| symtab_index() const |
| { |
| gold_assert(this->symtab_index_ != 0); |
| return this->symtab_index_; |
| } |
| |
| // Set the symtab index. |
| void |
| set_symtab_index(unsigned int index) |
| { |
| gold_assert(index != 0); |
| this->symtab_index_ = index; |
| } |
| |
| // Indicate that we need a dynsym index. |
| void |
| set_needs_dynsym_index() |
| { this->needs_dynsym_index_ = true; } |
| |
| // Return whether we need a dynsym index. |
| bool |
| needs_dynsym_index() const |
| { return this->needs_dynsym_index_; } |
| |
| // Get the dynsym index. |
| unsigned int |
| dynsym_index() const |
| { |
| gold_assert(this->dynsym_index_ != 0); |
| return this->dynsym_index_; |
| } |
| |
| // Set the dynsym index. |
| void |
| set_dynsym_index(unsigned int index) |
| { |
| gold_assert(index != 0); |
| this->dynsym_index_ = index; |
| } |
| |
| // Sort the attached input sections. |
| void |
| sort_attached_input_sections(); |
| |
| // Return whether the input sections sections attachd to this output |
| // section may require sorting. This is used to handle constructor |
| // priorities compatibly with GNU ld. |
| bool |
| may_sort_attached_input_sections() const |
| { return this->may_sort_attached_input_sections_; } |
| |
| // Record that the input sections attached to this output section |
| // may require sorting. |
| void |
| set_may_sort_attached_input_sections() |
| { this->may_sort_attached_input_sections_ = true; } |
| |
| // Returns true if input sections must be sorted according to the |
| // order in which their name appear in the --section-ordering-file. |
| bool |
| input_section_order_specified() |
| { return this->input_section_order_specified_; } |
| |
| // Record that input sections must be sorted as some of their names |
| // match the patterns specified through --section-ordering-file. |
| void |
| set_input_section_order_specified() |
| { this->input_section_order_specified_ = true; } |
| |
| // Return whether the input sections attached to this output section |
| // require sorting. This is used to handle constructor priorities |
| // compatibly with GNU ld. |
| bool |
| must_sort_attached_input_sections() const |
| { return this->must_sort_attached_input_sections_; } |
| |
| // Record that the input sections attached to this output section |
| // require sorting. |
| void |
| set_must_sort_attached_input_sections() |
| { this->must_sort_attached_input_sections_ = true; } |
| |
| // Get the order in which this section appears in the PT_LOAD output |
| // segment. |
| Output_section_order |
| order() const |
| { return this->order_; } |
| |
| // Set the order for this section. |
| void |
| set_order(Output_section_order order) |
| { this->order_ = order; } |
| |
| // Return whether this section holds relro data--data which has |
| // dynamic relocations but which may be marked read-only after the |
| // dynamic relocations have been completed. |
| bool |
| is_relro() const |
| { return this->is_relro_; } |
| |
| // Record that this section holds relro data. |
| void |
| set_is_relro() |
| { this->is_relro_ = true; } |
| |
| // Record that this section does not hold relro data. |
| void |
| clear_is_relro() |
| { this->is_relro_ = false; } |
| |
| // True if this is a small section: a section which holds small |
| // variables. |
| bool |
| is_small_section() const |
| { return this->is_small_section_; } |
| |
| // Record that this is a small section. |
| void |
| set_is_small_section() |
| { this->is_small_section_ = true; } |
| |
| // True if this is a large section: a section which holds large |
| // variables. |
| bool |
| is_large_section() const |
| { return this->is_large_section_; } |
| |
| // Record that this is a large section. |
| void |
| set_is_large_section() |
| { this->is_large_section_ = true; } |
| |
| // True if this is a large data (not BSS) section. |
| bool |
| is_large_data_section() |
| { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; } |
| |
| // Return whether this section should be written after all the input |
| // sections are complete. |
| bool |
| after_input_sections() const |
| { return this->after_input_sections_; } |
| |
| // Record that this section should be written after all the input |
| // sections are complete. |
| void |
| set_after_input_sections() |
| { this->after_input_sections_ = true; } |
| |
| // Return whether this section requires postprocessing after all |
| // relocations have been applied. |
| bool |
| requires_postprocessing() const |
| { return this->requires_postprocessing_; } |
| |
| bool |
| is_unique_segment() const |
| { return this->is_unique_segment_; } |
| |
| void |
| set_is_unique_segment() |
| { this->is_unique_segment_ = true; } |
| |
| uint64_t extra_segment_flags() const |
| { return this->extra_segment_flags_; } |
| |
| void |
| set_extra_segment_flags(uint64_t flags) |
| { this->extra_segment_flags_ = flags; } |
| |
| uint64_t segment_alignment() const |
| { return this->segment_alignment_; } |
| |
| void |
| set_segment_alignment(uint64_t align) |
| { this->segment_alignment_ = align; } |
| |
| // If a section requires postprocessing, return the buffer to use. |
| unsigned char* |
| postprocessing_buffer() const |
| { |
| gold_assert(this->postprocessing_buffer_ != NULL); |
| return this->postprocessing_buffer_; |
| } |
| |
| // If a section requires postprocessing, create the buffer to use. |
| void |
| create_postprocessing_buffer(); |
| |
| // If a section requires postprocessing, this is the size of the |
| // buffer to which relocations should be applied. |
| off_t |
| postprocessing_buffer_size() const |
| { return this->current_data_size_for_child(); } |
| |
| // Modify the section name. This is only permitted for an |
| // unallocated section, and only before the size has been finalized. |
| // Otherwise the name will not get into Layout::namepool_. |
| void |
| set_name(const char* newname) |
| { |
| gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0); |
| gold_assert(!this->is_data_size_valid()); |
| this->name_ = newname; |
| } |
| |
| // Return whether the offset OFFSET in the input section SHNDX in |
