| /* Target-dependent code for GNU/Linux AArch64. |
| |
| Copyright (C) 2009-2024 Free Software Foundation, Inc. |
| Contributed by ARM Ltd. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "exceptions.h" |
| #include "extract-store-integer.h" |
| #include "gdbarch.h" |
| #include "glibc-tdep.h" |
| #include "linux-tdep.h" |
| #include "aarch64-tdep.h" |
| #include "aarch64-linux-tdep.h" |
| #include "osabi.h" |
| #include "solib-svr4.h" |
| #include "symtab.h" |
| #include "tramp-frame.h" |
| #include "trad-frame.h" |
| #include "target.h" |
| #include "target/target.h" |
| #include "expop.h" |
| #include "auxv.h" |
| |
| #include "regcache.h" |
| #include "regset.h" |
| |
| #include "stap-probe.h" |
| #include "parser-defs.h" |
| #include "user-regs.h" |
| #include "xml-syscall.h" |
| #include <ctype.h> |
| |
| #include "record-full.h" |
| #include "linux-record.h" |
| |
| #include "arch/aarch64-mte.h" |
| #include "arch/aarch64-mte-linux.h" |
| #include "arch/aarch64-scalable-linux.h" |
| |
| #include "arch-utils.h" |
| #include "value.h" |
| |
| #include "gdbsupport/selftest.h" |
| |
| #include "elf/common.h" |
| #include "elf/aarch64.h" |
| #include "arch/aarch64-insn.h" |
| |
| /* For std::pow */ |
| #include <cmath> |
| |
| /* Signal frame handling. |
| |
| +------------+ ^ |
| | saved lr | | |
| +->| saved fp |--+ |
| | | | |
| | | | |
| | +------------+ |
| | | saved lr | |
| +--| saved fp | |
| ^ | | |
| | | | |
| | +------------+ |
| ^ | | |
| | | signal | |
| | | | SIGTRAMP_FRAME (struct rt_sigframe) |
| | | saved regs | |
| +--| saved sp |--> interrupted_sp |
| | | saved pc |--> interrupted_pc |
| | | | |
| | +------------+ |
| | | saved lr |--> default_restorer (movz x8, NR_sys_rt_sigreturn; svc 0) |
| +--| saved fp |<- FP |
| | | NORMAL_FRAME |
| | |<- SP |
| +------------+ |
| |
| On signal delivery, the kernel will create a signal handler stack |
| frame and setup the return address in LR to point at restorer stub. |
| The signal stack frame is defined by: |
| |
| struct rt_sigframe |
| { |
| siginfo_t info; |
| struct ucontext uc; |
| }; |
| |
| The ucontext has the following form: |
| struct ucontext |
| { |
| unsigned long uc_flags; |
| struct ucontext *uc_link; |
| stack_t uc_stack; |
| sigset_t uc_sigmask; |
| struct sigcontext uc_mcontext; |
| }; |
| |
| struct sigcontext |
| { |
| unsigned long fault_address; |
| unsigned long regs[31]; |
| unsigned long sp; / * 31 * / |
| unsigned long pc; / * 32 * / |
| unsigned long pstate; / * 33 * / |
| __u8 __reserved[4096] |
| }; |
| |
| The reserved space in sigcontext contains additional structures, each starting |
| with a aarch64_ctx, which specifies a unique identifier and the total size of |
| the structure. The final structure in reserved will start will a null |
| aarch64_ctx. The penultimate entry in reserved may be a extra_context which |
| then points to a further block of reserved space. |
| |
| struct aarch64_ctx { |
| u32 magic; |
| u32 size; |
| }; |
| |
| The restorer stub will always have the form: |
| |
| d28015a8 movz x8, #0xad |
| d4000001 svc #0x0 |
| |
| This is a system call sys_rt_sigreturn. |
| |
| We detect signal frames by snooping the return code for the restorer |
| instruction sequence. |
| |
| The handler then needs to recover the saved register set from |
| ucontext.uc_mcontext. */ |
| |
| /* These magic numbers need to reflect the layout of the kernel |
| defined struct rt_sigframe and ucontext. */ |
| #define AARCH64_SIGCONTEXT_REG_SIZE 8 |
| #define AARCH64_RT_SIGFRAME_UCONTEXT_OFFSET 128 |
| #define AARCH64_UCONTEXT_SIGCONTEXT_OFFSET 176 |
| #define AARCH64_SIGCONTEXT_XO_OFFSET 8 |
| #define AARCH64_SIGCONTEXT_RESERVED_OFFSET 288 |
| |
| #define AARCH64_SIGCONTEXT_RESERVED_SIZE 4096 |
| |
| /* Unique identifiers that may be used for aarch64_ctx.magic. */ |
| #define AARCH64_EXTRA_MAGIC 0x45585401 |
| #define AARCH64_FPSIMD_MAGIC 0x46508001 |
| #define AARCH64_SVE_MAGIC 0x53564501 |
| #define AARCH64_ZA_MAGIC 0x54366345 |
| #define AARCH64_TPIDR2_MAGIC 0x54504902 |
| #define AARCH64_ZT_MAGIC 0x5a544e01 |
| |
| /* Defines for the extra_context that follows an AARCH64_EXTRA_MAGIC. */ |
| #define AARCH64_EXTRA_DATAP_OFFSET 8 |
| |
| /* Defines for the fpsimd that follows an AARCH64_FPSIMD_MAGIC. */ |
| #define AARCH64_FPSIMD_FPSR_OFFSET 8 |
| #define AARCH64_FPSIMD_FPCR_OFFSET 12 |
| #define AARCH64_FPSIMD_V0_OFFSET 16 |
| #define AARCH64_FPSIMD_VREG_SIZE 16 |
| |
| /* Defines for the sve structure that follows an AARCH64_SVE_MAGIC. */ |
| #define AARCH64_SVE_CONTEXT_VL_OFFSET 8 |
| #define AARCH64_SVE_CONTEXT_FLAGS_OFFSET 10 |
| #define AARCH64_SVE_CONTEXT_REGS_OFFSET 16 |
| #define AARCH64_SVE_CONTEXT_P_REGS_OFFSET(vq) (32 * vq * 16) |
| #define AARCH64_SVE_CONTEXT_FFR_OFFSET(vq) \ |
| (AARCH64_SVE_CONTEXT_P_REGS_OFFSET (vq) + (16 * vq * 2)) |
| #define AARCH64_SVE_CONTEXT_SIZE(vq) \ |
| (AARCH64_SVE_CONTEXT_FFR_OFFSET (vq) + (vq * 2)) |
| /* Flag indicating the SVE Context describes streaming mode. */ |
| #define SVE_SIG_FLAG_SM 0x1 |
| |
| /* SME constants. */ |
| #define AARCH64_SME_CONTEXT_SVL_OFFSET 8 |
| #define AARCH64_SME_CONTEXT_REGS_OFFSET 16 |
| #define AARCH64_SME_CONTEXT_ZA_SIZE(svq) \ |
| ((sve_vl_from_vq (svq) * sve_vl_from_vq (svq))) |
| #define AARCH64_SME_CONTEXT_SIZE(svq) \ |
| (AARCH64_SME_CONTEXT_REGS_OFFSET + AARCH64_SME_CONTEXT_ZA_SIZE (svq)) |
| |
| /* TPIDR2 register value offset in the TPIDR2 signal frame context. */ |
| #define AARCH64_TPIDR2_CONTEXT_TPIDR2_OFFSET 8 |
| |
| /* SME2 (ZT) constants. */ |
| /* Offset of the field containing the number of registers in the SME2 signal |
| context state. */ |
| #define AARCH64_SME2_CONTEXT_NREGS_OFFSET 8 |
| /* Offset of the beginning of the register data for the first ZT register in |
| the signal context state. */ |
| #define AARCH64_SME2_CONTEXT_REGS_OFFSET 16 |
| |
| /* Holds information about the signal frame. */ |
| struct aarch64_linux_sigframe |
| { |
| /* The stack pointer value. */ |
| CORE_ADDR sp = 0; |
| /* The sigcontext address. */ |
| CORE_ADDR sigcontext_address = 0; |
| /* The start/end signal frame section addresses. */ |
| CORE_ADDR section = 0; |
| CORE_ADDR section_end = 0; |
| |
| /* Starting address of the section containing the general purpose |
| registers. */ |
| CORE_ADDR gpr_section = 0; |
| /* Starting address of the section containing the FPSIMD registers. */ |
| CORE_ADDR fpsimd_section = 0; |
| /* Starting address of the section containing the SVE registers. */ |
| CORE_ADDR sve_section = 0; |
| /* Starting address of the section containing the ZA register. */ |
| CORE_ADDR za_section = 0; |
| /* Starting address of the section containing the TPIDR2 register. */ |
| CORE_ADDR tpidr2_section = 0; |
| /* Starting address of the section containing the ZT registers. */ |
| CORE_ADDR zt_section = 0; |
| /* Starting address of the section containing extra information. */ |
| CORE_ADDR extra_section = 0; |
| |
| /* The vector length (SVE or SSVE). */ |
| ULONGEST vl = 0; |
| /* The streaming vector length (SSVE/ZA). */ |
| ULONGEST svl = 0; |
| /* Number of ZT registers in this context. */ |
| unsigned int zt_register_count = 0; |
| |
| /* True if we are in streaming mode, false otherwise. */ |
| bool streaming_mode = false; |
| /* True if we have a ZA payload, false otherwise. */ |
| bool za_payload = false; |
| /* True if we have a ZT entry in the signal context, false otherwise. */ |
| bool zt_available = false; |
| }; |
| |
| /* Read an aarch64_ctx, returning the magic value, and setting *SIZE to the |
| size, or return 0 on error. */ |
| |
| static uint32_t |
| read_aarch64_ctx (CORE_ADDR ctx_addr, enum bfd_endian byte_order, |
| uint32_t *size) |
| { |
| uint32_t magic = 0; |
| gdb_byte buf[4]; |
| |
| if (target_read_memory (ctx_addr, buf, 4) != 0) |
| return 0; |
| magic = extract_unsigned_integer (buf, 4, byte_order); |
| |
| if (target_read_memory (ctx_addr + 4, buf, 4) != 0) |
| return 0; |
| *size = extract_unsigned_integer (buf, 4, byte_order); |
| |
| return magic; |
| } |
| |
| /* Given CACHE, use the trad_frame* functions to restore the FPSIMD |
| registers from a signal frame. |
| |
| FPSIMD_CONTEXT is the address of the signal frame context containing FPSIMD |
| data. */ |
| |
| static void |
| aarch64_linux_restore_vregs (struct gdbarch *gdbarch, |
| struct trad_frame_cache *cache, |
| CORE_ADDR fpsimd_context) |
| { |
| /* WARNING: SIMD state is laid out in memory in target-endian format. |
| |
| So we have a couple cases to consider: |
| |
| 1 - If the target is big endian, then SIMD state is big endian, |
| requiring a byteswap. |
| |
| 2 - If the target is little endian, then SIMD state is little endian, so |
| no byteswap is needed. */ |
