blob: 151ed0237ca025d114a37b7e2e2decd6ac73c193 [file] [log] [blame]
/* DWARF 2 support.
Copyright (C) 1994-2024 Free Software Foundation, Inc.
Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
(gavin@cygnus.com).
From the dwarf2read.c header:
Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
Inc. with support from Florida State University (under contract
with the Ada Joint Program Office), and Silicon Graphics, Inc.
Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
based on Fred Fish's (Cygnus Support) implementation of DWARF 1
support in dwarfread.c
This file is part of BFD.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libiberty.h"
#include "demangle.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "dwarf2.h"
#include "hashtab.h"
#include "splay-tree.h"
/* The data in the .debug_line statement prologue looks like this. */
struct line_head
{
bfd_vma total_length;
unsigned short version;
bfd_vma prologue_length;
unsigned char minimum_instruction_length;
unsigned char maximum_ops_per_insn;
unsigned char default_is_stmt;
int line_base;
unsigned char line_range;
unsigned char opcode_base;
unsigned char *standard_opcode_lengths;
};
/* Attributes have a name and a value. */
struct attribute
{
enum dwarf_attribute name;
enum dwarf_form form;
union
{
char *str;
struct dwarf_block *blk;
uint64_t val;
int64_t sval;
}
u;
};
/* Blocks are a bunch of untyped bytes. */
struct dwarf_block
{
unsigned int size;
bfd_byte *data;
};
struct adjusted_section
{
asection *section;
bfd_vma adj_vma;
bfd_vma orig_vma;
};
/* A trie to map quickly from address range to compilation unit.
This is a fairly standard radix-256 trie, used to quickly locate which
compilation unit any given address belongs to. Given that each compilation
unit may register hundreds of very small and unaligned ranges (which may
potentially overlap, due to inlining and other concerns), and a large
program may end up containing hundreds of thousands of such ranges, we cannot
scan through them linearly without undue slowdown.
We use a hybrid trie to avoid memory explosion: There are two types of trie
nodes, leaves and interior nodes. (Almost all nodes are leaves, so they
take up the bulk of the memory usage.) Leaves contain a simple array of
ranges (high/low address) and which compilation unit contains those ranges,
and when we get to a leaf, we scan through it linearly. Interior nodes
contain pointers to 256 other nodes, keyed by the next byte of the address.
So for a 64-bit address like 0x1234567abcd, we would start at the root and go
down child[0x00]->child[0x00]->child[0x01]->child[0x23]->child[0x45] etc.,
until we hit a leaf. (Nodes are, in general, leaves until they exceed the
default allocation of 16 elements, at which point they are converted to
interior node if possible.) This gives us near-constant lookup times;
the only thing that can be costly is if there are lots of overlapping ranges
within a single 256-byte segment of the binary, in which case we have to
scan through them all to find the best match.
For a binary with few ranges, we will in practice only have a single leaf
node at the root, containing a simple array. Thus, the scheme is efficient
for both small and large binaries.
*/
/* Experiments have shown 16 to be a memory-efficient default leaf size.
The only case where a leaf will hold more memory than this, is at the
bottomost level (covering 256 bytes in the binary), where we'll expand
the leaf to be able to hold more ranges if needed.
*/
#define TRIE_LEAF_SIZE 16
/* All trie_node pointers will really be trie_leaf or trie_interior,
but they have this common head. */
struct trie_node
{
/* If zero, we are an interior node.
Otherwise, how many ranges we have room for in this leaf. */
unsigned int num_room_in_leaf;
};
struct trie_leaf
{
struct trie_node head;
unsigned int num_stored_in_leaf;
struct {
struct comp_unit *unit;
bfd_vma low_pc, high_pc;
} ranges[];
};
struct trie_interior
{
struct trie_node head;
struct trie_node *children[256];
};
static struct trie_node *alloc_trie_leaf (bfd *abfd)
{
struct trie_leaf *leaf;
size_t amt = sizeof (*leaf) + TRIE_LEAF_SIZE * sizeof (leaf->ranges[0]);
leaf = bfd_zalloc (abfd, amt);
if (leaf == NULL)
return NULL;
leaf->head.num_room_in_leaf = TRIE_LEAF_SIZE;
return &leaf->head;
}
struct addr_range
{
bfd_byte *start;
bfd_byte *end;
};
/* Return true if address range do intersect. */
static bool
addr_range_intersects (struct addr_range *r1, struct addr_range *r2)
{
return (r1->start <= r2->start && r2->start < r1->end)
|| (r1->start <= (r2->end - 1) && (r2->end - 1) < r1->end);
}
/* Compare function for splay tree of addr_ranges. */
static int
splay_tree_compare_addr_range (splay_tree_key xa, splay_tree_key xb)
{
struct addr_range *r1 = (struct addr_range *) xa;
struct addr_range *r2 = (struct addr_range *) xb;
if (addr_range_intersects (r1, r2) || addr_range_intersects (r2, r1))
return 0;
else if (r1->end <= r2->start)
return -1;
else
return 1;
}
/* Splay tree release function for keys (addr_range). */
static void
splay_tree_free_addr_range (splay_tree_key key)
{
free ((struct addr_range *)key);
}
struct dwarf2_debug_file
{
/* The actual bfd from which debug info was loaded. Might be
different to orig_bfd because of gnu_debuglink sections. */
bfd *bfd_ptr;
/* Pointer to the symbol table. */
asymbol **syms;
/* The current info pointer for the .debug_info section being parsed. */
bfd_byte *info_ptr;
/* A pointer to the memory block allocated for .debug_info sections. */
bfd_byte *dwarf_info_buffer;
/* Length of the loaded .debug_info sections. */
bfd_size_type dwarf_info_size;
/* Pointer to the .debug_abbrev section loaded into memory. */
bfd_byte *dwarf_abbrev_buffer;
/* Length of the loaded .debug_abbrev section. */
bfd_size_type dwarf_abbrev_size;
/* Buffer for decode_line_info. */
bfd_byte *dwarf_line_buffer;
/* Length of the loaded .debug_line section. */
bfd_size_type dwarf_line_size;
/* Pointer to the .debug_str section loaded into memory. */
bfd_byte *dwarf_str_buffer;
/* Length of the loaded .debug_str section. */
bfd_size_type dwarf_str_size;
/* Pointer to the .debug_str_offsets section loaded into memory. */
bfd_byte *dwarf_str_offsets_buffer;
/* Length of the loaded .debug_str_offsets section. */
bfd_size_type dwarf_str_offsets_size;
/* Pointer to the .debug_addr section loaded into memory. */
bfd_byte *dwarf_addr_buffer;
/* Length of the loaded .debug_addr section. */
bfd_size_type dwarf_addr_size;
/* Pointer to the .debug_line_str section loaded into memory. */
bfd_byte *dwarf_line_str_buffer;
/* Length of the loaded .debug_line_str section. */
bfd_size_type dwarf_line_str_size;
/* Pointer to the .debug_ranges section loaded into memory. */
bfd_byte *dwarf_ranges_buffer;
/* Length of the loaded .debug_ranges section. */
bfd_size_type dwarf_ranges_size;
/* Pointer to the .debug_rnglists section loaded into memory. */
bfd_byte *dwarf_rnglists_buffer;
/* Length of the loaded .debug_rnglists section. */
bfd_size_type dwarf_rnglists_size;
/* A list of all previously read comp_units. */
struct comp_unit *all_comp_units;
/* A list of all previously read comp_units with no ranges (yet). */
struct comp_unit *all_comp_units_without_ranges;
/* Last comp unit in list above. */
struct comp_unit *last_comp_unit;
/* Line table at line_offset zero. */
struct line_info_table *line_table;
/* Hash table to map offsets to decoded abbrevs. */
htab_t abbrev_offsets;
/* Root of a trie to map addresses to compilation units. */
struct trie_node *trie_root;
/* Splay tree to map info_ptr address to compilation units. */
splay_tree comp_unit_tree;
};
struct dwarf2_debug
{
/* Names of the debug sections. */
const struct dwarf_debug_section *debug_sections;
/* Per-file stuff. */
struct dwarf2_debug_file f, alt;
/* Pointer to the original bfd for which debug was loaded. This is what
we use to compare and so check that the cached debug data is still
valid - it saves having to possibly dereference the gnu_debuglink each
time. */
bfd *orig_bfd;
/* If the most recent call to bfd_find_nearest_line was given an
address in an inlined function, preserve a pointer into the
calling chain for subsequent calls to bfd_find_inliner_info to
use. */
struct funcinfo *inliner_chain;
/* Section VMAs at the time the stash was built. */
bfd_vma *sec_vma;
/* Number of sections in the SEC_VMA table. */
unsigned int sec_vma_count;
/* Number of sections whose VMA we must adjust. */
int adjusted_section_count;
/* Array of sections with adjusted VMA. */
struct adjusted_section *adjusted_sections;
/* Number of times find_line is called. This is used in
the heuristic for enabling the info hash tables. */
int info_hash_count;
#define STASH_INFO_HASH_TRIGGER 100
/* Hash table mapping symbol names to function infos. */
struct info_hash_table *funcinfo_hash_table;
/* Hash table mapping symbol names to variable infos. */
struct info_hash_table *varinfo_hash_table;
/* Head of comp_unit list in the last hash table update. */
struct comp_unit *hash_units_head;
/* Status of info hash. */
int info_hash_status;
#define STASH_INFO_HASH_OFF 0
#define STASH_INFO_HASH_ON 1
#define STASH_INFO_HASH_DISABLED 2
/* True if we opened bfd_ptr. */
bool close_on_cleanup;
};
struct arange
{
struct arange *next;
bfd_vma low;
bfd_vma high;
};
/* A minimal decoding of DWARF2 compilation units. We only decode
what's needed to get to the line number information. */
struct comp_unit
{
/* Chain the previously read compilation units. */
struct comp_unit *next_unit;
/* Chain the previously read compilation units that have no ranges yet.
We scan these separately when we have a trie over the ranges.
Unused if arange.high != 0. */
struct comp_unit *next_unit_without_ranges;
/* Likewise, chain the compilation unit read after this one.
