blob: 1d874863d628588cace76341d8a6bbf8874a19bd [file] [log] [blame]
// resolve.cc -- symbol resolution for gold
#include "gold.h"
#include "elfcpp.h"
#include "target.h"
#include "object.h"
#include "symtab.h"
namespace gold
{
// Symbol methods used in this file.
// Override the fields in Symbol.
template<int size, bool big_endian>
void
Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
Object* object, const char* version)
{
gold_assert(this->source_ == FROM_OBJECT);
this->u_.from_object.object = object;
if (version != NULL && this->version() != version)
{
gold_assert(this->version() == NULL);
this->version_ = version;
}
// FIXME: Handle SHN_XINDEX.
this->u_.from_object.shndx = sym.get_st_shndx();
this->type_ = sym.get_st_type();
this->binding_ = sym.get_st_bind();
this->visibility_ = sym.get_st_visibility();
this->nonvis_ = sym.get_st_nonvis();
}
// Override the fields in Sized_symbol.
template<int size>
template<bool big_endian>
void
Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
Object* object, const char* version)
{
this->override_base(sym, object, version);
this->value_ = sym.get_st_value();
this->symsize_ = sym.get_st_size();
}
// Resolve a symbol. This is called the second and subsequent times
// we see a symbol. TO is the pre-existing symbol. SYM is the new
// symbol, seen in OBJECT. VERSION of the version of SYM.
template<int size, bool big_endian>
void
Symbol_table::resolve(Sized_symbol<size>* to,
const elfcpp::Sym<size, big_endian>& sym,
Object* object, const char* version)
{
if (object->target()->has_resolve())
{
Sized_target<size, big_endian>* sized_target;
sized_target = object->sized_target
SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
sized_target->resolve(to, sym, object, version);
return;
}
// Build a little code for each symbol.
// Bit 0: 0 for global, 1 for weak.
// Bit 1: 0 for regular object, 1 for shared object
// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
// This gives us values from 0 to 11:
enum
{
DEF = 0,
WEAK_DEF = 1,
DYN_DEF = 2,
DYN_WEAK_DEF = 3,
UNDEF = 4,
WEAK_UNDEF = 5,
DYN_UNDEF = 6,
DYN_WEAK_UNDEF = 7,
COMMON = 8,
WEAK_COMMON = 9,
DYN_COMMON = 10,
DYN_WEAK_COMMON = 11
};
int tobits;
switch (to->binding())
{
case elfcpp::STB_GLOBAL:
tobits = 0;
break;
case elfcpp::STB_WEAK:
tobits = 1;
break;
case elfcpp::STB_LOCAL:
// We should only see externally visible symbols in the symbol
// table.
gold_unreachable();
default:
// Any target which wants to handle STB_LOOS, etc., needs to
// define a resolve method.
gold_unreachable();
}
if (to->source() == Symbol::FROM_OBJECT
&& to->object()->is_dynamic())
tobits |= (1 << 1);
switch (to->shndx())
{
case elfcpp::SHN_UNDEF:
tobits |= (1 << 2);
break;
case elfcpp::SHN_COMMON:
tobits |= (2 << 2);
break;
default:
if (to->type() == elfcpp::STT_COMMON)
tobits |= (2 << 2);
break;
}
int frombits;
switch (sym.get_st_bind())
{
case elfcpp::STB_GLOBAL:
frombits = 0;
break;
case elfcpp::STB_WEAK:
frombits = 1;
break;
case elfcpp::STB_LOCAL:
fprintf(stderr,
_("%s: %s: invalid STB_LOCAL symbol %s in external symbols\n"),
program_name, object->name().c_str(), to->name());
gold_exit(false);
default:
fprintf(stderr,
_("%s: %s: unsupported symbol binding %d for symbol %s\n"),
program_name, object->name().c_str(),
static_cast<int>(sym.get_st_bind()), to->name());
gold_exit(false);
}
if (!object->is_dynamic())
{
// Record that we've seen this symbol in a regular object.
to->set_in_reg();
}
else
{
frombits |= (1 << 1);
// Record that we've seen this symbol in a dynamic object.
to->set_in_dyn();
}
switch (sym.get_st_shndx())
{
case elfcpp::SHN_UNDEF:
frombits |= (1 << 2);
break;
case elfcpp::SHN_COMMON:
frombits |= (2 << 2);
break;
default:
if (sym.get_st_type() == elfcpp::STT_COMMON)
frombits |= (2 << 2);
break;
}
if ((tobits & (1 << 1)) != (frombits & (1 << 1)))
{
// This symbol is seen in both a dynamic object and a regular
// object. That means that we need the symbol to go into the
// dynamic symbol table, so that the dynamic linker can use the
// regular symbol to override or define the dynamic symbol.
to->set_needs_dynsym_entry();
}
// FIXME: Warn if either but not both of TO and SYM are STT_TLS.