| |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int num_regs = gdbarch_num_regs (gdbarch); |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| |
| for (int i = 0; i < 32; i++) |
| { |
| CORE_ADDR offset = (fpsimd_context + AARCH64_FPSIMD_V0_OFFSET |
| + (i * AARCH64_FPSIMD_VREG_SIZE)); |
| |
| gdb_byte buf[V_REGISTER_SIZE]; |
| |
| /* Read the contents of the V register. */ |
| if (target_read_memory (offset, buf, V_REGISTER_SIZE)) |
| error (_("Failed to read fpsimd register from signal context.")); |
| |
| if (byte_order == BFD_ENDIAN_BIG) |
| { |
| size_t size = V_REGISTER_SIZE/2; |
| |
| /* Read the two halves of the V register in reverse byte order. */ |
| CORE_ADDR u64 = extract_unsigned_integer (buf, size, |
| byte_order); |
| CORE_ADDR l64 = extract_unsigned_integer (buf + size, size, |
| byte_order); |
| |
| /* Copy the reversed bytes to the buffer. */ |
| store_unsigned_integer (buf, size, BFD_ENDIAN_LITTLE, l64); |
| store_unsigned_integer (buf + size , size, BFD_ENDIAN_LITTLE, u64); |
| |
| /* Now we can store the correct bytes for the V register. */ |
| trad_frame_set_reg_value_bytes (cache, AARCH64_V0_REGNUM + i, |
| {buf, V_REGISTER_SIZE}); |
| trad_frame_set_reg_value_bytes (cache, |
| num_regs + AARCH64_Q0_REGNUM |
| + i, {buf, Q_REGISTER_SIZE}); |
| trad_frame_set_reg_value_bytes (cache, |
| num_regs + AARCH64_D0_REGNUM |
| + i, {buf, D_REGISTER_SIZE}); |
| trad_frame_set_reg_value_bytes (cache, |
| num_regs + AARCH64_S0_REGNUM |
| + i, {buf, S_REGISTER_SIZE}); |
| trad_frame_set_reg_value_bytes (cache, |
| num_regs + AARCH64_H0_REGNUM |
| + i, {buf, H_REGISTER_SIZE}); |
| trad_frame_set_reg_value_bytes (cache, |
| num_regs + AARCH64_B0_REGNUM |
| + i, {buf, B_REGISTER_SIZE}); |
| |
| if (tdep->has_sve ()) |
| trad_frame_set_reg_value_bytes (cache, |
| num_regs + AARCH64_SVE_V0_REGNUM |
| + i, {buf, V_REGISTER_SIZE}); |
| } |
| else |
| { |
| /* Little endian, just point at the address containing the register |
| value. */ |
| trad_frame_set_reg_addr (cache, AARCH64_V0_REGNUM + i, offset); |
| trad_frame_set_reg_addr (cache, num_regs + AARCH64_Q0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (cache, num_regs + AARCH64_D0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (cache, num_regs + AARCH64_S0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (cache, num_regs + AARCH64_H0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (cache, num_regs + AARCH64_B0_REGNUM + i, |
| offset); |
| |
| if (tdep->has_sve ()) |
| trad_frame_set_reg_addr (cache, num_regs + AARCH64_SVE_V0_REGNUM |
| + i, offset); |
| } |
| |
| if (tdep->has_sve ()) |
| { |
| /* If SVE is supported for this target, zero out the Z |
| registers then copy the first 16 bytes of each of the V |
| registers to the associated Z register. Otherwise the Z |
| registers will contain uninitialized data. */ |
| std::vector<gdb_byte> z_buffer (tdep->vq * 16); |
| |
| /* We have already handled the endianness swap above, so we don't need |
| to worry about it here. */ |
| memcpy (z_buffer.data (), buf, V_REGISTER_SIZE); |
| trad_frame_set_reg_value_bytes (cache, |
| AARCH64_SVE_Z0_REGNUM + i, |
| z_buffer); |
| } |
| } |
| } |
| |
| /* Given a signal frame THIS_FRAME, read the signal frame information into |
| SIGNAL_FRAME. */ |
| |
| static void |
| aarch64_linux_read_signal_frame_info (const frame_info_ptr &this_frame, |
| aarch64_linux_sigframe &signal_frame) |
| { |
| signal_frame.sp = get_frame_register_unsigned (this_frame, AARCH64_SP_REGNUM); |
| signal_frame.sigcontext_address |
| = signal_frame.sp + AARCH64_RT_SIGFRAME_UCONTEXT_OFFSET |
| + AARCH64_UCONTEXT_SIGCONTEXT_OFFSET; |
| signal_frame.section |
| = signal_frame.sigcontext_address + AARCH64_SIGCONTEXT_RESERVED_OFFSET; |
| signal_frame.section_end |
| = signal_frame.section + AARCH64_SIGCONTEXT_RESERVED_SIZE; |
| |
| signal_frame.gpr_section |
| = signal_frame.sigcontext_address + AARCH64_SIGCONTEXT_XO_OFFSET; |
| |
| /* Search for all the other sections, stopping at null. */ |
| CORE_ADDR section = signal_frame.section; |
| CORE_ADDR section_end = signal_frame.section_end; |
| uint32_t size, magic; |
| bool extra_found = false; |
| enum bfd_endian byte_order |
| = gdbarch_byte_order (get_frame_arch (this_frame)); |
| |
| while ((magic = read_aarch64_ctx (section, byte_order, &size)) != 0 |
| && size != 0) |
| { |
| switch (magic) |
| { |
| case AARCH64_FPSIMD_MAGIC: |
| { |
| signal_frame.fpsimd_section = section; |
| section += size; |
| break; |
| } |
| |
| case AARCH64_SVE_MAGIC: |
| { |
| /* Check if the section is followed by a full SVE dump, and set |
| sve_regs if it is. */ |
| gdb_byte buf[4]; |
| |
| /* Extract the vector length. */ |
| if (target_read_memory (section + AARCH64_SVE_CONTEXT_VL_OFFSET, |
| buf, 2) != 0) |
| { |
| warning (_("Failed to read the vector length from the SVE " |
| "signal frame context.")); |
| section += size; |
| break; |
| } |
| |
| signal_frame.vl = extract_unsigned_integer (buf, 2, byte_order); |
| |
| /* Extract the flags to check if we are in streaming mode. */ |
| if (target_read_memory (section |
| + AARCH64_SVE_CONTEXT_FLAGS_OFFSET, |
| buf, 2) != 0) |
| { |
| warning (_("Failed to read the flags from the SVE signal frame" |
| " context.")); |
| section += size; |
| break; |
| } |
| |
| uint16_t flags = extract_unsigned_integer (buf, 2, byte_order); |
| |
| /* Is this SSVE data? If so, we are in streaming mode. */ |
| signal_frame.streaming_mode |
| = (flags & SVE_SIG_FLAG_SM) ? true : false; |
| |
| ULONGEST vq = sve_vq_from_vl (signal_frame.vl); |
| if (size >= AARCH64_SVE_CONTEXT_SIZE (vq)) |
| { |
| signal_frame.sve_section |
| = section + AARCH64_SVE_CONTEXT_REGS_OFFSET; |
| } |
| section += size; |
| break; |
| } |
| |
| case AARCH64_ZA_MAGIC: |
| { |
| /* Check if the section is followed by a full ZA dump, and set |
| za_state if it is. */ |
| gdb_byte buf[2]; |
| |
| /* Extract the streaming vector length. */ |
| if (target_read_memory (section + AARCH64_SME_CONTEXT_SVL_OFFSET, |
| buf, 2) != 0) |
| { |
| warning (_("Failed to read the streaming vector length from " |
| "ZA signal frame context.")); |
| section += size; |
| break; |
| } |
| |
| signal_frame.svl = extract_unsigned_integer (buf, 2, byte_order); |
| ULONGEST svq = sve_vq_from_vl (signal_frame.svl); |
| |
| if (size >= AARCH64_SME_CONTEXT_SIZE (svq)) |
| { |
| signal_frame.za_section |
| = section + AARCH64_SME_CONTEXT_REGS_OFFSET; |
| signal_frame.za_payload = true; |
| } |
| section += size; |
| break; |
| } |
| |
| case AARCH64_TPIDR2_MAGIC: |
| { |
| /* This is context containing the tpidr2 register. */ |
| signal_frame.tpidr2_section = section; |
| section += size; |
| break; |
| } |
| case AARCH64_ZT_MAGIC: |
| { |
| gdb_byte buf[2]; |
| |
| /* Extract the number of ZT registers available in this |
| context. */ |
| if (target_read_memory (section + AARCH64_SME2_CONTEXT_NREGS_OFFSET, |
| buf, 2) != 0) |
| { |
| warning (_("Failed to read the number of ZT registers from the " |
| "ZT signal frame context.")); |
| section += size; |
| break; |
| } |
| |
| signal_frame.zt_register_count |
| = extract_unsigned_integer (buf, 2, byte_order); |
| |
| /* This is a context containing the ZT registers. This should only |
| exist if we also have the ZA context. The presence of the ZT |
| context without the ZA context is invalid. */ |
| signal_frame.zt_section = section; |
| signal_frame.zt_available = true; |
| |
| section += size; |
| break; |
| } |
| case AARCH64_EXTRA_MAGIC: |
| { |
| /* Extra is always the last valid section in reserved and points to |
| an additional block of memory filled with more sections. Reset |
| the address to the extra section and continue looking for more |
| structures. */ |
| gdb_byte buf[8]; |
| |
| if (target_read_memory (section + AARCH64_EXTRA_DATAP_OFFSET, |
| buf, 8) != 0) |
| { |
| warning (_("Failed to read the extra section address from the" |
| " signal frame context.")); |
| section += size; |
| break; |
| } |
| |
| section = extract_unsigned_integer (buf, 8, byte_order); |
| signal_frame.extra_section = section; |
| extra_found = true; |
| break; |
| } |
| |
| default: |
| section += size; |
| break; |
| } |
| |
| /* Prevent searching past the end of the reserved section. The extra |
| section does not have a hard coded limit - we have to rely on it ending |
| with nulls. */ |
| if (!extra_found && section > section_end) |
| break; |
| } |
| |
| /* Sanity check that if the ZT entry exists, the ZA entry must also |
| exist. */ |
| if (signal_frame.zt_available && !signal_frame.za_payload) |
| error (_("While reading signal context information, found a ZT context " |
| "without a ZA context, which is invalid.")); |
| } |
| |
| /* Implement the "init" method of struct tramp_frame. */ |
| |
| static void |
| aarch64_linux_sigframe_init (const struct tramp_frame *self, |