The comp units are stored in reversed reading order. */
struct comp_unit *prev_unit;
/* Keep the bfd convenient (for memory allocation). */
bfd *abfd;
/* The lowest and highest addresses contained in this compilation
unit as specified in the compilation unit header. */
struct arange arange;
/* The DW_AT_name attribute (for error messages). */
char *name;
/* The abbrev hash table. */
struct abbrev_info **abbrevs;
/* DW_AT_language. */
int lang;
/* Note that an error was found by comp_unit_find_nearest_line. */
int error;
/* The DW_AT_comp_dir attribute. */
char *comp_dir;
/* TRUE if there is a line number table associated with this comp. unit. */
int stmtlist;
/* Pointer to the current comp_unit so that we can find a given entry
by its reference. */
bfd_byte *info_ptr_unit;
/* The offset into .debug_line of the line number table. */
unsigned long line_offset;
/* Pointer to the first child die for the comp unit. */
bfd_byte *first_child_die_ptr;
/* The end of the comp unit. */
bfd_byte *end_ptr;
/* The decoded line number, NULL if not yet decoded. */
struct line_info_table *line_table;
/* A list of the functions found in this comp. unit. */
struct funcinfo *function_table;
/* A table of function information references searchable by address. */
struct lookup_funcinfo *lookup_funcinfo_table;
/* Number of functions in the function_table and sorted_function_table. */
bfd_size_type number_of_functions;
/* A list of the variables found in this comp. unit. */
struct varinfo *variable_table;
/* Pointers to dwarf2_debug structures. */
struct dwarf2_debug *stash;
struct dwarf2_debug_file *file;
/* DWARF format version for this unit - from unit header. */
int version;
/* Address size for this unit - from unit header. */
unsigned char addr_size;
/* Offset size for this unit - from unit header. */
unsigned char offset_size;
/* Base address for this unit - from DW_AT_low_pc attribute of
DW_TAG_compile_unit DIE */
bfd_vma base_address;
/* TRUE if symbols are cached in hash table for faster lookup by name. */
bool cached;
/* Used when iterating over trie leaves to know which units we have
already seen in this iteration. */
bool mark;
/* Base address of debug_addr section. */
size_t dwarf_addr_offset;
/* Base address of string offset table. */
size_t dwarf_str_offset;
};
/* This data structure holds the information of an abbrev. */
struct abbrev_info
{
unsigned int number; /* Number identifying abbrev. */
enum dwarf_tag tag; /* DWARF tag. */
bool has_children; /* TRUE if the abbrev has children. */
unsigned int num_attrs; /* Number of attributes. */
struct attr_abbrev * attrs; /* An array of attribute descriptions. */
struct abbrev_info * next; /* Next in chain. */
};
struct attr_abbrev
{
enum dwarf_attribute name;
enum dwarf_form form;
bfd_vma implicit_const;
};
/* Map of uncompressed DWARF debug section name to compressed one. It
is terminated by NULL uncompressed_name. */
const struct dwarf_debug_section dwarf_debug_sections[] =
{
{ ".debug_abbrev", ".zdebug_abbrev" },
{ ".debug_aranges", ".zdebug_aranges" },
{ ".debug_frame", ".zdebug_frame" },
{ ".debug_info", ".zdebug_info" },
{ ".debug_info", ".zdebug_info" },
{ ".debug_line", ".zdebug_line" },
{ ".debug_loc", ".zdebug_loc" },
{ ".debug_macinfo", ".zdebug_macinfo" },
{ ".debug_macro", ".zdebug_macro" },
{ ".debug_pubnames", ".zdebug_pubnames" },
{ ".debug_pubtypes", ".zdebug_pubtypes" },
{ ".debug_ranges", ".zdebug_ranges" },
{ ".debug_rnglists", ".zdebug_rnglist" },
{ ".debug_static_func", ".zdebug_static_func" },
{ ".debug_static_vars", ".zdebug_static_vars" },
{ ".debug_str", ".zdebug_str", },
{ ".debug_str", ".zdebug_str", },
{ ".debug_str_offsets", ".zdebug_str_offsets", },
{ ".debug_addr", ".zdebug_addr", },
{ ".debug_line_str", ".zdebug_line_str", },
{ ".debug_types", ".zdebug_types" },
/* GNU DWARF 1 extensions */
{ ".debug_sfnames", ".zdebug_sfnames" },
{ ".debug_srcinfo", ".zebug_srcinfo" },
/* SGI/MIPS DWARF 2 extensions */
{ ".debug_funcnames", ".zdebug_funcnames" },
{ ".debug_typenames", ".zdebug_typenames" },
{ ".debug_varnames", ".zdebug_varnames" },
{ ".debug_weaknames", ".zdebug_weaknames" },
{ NULL, NULL },
};
/* NB/ Numbers in this enum must match up with indices
into the dwarf_debug_sections[] array above. */
enum dwarf_debug_section_enum
{
debug_abbrev = 0,
debug_aranges,
debug_frame,
debug_info,
debug_info_alt,
debug_line,
debug_loc,
debug_macinfo,
debug_macro,
debug_pubnames,
debug_pubtypes,
debug_ranges,
debug_rnglists,
debug_static_func,
debug_static_vars,
debug_str,
debug_str_alt,
debug_str_offsets,
debug_addr,
debug_line_str,
debug_types,
debug_sfnames,
debug_srcinfo,
debug_funcnames,
debug_typenames,
debug_varnames,
debug_weaknames,
debug_max
};
/* A static assertion. */
extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
== debug_max + 1 ? 1 : -1];
#ifndef ABBREV_HASH_SIZE
#define ABBREV_HASH_SIZE 121
#endif
#ifndef ATTR_ALLOC_CHUNK
#define ATTR_ALLOC_CHUNK 4
#endif
/* Variable and function hash tables. This is used to speed up look-up
in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
In order to share code between variable and function infos, we use
a list of untyped pointer for all variable/function info associated with
a symbol. We waste a bit of memory for list with one node but that
simplifies the code. */
struct info_list_node
{
struct info_list_node *next;
void *info;
};
/* Info hash entry. */
struct info_hash_entry
{
struct bfd_hash_entry root;
struct info_list_node *head;
};
struct info_hash_table
{
struct bfd_hash_table base;
};
/* Function to create a new entry in info hash table. */
static struct bfd_hash_entry *
info_hash_table_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
struct info_hash_entry *ret = (struct info_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
derived class. */
if (ret == NULL)
{
ret = (struct info_hash_entry *) bfd_hash_allocate (table,
sizeof (* ret));
if (ret == NULL)
return NULL;
}
/* Call the allocation method of the base class. */
ret = ((struct info_hash_entry *)
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
/* Initialize the local fields here. */
if (ret)
ret->head = NULL;
return (struct bfd_hash_entry *) ret;
}
/* Function to create a new info hash table. It returns a pointer to the
newly created table or NULL if there is any error. We need abfd
solely for memory allocation. */
static struct info_hash_table *
create_info_hash_table (bfd *abfd)
{
struct info_hash_table *hash_table;
hash_table = ((struct info_hash_table *)
bfd_alloc (abfd, sizeof (struct info_hash_table)));
if (!hash_table)
return hash_table;
if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
sizeof (struct info_hash_entry)))
{
bfd_release (abfd, hash_table);
return NULL;
}
return hash_table;
}
/* Insert an info entry into an info hash table. We do not check of
duplicate entries. Also, the caller need to guarantee that the
right type of info in inserted as info is passed as a void* pointer.
This function returns true if there is no error. */
static bool
insert_info_hash_table (struct info_hash_table *hash_table,
const char *key,
void *info,
bool copy_p)
{
struct info_hash_entry *entry;
struct info_list_node *node;
entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
key, true, copy_p);
if (!entry)
return false;
node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
sizeof (*node));
if (!node)
return false;
node->info = info;
node->next = entry->head;
entry->head = node;
return true;
}
/* Look up an info entry list from an info hash table. Return NULL
if there is none. */
static struct info_list_node *
lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
{
struct info_hash_entry *entry;
entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
false, false);
return entry ? entry->head : NULL;
}
/* Read a section into its appropriate place in the dwarf2_debug
struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
not NULL, use bfd_simple_get_relocated_section_contents to read the
section contents, otherwise use bfd_get_section_contents. Fail if
the located section does not contain at least OFFSET bytes. */
static bool
read_section (bfd *abfd,
const struct dwarf_debug_section *sec,
asymbol **syms,
uint64_t offset,
bfd_byte **section_buffer,
bfd_size_type *section_size)
{
const char *section_name = sec->uncompressed_name;
bfd_byte *contents = *section_buffer;
/* The section may have already been read. */
if (contents == NULL)
{
bfd_size_type amt;
asection *msec;
msec = bfd_get_section_by_name (abfd, section_name);
if (msec == NULL)
{
section_name = sec->compressed_name;
msec = bfd_get_section_by_name (abfd, section_name);
}
if (msec == NULL)
{
_bfd_error_handler (_("DWARF error: can't find %s section."),
sec->uncompressed_name);
bfd_set_error (bfd_error_bad_value);
return false;
}
if ((msec->flags & SEC_HAS_CONTENTS) == 0)
{
_bfd_error_handler (_("DWARF error: section %s has no contents"),
section_name);
bfd_set_error (bfd_error_no_contents);
return false;
}
if (bfd_section_size_insane (abfd, msec))
{
/* PR 26946 */
_bfd_error_handler (_("DWARF error: section %s is too big"),
section_name);
return false;
}
amt = bfd_get_section_limit_octets (abfd, msec);
*section_size = amt;
/* Paranoia - alloc one extra so that we can make sure a string
section is NUL terminated. */
amt += 1;
if (amt == 0)
{
/* Paranoia - this should never happen. */
bfd_set_error (bfd_error_no_memory);
return false;
}
contents = (bfd_byte *) bfd_malloc (amt);
if (contents == NULL)
return false;
if (syms
? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
syms)
: !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
{
free (contents);
return false;
}
contents[*section_size] = 0;
*section_buffer = contents;
}
/* It is possible to get a bad value for the offset into the section
that the client wants. Validate it here to avoid trouble later. */
if (offset != 0 && offset >= *section_size)
{
/* xgettext: c-format */
_bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
" greater than or equal to %s size (%" PRIu64 ")"),
(uint64_t) offset, section_name,
(uint64_t) *section_size);
bfd_set_error (bfd_error_bad_value);
return false;
}
return true;
}
/* Read dwarf information from a buffer. */
static inline uint64_t
read_n_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end, int n)
{
bfd_byte *buf = *ptr;
if (end - buf < n)
{
*ptr = end;
return 0;
}
*ptr = buf + n;
return bfd_get (n * 8, abfd, buf);
}
static unsigned int
read_1_byte (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
{
return read_n_bytes (abfd, ptr, end, 1);
}
static int
read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte **ptr, bfd_byte *end)
{
bfd_byte *buf = *ptr;
if (end - buf < 1)
{
*ptr = end;
return 0;
}
*ptr = buf + 1;
return bfd_get_signed_8 (abfd, buf);
}
static unsigned int
read_2_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
{
return read_n_bytes (abfd, ptr, end, 2);
}
static unsigned int
read_3_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
{
unsigned int val = read_1_byte (abfd, ptr, end);
val <<= 8;
val |= read_1_byte (abfd, ptr, end);
val <<= 8;
val |= read_1_byte (abfd, ptr, end);
if (bfd_little_endian (abfd))
val = (((val >> 16) & 0xff)
| (val & 0xff00)
| ((val & 0xff) << 16));
return val;
}
static unsigned int
read_4_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
{
return read_n_bytes (abfd, ptr, end, 4);
}
static uint64_t
read_8_bytes (bfd *abfd, bfd_byte **ptr, bfd_byte *end)
{
return read_n_bytes (abfd, ptr, end, 8);
}
static struct dwarf_block *
read_blk (bfd *abfd, bfd_byte **ptr, bfd_byte *end, size_t size)
{
bfd_byte *buf = *ptr;
struct dwarf_block *block;
block = (struct dwarf_block *) bfd_alloc (abfd, sizeof (*block));
if (block == NULL)
return NULL;
if (size > (size_t) (end - buf))
{
*ptr = end;
block->data = NULL;
block->size = 0;
}
else
{
*ptr = buf + size;
block->data = buf;
block->size = size;
}
return block;
}
/* Scans a NUL terminated string starting at *PTR, returning a pointer to it.
