blob: 93edbf99a2da6dca99db33f77d5e60366473d7aa [file] [log] [blame]
// OBSOLETE /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
// OBSOLETE
// OBSOLETE Copyright 1996, 1998, 1999, 2000, 2001, 2003 Free Software
// OBSOLETE Foundation, Inc.
// OBSOLETE
// OBSOLETE This file is part of GDB.
// OBSOLETE
// OBSOLETE This program is free software; you can redistribute it and/or modify
// OBSOLETE it under the terms of the GNU General Public License as published by
// OBSOLETE the Free Software Foundation; either version 2 of the License, or
// OBSOLETE (at your option) any later version.
// OBSOLETE
// OBSOLETE This program is distributed in the hope that it will be useful,
// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// OBSOLETE GNU General Public License for more details.
// OBSOLETE
// OBSOLETE You should have received a copy of the GNU General Public License
// OBSOLETE along with this program; if not, write to the Free Software
// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
// OBSOLETE Boston, MA 02111-1307, USA. */
// OBSOLETE
// OBSOLETE #include "defs.h"
// OBSOLETE #include "frame.h"
// OBSOLETE #include "inferior.h"
// OBSOLETE #include "target.h"
// OBSOLETE #include "value.h"
// OBSOLETE #include "bfd.h"
// OBSOLETE #include "gdb_string.h"
// OBSOLETE #include "gdbcore.h"
// OBSOLETE #include "symfile.h"
// OBSOLETE #include "regcache.h"
// OBSOLETE
// OBSOLETE /* Function: m32r_use_struct_convention
// OBSOLETE Return nonzero if call_function should allocate stack space for a
// OBSOLETE struct return? */
// OBSOLETE int
// OBSOLETE m32r_use_struct_convention (int gcc_p, struct type *type)
// OBSOLETE {
// OBSOLETE return (TYPE_LENGTH (type) > 8);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: frame_find_saved_regs
// OBSOLETE Return the frame_saved_regs structure for the frame.
// OBSOLETE Doesn't really work for dummy frames, but it does pass back
// OBSOLETE an empty frame_saved_regs, so I guess that's better than total failure */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_frame_find_saved_regs (struct frame_info *fi,
// OBSOLETE struct frame_saved_regs *regaddr)
// OBSOLETE {
// OBSOLETE memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Turn this on if you want to see just how much instruction decoding
// OBSOLETE if being done, its quite a lot
// OBSOLETE */
// OBSOLETE #if 0
// OBSOLETE static void
// OBSOLETE dump_insn (char *commnt, CORE_ADDR pc, int insn)
// OBSOLETE {
// OBSOLETE printf_filtered (" %s %08x %08x ",
// OBSOLETE commnt, (unsigned int) pc, (unsigned int) insn);
// OBSOLETE TARGET_PRINT_INSN (pc, &tm_print_insn_info);
// OBSOLETE printf_filtered ("\n");
// OBSOLETE }
// OBSOLETE #define insn_debug(args) { printf_filtered args; }
// OBSOLETE #else
// OBSOLETE #define dump_insn(a,b,c) {}
// OBSOLETE #define insn_debug(args) {}
// OBSOLETE #endif
// OBSOLETE
// OBSOLETE #define DEFAULT_SEARCH_LIMIT 44
// OBSOLETE
// OBSOLETE /* Function: scan_prologue
// OBSOLETE This function decodes the target function prologue to determine
// OBSOLETE 1) the size of the stack frame, and 2) which registers are saved on it.
// OBSOLETE It saves the offsets of saved regs in the frame_saved_regs argument,
// OBSOLETE and returns the frame size. */
// OBSOLETE
// OBSOLETE /*
// OBSOLETE The sequence it currently generates is:
// OBSOLETE
// OBSOLETE if (varargs function) { ddi sp,#n }
// OBSOLETE push registers
// OBSOLETE if (additional stack <= 256) { addi sp,#-stack }
// OBSOLETE else if (additional stack < 65k) { add3 sp,sp,#-stack
// OBSOLETE
// OBSOLETE } else if (additional stack) {
// OBSOLETE seth sp,#(stack & 0xffff0000)
// OBSOLETE or3 sp,sp,#(stack & 0x0000ffff)
// OBSOLETE sub sp,r4
// OBSOLETE }
// OBSOLETE if (frame pointer) {
// OBSOLETE mv sp,fp
// OBSOLETE }
// OBSOLETE
// OBSOLETE These instructions are scheduled like everything else, so you should stop at
// OBSOLETE the first branch instruction.