| // object OBJECT is being included in the link. |
| bool |
| is_input_address_mapped(const Relobj* object, unsigned int shndx, |
| off_t offset) const; |
| |
| // Return the offset within the output section of OFFSET relative to |
| // the start of input section SHNDX in object OBJECT. |
| section_offset_type |
| output_offset(const Relobj* object, unsigned int shndx, |
| section_offset_type offset) const; |
| |
| // Return the output virtual address of OFFSET relative to the start |
| // of input section SHNDX in object OBJECT. |
| uint64_t |
| output_address(const Relobj* object, unsigned int shndx, |
| off_t offset) const; |
| |
| // Look for the merged section for input section SHNDX in object |
| // OBJECT. If found, return true, and set *ADDR to the address of |
| // the start of the merged section. This is not necessary the |
| // output offset corresponding to input offset 0 in the section, |
| // since the section may be mapped arbitrarily. |
| bool |
| find_starting_output_address(const Relobj* object, unsigned int shndx, |
| uint64_t* addr) const; |
| |
| // Record that this output section was found in the SECTIONS clause |
| // of a linker script. |
| void |
| set_found_in_sections_clause() |
| { this->found_in_sections_clause_ = true; } |
| |
| // Return whether this output section was found in the SECTIONS |
| // clause of a linker script. |
| bool |
| found_in_sections_clause() const |
| { return this->found_in_sections_clause_; } |
| |
| // Write the section header into *OPHDR. |
| template<int size, bool big_endian> |
| void |
| write_header(const Layout*, const Stringpool*, |
| elfcpp::Shdr_write<size, big_endian>*) const; |
| |
| // The next few calls are for linker script support. |
| |
| // In some cases we need to keep a list of the input sections |
| // associated with this output section. We only need the list if we |
| // might have to change the offsets of the input section within the |
| // output section after we add the input section. The ordinary |
| // input sections will be written out when we process the object |
| // file, and as such we don't need to track them here. We do need |
| // to track Output_section_data objects here. We store instances of |
| // this structure in a std::vector, so it must be a POD. There can |
| // be many instances of this structure, so we use a union to save |
| // some space. |
| class Input_section |
| { |
| public: |
| Input_section() |
| : shndx_(0), p2align_(0) |
| { |
| this->u1_.data_size = 0; |
| this->u2_.object = NULL; |
| } |
| |
| // For an ordinary input section. |
| Input_section(Relobj* object, unsigned int shndx, off_t data_size, |
| uint64_t addralign) |
| : shndx_(shndx), |
| p2align_(ffsll(static_cast<long long>(addralign))), |
| section_order_index_(0) |
| { |
| gold_assert(shndx != OUTPUT_SECTION_CODE |
| && shndx != MERGE_DATA_SECTION_CODE |
| && shndx != MERGE_STRING_SECTION_CODE |
| && shndx != RELAXED_INPUT_SECTION_CODE); |
| this->u1_.data_size = data_size; |
| this->u2_.object = object; |
| } |
| |
| // For a non-merge output section. |
| Input_section(Output_section_data* posd) |
| : shndx_(OUTPUT_SECTION_CODE), p2align_(0), |
| section_order_index_(0) |
| { |
| this->u1_.data_size = 0; |
| this->u2_.posd = posd; |
| } |
| |
| // For a merge section. |
| Input_section(Output_section_data* posd, bool is_string, uint64_t entsize) |
| : shndx_(is_string |
| ? MERGE_STRING_SECTION_CODE |
| : MERGE_DATA_SECTION_CODE), |
| p2align_(0), |
| section_order_index_(0) |
| { |
| this->u1_.entsize = entsize; |
| this->u2_.posd = posd; |
| } |
| |
| // For a relaxed input section. |
| Input_section(Output_relaxed_input_section* psection) |
| : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0), |
| section_order_index_(0) |
| { |
| this->u1_.data_size = 0; |
| this->u2_.poris = psection; |
| } |
| |
| unsigned int |
| section_order_index() const |
| { |
| return this->section_order_index_; |
| } |
| |
| void |
| set_section_order_index(unsigned int number) |
| { |
| this->section_order_index_ = number; |
| } |
| |
| // The required alignment. |
| uint64_t |
| addralign() const |
| { |
| if (this->p2align_ != 0) |
| return static_cast<uint64_t>(1) << (this->p2align_ - 1); |
| else if (!this->is_input_section()) |
| return this->u2_.posd->addralign(); |
| else |
| return 0; |
| } |
| |
| // Set the required alignment, which must be either 0 or a power of 2. |
| // For input sections that are sub-classes of Output_section_data, a |
| // alignment of zero means asking the underlying object for alignment. |
| void |
| set_addralign(uint64_t addralign) |
| { |
| if (addralign == 0) |
| this->p2align_ = 0; |
| else |
| { |
| gold_assert((addralign & (addralign - 1)) == 0); |
| this->p2align_ = ffsll(static_cast<long long>(addralign)); |
| } |
| } |
| |
| // Return the current required size, without finalization. |
| off_t |
| current_data_size() const; |
| |
| // Return the required size. |
| off_t |
| data_size() const; |
| |
| // Whether this is an input section. |
| bool |
| is_input_section() const |
| { |
| return (this->shndx_ != OUTPUT_SECTION_CODE |
| && this->shndx_ != MERGE_DATA_SECTION_CODE |
| && this->shndx_ != MERGE_STRING_SECTION_CODE |
| && this->shndx_ != RELAXED_INPUT_SECTION_CODE); |
| } |
| |
| // Return whether this is a merge section which matches the |
| // parameters. |
| bool |
| is_merge_section(bool is_string, uint64_t entsize, |
| uint64_t addralign) const |
| { |
| return (this->shndx_ == (is_string |
| ? MERGE_STRING_SECTION_CODE |
| : MERGE_DATA_SECTION_CODE) |
| && this->u1_.entsize == entsize |
| && this->addralign() == addralign); |
| } |
| |
| // Return whether this is a merge section for some input section. |
| bool |
| is_merge_section() const |
| { |
| return (this->shndx_ == MERGE_DATA_SECTION_CODE |
| || this->shndx_ == MERGE_STRING_SECTION_CODE); |
| } |
| |
| // Return whether this is a relaxed input section. |
| bool |
| is_relaxed_input_section() const |
| { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; } |
| |
| // Return whether this is a generic Output_section_data. |