Bytes at or beyond BUF_END will not be read. Returns NULL if the
terminator is not found or if the string is empty. *PTR is
incremented over the bytes scanned, including the terminator. */
static char *
read_string (bfd_byte **ptr,
bfd_byte *buf_end)
{
bfd_byte *buf = *ptr;
bfd_byte *str = buf;
while (buf < buf_end)
if (*buf++ == 0)
{
if (str == buf - 1)
break;
*ptr = buf;
return (char *) str;
}
*ptr = buf;
return NULL;
}
/* Reads an offset from *PTR and then locates the string at this offset
inside the debug string section. Returns a pointer to the string.
Increments *PTR by the number of bytes read for the offset. This
value is set even if the function fails. Bytes at or beyond
BUF_END will not be read. Returns NULL if there was a problem, or
if the string is empty. Does not check for NUL termination of the
string. */
static char *
read_indirect_string (struct comp_unit *unit,
bfd_byte **ptr,
bfd_byte *buf_end)
{
uint64_t offset;
struct dwarf2_debug *stash = unit->stash;
struct dwarf2_debug_file *file = unit->file;
char *str;
if (unit->offset_size > (size_t) (buf_end - *ptr))
{
*ptr = buf_end;
return NULL;
}
if (unit->offset_size == 4)
offset = read_4_bytes (unit->abfd, ptr, buf_end);
else
offset = read_8_bytes (unit->abfd, ptr, buf_end);
if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
file->syms, offset,
&file->dwarf_str_buffer, &file->dwarf_str_size))
return NULL;
str = (char *) file->dwarf_str_buffer + offset;
if (*str == '\0')
return NULL;
return str;
}
/* Like read_indirect_string but from .debug_line_str section. */
static char *
read_indirect_line_string (struct comp_unit *unit,
bfd_byte **ptr,
bfd_byte *buf_end)
{
uint64_t offset;
struct dwarf2_debug *stash = unit->stash;
struct dwarf2_debug_file *file = unit->file;
char *str;
if (unit->offset_size > (size_t) (buf_end - *ptr))
{
*ptr = buf_end;
return NULL;
}
if (unit->offset_size == 4)
offset = read_4_bytes (unit->abfd, ptr, buf_end);
else
offset = read_8_bytes (unit->abfd, ptr, buf_end);
if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
file->syms, offset,
&file->dwarf_line_str_buffer,
&file->dwarf_line_str_size))
return NULL;
str = (char *) file->dwarf_line_str_buffer + offset;
if (*str == '\0')
return NULL;
return str;
}
/* Like read_indirect_string but uses a .debug_str located in
an alternate file pointed to by the .gnu_debugaltlink section.
Used to impement DW_FORM_GNU_strp_alt. */
static char *
read_alt_indirect_string (struct comp_unit *unit,
bfd_byte **ptr,
bfd_byte *buf_end)
{
uint64_t offset;
struct dwarf2_debug *stash = unit->stash;
char *str;
if (unit->offset_size > (size_t) (buf_end - *ptr))
{
*ptr = buf_end;
return NULL;
}
if (unit->offset_size == 4)
offset = read_4_bytes (unit->abfd, ptr, buf_end);
else
offset = read_8_bytes (unit->abfd, ptr, buf_end);
if (stash->alt.bfd_ptr == NULL)
{
bfd *debug_bfd;
char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
if (debug_filename == NULL)
return NULL;
debug_bfd = bfd_openr (debug_filename, NULL);
free (debug_filename);
if (debug_bfd == NULL)
/* FIXME: Should we report our failure to follow the debuglink ? */
return NULL;
if (!bfd_check_format (debug_bfd, bfd_object))
{
bfd_close (debug_bfd);
return NULL;
}
stash->alt.bfd_ptr = debug_bfd;
}
if (! read_section (unit->stash->alt.bfd_ptr,
stash->debug_sections + debug_str_alt,
stash->alt.syms, offset,
&stash->alt.dwarf_str_buffer,
&stash->alt.dwarf_str_size))
return NULL;
str = (char *) stash->alt.dwarf_str_buffer + offset;
if (*str == '\0')
return NULL;
return str;
}
/* Resolve an alternate reference from UNIT at OFFSET.
Returns a pointer into the loaded alternate CU upon success
or NULL upon failure. */
static bfd_byte *
read_alt_indirect_ref (struct comp_unit *unit, uint64_t offset)
{
struct dwarf2_debug *stash = unit->stash;
if (stash->alt.bfd_ptr == NULL)
{
bfd *debug_bfd;
char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
if (debug_filename == NULL)
return NULL;
debug_bfd = bfd_openr (debug_filename, NULL);
free (debug_filename);
if (debug_bfd == NULL)
/* FIXME: Should we report our failure to follow the debuglink ? */
return NULL;
if (!bfd_check_format (debug_bfd, bfd_object))
{
bfd_close (debug_bfd);
return NULL;
}
stash->alt.bfd_ptr = debug_bfd;
}
if (! read_section (unit->stash->alt.bfd_ptr,
stash->debug_sections + debug_info_alt,
stash->alt.syms, offset,
&stash->alt.dwarf_info_buffer,
&stash->alt.dwarf_info_size))
return NULL;
return stash->alt.dwarf_info_buffer + offset;
}
static uint64_t
read_address (struct comp_unit *unit, bfd_byte **ptr, bfd_byte *buf_end)
{
bfd_byte *buf = *ptr;
int signed_vma = 0;
if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
if (unit->addr_size > (size_t) (buf_end - buf))
{
*ptr = buf_end;
return 0;
}
*ptr = buf + unit->addr_size;
if (signed_vma)
{
switch (unit->addr_size)
{
case 8:
return bfd_get_signed_64 (unit->abfd, buf);
case 4:
return bfd_get_signed_32 (unit->abfd, buf);
case 2:
return bfd_get_signed_16 (unit->abfd, buf);
default:
abort ();
}
}
else
{
switch (unit->addr_size)
{
case 8:
return bfd_get_64 (unit->abfd, buf);
case 4:
return bfd_get_32 (unit->abfd, buf);
case 2:
return bfd_get_16 (unit->abfd, buf);
default:
abort ();
}
}
}
/* Lookup an abbrev_info structure in the abbrev hash table. */
static struct abbrev_info *
lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
{
unsigned int hash_number;
struct abbrev_info *abbrev;
hash_number = number % ABBREV_HASH_SIZE;
abbrev = abbrevs[hash_number];
while (abbrev)
{
if (abbrev->number == number)
return abbrev;
else
abbrev = abbrev->next;
}
return NULL;
}
/* We keep a hash table to map .debug_abbrev section offsets to the
array of abbrevs, so that compilation units using the same set of
abbrevs do not waste memory. */
struct abbrev_offset_entry
{
size_t offset;
struct abbrev_info **abbrevs;
};
static hashval_t
hash_abbrev (const void *p)
{
const struct abbrev_offset_entry *ent = p;
return htab_hash_pointer ((void *) ent->offset);
}
static int
eq_abbrev (const void *pa, const void *pb)
{
const struct abbrev_offset_entry *a = pa;
const struct abbrev_offset_entry *b = pb;
return a->offset == b->offset;
}
static void
del_abbrev (void *p)
{
struct abbrev_offset_entry *ent = p;
struct abbrev_info **abbrevs = ent->abbrevs;
size_t i;
for (i = 0; i < ABBREV_HASH_SIZE; i++)
{
struct abbrev_info *abbrev = abbrevs[i];
while (abbrev)
{
free (abbrev->attrs);
abbrev = abbrev->next;
}
}
free (ent);
}
/* In DWARF version 2, the description of the debugging information is
stored in a separate .debug_abbrev section. Before we read any
dies from a section we read in all abbreviations and install them
in a hash table. */
static struct abbrev_info**
read_abbrevs (bfd *abfd, uint64_t offset, struct dwarf2_debug *stash,
struct dwarf2_debug_file *file)
{
struct abbrev_info **abbrevs;
bfd_byte *abbrev_ptr;
bfd_byte *abbrev_end;
struct abbrev_info *cur_abbrev;
unsigned int abbrev_number, abbrev_name;
unsigned int abbrev_form, hash_number;
size_t amt;
void **slot;
struct abbrev_offset_entry ent = { offset, NULL };
if (ent.offset != offset)
return NULL;
slot = htab_find_slot (file->abbrev_offsets, &ent, INSERT);
if (slot == NULL)
return NULL;
if (*slot != NULL)
return ((struct abbrev_offset_entry *) (*slot))->abbrevs;
if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
file->syms, offset,
&file->dwarf_abbrev_buffer,
&file->dwarf_abbrev_size))
return NULL;
amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
if (abbrevs == NULL)
return NULL;
abbrev_ptr = file->dwarf_abbrev_buffer + offset;
abbrev_end = file->dwarf_abbrev_buffer + file->dwarf_abbrev_size;
abbrev_number = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
false, abbrev_end);
/* Loop until we reach an abbrev number of 0. */
while (abbrev_number)
{
amt = sizeof (struct abbrev_info);
cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
if (cur_abbrev == NULL)
goto fail;
/* Read in abbrev header. */
cur_abbrev->number = abbrev_number;
cur_abbrev->tag = (enum dwarf_tag)
_bfd_safe_read_leb128 (abfd, &abbrev_ptr,
false, abbrev_end);
cur_abbrev->has_children = read_1_byte (abfd, &abbrev_ptr, abbrev_end);
/* Now read in declarations. */
for (;;)
{
/* Initialize it just to avoid a GCC false warning. */
bfd_vma implicit_const = -1;
abbrev_name = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
false, abbrev_end);
abbrev_form = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
false, abbrev_end);
if (abbrev_form == DW_FORM_implicit_const)
implicit_const = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
true, abbrev_end);
if (abbrev_name == 0)
break;
if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
{
struct attr_abbrev *tmp;
amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
amt *= sizeof (struct attr_abbrev);
tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
if (tmp == NULL)
goto fail;
cur_abbrev->attrs = tmp;
}
cur_abbrev->attrs[cur_abbrev->num_attrs].name
= (enum dwarf_attribute) abbrev_name;
cur_abbrev->attrs[cur_abbrev->num_attrs].form
= (enum dwarf_form) abbrev_form;
cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
= implicit_const;
++cur_abbrev->num_attrs;
}
hash_number = abbrev_number % ABBREV_HASH_SIZE;
cur_abbrev->next = abbrevs[hash_number];
abbrevs[hash_number] = cur_abbrev;
/* Get next abbreviation.