// We use a giant switch table for symbol resolution. This code is
// unwieldy, but: 1) it is efficient; 2) we definitely handle all
// cases; 3) it is easy to change the handling of a particular case.
// The alternative would be a series of conditionals, but it is easy
// to get the ordering wrong. This could also be done as a table,
// but that is no easier to understand than this large switch
// statement.
switch (tobits * 16 + frombits)
{
case DEF * 16 + DEF:
// Two definitions of the same symbol.
fprintf(stderr, "%s: %s: multiple definition of %s\n",
program_name, object->name().c_str(), to->name());
// FIXME: Report locations. Record that we have seen an error.
return;
case WEAK_DEF * 16 + DEF:
// We've seen a weak definition, and now we see a strong
// definition. In the original SVR4 linker, this was treated as
// a multiple definition error. In the Solaris linker and the
// GNU linker, a weak definition followed by a regular
// definition causes the weak definition to be overridden. We
// are currently compatible with the GNU linker. In the future
// we should add a target specific option to change this.
// FIXME.
to->override(sym, object, version);
return;
case DYN_DEF * 16 + DEF:
case DYN_WEAK_DEF * 16 + DEF:
// We've seen a definition in a dynamic object, and now we see a
// definition in a regular object. The definition in the
// regular object overrides the definition in the dynamic
// object.
to->override(sym, object, version);
return;
case UNDEF * 16 + DEF:
case WEAK_UNDEF * 16 + DEF:
case DYN_UNDEF * 16 + DEF:
case DYN_WEAK_UNDEF * 16 + DEF:
// We've seen an undefined reference, and now we see a
// definition. We use the definition.
to->override(sym, object, version);
return;
case COMMON * 16 + DEF:
case WEAK_COMMON * 16 + DEF:
case DYN_COMMON * 16 + DEF:
case DYN_WEAK_COMMON * 16 + DEF:
// We've seen a common symbol and now we see a definition. The
// definition overrides. FIXME: We should optionally issue, version a
// warning.
to->override(sym, object, version);
return;
case DEF * 16 + WEAK_DEF:
case WEAK_DEF * 16 + WEAK_DEF:
// We've seen a definition and now we see a weak definition. We
// ignore the new weak definition.
return;
case DYN_DEF * 16 + WEAK_DEF:
case DYN_WEAK_DEF * 16 + WEAK_DEF:
// We've seen a dynamic definition and now we see a regular weak
// definition. The regular weak definition overrides.
to->override(sym, object, version);
return;
case UNDEF * 16 + WEAK_DEF:
case WEAK_UNDEF * 16 + WEAK_DEF:
case DYN_UNDEF * 16 + WEAK_DEF:
case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
// A weak definition of a currently undefined symbol.
to->override(sym, object, version);
return;
case COMMON * 16 + WEAK_DEF:
case WEAK_COMMON * 16 + WEAK_DEF:
// A weak definition does not override a common definition.
return;
case DYN_COMMON * 16 + WEAK_DEF:
case DYN_WEAK_COMMON * 16 + WEAK_DEF:
// A weak definition does override a definition in a dynamic
// object. FIXME: We should optionally issue a warning.
to->override(sym, object, version);
return;
case DEF * 16 + DYN_DEF:
case WEAK_DEF * 16 + DYN_DEF:
case DYN_DEF * 16 + DYN_DEF:
case DYN_WEAK_DEF * 16 + DYN_DEF:
// Ignore a dynamic definition if we already have a definition.
return;
case UNDEF * 16 + DYN_DEF:
case WEAK_UNDEF * 16 + DYN_DEF:
case DYN_UNDEF * 16 + DYN_DEF:
case DYN_WEAK_UNDEF * 16 + DYN_DEF:
// Use a dynamic definition if we have a reference.