| bool |
| is_output_section_data() const |
| { |
| return this->shndx_ == OUTPUT_SECTION_CODE; |
| } |
| |
| // Return the object for an input section. |
| Relobj* |
| relobj() const; |
| |
| // Return the input section index for an input section. |
| unsigned int |
| shndx() const; |
| |
| // For non-input-sections, return the associated Output_section_data |
| // object. |
| Output_section_data* |
| output_section_data() const |
| { |
| gold_assert(!this->is_input_section()); |
| return this->u2_.posd; |
| } |
| |
| // For a merge section, return the Output_merge_base pointer. |
| Output_merge_base* |
| output_merge_base() const |
| { |
| gold_assert(this->is_merge_section()); |
| return this->u2_.pomb; |
| } |
| |
| // Return the Output_relaxed_input_section object. |
| Output_relaxed_input_section* |
| relaxed_input_section() const |
| { |
| gold_assert(this->is_relaxed_input_section()); |
| return this->u2_.poris; |
| } |
| |
| // Set the output section. |
| void |
| set_output_section(Output_section* os) |
| { |
| gold_assert(!this->is_input_section()); |
| Output_section_data* posd = |
| this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd; |
| posd->set_output_section(os); |
| } |
| |
| // Set the address and file offset. This is called during |
| // Layout::finalize. SECTION_FILE_OFFSET is the file offset of |
| // the enclosing section. |
| void |
| set_address_and_file_offset(uint64_t address, off_t file_offset, |
| off_t section_file_offset); |
| |
| // Reset the address and file offset. |
| void |
| reset_address_and_file_offset(); |
| |
| // Finalize the data size. |
| void |
| finalize_data_size(); |
| |
| // Add an input section, for SHF_MERGE sections. |
| bool |
| add_input_section(Relobj* object, unsigned int shndx) |
| { |
| gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE |
| || this->shndx_ == MERGE_STRING_SECTION_CODE); |
| return this->u2_.posd->add_input_section(object, shndx); |
| } |
| |
| // Given an input OBJECT, an input section index SHNDX within that |
| // object, and an OFFSET relative to the start of that input |
| // section, return whether or not the output offset is known. If |
| // this function returns true, it sets *POUTPUT to the offset in |
| // the output section, relative to the start of the input section |
| // in the output section. *POUTPUT may be different from OFFSET |
| // for a merged section. |
| bool |
| output_offset(const Relobj* object, unsigned int shndx, |
| section_offset_type offset, |
| section_offset_type* poutput) const; |
| |
| // Write out the data. This does nothing for an input section. |
| void |
| write(Output_file*); |
| |
| // Write the data to a buffer. This does nothing for an input |
| // section. |
| void |
| write_to_buffer(unsigned char*); |
| |
| // Print to a map file. |
| void |
| print_to_mapfile(Mapfile*) const; |
| |
| // Print statistics about merge sections to stderr. |
| void |
| print_merge_stats(const char* section_name) |
| { |
| if (this->shndx_ == MERGE_DATA_SECTION_CODE |
| || this->shndx_ == MERGE_STRING_SECTION_CODE) |
| this->u2_.posd->print_merge_stats(section_name); |
| } |
| |
| private: |
| // Code values which appear in shndx_. If the value is not one of |
| // these codes, it is the input section index in the object file. |
| enum |
| { |
| // An Output_section_data. |
| OUTPUT_SECTION_CODE = -1U, |
| // An Output_section_data for an SHF_MERGE section with |
| // SHF_STRINGS not set. |
| MERGE_DATA_SECTION_CODE = -2U, |
| // An Output_section_data for an SHF_MERGE section with |
| // SHF_STRINGS set. |
| MERGE_STRING_SECTION_CODE = -3U, |
| // An Output_section_data for a relaxed input section. |
| RELAXED_INPUT_SECTION_CODE = -4U |
| }; |
| |
| // For an ordinary input section, this is the section index in the |
| // input file. For an Output_section_data, this is |
| // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or |
| // MERGE_STRING_SECTION_CODE. |
| unsigned int shndx_; |
| // The required alignment, stored as a power of 2. |
| unsigned int p2align_; |
| union |
| { |
| // For an ordinary input section, the section size. |
| off_t data_size; |
| // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not |
| // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the |
| // entity size. |
| uint64_t entsize; |
| } u1_; |
| union |
| { |
| // For an ordinary input section, the object which holds the |
| // input section. |
| Relobj* object; |
| // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or |
| // MERGE_STRING_SECTION_CODE, the data. |
| Output_section_data* posd; |
| Output_merge_base* pomb; |
| // For RELAXED_INPUT_SECTION_CODE, the data. |
| Output_relaxed_input_section* poris; |
| } u2_; |
| // The line number of the pattern it matches in the --section-ordering-file |
| // file. It is 0 if does not match any pattern. |
| unsigned int section_order_index_; |
| }; |
| |
| // Store the list of input sections for this Output_section into the |
| // list passed in. This removes the input sections, leaving only |
| // any Output_section_data elements. This returns the size of those |
| // Output_section_data elements. ADDRESS is the address of this |
| // output section. FILL is the fill value to use, in case there are |
| // any spaces between the remaining Output_section_data elements. |
| uint64_t |
| get_input_sections(uint64_t address, const std::string& fill, |
| std::list<Input_section>*); |
| |
| // Add a script input section. A script input section can either be |
| // a plain input section or a sub-class of Output_section_data. |
| void |
| add_script_input_section(const Input_section& input_section); |
| |
| // Set the current size of the output section. |
| void |
| set_current_data_size(off_t size) |
| { this->set_current_data_size_for_child(size); } |
| |
| // End of linker script support. |
| |
| // Save states before doing section layout. |
| // This is used for relaxation. |
| void |
| save_states(); |
| |
| // Restore states prior to section layout. |
| void |
| restore_states(); |
| |
| // Discard states. |
| void |