// OBSOLETE
// OBSOLETE */
// OBSOLETE
// OBSOLETE /* This is required by skip prologue and by m32r_init_extra_frame_info.
// OBSOLETE The results of decoding a prologue should be cached because this
// OBSOLETE thrashing is getting nuts.
// OBSOLETE I am thinking of making a container class with two indexes, name and
// OBSOLETE address. It may be better to extend the symbol table.
// OBSOLETE */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */
// OBSOLETE unsigned long *framelength, struct frame_info *fi,
// OBSOLETE struct frame_saved_regs *fsr)
// OBSOLETE {
// OBSOLETE unsigned long framesize;
// OBSOLETE int insn;
// OBSOLETE int op1;
// OBSOLETE int maybe_one_more = 0;
// OBSOLETE CORE_ADDR after_prologue = 0;
// OBSOLETE CORE_ADDR after_stack_adjust = 0;
// OBSOLETE CORE_ADDR current_pc;
// OBSOLETE
// OBSOLETE
// OBSOLETE framesize = 0;
// OBSOLETE after_prologue = 0;
// OBSOLETE insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
// OBSOLETE
// OBSOLETE for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
// OBSOLETE {
// OBSOLETE
// OBSOLETE insn = read_memory_unsigned_integer (current_pc, 2);
// OBSOLETE dump_insn ("insn-1", current_pc, insn); /* MTZ */
// OBSOLETE
// OBSOLETE /* If this is a 32 bit instruction, we dont want to examine its
// OBSOLETE immediate data as though it were an instruction */
// OBSOLETE if (current_pc & 0x02)
// OBSOLETE { /* Clear the parallel execution bit from 16 bit instruction */
// OBSOLETE if (maybe_one_more)
// OBSOLETE { /* The last instruction was a branch, usually terminates
// OBSOLETE the series, but if this is a parallel instruction,
// OBSOLETE it may be a stack framing instruction */
// OBSOLETE if (!(insn & 0x8000))
// OBSOLETE {
// OBSOLETE insn_debug (("Really done"));
// OBSOLETE break; /* nope, we are really done */
// OBSOLETE }
// OBSOLETE }
// OBSOLETE insn &= 0x7fff; /* decode this instruction further */
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE if (maybe_one_more)
// OBSOLETE break; /* This isnt the one more */
// OBSOLETE if (insn & 0x8000)
// OBSOLETE {
// OBSOLETE insn_debug (("32 bit insn\n"));
// OBSOLETE if (current_pc == scan_limit)
// OBSOLETE scan_limit += 2; /* extend the search */
// OBSOLETE current_pc += 2; /* skip the immediate data */
// OBSOLETE if (insn == 0x8faf) /* add3 sp, sp, xxxx */
// OBSOLETE /* add 16 bit sign-extended offset */
// OBSOLETE {
// OBSOLETE insn_debug (("stack increment\n"));
// OBSOLETE framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
// OBSOLETE read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
// OBSOLETE { /* subtract 24 bit sign-extended negative-offset */
// OBSOLETE dump_insn ("insn-2", current_pc + 2, insn);
// OBSOLETE insn = read_memory_unsigned_integer (current_pc - 2, 4);
// OBSOLETE dump_insn ("insn-3(l4)", current_pc - 2, insn);
// OBSOLETE if (insn & 0x00800000) /* sign extend */
// OBSOLETE insn |= 0xff000000; /* negative */
// OBSOLETE else
// OBSOLETE insn &= 0x00ffffff; /* positive */
// OBSOLETE framesize += insn;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE after_prologue = current_pc;
// OBSOLETE continue;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE op1 = insn & 0xf000; /* isolate just the first nibble */
// OBSOLETE
// OBSOLETE if ((insn & 0xf0ff) == 0x207f)
// OBSOLETE { /* st reg, @-sp */
// OBSOLETE int regno;
// OBSOLETE insn_debug (("push\n"));
// OBSOLETE #if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
// OBSOLETE if (((insn & 0xffff) == 0x2d7f) && fi)
// OBSOLETE fi->using_frame_pointer = 1;
// OBSOLETE #endif
// OBSOLETE framesize += 4;
// OBSOLETE #if 0
// OBSOLETE /* Why should we increase the scan limit, just because we did a push?