Under Irix6 the abbreviations for a compilation unit are not
always properly terminated with an abbrev number of 0.
Exit loop if we encounter an abbreviation which we have
already read (which means we are about to read the abbreviations
for the next compile unit) or if the end of the abbreviation
table is reached. */
if ((size_t) (abbrev_ptr - file->dwarf_abbrev_buffer)
>= file->dwarf_abbrev_size)
break;
abbrev_number = _bfd_safe_read_leb128 (abfd, &abbrev_ptr,
false, abbrev_end);
if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
break;
}
*slot = bfd_malloc (sizeof ent);
if (!*slot)
goto fail;
ent.abbrevs = abbrevs;
memcpy (*slot, &ent, sizeof ent);
return abbrevs;
fail:
if (abbrevs != NULL)
{
size_t i;
for (i = 0; i < ABBREV_HASH_SIZE; i++)
{
struct abbrev_info *abbrev = abbrevs[i];
while (abbrev)
{
free (abbrev->attrs);
abbrev = abbrev->next;
}
}
free (abbrevs);
}
return NULL;
}
/* Returns true if the form is one which has a string value. */
static bool
is_str_form (const struct attribute *attr)
{
switch (attr->form)
{
case DW_FORM_string:
case DW_FORM_strp:
case DW_FORM_strx:
case DW_FORM_strx1:
case DW_FORM_strx2:
case DW_FORM_strx3:
case DW_FORM_strx4:
case DW_FORM_line_strp:
case DW_FORM_GNU_strp_alt:
return true;
default:
return false;
}
}
/* Returns true if the form is one which has an integer value. */
static bool
is_int_form (const struct attribute *attr)
{
switch (attr->form)
{
case DW_FORM_addr:
case DW_FORM_data2:
case DW_FORM_data4:
case DW_FORM_data8:
case DW_FORM_data1:
case DW_FORM_flag:
case DW_FORM_sdata:
case DW_FORM_udata:
case DW_FORM_ref_addr:
case DW_FORM_ref1:
case DW_FORM_ref2:
case DW_FORM_ref4:
case DW_FORM_ref8:
case DW_FORM_ref_udata:
case DW_FORM_sec_offset:
case DW_FORM_flag_present:
case DW_FORM_ref_sig8:
case DW_FORM_addrx:
case DW_FORM_implicit_const:
case DW_FORM_addrx1:
case DW_FORM_addrx2:
case DW_FORM_addrx3:
case DW_FORM_addrx4:
case DW_FORM_GNU_ref_alt:
return true;
default:
return false;
}
}
/* Returns true if the form is strx[1-4]. */
static inline bool
is_strx_form (enum dwarf_form form)
{
return (form == DW_FORM_strx
|| form == DW_FORM_strx1
|| form == DW_FORM_strx2
|| form == DW_FORM_strx3
|| form == DW_FORM_strx4);
}
/* Return true if the form is addrx[1-4]. */
static inline bool
is_addrx_form (enum dwarf_form form)
{
return (form == DW_FORM_addrx
|| form == DW_FORM_addrx1
|| form == DW_FORM_addrx2
|| form == DW_FORM_addrx3
|| form == DW_FORM_addrx4);
}
/* Returns the address in .debug_addr section using DW_AT_addr_base.
Used to implement DW_FORM_addrx*. */
static uint64_t
read_indexed_address (uint64_t idx, struct comp_unit *unit)
{
struct dwarf2_debug *stash = unit->stash;
struct dwarf2_debug_file *file = unit->file;
bfd_byte *info_ptr;
size_t offset;
if (stash == NULL)
return 0;
if (!read_section (unit->abfd, &stash->debug_sections[debug_addr],
file->syms, 0,
&file->dwarf_addr_buffer, &file->dwarf_addr_size))
return 0;
if (_bfd_mul_overflow (idx, unit->addr_size, &offset))
return 0;
offset += unit->dwarf_addr_offset;
if (offset < unit->dwarf_addr_offset
|| offset > file->dwarf_addr_size
|| file->dwarf_addr_size - offset < unit->addr_size)
return 0;
info_ptr = file->dwarf_addr_buffer + offset;
if (unit->addr_size == 4)
return bfd_get_32 (unit->abfd, info_ptr);
else if (unit->addr_size == 8)
return bfd_get_64 (unit->abfd, info_ptr);
else
return 0;
}
/* Returns the string using DW_AT_str_offsets_base.
Used to implement DW_FORM_strx*. */
static const char *
read_indexed_string (uint64_t idx, struct comp_unit *unit)
{
struct dwarf2_debug *stash = unit->stash;
struct dwarf2_debug_file *file = unit->file;
bfd_byte *info_ptr;
uint64_t str_offset;
size_t offset;
if (stash == NULL)
return NULL;
if (!read_section (unit->abfd, &stash->debug_sections[debug_str],
file->syms, 0,
&file->dwarf_str_buffer, &file->dwarf_str_size))
return NULL;
if (!read_section (unit->abfd, &stash->debug_sections[debug_str_offsets],
file->syms, 0,
&file->dwarf_str_offsets_buffer,
&file->dwarf_str_offsets_size))
return NULL;
if (_bfd_mul_overflow (idx, unit->offset_size, &offset))
return NULL;
offset += unit->dwarf_str_offset;
if (offset < unit->dwarf_str_offset
|| offset > file->dwarf_str_offsets_size
|| file->dwarf_str_offsets_size - offset < unit->offset_size)
return NULL;
info_ptr = file->dwarf_str_offsets_buffer + offset;
if (unit->offset_size == 4)
str_offset = bfd_get_32 (unit->abfd, info_ptr);
else if (unit->offset_size == 8)
str_offset = bfd_get_64 (unit->abfd, info_ptr);
else
return NULL;
if (str_offset >= file->dwarf_str_size)
return NULL;
return (const char *) file->dwarf_str_buffer + str_offset;
}
/* Read and fill in the value of attribute ATTR as described by FORM.
Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
Returns an updated INFO_PTR taking into account the amount of data read. */
static bfd_byte *
read_attribute_value (struct attribute * attr,
unsigned form,
bfd_vma implicit_const,
struct comp_unit * unit,
bfd_byte * info_ptr,
bfd_byte * info_ptr_end)
{
bfd *abfd = unit->abfd;
size_t amt;
if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
{
_bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
bfd_set_error (bfd_error_bad_value);
return NULL;
}
attr->form = (enum dwarf_form) form;
switch (form)
{
case DW_FORM_flag_present:
attr->u.val = 1;
break;
case DW_FORM_ref_addr:
/* DW_FORM_ref_addr is an address in DWARF2, and an offset in
DWARF3. */
if (unit->version >= 3)
{
if (unit->offset_size == 4)
attr->u.val = read_4_bytes (unit->abfd, &info_ptr, info_ptr_end);
else
attr->u.val = read_8_bytes (unit->abfd, &info_ptr, info_ptr_end);
break;
}
/* FALLTHROUGH */
case DW_FORM_addr:
attr->u.val = read_address (unit, &info_ptr, info_ptr_end);
break;
case DW_FORM_GNU_ref_alt:
case DW_FORM_sec_offset:
if (unit->offset_size == 4)
attr->u.val = read_4_bytes (unit->abfd, &info_ptr, info_ptr_end);
else
attr->u.val = read_8_bytes (unit->abfd, &info_ptr, info_ptr_end);
break;
case DW_FORM_block2:
amt = read_2_bytes (abfd, &info_ptr, info_ptr_end);
attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
if (attr->u.blk == NULL)
return NULL;
break;
case DW_FORM_block4:
amt = read_4_bytes (abfd, &info_ptr, info_ptr_end);
attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
if (attr->u.blk == NULL)
return NULL;
break;
case DW_FORM_ref1:
case DW_FORM_flag:
case DW_FORM_data1:
attr->u.val = read_1_byte (abfd, &info_ptr, info_ptr_end);
break;
case DW_FORM_addrx1:
attr->u.val = read_1_byte (abfd, &info_ptr, info_ptr_end);
/* dwarf_addr_offset value 0 indicates the attribute DW_AT_addr_base
is not yet read. */
if (unit->dwarf_addr_offset != 0)
attr->u.val = read_indexed_address (attr->u.val, unit);
break;
case DW_FORM_data2:
case DW_FORM_ref2:
attr->u.val = read_2_bytes (abfd, &info_ptr, info_ptr_end);
break;
case DW_FORM_addrx2:
attr->u.val = read_2_bytes (abfd, &info_ptr, info_ptr_end);
if (unit->dwarf_addr_offset != 0)
attr->u.val = read_indexed_address (attr->u.val, unit);
break;
case DW_FORM_addrx3:
attr->u.val = read_3_bytes (abfd, &info_ptr, info_ptr_end);
if (unit->dwarf_addr_offset != 0)
attr->u.val = read_indexed_address(attr->u.val, unit);
break;
case DW_FORM_ref4:
case DW_FORM_data4:
attr->u.val = read_4_bytes (abfd, &info_ptr, info_ptr_end);
break;
case DW_FORM_addrx4:
attr->u.val = read_4_bytes (abfd, &info_ptr, info_ptr_end);
if (unit->dwarf_addr_offset != 0)
attr->u.val = read_indexed_address (attr->u.val, unit);
break;
case DW_FORM_data8:
case DW_FORM_ref8:
case DW_FORM_ref_sig8:
attr->u.val = read_8_bytes (abfd, &info_ptr, info_ptr_end);
break;
case DW_FORM_string:
attr->u.str = read_string (&info_ptr, info_ptr_end);
break;
case DW_FORM_strp:
attr->u.str = read_indirect_string (unit, &info_ptr, info_ptr_end);
break;
case DW_FORM_line_strp:
attr->u.str = read_indirect_line_string (unit, &info_ptr, info_ptr_end);
break;
case DW_FORM_GNU_strp_alt:
attr->u.str = read_alt_indirect_string (unit, &info_ptr, info_ptr_end);
break;
case DW_FORM_strx1:
attr->u.val = read_1_byte (abfd, &info_ptr, info_ptr_end);
/* dwarf_str_offset value 0 indicates the attribute DW_AT_str_offsets_base
is not yet read. */
if (unit->dwarf_str_offset != 0)
attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
else
attr->u.str = NULL;
break;
case DW_FORM_strx2:
attr->u.val = read_2_bytes (abfd, &info_ptr, info_ptr_end);
if (unit->dwarf_str_offset != 0)
attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
else
attr->u.str = NULL;
break;
case DW_FORM_strx3:
attr->u.val = read_3_bytes (abfd, &info_ptr, info_ptr_end);
if (unit->dwarf_str_offset != 0)
attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
else
attr->u.str = NULL;
break;
case DW_FORM_strx4:
attr->u.val = read_4_bytes (abfd, &info_ptr, info_ptr_end);
if (unit->dwarf_str_offset != 0)
attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
else
attr->u.str = NULL;
break;
case DW_FORM_strx:
attr->u.val = _bfd_safe_read_leb128 (abfd, &info_ptr,
false, info_ptr_end);
if (unit->dwarf_str_offset != 0)
attr->u.str = (char *) read_indexed_string (attr->u.val, unit);
else
attr->u.str = NULL;
break;
case DW_FORM_exprloc:
case DW_FORM_block:
amt = _bfd_safe_read_leb128 (abfd, &info_ptr,
false, info_ptr_end);
attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
if (attr->u.blk == NULL)
return NULL;
break;
case DW_FORM_block1:
amt = read_1_byte (abfd, &info_ptr, info_ptr_end);
attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, amt);
if (attr->u.blk == NULL)
return NULL;
break;
case DW_FORM_sdata:
attr->u.sval = _bfd_safe_read_leb128 (abfd, &info_ptr,
true, info_ptr_end);
break;
case DW_FORM_rnglistx:
case DW_FORM_loclistx:
/* FIXME: Add support for these forms! */
/* Fall through. */
case DW_FORM_ref_udata:
case DW_FORM_udata:
attr->u.val = _bfd_safe_read_leb128 (abfd, &info_ptr,
false, info_ptr_end);
break;
case DW_FORM_addrx:
attr->u.val = _bfd_safe_read_leb128 (abfd, &info_ptr,
false, info_ptr_end);
if (unit->dwarf_addr_offset != 0)
attr->u.val = read_indexed_address (attr->u.val, unit);
break;
case DW_FORM_indirect:
form = _bfd_safe_read_leb128 (abfd, &info_ptr,
false, info_ptr_end);
if (form == DW_FORM_implicit_const)
implicit_const = _bfd_safe_read_leb128 (abfd, &info_ptr,
true, info_ptr_end);
info_ptr = read_attribute_value (attr, form, implicit_const, unit,
info_ptr, info_ptr_end);
break;
case DW_FORM_implicit_const:
attr->form = DW_FORM_sdata;
attr->u.sval = implicit_const;
break;
case DW_FORM_data16:
/* This is really a "constant", but there is no way to store that
so pretend it is a 16 byte block instead. */
attr->u.blk = read_blk (abfd, &info_ptr, info_ptr_end, 16);
if (attr->u.blk == NULL)
return NULL;
break;
default:
_bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
form);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
return info_ptr;
}
/* Read an attribute described by an abbreviated attribute. */
static bfd_byte *
read_attribute (struct attribute * attr,
struct attr_abbrev * abbrev,
struct comp_unit * unit,
bfd_byte * info_ptr,
bfd_byte * info_ptr_end)
{
attr->name = abbrev->name;
info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
unit, info_ptr, info_ptr_end);
return info_ptr;
}
/* Return mangling style given LANG. */
static int
mangle_style (int lang)
{
switch (lang)
{
case DW_LANG_Ada83:
case DW_LANG_Ada95:
return DMGL_GNAT;
case DW_LANG_C_plus_plus:
case DW_LANG_C_plus_plus_03:
case DW_LANG_C_plus_plus_11:
case DW_LANG_C_plus_plus_14:
return DMGL_GNU_V3;
case DW_LANG_Java:
return DMGL_JAVA;
case DW_LANG_D:
return DMGL_DLANG;
case DW_LANG_Rust:
case DW_LANG_Rust_old:
return DMGL_RUST;
default:
return DMGL_AUTO;
case DW_LANG_C89:
case DW_LANG_C:
case DW_LANG_Cobol74:
case DW_LANG_Cobol85:
case DW_LANG_Fortran77:
case DW_LANG_Pascal83:
case DW_LANG_PLI:
case DW_LANG_C99:
case DW_LANG_UPC:
case DW_LANG_C11:
case DW_LANG_Mips_Assembler:
case DW_LANG_Upc:
case DW_LANG_HP_Basic91:
case DW_LANG_HP_IMacro:
case DW_LANG_HP_Assembler:
return 0;
}
}
/* Source line information table routines. */
#define FILE_ALLOC_CHUNK 5
#define DIR_ALLOC_CHUNK 5
struct line_info
{
struct line_info * prev_line;
bfd_vma address;
char * filename;
unsigned int line;
unsigned int column;
unsigned int discriminator;
unsigned char op_index;
unsigned char end_sequence; /* End of (sequential) code sequence. */
};
struct fileinfo
{
char * name;
unsigned int dir;
unsigned int time;
unsigned int size;
};
struct line_sequence
{
bfd_vma low_pc;
struct line_sequence* prev_sequence;
struct line_info* last_line; /* Largest VMA. */
struct line_info** line_info_lookup;
bfd_size_type num_lines;
};
struct line_info_table
{
bfd * abfd;
unsigned int num_files;
unsigned int num_dirs;
unsigned int num_sequences;
bool use_dir_and_file_0;
char * comp_dir;
char ** dirs;
struct fileinfo* files;
struct line_sequence* sequences;
struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
};
/* Remember some information about each function. If the function is
inlined (DW_TAG_inlined_subroutine) it may have two additional
attributes, DW_AT_call_file and DW_AT_call_line, which specify the
source code location where this function was inlined. */
struct funcinfo
{
/* Pointer to previous function in list of all functions. */
struct funcinfo *prev_func;
/* Pointer to function one scope higher. */
struct funcinfo *caller_func;
/* Source location file name where caller_func inlines this func. */
char *caller_file;
/* Source location file name. */
char *file;
/* Source location line number where caller_func inlines this func. */
int caller_line;
/* Source location line number. */
int line;
int tag;
bool is_linkage;
const char *name;
struct arange arange;
/* The offset of the funcinfo from the start of the unit. */
uint64_t unit_offset;
};
struct lookup_funcinfo
{
/* Function information corresponding to this lookup table entry. */
struct funcinfo *funcinfo;
/* The lowest address for this specific function. */
bfd_vma low_addr;
/* The highest address of this function before the lookup table is sorted.
The highest address of all prior functions after the lookup table is
sorted, which is used for binary search. */
bfd_vma high_addr;
/* Index of this function, used to ensure qsort is stable. */
unsigned int idx;
};
struct varinfo
{
/* Pointer to previous variable in list of all variables. */
struct varinfo *prev_var;
/* The offset of the varinfo from the start of the unit. */
uint64_t unit_offset;
/* Source location file name. */
char *file;
/* Source location line number. */
int line;
/* The type of this variable. */
int tag;
/* The name of the variable, if it has one. */
const char *name;
/* The address of the variable. */
bfd_vma addr;
/* Is this a stack variable? */
bool stack;
};
/* Return TRUE if NEW_LINE should sort after LINE. */
static inline bool
new_line_sorts_after (struct line_info *new_line, struct line_info *line)
{
return (new_line->address > line->address
|| (new_line->address == line->address
&& new_line->op_index > line->op_index));
}
/* Adds a new entry to the line_info list in the line_info_table, ensuring
that the list is sorted. Note that the line_info list is sorted from
highest to lowest VMA (with possible duplicates); that is,
line_info->prev_line always accesses an equal or smaller VMA. */
static bool
add_line_info (struct line_info_table *table,
bfd_vma address,
unsigned char op_index,
char *filename,
unsigned int line,
unsigned int column,
unsigned int discriminator,
int end_sequence)
{
size_t amt = sizeof (struct line_info);
struct line_sequence* seq = table->sequences;
struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
if (info == NULL)
return false;
/* Set member data of 'info'. */
info->prev_line = NULL;
info->address = address;
info->op_index = op_index;
info->line = line;
info->column = column;
info->discriminator = discriminator;
info->end_sequence = end_sequence;
if (filename && filename[0])
{
info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
if (info->filename == NULL)
return false;
strcpy (info->filename, filename);
}
else
info->filename = NULL;
/* Find the correct location for 'info'. Normally we will receive
new line_info data 1) in order and 2) with increasing VMAs.