to->override(sym, object, version);
return;
case COMMON * 16 + DYN_DEF:
case WEAK_COMMON * 16 + DYN_DEF:
case DYN_COMMON * 16 + DYN_DEF:
case DYN_WEAK_COMMON * 16 + DYN_DEF:
// Ignore a dynamic definition if we already have a common
// definition.
return;
case DEF * 16 + DYN_WEAK_DEF:
case WEAK_DEF * 16 + DYN_WEAK_DEF:
case DYN_DEF * 16 + DYN_WEAK_DEF:
case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
// Ignore a weak dynamic definition if we already have a
// definition.
return;
case UNDEF * 16 + DYN_WEAK_DEF:
case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
case DYN_UNDEF * 16 + DYN_WEAK_DEF:
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
// Use a weak dynamic definition if we have a reference.
to->override(sym, object, version);
return;
case COMMON * 16 + DYN_WEAK_DEF:
case WEAK_COMMON * 16 + DYN_WEAK_DEF:
case DYN_COMMON * 16 + DYN_WEAK_DEF:
case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
// Ignore a weak dynamic definition if we already have a common
// definition.
return;
case DEF * 16 + UNDEF:
case WEAK_DEF * 16 + UNDEF:
case DYN_DEF * 16 + UNDEF:
case DYN_WEAK_DEF * 16 + UNDEF:
case UNDEF * 16 + UNDEF:
// A new undefined reference tells us nothing.
return;
case WEAK_UNDEF * 16 + UNDEF:
case DYN_UNDEF * 16 + UNDEF:
case DYN_WEAK_UNDEF * 16 + UNDEF:
// A strong undef overrides a dynamic or weak undef.
to->override(sym, object, version);
return;
case COMMON * 16 + UNDEF:
case WEAK_COMMON * 16 + UNDEF:
case DYN_COMMON * 16 + UNDEF:
case DYN_WEAK_COMMON * 16 + UNDEF:
// A new undefined reference tells us nothing.
return;
case DEF * 16 + WEAK_UNDEF:
case WEAK_DEF * 16 + WEAK_UNDEF:
case DYN_DEF * 16 + WEAK_UNDEF:
case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
case UNDEF * 16 + WEAK_UNDEF:
case WEAK_UNDEF * 16 + WEAK_UNDEF:
case DYN_UNDEF * 16 + WEAK_UNDEF:
case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
case COMMON * 16 + WEAK_UNDEF:
case WEAK_COMMON * 16 + WEAK_UNDEF:
case DYN_COMMON * 16 + WEAK_UNDEF:
case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
// A new weak undefined reference tells us nothing.
return;
case DEF * 16 + DYN_UNDEF:
case WEAK_DEF * 16 + DYN_UNDEF:
case DYN_DEF * 16 + DYN_UNDEF:
case DYN_WEAK_DEF * 16 + DYN_UNDEF:
case UNDEF * 16 + DYN_UNDEF:
case WEAK_UNDEF * 16 + DYN_UNDEF:
case DYN_UNDEF * 16 + DYN_UNDEF:
case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
case COMMON * 16 + DYN_UNDEF:
case WEAK_COMMON * 16 + DYN_UNDEF:
case DYN_COMMON * 16 + DYN_UNDEF:
case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
// A new dynamic undefined reference tells us nothing.
return;
case DEF * 16 + DYN_WEAK_UNDEF:
case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
case DYN_DEF * 16 + DYN_WEAK_UNDEF:
case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
case UNDEF * 16 + DYN_WEAK_UNDEF:
case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
case COMMON * 16 + DYN_WEAK_UNDEF:
case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
// A new weak dynamic undefined reference tells us nothing.
return;
case DEF * 16 + COMMON:
// A common symbol does not override a definition.
return;
case WEAK_DEF * 16 + COMMON:
case DYN_DEF * 16 + COMMON:
case DYN_WEAK_DEF * 16 + COMMON:
// A common symbol does override a weak definition or a dynamic
// definition.
to->override(sym, object, version);
return;
case UNDEF * 16 + COMMON:
case WEAK_UNDEF * 16 + COMMON:
case DYN_UNDEF * 16 + COMMON:
case DYN_WEAK_UNDEF * 16 + COMMON:
// A common symbol is a definition for a reference.