// OBSOLETE And if there is a reason, surely we would only want to do it if we
// OBSOLETE had already reached the scan limit... */
// OBSOLETE if (current_pc == scan_limit)
// OBSOLETE scan_limit += 2;
// OBSOLETE #endif
// OBSOLETE regno = ((insn >> 8) & 0xf);
// OBSOLETE if (fsr) /* save_regs offset */
// OBSOLETE fsr->regs[regno] = framesize;
// OBSOLETE after_prologue = 0;
// OBSOLETE continue;
// OBSOLETE }
// OBSOLETE if ((insn >> 8) == 0x4f) /* addi sp, xx */
// OBSOLETE /* add 8 bit sign-extended offset */
// OBSOLETE {
// OBSOLETE int stack_adjust = (char) (insn & 0xff);
// OBSOLETE
// OBSOLETE /* there are probably two of these stack adjustments:
// OBSOLETE 1) A negative one in the prologue, and
// OBSOLETE 2) A positive one in the epilogue.
// OBSOLETE We are only interested in the first one. */
// OBSOLETE
// OBSOLETE if (stack_adjust < 0)
// OBSOLETE {
// OBSOLETE framesize -= stack_adjust;
// OBSOLETE after_prologue = 0;
// OBSOLETE /* A frameless function may have no "mv fp, sp".
// OBSOLETE In that case, this is the end of the prologue. */
// OBSOLETE after_stack_adjust = current_pc + 2;
// OBSOLETE }
// OBSOLETE continue;
// OBSOLETE }
// OBSOLETE if (insn == 0x1d8f)
// OBSOLETE { /* mv fp, sp */
// OBSOLETE if (fi)
// OBSOLETE fi->using_frame_pointer = 1; /* fp is now valid */
// OBSOLETE insn_debug (("done fp found\n"));
// OBSOLETE after_prologue = current_pc + 2;
// OBSOLETE break; /* end of stack adjustments */
// OBSOLETE }
// OBSOLETE if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
// OBSOLETE {
// OBSOLETE insn_debug (("nop\n"));
// OBSOLETE after_prologue = current_pc + 2;
// OBSOLETE continue; /* nop occurs between pushes */
// OBSOLETE }
// OBSOLETE /* End of prolog if any of these are branch instructions */
// OBSOLETE if ((op1 == 0x7000)
// OBSOLETE || (op1 == 0xb000)
// OBSOLETE || (op1 == 0xf000))
// OBSOLETE {
// OBSOLETE after_prologue = current_pc;
// OBSOLETE insn_debug (("Done: branch\n"));
// OBSOLETE maybe_one_more = 1;
// OBSOLETE continue;
// OBSOLETE }
// OBSOLETE /* Some of the branch instructions are mixed with other types */
// OBSOLETE if (op1 == 0x1000)
// OBSOLETE {
// OBSOLETE int subop = insn & 0x0ff0;
// OBSOLETE if ((subop == 0x0ec0) || (subop == 0x0fc0))
// OBSOLETE {
// OBSOLETE insn_debug (("done: jmp\n"));
// OBSOLETE after_prologue = current_pc;
// OBSOLETE maybe_one_more = 1;
// OBSOLETE continue; /* jmp , jl */
// OBSOLETE }
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE if (current_pc >= scan_limit)
// OBSOLETE {
// OBSOLETE if (pl_endptr)
// OBSOLETE {
// OBSOLETE #if 1
// OBSOLETE if (after_stack_adjust != 0)
// OBSOLETE /* We did not find a "mv fp,sp", but we DID find
// OBSOLETE a stack_adjust. Is it safe to use that as the
// OBSOLETE end of the prologue? I just don't know. */
// OBSOLETE {
// OBSOLETE *pl_endptr = after_stack_adjust;
// OBSOLETE if (framelength)
// OBSOLETE *framelength = framesize;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE #endif
// OBSOLETE /* We reached the end of the loop without finding the end
// OBSOLETE of the prologue. No way to win -- we should report failure.