| const frame_info_ptr &this_frame, |
| struct trad_frame_cache *this_cache, |
| CORE_ADDR func) |
| { |
| /* Read the signal context information. */ |
| struct aarch64_linux_sigframe signal_frame; |
| aarch64_linux_read_signal_frame_info (this_frame, signal_frame); |
| |
| /* Now we have all the data required to restore the registers from the |
| signal frame. */ |
| |
| /* Restore the general purpose registers. */ |
| CORE_ADDR offset = signal_frame.gpr_section; |
| for (int i = 0; i < 31; i++) |
| { |
| trad_frame_set_reg_addr (this_cache, AARCH64_X0_REGNUM + i, offset); |
| offset += AARCH64_SIGCONTEXT_REG_SIZE; |
| } |
| trad_frame_set_reg_addr (this_cache, AARCH64_SP_REGNUM, offset); |
| offset += AARCH64_SIGCONTEXT_REG_SIZE; |
| trad_frame_set_reg_addr (this_cache, AARCH64_PC_REGNUM, offset); |
| |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| |
| /* Restore the SVE / FPSIMD registers. */ |
| if (tdep->has_sve () && signal_frame.sve_section != 0) |
| { |
| ULONGEST vq = sve_vq_from_vl (signal_frame.vl); |
| CORE_ADDR sve_regs = signal_frame.sve_section; |
| |
| /* Restore VG. */ |
| trad_frame_set_reg_value (this_cache, AARCH64_SVE_VG_REGNUM, |
| sve_vg_from_vl (signal_frame.vl)); |
| |
| int num_regs = gdbarch_num_regs (gdbarch); |
| for (int i = 0; i < 32; i++) |
| { |
| offset = sve_regs + (i * vq * 16); |
| trad_frame_set_reg_addr (this_cache, AARCH64_SVE_Z0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (this_cache, |
| num_regs + AARCH64_SVE_V0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_Q0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_D0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_S0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_H0_REGNUM + i, |
| offset); |
| trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_B0_REGNUM + i, |
| offset); |
| } |
| |
| offset = sve_regs + AARCH64_SVE_CONTEXT_P_REGS_OFFSET (vq); |
| for (int i = 0; i < 16; i++) |
| trad_frame_set_reg_addr (this_cache, AARCH64_SVE_P0_REGNUM + i, |
| offset + (i * vq * 2)); |
| |
| offset = sve_regs + AARCH64_SVE_CONTEXT_FFR_OFFSET (vq); |
| trad_frame_set_reg_addr (this_cache, AARCH64_SVE_FFR_REGNUM, offset); |
| } |
| |
| /* Restore the FPSIMD registers. */ |
| if (signal_frame.fpsimd_section != 0) |
| { |
| CORE_ADDR fpsimd = signal_frame.fpsimd_section; |
| |
| trad_frame_set_reg_addr (this_cache, AARCH64_FPSR_REGNUM, |
| fpsimd + AARCH64_FPSIMD_FPSR_OFFSET); |
| trad_frame_set_reg_addr (this_cache, AARCH64_FPCR_REGNUM, |
| fpsimd + AARCH64_FPSIMD_FPCR_OFFSET); |
| |
| /* If there was no SVE section then set up the V registers. */ |
| if (!tdep->has_sve () || signal_frame.sve_section == 0) |
| aarch64_linux_restore_vregs (gdbarch, this_cache, fpsimd); |
| } |
| |
| /* Restore the SME registers. */ |
| if (tdep->has_sme ()) |
| { |
| if (signal_frame.za_section != 0) |
| { |
| /* Restore the ZA state. */ |
| trad_frame_set_reg_addr (this_cache, tdep->sme_za_regnum, |
| signal_frame.za_section); |
| } |
| |
| /* Restore/Reconstruct SVCR. */ |
| ULONGEST svcr = 0; |
| svcr |= signal_frame.za_payload ? SVCR_ZA_BIT : 0; |
| svcr |= signal_frame.streaming_mode ? SVCR_SM_BIT : 0; |
| trad_frame_set_reg_value (this_cache, tdep->sme_svcr_regnum, svcr); |
| |
| /* Restore SVG. */ |
| trad_frame_set_reg_value (this_cache, tdep->sme_svg_regnum, |
| sve_vg_from_vl (signal_frame.svl)); |
| |
| /* Handle SME2 (ZT). */ |
| if (tdep->has_sme2 () |
| && signal_frame.za_section != 0 |
| && signal_frame.zt_register_count > 0) |
| { |
| /* Is ZA state available? */ |
| gdb_assert (svcr & SVCR_ZA_BIT); |
| |
| /* Restore the ZT state. For now we assume that we only have |
| a single ZT register. If/When more ZT registers appear, we |
| should update the code to handle that case accordingly. */ |
| trad_frame_set_reg_addr (this_cache, tdep->sme2_zt0_regnum, |
| signal_frame.zt_section |
| + AARCH64_SME2_CONTEXT_REGS_OFFSET); |
| } |
| } |
| |
| /* Restore the tpidr2 register, if the target supports it and if there is |
| an entry for it. */ |
| if (signal_frame.tpidr2_section != 0 && tdep->has_tls () |
| && tdep->tls_register_count >= 2) |
| { |
| /* Restore tpidr2. */ |
| trad_frame_set_reg_addr (this_cache, tdep->tls_regnum_base + 1, |
| signal_frame.tpidr2_section |
| + AARCH64_TPIDR2_CONTEXT_TPIDR2_OFFSET); |
| } |
| |
| trad_frame_set_id (this_cache, frame_id_build (signal_frame.sp, func)); |
| } |
| |
| /* Implements the "prev_arch" method of struct tramp_frame. */ |
| |
| static struct gdbarch * |
| aarch64_linux_sigframe_prev_arch (const frame_info_ptr &this_frame, |
| void **frame_cache) |
| { |
| struct trad_frame_cache *cache |
| = (struct trad_frame_cache *) *frame_cache; |
| |
| gdb_assert (cache != nullptr); |
| |
| struct aarch64_linux_sigframe signal_frame; |
| aarch64_linux_read_signal_frame_info (this_frame, signal_frame); |
| |
| /* The SVE vector length and the SME vector length may change from frame to |
| frame. Make sure we report the correct architecture to the previous |
| frame. |
| |
| We can reuse the next frame's architecture here, as it should be mostly |
| the same, except for potential different vg and svg values. */ |
| const struct target_desc *tdesc |
| = gdbarch_target_desc (get_frame_arch (this_frame)); |
| aarch64_features features = aarch64_features_from_target_desc (tdesc); |
| features.vq = sve_vq_from_vl (signal_frame.vl); |
| features.svq = (uint8_t) sve_vq_from_vl (signal_frame.svl); |
| |
| struct gdbarch_info info; |
| info.bfd_arch_info = bfd_lookup_arch (bfd_arch_aarch64, bfd_mach_aarch64); |
| info.target_desc = aarch64_read_description (features); |
| return gdbarch_find_by_info (info); |
| } |
| |
| static const struct tramp_frame aarch64_linux_rt_sigframe = |
| { |
| SIGTRAMP_FRAME, |
| 4, |
| { |
| /* movz x8, 0x8b (S=1,o=10,h=0,i=0x8b,r=8) |
| Soo1 0010 1hhi iiii iiii iiii iiir rrrr */ |
| {0xd2801168, ULONGEST_MAX}, |
| |
| /* svc 0x0 (o=0, l=1) |
| 1101 0100 oooi iiii iiii iiii iii0 00ll */ |
| {0xd4000001, ULONGEST_MAX}, |
| {TRAMP_SENTINEL_INSN, ULONGEST_MAX} |
| }, |
| aarch64_linux_sigframe_init, |
| nullptr, /* validate */ |
| aarch64_linux_sigframe_prev_arch, /* prev_arch */ |
| }; |
| |
| /* Register maps. */ |
| |
| static const struct regcache_map_entry aarch64_linux_gregmap[] = |
| { |
| { 31, AARCH64_X0_REGNUM, 8 }, /* x0 ... x30 */ |
| { 1, AARCH64_SP_REGNUM, 8 }, |
| { 1, AARCH64_PC_REGNUM, 8 }, |
| { 1, AARCH64_CPSR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| static const struct regcache_map_entry aarch64_linux_fpregmap[] = |
| { |
| { 32, AARCH64_V0_REGNUM, 16 }, /* v0 ... v31 */ |
| { 1, AARCH64_FPSR_REGNUM, 4 }, |
| { 1, AARCH64_FPCR_REGNUM, 4 }, |
| { 0 } |
| }; |
| |
| /* Register set definitions. */ |
| |
| const struct regset aarch64_linux_gregset = |
| { |
| aarch64_linux_gregmap, |
| regcache_supply_regset, regcache_collect_regset |
| }; |
| |
| const struct regset aarch64_linux_fpregset = |
| { |
| aarch64_linux_fpregmap, |
| regcache_supply_regset, regcache_collect_regset |
| }; |
| |
| /* The fields in an SVE header at the start of a SVE regset. */ |
| |
| #define SVE_HEADER_SIZE_LENGTH 4 |
| #define SVE_HEADER_MAX_SIZE_LENGTH 4 |
| #define SVE_HEADER_VL_LENGTH 2 |
| #define SVE_HEADER_MAX_VL_LENGTH 2 |
| #define SVE_HEADER_FLAGS_LENGTH 2 |
| #define SVE_HEADER_RESERVED_LENGTH 2 |
| |
| #define SVE_HEADER_SIZE_OFFSET 0 |
| #define SVE_HEADER_MAX_SIZE_OFFSET \ |
| (SVE_HEADER_SIZE_OFFSET + SVE_HEADER_SIZE_LENGTH) |
| #define SVE_HEADER_VL_OFFSET \ |
| (SVE_HEADER_MAX_SIZE_OFFSET + SVE_HEADER_MAX_SIZE_LENGTH) |
| #define SVE_HEADER_MAX_VL_OFFSET \ |
| (SVE_HEADER_VL_OFFSET + SVE_HEADER_VL_LENGTH) |
| #define SVE_HEADER_FLAGS_OFFSET \ |
| (SVE_HEADER_MAX_VL_OFFSET + SVE_HEADER_MAX_VL_LENGTH) |
| #define SVE_HEADER_RESERVED_OFFSET \ |
| (SVE_HEADER_FLAGS_OFFSET + SVE_HEADER_FLAGS_LENGTH) |
| #define SVE_HEADER_SIZE \ |
| (SVE_HEADER_RESERVED_OFFSET + SVE_HEADER_RESERVED_LENGTH) |
| |
| #define SVE_HEADER_FLAG_SVE 1 |
| |
| /* Get the vector quotient (VQ) or streaming vector quotient (SVQ) value |
| from the section named SECTION_NAME. |
| |
| Return non-zero if successful and 0 otherwise. */ |
| |
| static uint64_t |
| aarch64_linux_core_read_vq (struct gdbarch *gdbarch, bfd *abfd, |
| const char *section_name) |
| { |
| gdb_assert (section_name != nullptr); |
| |
| asection *section = bfd_get_section_by_name (abfd, section_name); |
| |
| if (section == nullptr) |
| { |
| /* No SVE state. */ |
| return 0; |
| } |
| |
| size_t size = bfd_section_size (section); |
| |
| /* Check extended state size. */ |
| if (size < SVE_HEADER_SIZE) |
| { |
| warning (_("'%s' core file section is too small. " |
| "Expected %s bytes, got %s bytes"), section_name, |
| pulongest (SVE_HEADER_SIZE), pulongest (size)); |