However some compilers break the rules (cf. decode_line_info) and
so we include some heuristics for quickly finding the correct
location for 'info'. In particular, these heuristics optimize for
the common case in which the VMA sequence that we receive is a
list of locally sorted VMAs such as
p...z a...j (where a < j < p < z)
Note: table->lcl_head is used to head an *actual* or *possible*
sub-sequence within the list (such as a...j) that is not directly
headed by table->last_line
Note: we may receive duplicate entries from 'decode_line_info'. */
if (seq
&& seq->last_line->address == address
&& seq->last_line->op_index == op_index
&& seq->last_line->end_sequence == end_sequence)
{
/* We only keep the last entry with the same address and end
sequence. See PR ld/4986. */
if (table->lcl_head == seq->last_line)
table->lcl_head = info;
info->prev_line = seq->last_line->prev_line;
seq->last_line = info;
}
else if (!seq || seq->last_line->end_sequence)
{
/* Start a new line sequence. */
amt = sizeof (struct line_sequence);
seq = (struct line_sequence *) bfd_malloc (amt);
if (seq == NULL)
return false;
seq->low_pc = address;
seq->prev_sequence = table->sequences;
seq->last_line = info;
table->lcl_head = info;
table->sequences = seq;
table->num_sequences++;
}
else if (info->end_sequence
|| new_line_sorts_after (info, seq->last_line))
{
/* Normal case: add 'info' to the beginning of the current sequence. */
info->prev_line = seq->last_line;
seq->last_line = info;
/* lcl_head: initialize to head a *possible* sequence at the end. */
if (!table->lcl_head)
table->lcl_head = info;
}
else if (!new_line_sorts_after (info, table->lcl_head)
&& (!table->lcl_head->prev_line
|| new_line_sorts_after (info, table->lcl_head->prev_line)))
{
/* Abnormal but easy: lcl_head is the head of 'info'. */
info->prev_line = table->lcl_head->prev_line;
table->lcl_head->prev_line = info;
}
else
{
/* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
are valid heads for 'info'. Reset 'lcl_head'. */
struct line_info* li2 = seq->last_line; /* Always non-NULL. */
struct line_info* li1 = li2->prev_line;
while (li1)
{
if (!new_line_sorts_after (info, li2)
&& new_line_sorts_after (info, li1))
break;
li2 = li1; /* always non-NULL */
li1 = li1->prev_line;
}
table->lcl_head = li2;
info->prev_line = table->lcl_head->prev_line;
table->lcl_head->prev_line = info;
if (address < seq->low_pc)
seq->low_pc = address;
}
return true;
}
/* Extract a fully qualified filename from a line info table.
The returned string has been malloc'ed and it is the caller's
responsibility to free it. */
static char *
concat_filename (struct line_info_table *table, unsigned int file)
{
char *filename;
/* Pre DWARF-5 entry 0 in the directory and filename tables was not used.
So in order to save space in the tables used here the info for, eg
directory 1 is stored in slot 0 of the directory table, directory 2
in slot 1 and so on.
Starting with DWARF-5 the 0'th entry is used so there is a one to one
mapping between DWARF slots and internal table entries. */
if (! table->use_dir_and_file_0)
{
/* Pre DWARF-5, FILE == 0 means unknown. */
if (file == 0)
return strdup ("<unknown>");
-- file;
}
if (table == NULL || file >= table->num_files)
{
_bfd_error_handler
(_("DWARF error: mangled line number section (bad file number)"));
return strdup ("<unknown>");
}
filename = table->files[file].name;
if (filename == NULL)
return strdup ("<unknown>");
if (!IS_ABSOLUTE_PATH (filename))
{
char *dir_name = NULL;
char *subdir_name = NULL;
char *name;
size_t len;
unsigned int dir = table->files[file].dir;
if (!table->use_dir_and_file_0)
--dir;
/* Wrapping from 0 to -1u above gives the intended result with
the test below of leaving subdir_name NULL for pre-DWARF5 dir
of 0. */
/* PR 17512: file: 0317e960, file: 7f3d2e4b. */
if (dir < table->num_dirs)
subdir_name = table->dirs[dir];
if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
dir_name = table->comp_dir;
if (!dir_name)
{
dir_name = subdir_name;
subdir_name = NULL;
}
if (!dir_name)
return strdup (filename);
len = strlen (dir_name) + strlen (filename) + 2;
if (subdir_name)
{
len += strlen (subdir_name) + 1;
name = (char *) bfd_malloc (len);
if (name)
sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
}
else
{
name = (char *) bfd_malloc (len);
if (name)
sprintf (name, "%s/%s", dir_name, filename);
}
return name;
}
return strdup (filename);
}
/* Number of bits in a bfd_vma. */
#define VMA_BITS (8 * sizeof (bfd_vma))
/* Check whether [low1, high1) can be combined with [low2, high2),
i.e., they touch or overlap. */
static bool
ranges_overlap (bfd_vma low1,
bfd_vma high1,
bfd_vma low2,
bfd_vma high2)
{
if (low1 == low2 || high1 == high2)
return true;
/* Sort so that low1 is below low2. */
if (low1 > low2)
{
bfd_vma tmp;
tmp = low1;
low1 = low2;
low2 = tmp;
tmp = high1;
high1 = high2;
high2 = tmp;
}
/* We touch iff low2 == high1.
We overlap iff low2 is within [low1, high1). */
return low2 <= high1;
}
/* Insert an address range in the trie mapping addresses to compilation units.
Will return the new trie node (usually the same as is being sent in, but
in case of a leaf-to-interior conversion, or expansion of a leaf, it may be
different), or NULL on failure. */
static struct trie_node *
insert_arange_in_trie (bfd *abfd,
struct trie_node *trie,
bfd_vma trie_pc,
unsigned int trie_pc_bits,
struct comp_unit *unit,
bfd_vma low_pc,
bfd_vma high_pc)
{
bfd_vma clamped_low_pc, clamped_high_pc;
int ch, from_ch, to_ch;
bool is_full_leaf = false;
bool splitting_leaf_will_help = false;
/* See if we can extend any of the existing ranges. This merging
isn't perfect (if merging opens up the possibility of merging two existing
ranges, we won't find them), but it takes the majority of the cases. */
if (trie->num_room_in_leaf > 0)
{
struct trie_leaf *leaf = (struct trie_leaf *) trie;
unsigned int i;
for (i = 0; i < leaf->num_stored_in_leaf; ++i)
{
if (leaf->ranges[i].unit == unit
&& ranges_overlap (low_pc, high_pc,
leaf->ranges[i].low_pc,
leaf->ranges[i].high_pc))
{
if (low_pc < leaf->ranges[i].low_pc)
leaf->ranges[i].low_pc = low_pc;
if (high_pc > leaf->ranges[i].high_pc)
leaf->ranges[i].high_pc = high_pc;
return trie;
}
}
is_full_leaf = leaf->num_stored_in_leaf == trie->num_room_in_leaf;
if (is_full_leaf && trie_pc_bits < VMA_BITS)
{
/* See if we have at least one leaf that does _not_ cover the
entire bucket, so that splitting will actually reduce the number
of elements in at least one of the child nodes. (For simplicity,
we don't test the range we're inserting, but it will be counted
on the next insertion where we're full, if any.) */
bfd_vma bucket_high_pc =
trie_pc + ((bfd_vma) -1 >> trie_pc_bits); /* Inclusive. */
for (i = 0; i < leaf->num_stored_in_leaf; ++i)
{
if (leaf->ranges[i].low_pc > trie_pc
|| leaf->ranges[i].high_pc <= bucket_high_pc)
{
splitting_leaf_will_help = true;
break;
}
}
}
}
/* If we're a leaf with no more room and we're _not_ at the bottom,
convert to an interior node. */
if (is_full_leaf && splitting_leaf_will_help)
{
const struct trie_leaf *leaf = (struct trie_leaf *) trie;
unsigned int i;
trie = bfd_zalloc (abfd, sizeof (struct trie_interior));
if (!trie)
return NULL;
is_full_leaf = false;
/* TODO: If we wanted to save a little more memory at the cost of
complexity, we could have reused the old leaf node as one of the
children of the new interior node, instead of throwing it away. */
for (i = 0; i < leaf->num_stored_in_leaf; ++i)
{
if (!insert_arange_in_trie (abfd, trie, trie_pc, trie_pc_bits,
leaf->ranges[i].unit, leaf->ranges[i].low_pc,
leaf->ranges[i].high_pc))
return NULL;
}
}
/* If we're a leaf with no more room and we _are_ at the bottom
(or splitting it won't help), we have no choice but to just
make it larger. */
if (is_full_leaf)
{
const struct trie_leaf *leaf = (struct trie_leaf *) trie;
unsigned int new_room_in_leaf = trie->num_room_in_leaf * 2;
struct trie_leaf *new_leaf;
size_t amt = sizeof (*leaf) + new_room_in_leaf * sizeof (leaf->ranges[0]);
new_leaf = bfd_zalloc (abfd, amt);
new_leaf->head.num_room_in_leaf = new_room_in_leaf;
new_leaf->num_stored_in_leaf = leaf->num_stored_in_leaf;
memcpy (new_leaf->ranges,
leaf->ranges,
leaf->num_stored_in_leaf * sizeof (leaf->ranges[0]));
trie = &new_leaf->head;
is_full_leaf = false;
/* Now the insert below will go through. */
}
/* If we're a leaf (now with room), we can just insert at the end. */
if (trie->num_room_in_leaf > 0)
{
struct trie_leaf *leaf = (struct trie_leaf *) trie;
unsigned int i = leaf->num_stored_in_leaf++;
leaf->ranges[i].unit = unit;
leaf->ranges[i].low_pc = low_pc;
leaf->ranges[i].high_pc = high_pc;
return trie;
}
/* Now we are definitely an interior node, so recurse into all
the relevant buckets. */
/* Clamp the range to the current trie bucket. */
clamped_low_pc = low_pc;
clamped_high_pc = high_pc;
if (trie_pc_bits > 0)
{
bfd_vma bucket_high_pc =
trie_pc + ((bfd_vma) -1 >> trie_pc_bits); /* Inclusive. */
if (clamped_low_pc < trie_pc)
clamped_low_pc = trie_pc;
if (clamped_high_pc > bucket_high_pc)
clamped_high_pc = bucket_high_pc;
}
/* Insert the ranges in all buckets that it spans. */
from_ch = (clamped_low_pc >> (VMA_BITS - trie_pc_bits - 8)) & 0xff;
to_ch = ((clamped_high_pc - 1) >> (VMA_BITS - trie_pc_bits - 8)) & 0xff;
for (ch = from_ch; ch <= to_ch; ++ch)
{
struct trie_interior *interior = (struct trie_interior *) trie;
struct trie_node *child = interior->children[ch];
if (child == NULL)
{
child = alloc_trie_leaf (abfd);
if (!child)
return NULL;
}
bfd_vma bucket = (bfd_vma) ch << (VMA_BITS - trie_pc_bits - 8);
child = insert_arange_in_trie (abfd,
child,
trie_pc + bucket,
trie_pc_bits + 8,
unit,
low_pc,
high_pc);
if (!child)
return NULL;
interior->children[ch] = child;
}
return trie;
}
static bool
arange_add (struct comp_unit *unit, struct arange *first_arange,
struct trie_node **trie_root, bfd_vma low_pc, bfd_vma high_pc)
{
struct arange *arange;
/* Ignore empty ranges. */
if (low_pc == high_pc)
return true;
if (trie_root != NULL)
{
*trie_root = insert_arange_in_trie (unit->file->bfd_ptr,
*trie_root,
0,
0,
unit,
low_pc,
high_pc);
if (*trie_root == NULL)
return false;
}
/* If the first arange is empty, use it. */
if (first_arange->high == 0)
{
first_arange->low = low_pc;
first_arange->high = high_pc;
return true;
}
/* Next see if we can cheaply extend an existing range. */
arange = first_arange;
do
{
if (low_pc == arange->high)
{
arange->high = high_pc;
return true;
}
if (high_pc == arange->low)
{
arange->low = low_pc;
return true;
}
arange = arange->next;
}
while (arange);
/* Need to allocate a new arange and insert it into the arange list.