// OBSOLETE The way we do that is to return the original start_pc.
// OBSOLETE GDB will set a breakpoint at the start of the function (etc.) */
// OBSOLETE *pl_endptr = start_pc;
// OBSOLETE }
// OBSOLETE return;
// OBSOLETE }
// OBSOLETE if (after_prologue == 0)
// OBSOLETE after_prologue = current_pc;
// OBSOLETE
// OBSOLETE insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
// OBSOLETE if (framelength)
// OBSOLETE *framelength = framesize;
// OBSOLETE if (pl_endptr)
// OBSOLETE *pl_endptr = after_prologue;
// OBSOLETE } /* decode_prologue */
// OBSOLETE
// OBSOLETE /* Function: skip_prologue
// OBSOLETE Find end of function prologue */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_skip_prologue (CORE_ADDR pc)
// OBSOLETE {
// OBSOLETE CORE_ADDR func_addr, func_end;
// OBSOLETE struct symtab_and_line sal;
// OBSOLETE
// OBSOLETE /* See what the symbol table says */
// OBSOLETE
// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
// OBSOLETE {
// OBSOLETE sal = find_pc_line (func_addr, 0);
// OBSOLETE
// OBSOLETE if (sal.line != 0 && sal.end <= func_end)
// OBSOLETE {
// OBSOLETE
// OBSOLETE insn_debug (("BP after prologue %08x\n", sal.end));
// OBSOLETE func_end = sal.end;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE /* Either there's no line info, or the line after the prologue is after
// OBSOLETE the end of the function. In this case, there probably isn't a
// OBSOLETE prologue. */
// OBSOLETE {
// OBSOLETE insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
// OBSOLETE sal.line, sal.end, func_end));
// OBSOLETE func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE else
// OBSOLETE func_end = pc + DEFAULT_SEARCH_LIMIT;
// OBSOLETE decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
// OBSOLETE return sal.end;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static unsigned long
// OBSOLETE m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
// OBSOLETE {
// OBSOLETE struct symtab_and_line sal;
// OBSOLETE CORE_ADDR prologue_start, prologue_end, current_pc;
// OBSOLETE unsigned long framesize = 0;
// OBSOLETE
// OBSOLETE /* this code essentially duplicates skip_prologue,
// OBSOLETE but we need the start address below. */
// OBSOLETE
// OBSOLETE if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
// OBSOLETE {
// OBSOLETE sal = find_pc_line (prologue_start, 0);
// OBSOLETE
// OBSOLETE if (sal.line == 0) /* no line info, use current PC */
// OBSOLETE if (prologue_start == entry_point_address ())
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE prologue_start = fi->pc;
// OBSOLETE prologue_end = prologue_start + 48; /* We're in the boondocks:
// OBSOLETE allow for 16 pushes, an add,
// OBSOLETE and "mv fp,sp" */
// OBSOLETE }
// OBSOLETE #if 0
// OBSOLETE prologue_end = min (prologue_end, fi->pc);
// OBSOLETE #endif
// OBSOLETE insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
// OBSOLETE fi->pc, prologue_start, prologue_end));
// OBSOLETE prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
// OBSOLETE decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
// OBSOLETE fi, fsr);
// OBSOLETE return framesize;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: init_extra_frame_info
// OBSOLETE This function actually figures out the frame address for a given pc and
// OBSOLETE sp. This is tricky on the m32r because we sometimes don't use an explicit
// OBSOLETE frame pointer, and the previous stack pointer isn't necessarily recorded
// OBSOLETE on the stack. The only reliable way to get this info is to
// OBSOLETE examine the prologue. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_init_extra_frame_info (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE int reg;
// OBSOLETE
// OBSOLETE if (fi->next)
// OBSOLETE fi->pc = FRAME_SAVED_PC (fi->next);
// OBSOLETE
// OBSOLETE memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
// OBSOLETE
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE {
// OBSOLETE /* We need to setup fi->frame here because run_stack_dummy gets it wrong
// OBSOLETE by assuming it's always FP. */
// OBSOLETE fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
// OBSOLETE SP_REGNUM);
// OBSOLETE fi->framesize = 0;
// OBSOLETE return;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE fi->using_frame_pointer = 0;