| return 0; |
| } |
| |
| gdb_byte header[SVE_HEADER_SIZE]; |
| |
| if (!bfd_get_section_contents (abfd, section, header, 0, SVE_HEADER_SIZE)) |
| { |
| warning (_("Couldn't read sve header from " |
| "'%s' core file section."), section_name); |
| return 0; |
| } |
| |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| uint64_t vq |
| = sve_vq_from_vl (extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET, |
| SVE_HEADER_VL_LENGTH, |
| byte_order)); |
| |
| if (vq > AARCH64_MAX_SVE_VQ || vq == 0) |
| { |
| warning (_("SVE/SSVE vector length in core file is invalid." |
| " (max vq=%d) (detected vq=%s)"), AARCH64_MAX_SVE_VQ, |
| pulongest (vq)); |
| return 0; |
| } |
| |
| return vq; |
| } |
| |
| /* Get the vector quotient (VQ) value from CORE_BFD's sections. |
| |
| Return non-zero if successful and 0 otherwise. */ |
| |
| static uint64_t |
| aarch64_linux_core_read_vq_from_sections (struct gdbarch *gdbarch, |
| bfd *core_bfd) |
| { |
| /* First check if we have a SSVE section. If so, check if it is active. */ |
| asection *section = bfd_get_section_by_name (core_bfd, ".reg-aarch-ssve"); |
| |
| if (section != nullptr) |
| { |
| /* We've found a SSVE section, so now fetch its data. */ |
| gdb_byte header[SVE_HEADER_SIZE]; |
| |
| if (bfd_get_section_contents (core_bfd, section, header, 0, |
| SVE_HEADER_SIZE)) |
| { |
| /* Check if the SSVE section has SVE contents. */ |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| uint16_t flags |
| = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, |
| SVE_HEADER_FLAGS_LENGTH, byte_order); |
| |
| if (flags & SVE_HEADER_FLAG_SVE) |
| { |
| /* The SSVE state is active, so return the vector length from the |
| the SSVE section. */ |
| return aarch64_linux_core_read_vq (gdbarch, core_bfd, |
| ".reg-aarch-ssve"); |
| } |
| } |
| } |
| |
| /* No valid SSVE section. Return the vq from the SVE section (if any). */ |
| return aarch64_linux_core_read_vq (gdbarch, core_bfd, ".reg-aarch-sve"); |
| } |
| |
| /* Supply register REGNUM from BUF to REGCACHE, using the register map |
| in REGSET. If REGNUM is -1, do this for all registers in REGSET. |
| If BUF is nullptr, set the registers to "unavailable" status. */ |
| |
| static void |
| supply_sve_regset (const struct regset *regset, |
| struct regcache *regcache, |
| int regnum, const void *buf, size_t size) |
| { |
| gdb_byte *header = (gdb_byte *) buf; |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| if (buf == nullptr) |
| return regcache->supply_regset (regset, regnum, nullptr, size); |
| gdb_assert (size > SVE_HEADER_SIZE); |
| |
| /* BUF contains an SVE header followed by a register dump of either the |
| passed in SVE regset or a NEON fpregset. */ |
| |
| /* Extract required fields from the header. */ |
| ULONGEST vl = extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET, |
| SVE_HEADER_VL_LENGTH, byte_order); |
| uint16_t flags = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, |
| SVE_HEADER_FLAGS_LENGTH, |
| byte_order); |
| |
| if (regnum == -1 || regnum == AARCH64_SVE_VG_REGNUM) |
| { |
| gdb_byte vg_target[8]; |
| store_integer ((gdb_byte *)&vg_target, sizeof (uint64_t), byte_order, |
| sve_vg_from_vl (vl)); |
| regcache->raw_supply (AARCH64_SVE_VG_REGNUM, &vg_target); |
| } |
| |
| if (flags & SVE_HEADER_FLAG_SVE) |
| { |
| /* Register dump is a SVE structure. */ |
| regcache->supply_regset (regset, regnum, |
| (gdb_byte *) buf + SVE_HEADER_SIZE, |
| size - SVE_HEADER_SIZE); |
| } |
| else |
| { |
| /* Register dump is a fpsimd structure. First clear the SVE |
| registers. */ |
| for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++) |
| regcache->raw_supply_zeroed (AARCH64_SVE_Z0_REGNUM + i); |
| for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++) |
| regcache->raw_supply_zeroed (AARCH64_SVE_P0_REGNUM + i); |
| regcache->raw_supply_zeroed (AARCH64_SVE_FFR_REGNUM); |
| |
| /* Then supply the fpsimd registers. */ |
| regcache->supply_regset (&aarch64_linux_fpregset, regnum, |
| (gdb_byte *) buf + SVE_HEADER_SIZE, |
| size - SVE_HEADER_SIZE); |
| } |
| } |
| |
| /* Collect an inactive SVE register set state. This is equivalent to a |
| fpsimd layout. |
| |
| Collect the data from REGCACHE to BUF, using the register |
| map in REGSET. */ |
| |
| static void |
| collect_inactive_sve_regset (const struct regcache *regcache, |
| void *buf, size_t size, int vg_regnum) |
| { |
| gdb_byte *header = (gdb_byte *) buf; |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| gdb_assert (buf != nullptr); |
| gdb_assert (size >= SVE_CORE_DUMMY_SIZE); |
| |
| /* Zero out everything first. */ |
| memset ((gdb_byte *) buf, 0, SVE_CORE_DUMMY_SIZE); |
| |
| /* BUF starts with a SVE header prior to the register dump. */ |
| |
| /* Dump the default size of an empty SVE payload. */ |
| uint32_t real_size = SVE_CORE_DUMMY_SIZE; |
| store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET, |
| SVE_HEADER_SIZE_LENGTH, byte_order, real_size); |
| |
| /* Dump a dummy max size. */ |
| uint32_t max_size = SVE_CORE_DUMMY_MAX_SIZE; |
| store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET, |
| SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size); |
| |
| /* Dump the vector length. */ |
| ULONGEST vg = 0; |
| regcache->raw_collect (vg_regnum, &vg); |
| uint16_t vl = sve_vl_from_vg (vg); |
| store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH, |
| byte_order, vl); |
| |
| /* Dump the standard maximum vector length. */ |
| uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL; |
| store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET, |
| SVE_HEADER_MAX_VL_LENGTH, byte_order, |
| max_vl); |
| |
| /* The rest of the fields are zero. */ |
| uint16_t flags = SVE_CORE_DUMMY_FLAGS; |
| store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, |
| SVE_HEADER_FLAGS_LENGTH, byte_order, |
| flags); |
| uint16_t reserved = SVE_CORE_DUMMY_RESERVED; |
| store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET, |
| SVE_HEADER_RESERVED_LENGTH, byte_order, reserved); |
| |
| /* We are done with the header part of it. Now dump the register state |
| in the FPSIMD format. */ |
| |
| /* Dump the first 128 bits of each of the Z registers. */ |
| header += AARCH64_SVE_CONTEXT_REGS_OFFSET; |
| for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++) |
| regcache->raw_collect_part (AARCH64_SVE_Z0_REGNUM + i, 0, V_REGISTER_SIZE, |
| header + V_REGISTER_SIZE * i); |
| |
| /* Dump FPSR and FPCR. */ |
| header += 32 * V_REGISTER_SIZE; |
| regcache->raw_collect (AARCH64_FPSR_REGNUM, header); |
| regcache->raw_collect (AARCH64_FPCR_REGNUM, header + 4); |
| |
| /* Dump two reserved empty fields of 4 bytes. */ |
| header += 8; |
| memset (header, 0, 8); |
| |
| /* We should have a FPSIMD-formatted register dump now. */ |
| } |
| |
| /* Collect register REGNUM from REGCACHE to BUF, using the register |
| map in REGSET. If REGNUM is -1, do this for all registers in |
| REGSET. */ |
| |
| static void |
| collect_sve_regset (const struct regset *regset, |
| const struct regcache *regcache, |
| int regnum, void *buf, size_t size) |
| { |
| gdb_byte *header = (gdb_byte *) buf; |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| uint64_t vq = tdep->vq; |
| |
| gdb_assert (buf != NULL); |
| gdb_assert (size > SVE_HEADER_SIZE); |
| |
| /* BUF starts with a SVE header prior to the register dump. */ |
| |
| store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET, |
| SVE_HEADER_SIZE_LENGTH, byte_order, size); |
| uint32_t max_size = SVE_CORE_DUMMY_MAX_SIZE; |
| store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET, |
| SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size); |
| store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH, |
| byte_order, sve_vl_from_vq (vq)); |
| uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL; |
| store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET, |
| SVE_HEADER_MAX_VL_LENGTH, byte_order, |
| max_vl); |
| uint16_t flags = SVE_HEADER_FLAG_SVE; |
| store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, |
| SVE_HEADER_FLAGS_LENGTH, byte_order, |
| flags); |
| uint16_t reserved = SVE_CORE_DUMMY_RESERVED; |
| store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET, |
| SVE_HEADER_RESERVED_LENGTH, byte_order, reserved); |
| |
| /* The SVE register dump follows. */ |
| regcache->collect_regset (regset, regnum, (gdb_byte *) buf + SVE_HEADER_SIZE, |
| size - SVE_HEADER_SIZE); |
| } |
| |
| /* Supply register REGNUM from BUF to REGCACHE, using the register map |
| in REGSET. If REGNUM is -1, do this for all registers in REGSET. |
| If BUF is NULL, set the registers to "unavailable" status. */ |
| |
| static void |
| aarch64_linux_supply_sve_regset (const struct regset *regset, |
| struct regcache *regcache, |