Order isn't significant, so just insert after the first arange. */
arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
if (arange == NULL)
return false;
arange->low = low_pc;
arange->high = high_pc;
arange->next = first_arange->next;
first_arange->next = arange;
return true;
}
/* Compare function for line sequences. */
static int
compare_sequences (const void* a, const void* b)
{
const struct line_sequence* seq1 = a;
const struct line_sequence* seq2 = b;
/* Sort by low_pc as the primary key. */
if (seq1->low_pc < seq2->low_pc)
return -1;
if (seq1->low_pc > seq2->low_pc)
return 1;
/* If low_pc values are equal, sort in reverse order of
high_pc, so that the largest region comes first. */
if (seq1->last_line->address < seq2->last_line->address)
return 1;
if (seq1->last_line->address > seq2->last_line->address)
return -1;
if (seq1->last_line->op_index < seq2->last_line->op_index)
return 1;
if (seq1->last_line->op_index > seq2->last_line->op_index)
return -1;
/* num_lines is initially an index, to make the sort stable. */
if (seq1->num_lines < seq2->num_lines)
return -1;
if (seq1->num_lines > seq2->num_lines)
return 1;
return 0;
}
/* Construct the line information table for quick lookup. */
static bool
build_line_info_table (struct line_info_table * table,
struct line_sequence * seq)
{
size_t amt;
struct line_info **line_info_lookup;
struct line_info *each_line;
unsigned int num_lines;
unsigned int line_index;
if (seq->line_info_lookup != NULL)
return true;
/* Count the number of line information entries. We could do this while
scanning the debug information, but some entries may be added via
lcl_head without having a sequence handy to increment the number of
lines. */
num_lines = 0;
for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
num_lines++;
seq->num_lines = num_lines;
if (num_lines == 0)
return true;
/* Allocate space for the line information lookup table. */
amt = sizeof (struct line_info*) * num_lines;
line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
seq->line_info_lookup = line_info_lookup;
if (line_info_lookup == NULL)
return false;
/* Create the line information lookup table. */
line_index = num_lines;
for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
line_info_lookup[--line_index] = each_line;
BFD_ASSERT (line_index == 0);
return true;
}
/* Sort the line sequences for quick lookup. */
static bool
sort_line_sequences (struct line_info_table* table)
{
size_t amt;
struct line_sequence *sequences;
struct line_sequence *seq;
unsigned int n = 0;
unsigned int num_sequences = table->num_sequences;
bfd_vma last_high_pc;
if (num_sequences == 0)
return true;
/* Allocate space for an array of sequences. */
amt = sizeof (struct line_sequence) * num_sequences;
sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
if (sequences == NULL)
return false;
/* Copy the linked list into the array, freeing the original nodes. */
seq = table->sequences;
for (n = 0; n < num_sequences; n++)
{
struct line_sequence* last_seq = seq;
BFD_ASSERT (seq);
sequences[n].low_pc = seq->low_pc;
sequences[n].prev_sequence = NULL;
sequences[n].last_line = seq->last_line;
sequences[n].line_info_lookup = NULL;
sequences[n].num_lines = n;
seq = seq->prev_sequence;
free (last_seq);
}
BFD_ASSERT (seq == NULL);
qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
/* Make the list binary-searchable by trimming overlapping entries
and removing nested entries. */
num_sequences = 1;
last_high_pc = sequences[0].last_line->address;
for (n = 1; n < table->num_sequences; n++)
{
if (sequences[n].low_pc < last_high_pc)
{
if (sequences[n].last_line->address <= last_high_pc)
/* Skip nested entries. */
continue;
/* Trim overlapping entries. */
sequences[n].low_pc = last_high_pc;
}
last_high_pc = sequences[n].last_line->address;
if (n > num_sequences)
{
/* Close up the gap. */
sequences[num_sequences].low_pc = sequences[n].low_pc;
sequences[num_sequences].last_line = sequences[n].last_line;
}
num_sequences++;
}
table->sequences = sequences;
table->num_sequences = num_sequences;
return true;
}
/* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
static bool
line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
{
if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
{
char **tmp;
size_t amt;
amt = table->num_dirs + DIR_ALLOC_CHUNK;
amt *= sizeof (char *);
tmp = (char **) bfd_realloc (table->dirs, amt);
if (tmp == NULL)
return false;
table->dirs = tmp;
}
table->dirs[table->num_dirs++] = cur_dir;
return true;
}
static bool
line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
unsigned int dir ATTRIBUTE_UNUSED,
unsigned int xtime ATTRIBUTE_UNUSED,
unsigned int size ATTRIBUTE_UNUSED)
{
return line_info_add_include_dir (table, cur_dir);
}
/* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
static bool
line_info_add_file_name (struct line_info_table *table, char *cur_file,
unsigned int dir, unsigned int xtime,
unsigned int size)
{
if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
{
struct fileinfo *tmp;
size_t amt;
amt = table->num_files + FILE_ALLOC_CHUNK;
amt *= sizeof (struct fileinfo);
tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
if (tmp == NULL)
return false;
table->files = tmp;
}
table->files[table->num_files].name = cur_file;
table->files[table->num_files].dir = dir;
table->files[table->num_files].time = xtime;
table->files[table->num_files].size = size;
table->num_files++;
return true;
}
/* Read directory or file name entry format, starting with byte of
format count entries, ULEB128 pairs of entry formats, ULEB128 of
entries count and the entries themselves in the described entry
format. */
static bool
read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
bfd_byte *buf_end, struct line_info_table *table,
bool (*callback) (struct line_info_table *table,
char *cur_file,
unsigned int dir,
unsigned int time,
unsigned int size))
{
bfd *abfd = unit->abfd;
bfd_byte format_count, formati;
bfd_vma data_count, datai;
bfd_byte *buf = *bufp;
bfd_byte *format_header_data;
format_count = read_1_byte (abfd, &buf, buf_end);
format_header_data = buf;
for (formati = 0; formati < format_count; formati++)
{
_bfd_safe_read_leb128 (abfd, &buf, false, buf_end);
_bfd_safe_read_leb128 (abfd, &buf, false, buf_end);
}
data_count = _bfd_safe_read_leb128 (abfd, &buf, false, buf_end);
if (format_count == 0 && data_count != 0)
{
_bfd_error_handler (_("DWARF error: zero format count"));
bfd_set_error (bfd_error_bad_value);
return false;
}
/* PR 22210. Paranoia check. Don't bother running the loop
if we know that we are going to run out of buffer. */
if (data_count > (bfd_vma) (buf_end - buf))
{
_bfd_error_handler
(_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
(uint64_t) data_count);
bfd_set_error (bfd_error_bad_value);
return false;
}
for (datai = 0; datai < data_count; datai++)
{
bfd_byte *format = format_header_data;
struct fileinfo fe;
memset (&fe, 0, sizeof fe);
for (formati = 0; formati < format_count; formati++)
{
bfd_vma content_type, form;
char *string_trash;
char **stringp = &string_trash;
unsigned int uint_trash, *uintp = &uint_trash;
struct attribute attr;
content_type = _bfd_safe_read_leb128 (abfd, &format, false, buf_end);
switch (content_type)
{
case DW_LNCT_path:
stringp = &fe.name;
break;
case DW_LNCT_directory_index:
uintp = &fe.dir;
break;
case DW_LNCT_timestamp:
uintp = &fe.time;
break;
case DW_LNCT_size:
uintp = &fe.size;
break;
case DW_LNCT_MD5:
break;
default:
_bfd_error_handler
(_("DWARF error: unknown format content type %" PRIu64),
(uint64_t) content_type);
bfd_set_error (bfd_error_bad_value);
return false;
}
form = _bfd_safe_read_leb128 (abfd, &format, false, buf_end);
buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
if (buf == NULL)
return false;
switch (form)
{
case DW_FORM_string:
case DW_FORM_line_strp:
case DW_FORM_strx:
case DW_FORM_strx1:
case DW_FORM_strx2:
case DW_FORM_strx3:
case DW_FORM_strx4:
*stringp = attr.u.str;
break;
case DW_FORM_data1:
case DW_FORM_data2:
case DW_FORM_data4:
case DW_FORM_data8:
case DW_FORM_udata:
*uintp = attr.u.val;
break;
case DW_FORM_data16:
/* MD5 data is in the attr.blk, but we are ignoring those. */
break;
}
}
if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
return false;
}
*bufp = buf;
return true;
}
/* Decode the line number information for UNIT. */
static struct line_info_table*
decode_line_info (struct comp_unit *unit)
{
bfd *abfd = unit->abfd;
struct dwarf2_debug *stash = unit->stash;
struct dwarf2_debug_file *file = unit->file;
struct line_info_table* table;
bfd_byte *line_ptr;
bfd_byte *line_end;
struct line_head lh;
unsigned int i, offset_size;
char *cur_file, *cur_dir;
unsigned char op_code, extended_op, adj_opcode;
unsigned int exop_len;
size_t amt;
if (unit->line_offset == 0 && file->line_table)
return file->line_table;
if (! read_section (abfd, &stash->debug_sections[debug_line],
file->syms, unit->line_offset,
&file->dwarf_line_buffer, &file->dwarf_line_size))
return NULL;
if (file->dwarf_line_size < 16)
{
_bfd_error_handler
(_("DWARF error: line info section is too small (%" PRId64 ")"),
(int64_t) file->dwarf_line_size);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
line_ptr = file->dwarf_line_buffer + unit->line_offset;
line_end = file->dwarf_line_buffer + file->dwarf_line_size;
/* Read in the prologue. */
lh.total_length = read_4_bytes (abfd, &line_ptr, line_end);
offset_size = 4;
if (lh.total_length == 0xffffffff)
{
lh.total_length = read_8_bytes (abfd, &line_ptr, line_end);
offset_size = 8;
}
else if (lh.total_length == 0 && unit->addr_size == 8)
{
/* Handle (non-standard) 64-bit DWARF2 formats. */
lh.total_length = read_4_bytes (abfd, &line_ptr, line_end);