// OBSOLETE fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
// OBSOLETE
// OBSOLETE if (!fi->next)
// OBSOLETE if (fi->using_frame_pointer)
// OBSOLETE {
// OBSOLETE fi->frame = read_register (FP_REGNUM);
// OBSOLETE }
// OBSOLETE else
// OBSOLETE fi->frame = read_register (SP_REGNUM);
// OBSOLETE else
// OBSOLETE /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
// OBSOLETE /* we have an FP */
// OBSOLETE if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
// OBSOLETE fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
// OBSOLETE for (reg = 0; reg < NUM_REGS; reg++)
// OBSOLETE if (fi->fsr.regs[reg] != 0)
// OBSOLETE fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: m32r_virtual_frame_pointer
// OBSOLETE Return the register that the function uses for a frame pointer,
// OBSOLETE plus any necessary offset to be applied to the register before
// OBSOLETE any frame pointer offsets. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
// OBSOLETE {
// OBSOLETE struct frame_info *fi = deprecated_frame_xmalloc ();
// OBSOLETE struct cleanup *old_chain = make_cleanup (xfree, fi);
// OBSOLETE
// OBSOLETE /* Set up a dummy frame_info. */
// OBSOLETE fi->next = NULL;
// OBSOLETE fi->prev = NULL;
// OBSOLETE fi->frame = 0;
// OBSOLETE fi->pc = pc;
// OBSOLETE
// OBSOLETE /* Analyze the prolog and fill in the extra info. */
// OBSOLETE m32r_init_extra_frame_info (fi);
// OBSOLETE
// OBSOLETE /* Results will tell us which type of frame it uses. */
// OBSOLETE if (fi->using_frame_pointer)
// OBSOLETE {
// OBSOLETE *reg = FP_REGNUM;
// OBSOLETE *offset = 0;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE *reg = SP_REGNUM;
// OBSOLETE *offset = 0;
// OBSOLETE }
// OBSOLETE do_cleanups (old_chain);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: find_callers_reg
// OBSOLETE Find REGNUM on the stack. Otherwise, it's in an active register. One thing
// OBSOLETE we might want to do here is to check REGNUM against the clobber mask, and
// OBSOLETE somehow flag it as invalid if it isn't saved on the stack somewhere. This
// OBSOLETE would provide a graceful failure mode when trying to get the value of
// OBSOLETE caller-saves registers for an inner frame. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_find_callers_reg (struct frame_info *fi, int regnum)
// OBSOLETE {
// OBSOLETE for (; fi; fi = fi->next)
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
// OBSOLETE else if (fi->fsr.regs[regnum] != 0)
// OBSOLETE return read_memory_integer (fi->fsr.regs[regnum],
// OBSOLETE REGISTER_RAW_SIZE (regnum));
// OBSOLETE return read_register (regnum);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: frame_chain Given a GDB frame, determine the address of
// OBSOLETE the calling function's frame. This will be used to create a new
// OBSOLETE GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
// OBSOLETE DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
// OBSOLETE m32r, we save the frame size when we initialize the frame_info. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_frame_chain (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE CORE_ADDR fn_start, callers_pc, fp;
// OBSOLETE
// OBSOLETE /* is this a dummy frame? */
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE return fi->frame; /* dummy frame same as caller's frame */
// OBSOLETE
// OBSOLETE /* is caller-of-this a dummy frame? */
// OBSOLETE callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
// OBSOLETE fp = m32r_find_callers_reg (fi, FP_REGNUM);
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp))
// OBSOLETE return fp; /* dummy frame's frame may bear no relation to ours */
// OBSOLETE
// OBSOLETE if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
// OBSOLETE if (fn_start == entry_point_address ())
// OBSOLETE return 0; /* in _start fn, don't chain further */
// OBSOLETE if (fi->framesize == 0)
// OBSOLETE {
// OBSOLETE printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
// OBSOLETE paddr (fi->frame),
// OBSOLETE paddr (fi->pc));
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
// OBSOLETE return fi->frame + fi->framesize;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: push_return_address (pc)
// OBSOLETE Set up the return address for the inferior function call.