| int regnum, const void *buf, size_t size) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| |
| if (tdep->has_sme ()) |
| { |
| ULONGEST svcr = 0; |
| regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); |
| |
| /* Is streaming mode enabled? */ |
| if (svcr & SVCR_SM_BIT) |
| /* If so, don't load SVE data from the SVE section. The data to be |
| used is in the SSVE section. */ |
| return; |
| } |
| /* If streaming mode is not enabled, load the SVE regcache data from the SVE |
| section. */ |
| supply_sve_regset (regset, regcache, regnum, buf, size); |
| } |
| |
| /* Collect register REGNUM from REGCACHE to BUF, using the register |
| map in REGSET. If REGNUM is -1, do this for all registers in |
| REGSET. */ |
| |
| static void |
| aarch64_linux_collect_sve_regset (const struct regset *regset, |
| const struct regcache *regcache, |
| int regnum, void *buf, size_t size) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| bool streaming_mode = false; |
| |
| if (tdep->has_sme ()) |
| { |
| ULONGEST svcr = 0; |
| regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); |
| |
| /* Is streaming mode enabled? */ |
| if (svcr & SVCR_SM_BIT) |
| { |
| /* If so, don't dump SVE regcache data to the SVE section. The SVE |
| data should be dumped to the SSVE section. Dump an empty SVE |
| block instead. */ |
| streaming_mode = true; |
| } |
| } |
| |
| /* If streaming mode is not enabled or there is no SME support, dump the |
| SVE regcache data to the SVE section. */ |
| |
| /* Check if we have an active SVE state (non-zero Z/P/FFR registers). |
| If so, then we need to dump registers in the SVE format. |
| |
| Otherwise we should dump the registers in the FPSIMD format. */ |
| if (sve_state_is_empty (regcache) || streaming_mode) |
| collect_inactive_sve_regset (regcache, buf, size, AARCH64_SVE_VG_REGNUM); |
| else |
| collect_sve_regset (regset, regcache, regnum, buf, size); |
| } |
| |
| /* Supply register REGNUM from BUF to REGCACHE, using the register map |
| in REGSET. If REGNUM is -1, do this for all registers in REGSET. |
| If BUF is NULL, set the registers to "unavailable" status. */ |
| |
| static void |
| aarch64_linux_supply_ssve_regset (const struct regset *regset, |
| struct regcache *regcache, |
| int regnum, const void *buf, size_t size) |
| { |
| gdb_byte *header = (gdb_byte *) buf; |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| |
| uint16_t flags = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, |
| SVE_HEADER_FLAGS_LENGTH, |
| byte_order); |
| |
| /* Since SVCR's bits are inferred from the data we have in the header of the |
| SSVE section, we need to initialize it to zero first, so that it doesn't |
| carry garbage data. */ |
| ULONGEST svcr = 0; |
| regcache->raw_supply (tdep->sme_svcr_regnum, &svcr); |
| |
| /* Is streaming mode enabled? */ |
| if (flags & SVE_HEADER_FLAG_SVE) |
| { |
| /* Streaming mode is active, so flip the SM bit. */ |
| svcr = SVCR_SM_BIT; |
| regcache->raw_supply (tdep->sme_svcr_regnum, &svcr); |
| |
| /* Fetch the SVE data from the SSVE section. */ |
| supply_sve_regset (regset, regcache, regnum, buf, size); |
| } |
| } |
| |
| /* Collect register REGNUM from REGCACHE to BUF, using the register |
| map in REGSET. If REGNUM is -1, do this for all registers in |
| REGSET. */ |
| |
| static void |
| aarch64_linux_collect_ssve_regset (const struct regset *regset, |
| const struct regcache *regcache, |
| int regnum, void *buf, size_t size) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| ULONGEST svcr = 0; |
| regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); |
| |
| /* Is streaming mode enabled? */ |
| if (svcr & SVCR_SM_BIT) |
| { |
| /* If so, dump SVE regcache data to the SSVE section. */ |
| collect_sve_regset (regset, regcache, regnum, buf, size); |
| } |
| else |
| { |
| /* Otherwise dump an empty SVE block to the SSVE section with the |
| streaming vector length. */ |
| collect_inactive_sve_regset (regcache, buf, size, tdep->sme_svg_regnum); |
| } |
| } |
| |
| /* Supply register REGNUM from BUF to REGCACHE, using the register map |
| in REGSET. If REGNUM is -1, do this for all registers in REGSET. |
| If BUF is NULL, set the registers to "unavailable" status. */ |
| |
| static void |
| aarch64_linux_supply_za_regset (const struct regset *regset, |
| struct regcache *regcache, |
| int regnum, const void *buf, size_t size) |
| { |
| gdb_byte *header = (gdb_byte *) buf; |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* Handle an empty buffer. */ |
| if (buf == nullptr) |
| return regcache->supply_regset (regset, regnum, nullptr, size); |
| |
| if (size < SVE_HEADER_SIZE) |
| error (_("ZA state header size (%s) invalid. Should be at least %s."), |
| pulongest (size), pulongest (SVE_HEADER_SIZE)); |
| |
| /* The ZA register note in a core file can have a couple of states: |
| |
| 1 - Just the header without the payload. This means that there is no |
| ZA data, and we should populate only SVCR and SVG registers on GDB's |
| side. The ZA data should be marked as unavailable. |
| |
| 2 - The header with an additional data payload. This means there is |
| actual ZA data, and we should populate ZA, SVCR and SVG. */ |
| |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| |
| /* Populate SVG. */ |
| ULONGEST svg |
| = sve_vg_from_vl (extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET, |
| SVE_HEADER_VL_LENGTH, |
| byte_order)); |
| regcache->raw_supply (tdep->sme_svg_regnum, &svg); |
| |
| size_t data_size |
| = extract_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET, |
| SVE_HEADER_SIZE_LENGTH, byte_order) |
| - SVE_HEADER_SIZE; |
| |
| /* Populate SVCR. */ |
| bool has_za_payload = (data_size > 0); |
| ULONGEST svcr; |
| regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); |
| |
| /* If we have a ZA payload, enable bit 2 of SVCR, otherwise clear it. This |
| register gets updated by the SVE/SSVE-handling functions as well, as they |
| report the SM bit 1. */ |
| if (has_za_payload) |
| svcr |= SVCR_ZA_BIT; |
| else |
| svcr &= ~SVCR_ZA_BIT; |
| |
| /* Update SVCR in the register buffer. */ |
| regcache->raw_supply (tdep->sme_svcr_regnum, &svcr); |
| |
| /* Populate the register cache with ZA register contents, if we have any. */ |
| buf = has_za_payload ? (gdb_byte *) buf + SVE_HEADER_SIZE : nullptr; |
| |
| size_t za_bytes = std::pow (sve_vl_from_vg (svg), 2); |
| |
| /* Update ZA in the register buffer. */ |
| if (has_za_payload) |
| { |
| /* Check that the payload size is sane. */ |
| if (size < SVE_HEADER_SIZE + za_bytes) |
| { |
| error (_("ZA header + payload size (%s) invalid. Should be at " |
| "least %s."), |
| pulongest (size), pulongest (SVE_HEADER_SIZE + za_bytes)); |
| } |
| |
| regcache->raw_supply (tdep->sme_za_regnum, buf); |
| } |
| else |
| { |
| gdb::byte_vector za_zeroed (za_bytes, 0); |
| regcache->raw_supply (tdep->sme_za_regnum, za_zeroed); |
| } |
| } |
| |
| /* Collect register REGNUM from REGCACHE to BUF, using the register |
| map in REGSET. If REGNUM is -1, do this for all registers in |
| REGSET. */ |
| |
| static void |
| aarch64_linux_collect_za_regset (const struct regset *regset, |
| const struct regcache *regcache, |
| int regnum, void *buf, size_t size) |
| { |
| gdb_assert (buf != nullptr); |
| |
| /* Sanity check the dump size. */ |
| gdb_assert (size >= SVE_HEADER_SIZE); |
| |
| /* The ZA register note in a core file can have a couple of states: |
| |
| 1 - Just the header without the payload. This means that there is no |
| ZA data, and we should dump just the header. |
| |
| 2 - The header with an additional data payload. This means there is |
| actual ZA data, and we should dump both the header and the ZA data |
| payload. */ |
| |
| aarch64_gdbarch_tdep *tdep |
| = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ()); |
| |
| /* Determine if we have ZA state from the SVCR register ZA bit. */ |
| ULONGEST svcr; |
| regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); |
| |
| /* Check the ZA payload. */ |
| bool has_za_payload = (svcr & SVCR_ZA_BIT) != 0; |
| size = has_za_payload ? size : SVE_HEADER_SIZE; |
| |
| /* Write the size and max_size fields. */ |
| gdb_byte *header = (gdb_byte *) buf; |
| enum bfd_endian byte_order = gdbarch_byte_order (regcache->arch ()); |
| store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET, |
| SVE_HEADER_SIZE_LENGTH, byte_order, size); |
| |
| uint32_t max_size |
| = SVE_HEADER_SIZE + std::pow (sve_vl_from_vq (tdep->sme_svq), 2); |
| store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET, |
| SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size); |
| |
| /* Output the other fields of the ZA header (vl, max_vl, flags and |
| reserved). */ |
| uint64_t svq = tdep->sme_svq; |
| store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH, |