| discard_states(); |
| |
| // Convert existing input sections to relaxed input sections. |
| void |
| convert_input_sections_to_relaxed_sections( |
| const std::vector<Output_relaxed_input_section*>& sections); |
| |
| // Find a relaxed input section to an input section in OBJECT |
| // with index SHNDX. Return NULL if none is found. |
| const Output_relaxed_input_section* |
| find_relaxed_input_section(const Relobj* object, unsigned int shndx) const; |
| |
| // Whether section offsets need adjustment due to relaxation. |
| bool |
| section_offsets_need_adjustment() const |
| { return this->section_offsets_need_adjustment_; } |
| |
| // Set section_offsets_need_adjustment to be true. |
| void |
| set_section_offsets_need_adjustment() |
| { this->section_offsets_need_adjustment_ = true; } |
| |
| // Set section_offsets_need_adjustment to be false. |
| void |
| clear_section_offsets_need_adjustment() |
| { this->section_offsets_need_adjustment_ = false; } |
| |
| // Adjust section offsets of input sections in this. This is |
| // requires if relaxation caused some input sections to change sizes. |
| void |
| adjust_section_offsets(); |
| |
| // Whether this is a NOLOAD section. |
| bool |
| is_noload() const |
| { return this->is_noload_; } |
| |
| // Set NOLOAD flag. |
| void |
| set_is_noload() |
| { this->is_noload_ = true; } |
| |
| // Print merge statistics to stderr. |
| void |
| print_merge_stats(); |
| |
| // Set a fixed layout for the section. Used for incremental update links. |
| void |
| set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size, |
| uint64_t sh_addralign); |
| |
| // Return TRUE if the section has a fixed layout. |
| bool |
| has_fixed_layout() const |
| { return this->has_fixed_layout_; } |
| |
| // Set flag to allow patch space for this section. Used for full |
| // incremental links. |
| void |
| set_is_patch_space_allowed() |
| { this->is_patch_space_allowed_ = true; } |
| |
| // Set a fill method to use for free space left in the output section |
| // during incremental links. |
| void |
| set_free_space_fill(Output_fill* free_space_fill) |
| { |
| this->free_space_fill_ = free_space_fill; |
| this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size()); |
| } |
| |
| // Reserve space within the fixed layout for the section. Used for |
| // incremental update links. |
| void |
| reserve(uint64_t sh_offset, uint64_t sh_size); |
| |
| // Allocate space from the free list for the section. Used for |
| // incremental update links. |
| off_t |
| allocate(off_t len, uint64_t addralign); |
| |
| typedef std::vector<Input_section> Input_section_list; |
| |
| // Allow access to the input sections. |
| const Input_section_list& |
| input_sections() const |
| { return this->input_sections_; } |
| |
| Input_section_list& |
| input_sections() |
| { return this->input_sections_; } |
| |
| // For -r and --emit-relocs, we need to keep track of the associated |
| // relocation section. |
| Output_section* |
| reloc_section() const |
| { return this->reloc_section_; } |
| |
| void |
| set_reloc_section(Output_section* os) |
| { this->reloc_section_ = os; } |
| |
| protected: |
| // Return the output section--i.e., the object itself. |
| Output_section* |
| do_output_section() |
| { return this; } |
| |
| const Output_section* |
| do_output_section() const |
| { return this; } |
| |
| // Return the section index in the output file. |
| unsigned int |
| do_out_shndx() const |
| { |
| gold_assert(this->out_shndx_ != -1U); |
| return this->out_shndx_; |
| } |
| |
| // Set the output section index. |
| void |
| do_set_out_shndx(unsigned int shndx) |
| { |
| gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx); |
| this->out_shndx_ = shndx; |
| } |
| |
| // Update the data size of the Output_section. For a typical |
| // Output_section, there is nothing to do, but if there are any |
| // Output_section_data objects we need to do a trial layout |
| // here. |
| virtual void |
| update_data_size(); |
| |
| // Set the final data size of the Output_section. For a typical |
| // Output_section, there is nothing to do, but if there are any |
| // Output_section_data objects we need to set their final addresses |
| // here. |
| virtual void |
| set_final_data_size(); |
| |
| // Reset the address and file offset. |
| void |
| do_reset_address_and_file_offset(); |
| |
| // Return true if address and file offset already have reset values. In |
| // other words, calling reset_address_and_file_offset will not change them. |
| bool |
| do_address_and_file_offset_have_reset_values() const; |
| |
| // Write the data to the file. For a typical Output_section, this |
| // does nothing: the data is written out by calling Object::Relocate |
| // on each input object. But if there are any Output_section_data |
| // objects we do need to write them out here. |
| virtual void |
| do_write(Output_file*); |
| |
| // Return the address alignment--function required by parent class. |
| uint64_t |
| do_addralign() const |
| { return this->addralign_; } |
| |
| // Return whether there is a load address. |
| bool |
| do_has_load_address() const |
| { return this->has_load_address_; } |
| |
| // Return the load address. |
| uint64_t |
| do_load_address() const |
| { |
| gold_assert(this->has_load_address_); |
| return this->load_address_; |
| } |
| |
| // Return whether this is an Output_section. |
| bool |
| do_is_section() const |
| { return true; } |
| |
| // Return whether this is a section of the specified type. |
| bool |
| do_is_section_type(elfcpp::Elf_Word type) const |
| { return this->type_ == type; } |
| |
| // Return whether the specified section flag is set. |
| bool |
| do_is_section_flag_set(elfcpp::Elf_Xword flag) const |
| { return (this->flags_ & flag) != 0; } |
| |
| // Set the TLS offset. Called only for SHT_TLS sections. |
| void |
| do_set_tls_offset(uint64_t tls_base); |
| |
| // Return the TLS offset, relative to the base of the TLS segment. |
| // Valid only for SHT_TLS sections. |
| uint64_t |
| do_tls_offset() const |
| { return this->tls_offset_; } |
| |
| // This may be implemented by a child class. |