to->override(sym, object, version);
return;
case COMMON * 16 + COMMON:
// Set the size to the maximum.
if (sym.get_st_size() > to->symsize())
to->set_symsize(sym.get_st_size());
return;
case WEAK_COMMON * 16 + COMMON:
// I'm not sure just what a weak common symbol means, but
// presumably it can be overridden by a regular common symbol.
to->override(sym, object, version);
return;
case DYN_COMMON * 16 + COMMON:
case DYN_WEAK_COMMON * 16 + COMMON:
{
// Use the real common symbol, but adjust the size if necessary.
typename Sized_symbol<size>::Size_type symsize = to->symsize();
to->override(sym, object, version);
if (to->symsize() < symsize)
to->set_symsize(symsize);
}
return;
case DEF * 16 + WEAK_COMMON:
case WEAK_DEF * 16 + WEAK_COMMON:
case DYN_DEF * 16 + WEAK_COMMON:
case DYN_WEAK_DEF * 16 + WEAK_COMMON:
// Whatever a weak common symbol is, it won't override a
// definition.
return;
case UNDEF * 16 + WEAK_COMMON:
case WEAK_UNDEF * 16 + WEAK_COMMON:
case DYN_UNDEF * 16 + WEAK_COMMON:
case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
// A weak common symbol is better than an undefined symbol.
to->override(sym, object, version);
return;
case COMMON * 16 + WEAK_COMMON:
case WEAK_COMMON * 16 + WEAK_COMMON:
case DYN_COMMON * 16 + WEAK_COMMON:
case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
// Ignore a weak common symbol in the presence of a real common
// symbol.
return;
case DEF * 16 + DYN_COMMON:
case WEAK_DEF * 16 + DYN_COMMON:
case DYN_DEF * 16 + DYN_COMMON:
case DYN_WEAK_DEF * 16 + DYN_COMMON:
// Ignore a dynamic common symbol in the presence of a
// definition.
return;
case UNDEF * 16 + DYN_COMMON:
case WEAK_UNDEF * 16 + DYN_COMMON:
case DYN_UNDEF * 16 + DYN_COMMON:
case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
// A dynamic common symbol is a definition of sorts.
to->override(sym, object, version);
return;
case COMMON * 16 + DYN_COMMON:
case WEAK_COMMON * 16 + DYN_COMMON:
case DYN_COMMON * 16 + DYN_COMMON:
case DYN_WEAK_COMMON * 16 + DYN_COMMON:
// Set the size to the maximum.
if (sym.get_st_size() > to->symsize())
to->set_symsize(sym.get_st_size());
return;
case DEF * 16 + DYN_WEAK_COMMON:
case WEAK_DEF * 16 + DYN_WEAK_COMMON:
case DYN_DEF * 16 + DYN_WEAK_COMMON:
case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
// A common symbol is ignored in the face of a definition.
return;
case UNDEF * 16 + DYN_WEAK_COMMON:
case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
// I guess a weak common symbol is better than a definition.
to->override(sym, object, version);
return;
case COMMON * 16 + DYN_WEAK_COMMON:
case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
case DYN_COMMON * 16 + DYN_WEAK_COMMON:
case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
// Set the size to the maximum.
if (sym.get_st_size() > to->symsize())
to->set_symsize(sym.get_st_size());
return;
default:
gold_unreachable();
}
}
// Instantiate the templates we need. We could use the configure
// script to restrict this to only the ones needed for implemented
// targets.
template
void
Symbol_table::resolve<32, true>(
Sized_symbol<32>* to,
const elfcpp::Sym<32, true>& sym,
Object* object,
const char* version);
template
void
Symbol_table::resolve<32, false>(
Sized_symbol<32>* to,
const elfcpp::Sym<32, false>& sym,
Object* object,
const char* version);
template
void
Symbol_table::resolve<64, true>(
Sized_symbol<64>* to,
const elfcpp::Sym<64, true>& sym,
Object* object,
const char* version);
template
void
Symbol_table::resolve<64, false>(
Sized_symbol<64>* to,
const elfcpp::Sym<64, false>& sym,
Object* object,
const char* version);
} // End namespace gold.