| byte_order, sve_vl_from_vq (svq)); |
| |
| uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL; |
| store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET, |
| SVE_HEADER_MAX_VL_LENGTH, byte_order, |
| max_vl); |
| |
| uint16_t flags = SVE_CORE_DUMMY_FLAGS; |
| store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, |
| SVE_HEADER_FLAGS_LENGTH, byte_order, flags); |
| |
| uint16_t reserved = SVE_CORE_DUMMY_RESERVED; |
| store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET, |
| SVE_HEADER_RESERVED_LENGTH, byte_order, reserved); |
| |
| buf = has_za_payload ? (gdb_byte *) buf + SVE_HEADER_SIZE : nullptr; |
| |
| /* Dump the register cache contents for the ZA register to the buffer. */ |
| regcache->collect_regset (regset, regnum, (gdb_byte *) buf, |
| size - SVE_HEADER_SIZE); |
| } |
| |
| /* Supply register REGNUM from BUF to REGCACHE, using the register map |
| in REGSET. If REGNUM is -1, do this for all registers in REGSET. |
| If BUF is NULL, set the registers to "unavailable" status. */ |
| |
| static void |
| aarch64_linux_supply_zt_regset (const struct regset *regset, |
| struct regcache *regcache, |
| int regnum, const void *buf, size_t size) |
| { |
| /* Read the ZT register note from a core file into the register buffer. */ |
| |
| /* Make sure the buffer contains at least the expected amount of data we are |
| supposed to get. */ |
| gdb_assert (size >= AARCH64_SME2_ZT0_SIZE); |
| |
| /* Handle an empty buffer. */ |
| if (buf == nullptr) |
| return regcache->supply_regset (regset, regnum, nullptr, size); |
| |
| aarch64_gdbarch_tdep *tdep |
| = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ()); |
| |
| /* Supply the ZT0 register contents. */ |
| regcache->raw_supply (tdep->sme2_zt0_regnum, buf); |
| } |
| |
| /* Collect register REGNUM from REGCACHE to BUF, using the register |
| map in REGSET. If REGNUM is -1, do this for all registers in |
| REGSET. */ |
| |
| static void |
| aarch64_linux_collect_zt_regset (const struct regset *regset, |
| const struct regcache *regcache, |
| int regnum, void *buf, size_t size) |
| { |
| /* Read the ZT register contents from the register buffer into the core |
| file section. */ |
| |
| /* Make sure the buffer can hold the data we need to return. */ |
| gdb_assert (size >= AARCH64_SME2_ZT0_SIZE); |
| gdb_assert (buf != nullptr); |
| |
| aarch64_gdbarch_tdep *tdep |
| = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ()); |
| |
| /* Dump the register cache contents for the ZT register to the buffer. */ |
| regcache->collect_regset (regset, tdep->sme2_zt0_regnum, buf, |
| AARCH64_SME2_ZT0_SIZE); |
| } |
| |
| /* Implement the "iterate_over_regset_sections" gdbarch method. */ |
| |
| static void |
| aarch64_linux_iterate_over_regset_sections (struct gdbarch *gdbarch, |
| iterate_over_regset_sections_cb *cb, |
| void *cb_data, |
| const struct regcache *regcache) |
| { |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| |
| cb (".reg", AARCH64_LINUX_SIZEOF_GREGSET, AARCH64_LINUX_SIZEOF_GREGSET, |
| &aarch64_linux_gregset, NULL, cb_data); |
| |
| if (tdep->has_sve ()) |
| { |
| /* Create this on the fly in order to handle vector register sizes. */ |
| const struct regcache_map_entry sve_regmap[] = |
| { |
| { 32, AARCH64_SVE_Z0_REGNUM, (int) (tdep->vq * 16) }, |
| { 16, AARCH64_SVE_P0_REGNUM, (int) (tdep->vq * 16 / 8) }, |
| { 1, AARCH64_SVE_FFR_REGNUM, (int) (tdep->vq * 16 / 8) }, |
| { 1, AARCH64_FPSR_REGNUM, 4 }, |
| { 1, AARCH64_FPCR_REGNUM, 4 }, |
| { 0 } |
| }; |
| |
| const struct regset aarch64_linux_ssve_regset = |
| { |
| sve_regmap, |
| aarch64_linux_supply_ssve_regset, aarch64_linux_collect_ssve_regset, |
| REGSET_VARIABLE_SIZE |
| }; |
| |
| /* If SME is supported in the core file, process the SSVE section first, |
| and the SVE section last. This is because we need information from |
| the SSVE set to determine if streaming mode is active. If streaming |
| mode is active, we need to extract the data from the SSVE section. |
| |
| Otherwise, if streaming mode is not active, we fetch the data from the |
| SVE section. */ |
| if (tdep->has_sme ()) |
| { |
| cb (".reg-aarch-ssve", |
| SVE_HEADER_SIZE |
| + regcache_map_entry_size (aarch64_linux_fpregmap), |
| SVE_HEADER_SIZE + regcache_map_entry_size (sve_regmap), |
| &aarch64_linux_ssve_regset, "SSVE registers", cb_data); |
| } |
| |
| /* Handle the SVE register set. */ |
| const struct regset aarch64_linux_sve_regset = |
| { |
| sve_regmap, |
| aarch64_linux_supply_sve_regset, aarch64_linux_collect_sve_regset, |
| REGSET_VARIABLE_SIZE |
| }; |
| |
| cb (".reg-aarch-sve", |
| SVE_HEADER_SIZE + regcache_map_entry_size (aarch64_linux_fpregmap), |
| SVE_HEADER_SIZE + regcache_map_entry_size (sve_regmap), |
| &aarch64_linux_sve_regset, "SVE registers", cb_data); |
| } |
| else |
| cb (".reg2", AARCH64_LINUX_SIZEOF_FPREGSET, AARCH64_LINUX_SIZEOF_FPREGSET, |
| &aarch64_linux_fpregset, NULL, cb_data); |
| |
| if (tdep->has_sme ()) |
| { |
| /* Setup the register set information for a ZA register set core |
| dump. */ |
| |
| /* Create this on the fly in order to handle the ZA register size. */ |
| const struct regcache_map_entry za_regmap[] = |
| { |
| { 1, tdep->sme_za_regnum, |
| (int) std::pow (sve_vl_from_vq (tdep->sme_svq), 2) }, |
| { 0 } |
| }; |
| |
| const struct regset aarch64_linux_za_regset = |
| { |
| za_regmap, |
| aarch64_linux_supply_za_regset, aarch64_linux_collect_za_regset, |
| REGSET_VARIABLE_SIZE |
| }; |
| |
| cb (".reg-aarch-za", |
| SVE_HEADER_SIZE, |
| SVE_HEADER_SIZE + std::pow (sve_vl_from_vq (tdep->sme_svq), 2), |
| &aarch64_linux_za_regset, "ZA register", cb_data); |
| |
| /* Handle SME2 (ZT) as well, which is only available if SME is |
| available. */ |
| if (tdep->has_sme2 ()) |
| { |
| const struct regcache_map_entry zt_regmap[] = |
| { |
| { 1, tdep->sme2_zt0_regnum, AARCH64_SME2_ZT0_SIZE }, |
| { 0 } |
| }; |
| |
| /* We set the register set size to REGSET_VARIABLE_SIZE here because |
| in the future there might be more ZT registers. */ |
| const struct regset aarch64_linux_zt_regset = |
| { |
| zt_regmap, |
| aarch64_linux_supply_zt_regset, aarch64_linux_collect_zt_regset, |
| REGSET_VARIABLE_SIZE |
| }; |
| |
| cb (".reg-aarch-zt", |
| AARCH64_SME2_ZT0_SIZE, |
| AARCH64_SME2_ZT0_SIZE, |
| &aarch64_linux_zt_regset, "ZT registers", cb_data); |
| } |
| } |
| |
| if (tdep->has_pauth ()) |
| { |
| /* Create this on the fly in order to handle the variable location. */ |
| const struct regcache_map_entry pauth_regmap[] = |
| { |
| { 2, AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base), 8}, |
| { 0 } |
| }; |
| |
| const struct regset aarch64_linux_pauth_regset = |
| { |
| pauth_regmap, regcache_supply_regset, regcache_collect_regset |
| }; |
| |
| cb (".reg-aarch-pauth", AARCH64_LINUX_SIZEOF_PAUTH, |
| AARCH64_LINUX_SIZEOF_PAUTH, &aarch64_linux_pauth_regset, |
| "pauth registers", cb_data); |
| } |
| |
| /* Handle MTE registers. */ |
| if (tdep->has_mte ()) |
| { |
| /* Create this on the fly in order to handle the variable location. */ |
| const struct regcache_map_entry mte_regmap[] = |
| { |
| { 1, tdep->mte_reg_base, 8}, |
| { 0 } |
| }; |
| |
| const struct regset aarch64_linux_mte_regset = |
| { |
| mte_regmap, regcache_supply_regset, regcache_collect_regset |
| }; |
| |
| cb (".reg-aarch-mte", AARCH64_LINUX_SIZEOF_MTE_REGSET, |
| AARCH64_LINUX_SIZEOF_MTE_REGSET, &aarch64_linux_mte_regset, |
| "MTE registers", cb_data); |
| } |
| |
| /* Handle the TLS registers. */ |
| if (tdep->has_tls ()) |
| { |
| gdb_assert (tdep->tls_regnum_base != -1); |
| gdb_assert (tdep->tls_register_count > 0); |
| |
| int sizeof_tls_regset |
| = AARCH64_TLS_REGISTER_SIZE * tdep->tls_register_count; |
| |
| const struct regcache_map_entry tls_regmap[] = |
| { |
| { tdep->tls_register_count, tdep->tls_regnum_base, |
| AARCH64_TLS_REGISTER_SIZE }, |
| { 0 } |
| }; |
| |
| const struct regset aarch64_linux_tls_regset = |
| { |
| tls_regmap, regcache_supply_regset, regcache_collect_regset, |
| REGSET_VARIABLE_SIZE |
| }; |
| |
| cb (".reg-aarch-tls", sizeof_tls_regset, sizeof_tls_regset, |
| &aarch64_linux_tls_regset, "TLS register", cb_data); |
| } |
| } |
| |
| /* Implement the "core_read_description" gdbarch method. */ |
| |
| static const struct target_desc * |
| aarch64_linux_core_read_description (struct gdbarch *gdbarch, |
| struct target_ops *target, bfd *abfd) |
| { |
| std::optional<gdb::byte_vector> auxv = target_read_auxv_raw (target); |
| CORE_ADDR hwcap = linux_get_hwcap (auxv, target, gdbarch); |
| CORE_ADDR hwcap2 = linux_get_hwcap2 (auxv, target, gdbarch); |
| |
| aarch64_features features; |
| |
| /* We need to extract the SVE data from the .reg-aarch-sve section or the |
| .reg-aarch-ssve section depending on which one was active when the core |