// OBSOLETE Necessary for targets that don't actually execute a JSR/BSR instruction
// OBSOLETE (ie. when using an empty CALL_DUMMY) */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
// OBSOLETE {
// OBSOLETE write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
// OBSOLETE return sp;
// OBSOLETE }
// OBSOLETE
// OBSOLETE
// OBSOLETE /* Function: pop_frame
// OBSOLETE Discard from the stack the innermost frame,
// OBSOLETE restoring all saved registers. */
// OBSOLETE
// OBSOLETE struct frame_info *
// OBSOLETE m32r_pop_frame (struct frame_info *frame)
// OBSOLETE {
// OBSOLETE int regnum;
// OBSOLETE
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
// OBSOLETE generic_pop_dummy_frame ();
// OBSOLETE else
// OBSOLETE {
// OBSOLETE for (regnum = 0; regnum < NUM_REGS; regnum++)
// OBSOLETE if (frame->fsr.regs[regnum] != 0)
// OBSOLETE write_register (regnum,
// OBSOLETE read_memory_integer (frame->fsr.regs[regnum], 4));
// OBSOLETE
// OBSOLETE write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
// OBSOLETE write_register (SP_REGNUM, read_register (FP_REGNUM));
// OBSOLETE if (read_register (PSW_REGNUM) & 0x80)
// OBSOLETE write_register (SPU_REGNUM, read_register (SP_REGNUM));
// OBSOLETE else
// OBSOLETE write_register (SPI_REGNUM, read_register (SP_REGNUM));
// OBSOLETE }
// OBSOLETE flush_cached_frames ();
// OBSOLETE return NULL;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: frame_saved_pc
// OBSOLETE Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
// OBSOLETE in the stack anywhere, otherwise we get it from the registers. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_frame_saved_pc (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
// OBSOLETE else
// OBSOLETE return m32r_find_callers_reg (fi, RP_REGNUM);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: push_arguments
// OBSOLETE Setup the function arguments for calling a function in the inferior.
// OBSOLETE
// OBSOLETE On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
// OBSOLETE which are dedicated for passing function arguments. Up to the first
// OBSOLETE four arguments (depending on size) may go into these registers.
// OBSOLETE The rest go on the stack.
// OBSOLETE
// OBSOLETE Arguments that are smaller than 4 bytes will still take up a whole
// OBSOLETE register or a whole 32-bit word on the stack, and will be
// OBSOLETE right-justified in the register or the stack word. This includes
// OBSOLETE chars, shorts, and small aggregate types.
// OBSOLETE
// OBSOLETE Arguments of 8 bytes size are split between two registers, if
// OBSOLETE available. If only one register is available, the argument will
// OBSOLETE be split between the register and the stack. Otherwise it is
// OBSOLETE passed entirely on the stack. Aggregate types with sizes between
// OBSOLETE 4 and 8 bytes are passed entirely on the stack, and are left-justified
// OBSOLETE within the double-word (as opposed to aggregates smaller than 4 bytes
// OBSOLETE which are right-justified).
// OBSOLETE
// OBSOLETE Aggregates of greater than 8 bytes are first copied onto the stack,
// OBSOLETE and then a pointer to the copy is passed in the place of the normal
// OBSOLETE argument (either in a register if available, or on the stack).