offset_size = 8;
}
if (lh.total_length > (size_t) (line_end - line_ptr))
{
_bfd_error_handler
/* xgettext: c-format */
(_("DWARF error: line info data is bigger (%#" PRIx64 ")"
" than the space remaining in the section (%#lx)"),
(uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
bfd_set_error (bfd_error_bad_value);
return NULL;
}
line_end = line_ptr + lh.total_length;
lh.version = read_2_bytes (abfd, &line_ptr, line_end);
if (lh.version < 2 || lh.version > 5)
{
_bfd_error_handler
(_("DWARF error: unhandled .debug_line version %d"), lh.version);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
>= line_end)
{
_bfd_error_handler
(_("DWARF error: ran out of room reading prologue"));
bfd_set_error (bfd_error_bad_value);
return NULL;
}
if (lh.version >= 5)
{
unsigned int segment_selector_size;
/* Skip address size. */
read_1_byte (abfd, &line_ptr, line_end);
segment_selector_size = read_1_byte (abfd, &line_ptr, line_end);
if (segment_selector_size != 0)
{
_bfd_error_handler
(_("DWARF error: line info unsupported segment selector size %u"),
segment_selector_size);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
}
if (offset_size == 4)
lh.prologue_length = read_4_bytes (abfd, &line_ptr, line_end);
else
lh.prologue_length = read_8_bytes (abfd, &line_ptr, line_end);
lh.minimum_instruction_length = read_1_byte (abfd, &line_ptr, line_end);
if (lh.version >= 4)
lh.maximum_ops_per_insn = read_1_byte (abfd, &line_ptr, line_end);
else
lh.maximum_ops_per_insn = 1;
if (lh.maximum_ops_per_insn == 0)
{
_bfd_error_handler
(_("DWARF error: invalid maximum operations per instruction"));
bfd_set_error (bfd_error_bad_value);
return NULL;
}
lh.default_is_stmt = read_1_byte (abfd, &line_ptr, line_end);
lh.line_base = read_1_signed_byte (abfd, &line_ptr, line_end);
lh.line_range = read_1_byte (abfd, &line_ptr, line_end);
lh.opcode_base = read_1_byte (abfd, &line_ptr, line_end);
if (line_ptr + (lh.opcode_base - 1) >= line_end)
{
_bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
bfd_set_error (bfd_error_bad_value);
return NULL;
}
amt = lh.opcode_base * sizeof (unsigned char);
lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
lh.standard_opcode_lengths[0] = 1;
for (i = 1; i < lh.opcode_base; ++i)
lh.standard_opcode_lengths[i] = read_1_byte (abfd, &line_ptr, line_end);
amt = sizeof (struct line_info_table);
table = (struct line_info_table *) bfd_alloc (abfd, amt);
if (table == NULL)
return NULL;
table->abfd = abfd;
table->comp_dir = unit->comp_dir;
table->num_files = 0;
table->files = NULL;
table->num_dirs = 0;
table->dirs = NULL;
table->num_sequences = 0;
table->sequences = NULL;
table->lcl_head = NULL;
if (lh.version >= 5)
{
/* Read directory table. */
if (!read_formatted_entries (unit, &line_ptr, line_end, table,
line_info_add_include_dir_stub))
goto fail;
/* Read file name table. */
if (!read_formatted_entries (unit, &line_ptr, line_end, table,
line_info_add_file_name))
goto fail;
table->use_dir_and_file_0 = true;
}
else
{
/* Read directory table. */
while ((cur_dir = read_string (&line_ptr, line_end)) != NULL)
{
if (!line_info_add_include_dir (table, cur_dir))
goto fail;
}
/* Read file name table. */
while ((cur_file = read_string (&line_ptr, line_end)) != NULL)
{
unsigned int dir, xtime, size;
dir = _bfd_safe_read_leb128 (abfd, &line_ptr, false, line_end);
xtime = _bfd_safe_read_leb128 (abfd, &line_ptr, false, line_end);
size = _bfd_safe_read_leb128 (abfd, &line_ptr, false, line_end);
if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
goto fail;
}
table->use_dir_and_file_0 = false;
}
/* Read the statement sequences until there's nothing left. */
while (line_ptr < line_end)
{
/* State machine registers. */
bfd_vma address = 0;
unsigned char op_index = 0;
char * filename = NULL;
unsigned int line = 1;
unsigned int column = 0;
unsigned int discriminator = 0;
int is_stmt = lh.default_is_stmt;
int end_sequence = 0;
unsigned int dir, xtime, size;
/* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
compilers generate address sequences that are wildly out of
order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
for ia64-Linux). Thus, to determine the low and high
address, we must compare on every DW_LNS_copy, etc. */
bfd_vma low_pc = (bfd_vma) -1;
bfd_vma high_pc = 0;
if (table->num_files)
{
/* PR 30783: Always start with a file index of 1, even
for DWARF-5. */
filename = concat_filename (table, 1);
}
/* Decode the table. */
while (!end_sequence && line_ptr < line_end)
{
op_code = read_1_byte (abfd, &line_ptr, line_end);
if (op_code >= lh.opcode_base)
{
/* Special operand. */
adj_opcode = op_code - lh.opcode_base;
if (lh.line_range == 0)
goto line_fail;
if (lh.maximum_ops_per_insn == 1)
address += (adj_opcode / lh.line_range
* lh.minimum_instruction_length);
else
{
address += ((op_index + adj_opcode / lh.line_range)
/ lh.maximum_ops_per_insn
* lh.minimum_instruction_length);
op_index = ((op_index + adj_opcode / lh.line_range)
% lh.maximum_ops_per_insn);
}
line += lh.line_base + (adj_opcode % lh.line_range);
/* Append row to matrix using current values. */
if (!add_line_info (table, address, op_index, filename,
line, column, discriminator, 0))
goto line_fail;
discriminator = 0;
if (address < low_pc)
low_pc = address;
if (address > high_pc)
high_pc = address;
}
else switch (op_code)
{
case DW_LNS_extended_op:
exop_len = _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end);
extended_op = read_1_byte (abfd, &line_ptr, line_end);
switch (extended_op)
{
case DW_LNE_end_sequence:
end_sequence = 1;
if (!add_line_info (table, address, op_index, filename, line,
column, discriminator, end_sequence))
goto line_fail;
discriminator = 0;
if (address < low_pc)
low_pc = address;
if (address > high_pc)
high_pc = address;
if (!arange_add (unit, &unit->arange, &unit->file->trie_root,
low_pc, high_pc))
goto line_fail;
break;
case DW_LNE_set_address:
address = read_address (unit, &line_ptr, line_end);
op_index = 0;
break;
case DW_LNE_define_file:
cur_file = read_string (&line_ptr, line_end);
dir = _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end);
xtime = _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end);
size = _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end);
if (!line_info_add_file_name (table, cur_file, dir,
xtime, size))
goto line_fail;
break;
case DW_LNE_set_discriminator:
discriminator = _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end);
break;
case DW_LNE_HP_source_file_correlation:
line_ptr += exop_len - 1;
break;
default:
_bfd_error_handler
(_("DWARF error: mangled line number section"));
bfd_set_error (bfd_error_bad_value);
line_fail:
free (filename);
goto fail;
}
break;
case DW_LNS_copy:
if (!add_line_info (table, address, op_index,
filename, line, column, discriminator, 0))
goto line_fail;
discriminator = 0;
if (address < low_pc)
low_pc = address;
if (address > high_pc)
high_pc = address;
break;
case DW_LNS_advance_pc:
if (lh.maximum_ops_per_insn == 1)
address += (lh.minimum_instruction_length
* _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end));
else
{
bfd_vma adjust = _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end);
address = ((op_index + adjust) / lh.maximum_ops_per_insn
* lh.minimum_instruction_length);
op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
}
break;
case DW_LNS_advance_line:
line += _bfd_safe_read_leb128 (abfd, &line_ptr,
true, line_end);
break;
case DW_LNS_set_file:
{
unsigned int filenum;
/* The file and directory tables are 0
based, the references are 1 based. */
filenum = _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end);
free (filename);
filename = concat_filename (table, filenum);
break;
}
case DW_LNS_set_column:
column = _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end);
break;
case DW_LNS_negate_stmt:
is_stmt = (!is_stmt);
break;
case DW_LNS_set_basic_block:
break;
case DW_LNS_const_add_pc:
if (lh.line_range == 0)
goto line_fail;
if (lh.maximum_ops_per_insn == 1)
address += (lh.minimum_instruction_length
* ((255 - lh.opcode_base) / lh.line_range));
else
{
bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
address += (lh.minimum_instruction_length
* ((op_index + adjust)
/ lh.maximum_ops_per_insn));
op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
}
break;
case DW_LNS_fixed_advance_pc:
address += read_2_bytes (abfd, &line_ptr, line_end);
op_index = 0;
break;
default:
/* Unknown standard opcode, ignore it. */
for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
(void) _bfd_safe_read_leb128 (abfd, &line_ptr,
false, line_end);
break;
}
}
free (filename);
}
if (unit->line_offset == 0)
file->line_table = table;
if (sort_line_sequences (table))
return table;
fail:
while (table->sequences != NULL)
{
struct line_sequence* seq = table->sequences;
table->sequences = table->sequences->prev_sequence;
free (seq);
}
free (table->files);
free (table->dirs);
return NULL;
}
/* If ADDR is within TABLE set the output parameters and return TRUE,
otherwise set *FILENAME_PTR to NULL and return FALSE.
The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
are pointers to the objects to be filled in. */
static bool
lookup_address_in_line_info_table (struct line_info_table *table,
bfd_vma addr,
const char **filename_ptr,
unsigned int *linenumber_ptr,
unsigned int *discriminator_ptr)
{
struct line_sequence *seq = NULL;
struct line_info *info;
int low, high, mid;
/* Binary search the array of sequences. */
low = 0;
high = table->num_sequences;
while (low < high)
{
mid = (low + high) / 2;
seq = &table->sequences[mid];
if (addr < seq->low_pc)
high = mid;
else if (addr >= seq->last_line->address)
low = mid + 1;
else
break;
}