| file was generated. |
| |
| If the SSVE section contains SVE data, then it is considered active. |
| Otherwise the SVE section is considered active. This guarantees we will |
| have the correct target description with the correct SVE vector |
| length. */ |
| features.vq = aarch64_linux_core_read_vq_from_sections (gdbarch, abfd); |
| features.pauth = hwcap & AARCH64_HWCAP_PACA; |
| features.mte = hwcap2 & HWCAP2_MTE; |
| |
| /* Handle the TLS section. */ |
| asection *tls = bfd_get_section_by_name (abfd, ".reg-aarch-tls"); |
| if (tls != nullptr) |
| { |
| size_t size = bfd_section_size (tls); |
| /* Convert the size to the number of actual registers, by |
| dividing by 8. */ |
| features.tls = size / AARCH64_TLS_REGISTER_SIZE; |
| } |
| |
| features.svq |
| = aarch64_linux_core_read_vq (gdbarch, abfd, ".reg-aarch-za"); |
| |
| /* Are the ZT registers available? */ |
| if (bfd_get_section_by_name (abfd, ".reg-aarch-zt") != nullptr) |
| { |
| /* Check if ZA is also available, otherwise this is an invalid |
| combination. */ |
| if (bfd_get_section_by_name (abfd, ".reg-aarch-za") != nullptr) |
| features.sme2 = true; |
| else |
| warning (_("While reading core file sections, found ZT registers entry " |
| "but no ZA register entry. The ZT contents will be " |
| "ignored")); |
| } |
| |
| return aarch64_read_description (features); |
| } |
| |
| /* Implementation of `gdbarch_stap_is_single_operand', as defined in |
| gdbarch.h. */ |
| |
| static int |
| aarch64_stap_is_single_operand (struct gdbarch *gdbarch, const char *s) |
| { |
| return (*s == '#' || isdigit (*s) /* Literal number. */ |
| || *s == '[' /* Register indirection. */ |
| || isalpha (*s)); /* Register value. */ |
| } |
| |
| /* This routine is used to parse a special token in AArch64's assembly. |
| |
| The special tokens parsed by it are: |
| |
| - Register displacement (e.g, [fp, #-8]) |
| |
| It returns one if the special token has been parsed successfully, |
| or zero if the current token is not considered special. */ |
| |
| static expr::operation_up |
| aarch64_stap_parse_special_token (struct gdbarch *gdbarch, |
| struct stap_parse_info *p) |
| { |
| if (*p->arg == '[') |
| { |
| /* Temporary holder for lookahead. */ |
| const char *tmp = p->arg; |
| char *endp; |
| /* Used to save the register name. */ |
| const char *start; |
| int len; |
| int got_minus = 0; |
| long displacement; |
| |
| ++tmp; |
| start = tmp; |
| |
| /* Register name. */ |
| while (isalnum (*tmp)) |
| ++tmp; |
| |
| if (*tmp != ',') |
| return {}; |
| |
| len = tmp - start; |
| std::string regname (start, len); |
| |
| if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1) |
| error (_("Invalid register name `%s' on expression `%s'."), |
| regname.c_str (), p->saved_arg); |
| |
| ++tmp; |
| tmp = skip_spaces (tmp); |
| /* Now we expect a number. It can begin with '#' or simply |
| a digit. */ |
| if (*tmp == '#') |
| ++tmp; |
| |
| if (*tmp == '-') |
| { |
| ++tmp; |
| got_minus = 1; |
| } |
| else if (*tmp == '+') |
| ++tmp; |
| |
| if (!isdigit (*tmp)) |
| return {}; |
| |
| displacement = strtol (tmp, &endp, 10); |
| tmp = endp; |
| |
| /* Skipping last `]'. */ |
| if (*tmp++ != ']') |
| return {}; |
| p->arg = tmp; |
| |
| using namespace expr; |
| |
| /* The displacement. */ |
| struct type *long_type = builtin_type (gdbarch)->builtin_long; |
| if (got_minus) |
| displacement = -displacement; |
| operation_up disp = make_operation<long_const_operation> (long_type, |
| displacement); |
| |
| /* The register name. */ |
| operation_up reg |
| = make_operation<register_operation> (std::move (regname)); |
| |
| operation_up sum |
| = make_operation<add_operation> (std::move (reg), std::move (disp)); |
| |
| /* Casting to the expected type. */ |
| struct type *arg_ptr_type = lookup_pointer_type (p->arg_type); |
| sum = make_operation<unop_cast_operation> (std::move (sum), |
| arg_ptr_type); |
| return make_operation<unop_ind_operation> (std::move (sum)); |
| } |
| return {}; |
| } |
| |
| /* AArch64 process record-replay constructs: syscall, signal etc. */ |
| |
| static linux_record_tdep aarch64_linux_record_tdep; |
| |
| /* Enum that defines the AArch64 linux specific syscall identifiers used for |
| process record/replay. */ |
| |
| enum aarch64_syscall { |
| aarch64_sys_io_setup = 0, |
| aarch64_sys_io_destroy = 1, |
| aarch64_sys_io_submit = 2, |
| aarch64_sys_io_cancel = 3, |
| aarch64_sys_io_getevents = 4, |
| aarch64_sys_setxattr = 5, |
| aarch64_sys_lsetxattr = 6, |
| aarch64_sys_fsetxattr = 7, |
| aarch64_sys_getxattr = 8, |
| aarch64_sys_lgetxattr = 9, |
| aarch64_sys_fgetxattr = 10, |
| aarch64_sys_listxattr = 11, |
| aarch64_sys_llistxattr = 12, |
| aarch64_sys_flistxattr = 13, |
| aarch64_sys_removexattr = 14, |
| aarch64_sys_lremovexattr = 15, |
| aarch64_sys_fremovexattr = 16, |
| aarch64_sys_getcwd = 17, |
| aarch64_sys_lookup_dcookie = 18, |
| aarch64_sys_eventfd2 = 19, |
| aarch64_sys_epoll_create1 = 20, |
| aarch64_sys_epoll_ctl = 21, |
| aarch64_sys_epoll_pwait = 22, |
| aarch64_sys_dup = 23, |
| aarch64_sys_dup3 = 24, |
| aarch64_sys_fcntl = 25, |
| aarch64_sys_inotify_init1 = 26, |
| aarch64_sys_inotify_add_watch = 27, |
| aarch64_sys_inotify_rm_watch = 28, |
| aarch64_sys_ioctl = 29, |
| aarch64_sys_ioprio_set = 30, |
| aarch64_sys_ioprio_get = 31, |
| aarch64_sys_flock = 32, |
| aarch64_sys_mknodat = 33, |
| aarch64_sys_mkdirat = 34, |
| aarch64_sys_unlinkat = 35, |
| aarch64_sys_symlinkat = 36, |
| aarch64_sys_linkat = 37, |
| aarch64_sys_renameat = 38, |
| aarch64_sys_umount2 = 39, |
| aarch64_sys_mount = 40, |
| aarch64_sys_pivot_root = 41, |
| aarch64_sys_nfsservctl = 42, |
| aarch64_sys_statfs = 43, |
| aarch64_sys_fstatfs = 44, |
| aarch64_sys_truncate = 45, |
| aarch64_sys_ftruncate = 46, |
| aarch64_sys_fallocate = 47, |
| aarch64_sys_faccessat = 48, |
| aarch64_sys_chdir = 49, |
| aarch64_sys_fchdir = 50, |
| aarch64_sys_chroot = 51, |
| aarch64_sys_fchmod = 52, |
| aarch64_sys_fchmodat = 53, |
| aarch64_sys_fchownat = 54, |
| aarch64_sys_fchown = 55, |
| aarch64_sys_openat = 56, |
| aarch64_sys_close = 57, |
| aarch64_sys_vhangup = 58, |
| aarch64_sys_pipe2 = 59, |
| aarch64_sys_quotactl = 60, |
| aarch64_sys_getdents64 = 61, |
| aarch64_sys_lseek = 62, |
| aarch64_sys_read = 63, |
| aarch64_sys_write = 64, |
| aarch64_sys_readv = 65, |
| aarch64_sys_writev = 66, |
| aarch64_sys_pread64 = 67, |
| aarch64_sys_pwrite64 = 68, |
| aarch64_sys_preadv = 69, |
| aarch64_sys_pwritev = 70, |
| aarch64_sys_sendfile = 71, |
| aarch64_sys_pselect6 = 72, |
| aarch64_sys_ppoll = 73, |
| aarch64_sys_signalfd4 = 74, |
| aarch64_sys_vmsplice = 75, |
| aarch64_sys_splice = 76, |
| aarch64_sys_tee = 77, |
| aarch64_sys_readlinkat = 78, |
| aarch64_sys_newfstatat = 79, |
| aarch64_sys_fstat = 80, |
| aarch64_sys_sync = 81, |
| aarch64_sys_fsync = 82, |
| aarch64_sys_fdatasync = 83, |
| aarch64_sys_sync_file_range2 = 84, |
| aarch64_sys_sync_file_range = 84, |
| aarch64_sys_timerfd_create = 85, |
| aarch64_sys_timerfd_settime = 86, |
| aarch64_sys_timerfd_gettime = 87, |
| aarch64_sys_utimensat = 88, |
| aarch64_sys_acct = 89, |
| aarch64_sys_capget = 90, |
| aarch64_sys_capset = 91, |
| aarch64_sys_personality = 92, |
| aarch64_sys_exit = 93, |
| aarch64_sys_exit_group = 94, |
| aarch64_sys_waitid = 95, |
| aarch64_sys_set_tid_address = 96, |
| aarch64_sys_unshare = 97, |
| aarch64_sys_futex = 98, |
| aarch64_sys_set_robust_list = 99, |
| aarch64_sys_get_robust_list = 100, |
| aarch64_sys_nanosleep = 101, |
| aarch64_sys_getitimer = 102, |
| aarch64_sys_setitimer = 103, |
| aarch64_sys_kexec_load = 104, |
| aarch64_sys_init_module = 105, |
| aarch64_sys_delete_module = 106, |
| aarch64_sys_timer_create = 107, |
| aarch64_sys_timer_gettime = 108, |
| aarch64_sys_timer_getoverrun = 109, |
| aarch64_sys_timer_settime = 110, |
| aarch64_sys_timer_delete = 111, |
| aarch64_sys_clock_settime = 112, |
| aarch64_sys_clock_gettime = 113, |
| aarch64_sys_clock_getres = 114, |
| aarch64_sys_clock_nanosleep = 115, |
| aarch64_sys_syslog = 116, |
| aarch64_sys_ptrace = 117, |
| aarch64_sys_sched_setparam = 118, |
| aarch64_sys_sched_setscheduler = 119, |
| aarch64_sys_sched_getscheduler = 120, |
| aarch64_sys_sched_getparam = 121, |
| aarch64_sys_sched_setaffinity = 122, |
| aarch64_sys_sched_getaffinity = 123, |
| aarch64_sys_sched_yield = 124, |
| aarch64_sys_sched_get_priority_max = 125, |
| aarch64_sys_sched_get_priority_min = 126, |
| aarch64_sys_sched_rr_get_interval = 127, |
| aarch64_sys_kill = 129, |
| aarch64_sys_tkill = 130, |
| aarch64_sys_tgkill = 131, |
| aarch64_sys_sigaltstack = 132, |
| aarch64_sys_rt_sigsuspend = 133, |
| aarch64_sys_rt_sigaction = 134, |
| aarch64_sys_rt_sigprocmask = 135, |
| aarch64_sys_rt_sigpending = 136, |