// OBSOLETE
// OBSOLETE Functions that must return an aggregate type can return it in the
// OBSOLETE normal return value registers (R0 and R1) if its size is 8 bytes or
// OBSOLETE less. For larger return values, the caller must allocate space for
// OBSOLETE the callee to copy the return value to. A pointer to this space is
// OBSOLETE passed as an implicit first argument, always in R0. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
// OBSOLETE unsigned char struct_return, CORE_ADDR struct_addr)
// OBSOLETE {
// OBSOLETE int stack_offset, stack_alloc;
// OBSOLETE int argreg;
// OBSOLETE int argnum;
// OBSOLETE struct type *type;
// OBSOLETE CORE_ADDR regval;
// OBSOLETE char *val;
// OBSOLETE char valbuf[4];
// OBSOLETE int len;
// OBSOLETE int odd_sized_struct;
// OBSOLETE
// OBSOLETE /* first force sp to a 4-byte alignment */
// OBSOLETE sp = sp & ~3;
// OBSOLETE
// OBSOLETE argreg = ARG0_REGNUM;
// OBSOLETE /* The "struct return pointer" pseudo-argument goes in R0 */
// OBSOLETE if (struct_return)
// OBSOLETE write_register (argreg++, struct_addr);
// OBSOLETE
// OBSOLETE /* Now make sure there's space on the stack */
// OBSOLETE for (argnum = 0, stack_alloc = 0;
// OBSOLETE argnum < nargs; argnum++)
// OBSOLETE stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
// OBSOLETE sp -= stack_alloc; /* make room on stack for args */
// OBSOLETE
// OBSOLETE
// OBSOLETE /* Now load as many as possible of the first arguments into
// OBSOLETE registers, and push the rest onto the stack. There are 16 bytes
// OBSOLETE in four registers available. Loop thru args from first to last. */
// OBSOLETE
// OBSOLETE argreg = ARG0_REGNUM;
// OBSOLETE for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
// OBSOLETE {
// OBSOLETE type = VALUE_TYPE (args[argnum]);
// OBSOLETE len = TYPE_LENGTH (type);
// OBSOLETE memset (valbuf, 0, sizeof (valbuf));
// OBSOLETE if (len < 4)
// OBSOLETE { /* value gets right-justified in the register or stack word */
// OBSOLETE memcpy (valbuf + (4 - len),
// OBSOLETE (char *) VALUE_CONTENTS (args[argnum]), len);
// OBSOLETE val = valbuf;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE val = (char *) VALUE_CONTENTS (args[argnum]);
// OBSOLETE
// OBSOLETE if (len > 4 && (len & 3) != 0)
// OBSOLETE odd_sized_struct = 1; /* such structs go entirely on stack */
// OBSOLETE else
// OBSOLETE odd_sized_struct = 0;
// OBSOLETE while (len > 0)
// OBSOLETE {
// OBSOLETE if (argreg > ARGLAST_REGNUM || odd_sized_struct)
// OBSOLETE { /* must go on the stack */
// OBSOLETE write_memory (sp + stack_offset, val, 4);
// OBSOLETE stack_offset += 4;
// OBSOLETE }
// OBSOLETE /* NOTE WELL!!!!! This is not an "else if" clause!!!
// OBSOLETE That's because some *&^%$ things get passed on the stack
// OBSOLETE AND in the registers! */
// OBSOLETE if (argreg <= ARGLAST_REGNUM)
// OBSOLETE { /* there's room in a register */
// OBSOLETE regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
// OBSOLETE write_register (argreg++, regval);
// OBSOLETE }
// OBSOLETE /* Store the value 4 bytes at a time. This means that things
// OBSOLETE larger than 4 bytes may go partly in registers and partly
// OBSOLETE on the stack. */
// OBSOLETE len -= REGISTER_RAW_SIZE (argreg);
// OBSOLETE val += REGISTER_RAW_SIZE (argreg);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE return sp;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: fix_call_dummy
// OBSOLETE If there is real CALL_DUMMY code (eg. on the stack), this function
// OBSOLETE has the responsability to insert the address of the actual code that
// OBSOLETE is the target of the target function call. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
// OBSOLETE struct value **args, struct type *type, int gcc_p)
// OBSOLETE {
// OBSOLETE /* ld24 r8, <(imm24) fun> */
// OBSOLETE *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
// OBSOLETE }
// OBSOLETE
// OBSOLETE
// OBSOLETE /* Function: m32r_write_sp
// OBSOLETE Because SP is really a read-only register that mirrors either SPU or SPI,
// OBSOLETE we must actually write one of those two as well, depending on PSW. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_write_sp (CORE_ADDR val)
// OBSOLETE {
// OBSOLETE unsigned long psw = read_register (PSW_REGNUM);
// OBSOLETE
// OBSOLETE if (psw & 0x80) /* stack mode: user or interrupt */
// OBSOLETE write_register (SPU_REGNUM, val);
// OBSOLETE else
// OBSOLETE write_register (SPI_REGNUM, val);
// OBSOLETE write_register (SP_REGNUM, val);
// OBSOLETE }
// OBSOLETE
// OBSOLETE void
// OBSOLETE _initialize_m32r_tdep (void)
// OBSOLETE {
// OBSOLETE tm_print_insn = print_insn_m32r;
// OBSOLETE }