| virtual void |
| do_finalize_name(Layout*) |
| { } |
| |
| // Print to the map file. |
| virtual void |
| do_print_to_mapfile(Mapfile*) const; |
| |
| // Record that this section requires postprocessing after all |
| // relocations have been applied. This is called by a child class. |
| void |
| set_requires_postprocessing() |
| { |
| this->requires_postprocessing_ = true; |
| this->after_input_sections_ = true; |
| } |
| |
| // Write all the data of an Output_section into the postprocessing |
| // buffer. |
| void |
| write_to_postprocessing_buffer(); |
| |
| // Whether this always keeps an input section list |
| bool |
| always_keeps_input_sections() const |
| { return this->always_keeps_input_sections_; } |
| |
| // Always keep an input section list. |
| void |
| set_always_keeps_input_sections() |
| { |
| gold_assert(this->current_data_size_for_child() == 0); |
| this->always_keeps_input_sections_ = true; |
| } |
| |
| private: |
| // We only save enough information to undo the effects of section layout. |
| class Checkpoint_output_section |
| { |
| public: |
| Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags, |
| const Input_section_list& input_sections, |
| off_t first_input_offset, |
| bool attached_input_sections_are_sorted) |
| : addralign_(addralign), flags_(flags), |
| input_sections_(input_sections), |
| input_sections_size_(input_sections_.size()), |
| input_sections_copy_(), first_input_offset_(first_input_offset), |
| attached_input_sections_are_sorted_(attached_input_sections_are_sorted) |
| { } |
| |
| virtual |
| ~Checkpoint_output_section() |
| { } |
| |
| // Return the address alignment. |
| uint64_t |
| addralign() const |
| { return this->addralign_; } |
| |
| void |
| set_addralign(uint64_t val) |
| { this->addralign_ = val; } |
| |
| // Return the section flags. |
| elfcpp::Elf_Xword |
| flags() const |
| { return this->flags_; } |
| |
| // Return a reference to the input section list copy. |
| Input_section_list* |
| input_sections() |
| { return &this->input_sections_copy_; } |
| |
| // Return the size of input_sections at the time when checkpoint is |
| // taken. |
| size_t |
| input_sections_size() const |
| { return this->input_sections_size_; } |
| |
| // Whether input sections are copied. |
| bool |
| input_sections_saved() const |
| { return this->input_sections_copy_.size() == this->input_sections_size_; } |
| |
| off_t |
| first_input_offset() const |
| { return this->first_input_offset_; } |
| |
| bool |
| attached_input_sections_are_sorted() const |
| { return this->attached_input_sections_are_sorted_; } |
| |
| // Save input sections. |
| void |
| save_input_sections() |
| { |
| this->input_sections_copy_.reserve(this->input_sections_size_); |
| this->input_sections_copy_.clear(); |
| Input_section_list::const_iterator p = this->input_sections_.begin(); |
| gold_assert(this->input_sections_size_ >= this->input_sections_.size()); |
| for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p) |
| this->input_sections_copy_.push_back(*p); |
| } |
| |
| private: |
| // The section alignment. |
| uint64_t addralign_; |
| // The section flags. |
| elfcpp::Elf_Xword flags_; |
| // Reference to the input sections to be checkpointed. |
| const Input_section_list& input_sections_; |
| // Size of the checkpointed portion of input_sections_; |
| size_t input_sections_size_; |
| // Copy of input sections. |
| Input_section_list input_sections_copy_; |
| // The offset of the first entry in input_sections_. |
| off_t first_input_offset_; |
| // True if the input sections attached to this output section have |
| // already been sorted. |
| bool attached_input_sections_are_sorted_; |
| }; |
| |
| // This class is used to sort the input sections. |
| class Input_section_sort_entry; |
| |
| // This is the sort comparison function for ctors and dtors. |
| struct Input_section_sort_compare |
| { |
| bool |
| operator()(const Input_section_sort_entry&, |
| const Input_section_sort_entry&) const; |
| }; |
| |
| // This is the sort comparison function for .init_array and .fini_array. |
| struct Input_section_sort_init_fini_compare |
| { |
| bool |
| operator()(const Input_section_sort_entry&, |
| const Input_section_sort_entry&) const; |
| }; |
| |
| // This is the sort comparison function when a section order is specified |
| // from an input file. |
| struct Input_section_sort_section_order_index_compare |
| { |
| bool |
| operator()(const Input_section_sort_entry&, |
| const Input_section_sort_entry&) const; |
| }; |
| |
| // This is the sort comparison function for .text to sort sections with |
| // prefixes .text.{unlikely,exit,startup,hot} before other sections. |
| struct Input_section_sort_section_prefix_special_ordering_compare |
| { |
| bool |
| operator()(const Input_section_sort_entry&, |
| const Input_section_sort_entry&) const; |
| }; |
| |
| // This is the sort comparison function for sorting sections by name. |
| struct Input_section_sort_section_name_compare |
| { |
| bool |
| operator()(const Input_section_sort_entry&, |
| const Input_section_sort_entry&) const; |
| }; |
| |
| // Fill data. This is used to fill in data between input sections. |
| // It is also used for data statements (BYTE, WORD, etc.) in linker |
| // scripts. When we have to keep track of the input sections, we |
| // can use an Output_data_const, but we don't want to have to keep |
| // track of input sections just to implement fills. |
| class Fill |
| { |
| public: |
| Fill(off_t section_offset, off_t length) |
| : section_offset_(section_offset), |
| length_(convert_to_section_size_type(length)) |
| { } |
| |
| // Return section offset. |
| off_t |
| section_offset() const |
| { return this->section_offset_; } |
| |
| // Return fill length. |
| section_size_type |
| length() const |
| { return this->length_; } |
| |
| private: |
| // The offset within the output section. |
| off_t section_offset_; |
| // The length of the space to fill. |
| section_size_type length_; |
| }; |
| |
| typedef std::vector<Fill> Fill_list; |
| |
| // Map used during relaxation of existing sections. This map |
| // a section id an input section list index. We assume that |
| // Input_section_list is a vector. |
| typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map; |
| |
| // Add a new output section by Input_section. |
| void |
| add_output_section_data(Input_section*); |
| |
| // Add an SHF_MERGE input section. Returns true if the section was |
| // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section |
| // stores information about the merged input sections. |
| bool |
| add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags, |
| uint64_t entsize, uint64_t addralign, |
| bool keeps_input_sections); |
| |
| // Add an output SHF_MERGE section POSD to this output section. |
| // IS_STRING indicates whether it is a SHF_STRINGS section, and |
| // ENTSIZE is the entity size. This returns the entry added to |
| // input_sections_. |
| void |
| add_output_merge_section(Output_section_data* posd, bool is_string, |
| uint64_t entsize); |
| |
| // Find the merge section into which an input section with index SHNDX in |
| // OBJECT has been added. Return NULL if none found. |
| const Output_section_data* |
| find_merge_section(const Relobj* object, unsigned int shndx) const; |
| |
| // Build a relaxation map. |
| void |
| build_relaxation_map( |
| const Input_section_list& input_sections, |
| size_t limit, |
| Relaxation_map* map) const; |
| |
| // Convert input sections in an input section list into relaxed sections. |
| void |
| convert_input_sections_in_list_to_relaxed_sections( |
| const std::vector<Output_relaxed_input_section*>& relaxed_sections, |
| const Relaxation_map& map, |
| Input_section_list* input_sections); |
| |
| // Build the lookup maps for merge and relaxed input sections. |
| void |
| build_lookup_maps() const; |
| |
| // Most of these fields are only valid after layout. |
| |
| // The name of the section. This will point into a Stringpool. |
| const char* name_; |
| // The section address is in the parent class. |
| // The section alignment. |
| uint64_t addralign_; |
| // The section entry size. |
| uint64_t entsize_; |
| // The load address. This is only used when using a linker script |
| // with a SECTIONS clause. The has_load_address_ field indicates |
| // whether this field is valid. |
| uint64_t load_address_; |
| // The file offset is in the parent class. |
| // Set the section link field to the index of this section. |
| const Output_data* link_section_; |
| // If link_section_ is NULL, this is the link field. |
| unsigned int link_; |
| // Set the section info field to the index of this section. |
| const Output_section* info_section_; |
| // If info_section_ is NULL, set the info field to the symbol table |
| // index of this symbol. |
| const Symbol* info_symndx_; |
| // If info_section_ and info_symndx_ are NULL, this is the section |
| // info field. |
| unsigned int info_; |
| // The section type. |
| const elfcpp::Elf_Word type_; |
| // The section flags. |
| elfcpp::Elf_Xword flags_; |
| // The order of this section in the output segment. |
| Output_section_order order_; |
| // The section index. |
| unsigned int out_shndx_; |
| // If there is a STT_SECTION for this output section in the normal |
| // symbol table, this is the symbol index. This starts out as zero. |
| // It is initialized in Layout::finalize() to be the index, or -1U |
| // if there isn't one. |
| unsigned int symtab_index_; |
| // If there is a STT_SECTION for this output section in the dynamic |
| // symbol table, this is the symbol index. This starts out as zero. |
| // It is initialized in Layout::finalize() to be the index, or -1U |
| // if there isn't one. |
| unsigned int dynsym_index_; |
| // The input sections. This will be empty in cases where we don't |
| // need to keep track of them. |
| Input_section_list input_sections_; |
| // The offset of the first entry in input_sections_. |
| off_t first_input_offset_; |
| // The fill data. This is separate from input_sections_ because we |
| // often will need fill sections without needing to keep track of |
| // input sections. |
| Fill_list fills_; |
| // If the section requires postprocessing, this buffer holds the |
| // section contents during relocation. |
| unsigned char* postprocessing_buffer_; |
| // Whether this output section needs a STT_SECTION symbol in the |
| // normal symbol table. This will be true if there is a relocation |
| // which needs it. |
| bool needs_symtab_index_ : 1; |
| // Whether this output section needs a STT_SECTION symbol in the |
| // dynamic symbol table. This will be true if there is a dynamic |
| // relocation which needs it. |
| bool needs_dynsym_index_ : 1; |
| // Whether the link field of this output section should point to the |
| // normal symbol table. |
| bool should_link_to_symtab_ : 1; |
| // Whether the link field of this output section should point to the |
| // dynamic symbol table. |
| bool should_link_to_dynsym_ : 1; |
| // Whether this section should be written after all the input |
| // sections are complete. |
| bool after_input_sections_ : 1; |
| // Whether this section requires post processing after all |
| // relocations have been applied. |
| bool requires_postprocessing_ : 1; |
| // Whether an input section was mapped to this output section |
| // because of a SECTIONS clause in a linker script. |
| bool found_in_sections_clause_ : 1; |
| // Whether this section has an explicitly specified load address. |
| bool has_load_address_ : 1; |
| // True if the info_section_ field means the section index of the |
| // section, false if it means the symbol index of the corresponding |
| // section symbol. |
| bool info_uses_section_index_ : 1; |
| // True if input sections attached to this output section have to be |
| // sorted according to a specified order. |
| bool input_section_order_specified_ : 1; |
| // True if the input sections attached to this output section may |
| // need sorting. |
| bool may_sort_attached_input_sections_ : 1; |
| // True if the input sections attached to this output section must |
| // be sorted. |
| bool must_sort_attached_input_sections_ : 1; |
| // True if the input sections attached to this output section have |
| // already been sorted. |
| bool attached_input_sections_are_sorted_ : 1; |
| // True if this section holds relro data. |
| bool is_relro_ : 1; |
| // True if this is a small section. |
| bool is_small_section_ : 1; |
| // True if this is a large section. |
| bool is_large_section_ : 1; |
| // Whether code-fills are generated at write. |
| bool generate_code_fills_at_write_ : 1; |
| // Whether the entry size field should be zero. |
| bool is_entsize_zero_ : 1; |
| // Whether section offsets need adjustment due to relaxation. |
| bool section_offsets_need_adjustment_ : 1; |
| // Whether this is a NOLOAD section. |
| bool is_noload_ : 1; |
| // Whether this always keeps input section. |
| bool always_keeps_input_sections_ : 1; |
| // Whether this section has a fixed layout, for incremental update links. |
| bool has_fixed_layout_ : 1; |
| // True if we can add patch space to this section. |
| bool is_patch_space_allowed_ : 1; |
| // True if this output section goes into a unique segment. |
| bool is_unique_segment_ : 1; |
| // For SHT_TLS sections, the offset of this section relative to the base |
| // of the TLS segment. |
| uint64_t tls_offset_; |
| // Additional segment flags, specified via linker plugin, when mapping some |
| // input sections to unique segments. |
| uint64_t extra_segment_flags_; |
| // Segment alignment specified via linker plugin, when mapping some |
| // input sections to unique segments. |
| uint64_t segment_alignment_; |
| // Saved checkpoint. |
| Checkpoint_output_section* checkpoint_; |
| // Fast lookup maps for merged and relaxed input sections. |
| Output_section_lookup_maps* lookup_maps_; |
| // List of available regions within the section, for incremental |
| // update links. |
| Free_list free_list_; |
| // Method for filling chunks of free space. |
| Output_fill* free_space_fill_; |
| // Amount added as patch space for incremental linking. |
| off_t patch_space_; |
| // Associated relocation section, when emitting relocations. |
| Output_section* reloc_section_; |
| }; |
| |
| // An output segment. PT_LOAD segments are built from collections of |
| // output sections. Other segments typically point within PT_LOAD |
| // segments, and are built directly as needed. |
| // |
| // NOTE: We want to use the copy constructor for this class. During |
| // relaxation, we may try built the segments multiple times. We do |
| // that by copying the original segment list before lay-out, doing |
| // a trial lay-out and roll-back to the saved copied if we need to |
| // to the lay-out again. |
| |
| class Output_segment |
| { |
| public: |
| // Create an output segment, specifying the type and flags. |
| Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word); |
| |
| // Return the virtual address. |
| uint64_t |
| vaddr() const |
| { return this->vaddr_; } |
| |
| // Return the physical address. |
| uint64_t |
| paddr() const |
| { return this->paddr_; } |
| |
| // Return the segment type. |
| elfcpp::Elf_Word |
| type() const |
| { return this->type_; } |
| |
| // Return the segment flags. |
| elfcpp::Elf_Word |
| flags() const |
| { return this->flags_; } |
| |
| // Return the memory size. |
| uint64_t |
| memsz() const |
| { return this->memsz_; } |
| |
| // Return the file size. |
| off_t |
| filesz() const |
| { return this->filesz_; } |
| |
| // Return the file offset. |
| off_t |
| offset() const |
| { return this->offset_; } |
| |
| // Return the segment alignment. |
| uint64_t |
| align() const |
| { return this->align_; } |
| |
| // Set the segment alignment. |
| void |
| set_align(uint64_t align) |
| { this->align_ = align; } |
| |
| // Whether this is a segment created to hold large data sections. |
| bool |
| is_large_data_segment() const |
| { return this->is_large_data_segment_; } |
| |
| // Record that this is a segment created to hold large data |
| // sections. |
| void |
| set_is_large_data_segment() |
| { this->is_large_data_segment_ = true; } |
| |
| bool |
| is_unique_segment() const |
| { return this->is_unique_segment_; } |
| |
| // Mark segment as unique, happens when linker plugins request that |
| // certain input sections be mapped to unique segments. |
| void |
| set_is_unique_segment() |
| { this->is_unique_segment_ = true; } |
| |
| // Return the maximum alignment of the Output_data. |
| uint64_t |
| maximum_alignment(); |
| |
| // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is |
| // the segment flags to use. |
| void |
| add_output_section_to_load(Layout* layout, Output_section* os, |
| elfcpp::Elf_Word seg_flags); |
| |
| // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS |
| // is the segment flags to use. |
| void |
| add_output_section_to_nonload(Output_section* os, |
| elfcpp::Elf_Word seg_flags); |
| |
| // Remove an Output_section from this segment. It is an error if it |
| // is not present. |
| void |
| remove_output_section(Output_section* os); |
| |
| // Add an Output_data (which need not be an Output_section) to the |
| // start of this segment. |
| void |
| add_initial_output_data(Output_data*); |
| |
| // Return true if this segment has any sections which hold actual |
| // data, rather than being a BSS section. |
| bool |
| has_any_data_sections() const; |
| |
| // Whether this segment has a dynamic relocs. |
| bool |
| has_dynamic_reloc() const; |
| |
| // Return the first section. |
| Output_section* |
| first_section() const; |
| |
| // Return the address of the first section. |
| uint64_t |
| first_section_load_address() const |
| { |
| const Output_section* os = this->first_section(); |
| gold_assert(os != NULL); |
| return os->has_load_address() ? os->load_address() : os->address(); |
| } |
| |
| // Return whether the addresses have been set already. |
| bool |
| are_addresses_set() const |
| { return this->are_addresses_set_; } |
| |
| // Set the addresses. |
| void |
| set_addresses(uint64_t vaddr, uint64_t paddr) |
| { |
| this->vaddr_ = vaddr; |
| this->paddr_ = paddr; |
| this->are_addresses_set_ = true; |
| } |
| |
| // Update the flags for the flags of an output section added to this |
| // segment. |
| void |
| update_flags_for_output_section(elfcpp::Elf_Xword flags) |
| { |
| // The ELF ABI specifies that a PT_TLS segment should always have |
| // PF_R as the flags. |
| if (this->type() != elfcpp::PT_TLS) |
| this->flags_ |= flags; |
| } |
| |
| // Set the segment flags. This is only used if we have a PHDRS |
| // clause which explicitly specifies the flags. |
| void |
| set_flags(elfcpp::Elf_Word flags) |
| { this->flags_ = flags; } |
| |
| // Set the address of the segment to ADDR and the offset to *POFF |
| // and set the addresses and offsets of all contained output |
| // sections accordingly. Set the section indexes of all contained |
| // output sections starting with *PSHNDX. If RESET is true, first |
| // reset the addresses of the contained sections. Return the |
| // address of the immediately following segment. Update *POFF and |
| // *PSHNDX. This should only be called for a PT_LOAD segment. |
| uint64_t |
| set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr, |
| unsigned int* increase_relro, bool* has_relro, |
| off_t* poff, unsigned int* pshndx); |
| |
| // Set the minimum alignment of this segment. This may be adjusted |
| // upward based on the section alignments. |
| void |
| set_minimum_p_align(uint64_t align) |
| { |
| if (align > this->min_p_align_) |
| this->min_p_align_ = align; |
| } |
| |
| // Set the memory size of this segment. |
| void |
| set_size(uint64_t size) |
| { |
| this->memsz_ = size; |
| } |
| |
| // Set the offset of this segment based on the section. This should |
| // only be called for a non-PT_LOAD segment. |
| void |
| set_offset(unsigned int increase); |
| |
| // Set the TLS offsets of the sections contained in the PT_TLS segment. |
| void |
| set_tls_offsets(); |
| |
| // Return the number of output sections. |
| unsigned int |
| output_section_count() const; |
| |
| // Return the section attached to the list segment with the lowest |
| // load address. This is used when handling a PHDRS clause in a |
| // linker script. |
| Output_section* |
| section_with_lowest_load_address() const; |
| |
| // Write the segment header into *OPHDR. |
| template<int size, bool big_endian> |
| void |
| write_header(elfcpp::Phdr_write<size, big_endian>*); |
| |
| // Write the section headers of associated sections into V. |
| template<int size, bool big_endian> |
| unsigned char* |
| write_section_headers(const Layout*, const Stringpool*, unsigned char* v, |
| unsigned int* pshndx) const; |
| |
| // Print the output sections in the map file. |
| void |
| print_sections_to_mapfile(Mapfile*) const; |
| |
| private: |
| typedef std::vector<Output_data*> Output_data_list; |
| |
| // Find the maximum alignment in an Output_data_list. |
| static uint64_t |
| maximum_alignment_list(const Output_data_list*); |
| |
| // Return whether the first data section is a relro section. |
| bool |
| is_first_section_relro() const; |
| |
| // Set the section addresses in an Output_data_list. |
| uint64_t |
| set_section_list_addresses(Layout*, bool reset, Output_data_list*, |
| uint64_t addr, off_t* poff, off_t* fpoff, |
| unsigned int* pshndx, bool* in_tls); |
| |
| // Return the number of Output_sections in an Output_data_list. |
| unsigned int |
| output_section_count_list(const Output_data_list*) const; |
| |
| // Return whether an Output_data_list has a dynamic reloc. |
| bool |
| has_dynamic_reloc_list(const Output_data_list*) const; |
| |
| // Find the section with the lowest load address in an |
| // Output_data_list. |
| void |
| lowest_load_address_in_list(const Output_data_list* pdl, |
| Output_section** found, |
| uint64_t* found_lma) const; |
| |
| // Find the first and last entries by address. |
| void |
| find_first_and_last_list(const Output_data_list* pdl, |
| const Output_data** pfirst, |
| const Output_data** plast) const; |
| |
| // Write the section headers in the list into V. |
| template<int size, bool big_endian> |
| unsigned char* |
| write_section_headers_list(const Layout*, const Stringpool*, |
| const Output_data_list*, unsigned char* v, |
| unsigned int* pshdx) const; |
| |
| // Print a section list to the mapfile. |
| void |
| print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const; |
| |
| // NOTE: We want to use the copy constructor. Currently, shallow copy |
| // works for us so we do not need to write our own copy constructor. |
| |
| // The list of output data attached to this segment. |
| Output_data_list output_lists_[ORDER_MAX]; |
| // The segment virtual address. |
| uint64_t vaddr_; |
| // The segment physical address. |
| uint64_t paddr_; |
| // The size of the segment in memory. |
| uint64_t memsz_; |
| // The segment alignment. |
| uint64_t align_; |
| // The maximum section alignment. The is_max_align_known_ field |
| // indicates whether this has been finalized. |
| uint64_t max_align_; |
| // The required minimum value for the p_align field. This is used |
| // for PT_LOAD segments. Note that this does not mean that |
| // addresses should be aligned to this value; it means the p_paddr |
| // and p_vaddr fields must be congruent modulo this value. For |
| // non-PT_LOAD segments, the dynamic linker works more efficiently |
| // if the p_align field has the more conventional value, although it |
| // can align as needed. |
| uint64_t min_p_align_; |
| // The offset of the segment data within the file. |
| off_t offset_; |
| // The size of the segment data in the file. |
| off_t filesz_; |
| // The segment type; |
| elfcpp::Elf_Word type_; |
| // The segment flags. |
| elfcpp::Elf_Word flags_; |
| // Whether we have finalized max_align_. |
| bool is_max_align_known_ : 1; |
| // Whether vaddr and paddr were set by a linker script. |
| bool are_addresses_set_ : 1; |
| // Whether this segment holds large data sections. |
| bool is_large_data_segment_ : 1; |
| // Whether this was marked as a unique segment via a linker plugin. |
| bool is_unique_segment_ : 1; |
| }; |
| |
| } // End namespace gold. |
| |
| #endif // !defined(GOLD_OUTPUT_H) |