| aarch64_sys_rt_sigtimedwait = 137, |
| aarch64_sys_rt_sigqueueinfo = 138, |
| aarch64_sys_rt_sigreturn = 139, |
| aarch64_sys_setpriority = 140, |
| aarch64_sys_getpriority = 141, |
| aarch64_sys_reboot = 142, |
| aarch64_sys_setregid = 143, |
| aarch64_sys_setgid = 144, |
| aarch64_sys_setreuid = 145, |
| aarch64_sys_setuid = 146, |
| aarch64_sys_setresuid = 147, |
| aarch64_sys_getresuid = 148, |
| aarch64_sys_setresgid = 149, |
| aarch64_sys_getresgid = 150, |
| aarch64_sys_setfsuid = 151, |
| aarch64_sys_setfsgid = 152, |
| aarch64_sys_times = 153, |
| aarch64_sys_setpgid = 154, |
| aarch64_sys_getpgid = 155, |
| aarch64_sys_getsid = 156, |
| aarch64_sys_setsid = 157, |
| aarch64_sys_getgroups = 158, |
| aarch64_sys_setgroups = 159, |
| aarch64_sys_uname = 160, |
| aarch64_sys_sethostname = 161, |
| aarch64_sys_setdomainname = 162, |
| aarch64_sys_getrlimit = 163, |
| aarch64_sys_setrlimit = 164, |
| aarch64_sys_getrusage = 165, |
| aarch64_sys_umask = 166, |
| aarch64_sys_prctl = 167, |
| aarch64_sys_getcpu = 168, |
| aarch64_sys_gettimeofday = 169, |
| aarch64_sys_settimeofday = 170, |
| aarch64_sys_adjtimex = 171, |
| aarch64_sys_getpid = 172, |
| aarch64_sys_getppid = 173, |
| aarch64_sys_getuid = 174, |
| aarch64_sys_geteuid = 175, |
| aarch64_sys_getgid = 176, |
| aarch64_sys_getegid = 177, |
| aarch64_sys_gettid = 178, |
| aarch64_sys_sysinfo = 179, |
| aarch64_sys_mq_open = 180, |
| aarch64_sys_mq_unlink = 181, |
| aarch64_sys_mq_timedsend = 182, |
| aarch64_sys_mq_timedreceive = 183, |
| aarch64_sys_mq_notify = 184, |
| aarch64_sys_mq_getsetattr = 185, |
| aarch64_sys_msgget = 186, |
| aarch64_sys_msgctl = 187, |
| aarch64_sys_msgrcv = 188, |
| aarch64_sys_msgsnd = 189, |
| aarch64_sys_semget = 190, |
| aarch64_sys_semctl = 191, |
| aarch64_sys_semtimedop = 192, |
| aarch64_sys_semop = 193, |
| aarch64_sys_shmget = 194, |
| aarch64_sys_shmctl = 195, |
| aarch64_sys_shmat = 196, |
| aarch64_sys_shmdt = 197, |
| aarch64_sys_socket = 198, |
| aarch64_sys_socketpair = 199, |
| aarch64_sys_bind = 200, |
| aarch64_sys_listen = 201, |
| aarch64_sys_accept = 202, |
| aarch64_sys_connect = 203, |
| aarch64_sys_getsockname = 204, |
| aarch64_sys_getpeername = 205, |
| aarch64_sys_sendto = 206, |
| aarch64_sys_recvfrom = 207, |
| aarch64_sys_setsockopt = 208, |
| aarch64_sys_getsockopt = 209, |
| aarch64_sys_shutdown = 210, |
| aarch64_sys_sendmsg = 211, |
| aarch64_sys_recvmsg = 212, |
| aarch64_sys_readahead = 213, |
| aarch64_sys_brk = 214, |
| aarch64_sys_munmap = 215, |
| aarch64_sys_mremap = 216, |
| aarch64_sys_add_key = 217, |
| aarch64_sys_request_key = 218, |
| aarch64_sys_keyctl = 219, |
| aarch64_sys_clone = 220, |
| aarch64_sys_execve = 221, |
| aarch64_sys_mmap = 222, |
| aarch64_sys_fadvise64 = 223, |
| aarch64_sys_swapon = 224, |
| aarch64_sys_swapoff = 225, |
| aarch64_sys_mprotect = 226, |
| aarch64_sys_msync = 227, |
| aarch64_sys_mlock = 228, |
| aarch64_sys_munlock = 229, |
| aarch64_sys_mlockall = 230, |
| aarch64_sys_munlockall = 231, |
| aarch64_sys_mincore = 232, |
| aarch64_sys_madvise = 233, |
| aarch64_sys_remap_file_pages = 234, |
| aarch64_sys_mbind = 235, |
| aarch64_sys_get_mempolicy = 236, |
| aarch64_sys_set_mempolicy = 237, |
| aarch64_sys_migrate_pages = 238, |
| aarch64_sys_move_pages = 239, |
| aarch64_sys_rt_tgsigqueueinfo = 240, |
| aarch64_sys_perf_event_open = 241, |
| aarch64_sys_accept4 = 242, |
| aarch64_sys_recvmmsg = 243, |
| aarch64_sys_wait4 = 260, |
| aarch64_sys_prlimit64 = 261, |
| aarch64_sys_fanotify_init = 262, |
| aarch64_sys_fanotify_mark = 263, |
| aarch64_sys_name_to_handle_at = 264, |
| aarch64_sys_open_by_handle_at = 265, |
| aarch64_sys_clock_adjtime = 266, |
| aarch64_sys_syncfs = 267, |
| aarch64_sys_setns = 268, |
| aarch64_sys_sendmmsg = 269, |
| aarch64_sys_process_vm_readv = 270, |
| aarch64_sys_process_vm_writev = 271, |
| aarch64_sys_kcmp = 272, |
| aarch64_sys_finit_module = 273, |
| aarch64_sys_sched_setattr = 274, |
| aarch64_sys_sched_getattr = 275, |
| aarch64_sys_getrandom = 278 |
| }; |
| |
| /* aarch64_canonicalize_syscall maps syscall ids from the native AArch64 |
| linux set of syscall ids into a canonical set of syscall ids used by |
| process record. */ |
| |
| static enum gdb_syscall |
| aarch64_canonicalize_syscall (enum aarch64_syscall syscall_number) |
| { |
| #define SYSCALL_MAP(SYSCALL) case aarch64_sys_##SYSCALL: \ |
| return gdb_sys_##SYSCALL |
| |
| #define UNSUPPORTED_SYSCALL_MAP(SYSCALL) case aarch64_sys_##SYSCALL: \ |
| return gdb_sys_no_syscall |
| |
| switch (syscall_number) |
| { |
| SYSCALL_MAP (io_setup); |
| SYSCALL_MAP (io_destroy); |
| SYSCALL_MAP (io_submit); |
| SYSCALL_MAP (io_cancel); |
| SYSCALL_MAP (io_getevents); |
| |
| SYSCALL_MAP (setxattr); |
| SYSCALL_MAP (lsetxattr); |
| SYSCALL_MAP (fsetxattr); |
| SYSCALL_MAP (getxattr); |
| SYSCALL_MAP (lgetxattr); |
| SYSCALL_MAP (fgetxattr); |
| SYSCALL_MAP (listxattr); |
| SYSCALL_MAP (llistxattr); |
| SYSCALL_MAP (flistxattr); |
| SYSCALL_MAP (removexattr); |
| SYSCALL_MAP (lremovexattr); |
| SYSCALL_MAP (fremovexattr); |
| SYSCALL_MAP (getcwd); |
| SYSCALL_MAP (lookup_dcookie); |
| SYSCALL_MAP (eventfd2); |
| SYSCALL_MAP (epoll_create1); |
| SYSCALL_MAP (epoll_ctl); |
| SYSCALL_MAP (epoll_pwait); |
| SYSCALL_MAP (dup); |
| SYSCALL_MAP (dup3); |
| SYSCALL_MAP (fcntl); |
| SYSCALL_MAP (inotify_init1); |
| SYSCALL_MAP (inotify_add_watch); |
| SYSCALL_MAP (inotify_rm_watch); |
| SYSCALL_MAP (ioctl); |
| SYSCALL_MAP (ioprio_set); |
| SYSCALL_MAP (ioprio_get); |
| SYSCALL_MAP (flock); |
| SYSCALL_MAP (mknodat); |
| SYSCALL_MAP (mkdirat); |
| SYSCALL_MAP (unlinkat); |
| SYSCALL_MAP (symlinkat); |
| SYSCALL_MAP (linkat); |
| SYSCALL_MAP (renameat); |
| UNSUPPORTED_SYSCALL_MAP (umount2); |
| SYSCALL_MAP (mount); |
| SYSCALL_MAP (pivot_root); |
| SYSCALL_MAP (nfsservctl); |
| SYSCALL_MAP (statfs); |
| SYSCALL_MAP (truncate); |
| SYSCALL_MAP (ftruncate); |
| SYSCALL_MAP (fallocate); |
| SYSCALL_MAP (faccessat); |
| SYSCALL_MAP (fchdir); |
| SYSCALL_MAP (chroot); |
| SYSCALL_MAP (fchmod); |
| SYSCALL_MAP (fchmodat); |
| SYSCALL_MAP (fchownat); |
| SYSCALL_MAP (fchown); |
| SYSCALL_MAP (openat); |
| SYSCALL_MAP (close); |
| SYSCALL_MAP (vhangup); |
| SYSCALL_MAP (pipe2); |
| SYSCALL_MAP (quotactl); |
| SYSCALL_MAP (getdents64); |
| SYSCALL_MAP (lseek); |
| SYSCALL_MAP (read); |
| SYSCALL_MAP (write); |
| SYSCALL_MAP (readv); |
| SYSCALL_MAP (writev); |
| SYSCALL_MAP (pread64); |
| SYSCALL_MAP (pwrite64); |
| UNSUPPORTED_SYSCALL_MAP (preadv); |
| UNSUPPORTED_SYSCALL_MAP (pwritev); |
| SYSCALL_MAP (sendfile); |
| SYSCALL_MAP (pselect6); |
| SYSCALL_MAP (ppoll); |
| UNSUPPORTED_SYSCALL_MAP (signalfd4); |
| SYSCALL_MAP (vmsplice); |
| SYSCALL_MAP (splice); |
| SYSCALL_MAP (tee); |
| SYSCALL_MAP (readlinkat); |
| SYSCALL_MAP (newfstatat); |
| |
| SYSCALL_MAP (fstat); |
| SYSCALL_MAP (sync); |
| SYSCALL_MAP (fsync); |
| SYSCALL_MAP (fdatasync); |
| SYSCALL_MAP (sync_file_range); |
| UNSUPPORTED_SYSCALL_MAP (timerfd_create); |
| UNSUPPORTED_SYSCALL_MAP (timerfd_settime); |
| UNSUPPORTED_SYSCALL_MAP (timerfd_gettime); |
| UNSUPPORTED_SYSCALL_MAP (utimensat); |
| SYSCALL_MAP (acct); |
| SYSCALL_MAP (capget); |
| SYSCALL_MAP (capset); |
| SYSCALL_MAP (personality); |
| SYSCALL_MAP (exit); |
| SYSCALL_MAP (exit_group); |
| SYSCALL_MAP (waitid); |
| SYSCALL_MAP (set_tid_address); |
| SYSCALL_MAP (unshare); |
| SYSCALL_MAP (futex); |
| SYSCALL_MAP (set_robust_list); |
| SYSCALL_MAP (get_robust_list); |
| SYSCALL_MAP (nanosleep); |
| |
| SYSCALL_MAP (getitimer); |
| SYSCALL_MAP (setitimer); |
| SYSCALL_MAP (kexec_load); |
| SYSCALL_MAP (init_module); |
| SYSCALL_MAP (delete_module); |
| SYSCALL_MAP (timer_create); |
| SYSCALL_MAP (timer_settime); |
| SYSCALL_MAP (timer_gettime); |
| SYSCALL_MAP (timer_getoverrun); |
| SYSCALL_MAP (timer_delete); |
| SYSCALL_MAP (clock_settime); |
| SYSCALL_MAP (clock_gettime); |
| SYSCALL_MAP (clock_getres); |
| SYSCALL_MAP (clock_nanosleep); |
| SYSCALL_MAP (syslog); |
| SYSCALL_MAP (ptrace); |
| SYSCALL_MAP (sched_setparam); |
| SYSCALL_MAP (sched_setscheduler); |
| SYSCALL_MAP (sched_getscheduler); |
| SYSCALL_MAP (sched_getparam); |
| SYSCALL_MAP (sched_setaffinity); |
| SYSCALL_MAP (sched_getaffinity); |
| SYSCALL_MAP (sched_yield); |
| SYSCALL_MAP (sched_get_priority_max); |
| SYSCALL_MAP (sched_get_priority_min); |
| SYSCALL_MAP (sched_rr_get_interval); |
| SYSCALL_MAP (kill); |
| SYSCALL_MAP (tkill); |
| SYSCALL_MAP (tgkill); |
| SYSCALL_MAP (sigaltstack); |
| SYSCALL_MAP (rt_sigsuspend); |
| SYSCALL_MAP (rt_sigaction); |
| SYSCALL_MAP (rt_sigprocmask); |
| SYSCALL_MAP (rt_sigpending); |
| SYSCALL_MAP (rt_sigtimedwait); |
| SYSCALL_MAP (rt_sigqueueinfo); |
| SYSCALL_MAP (rt_sigreturn); |
| SYSCALL_MAP (setpriority); |
| SYSCALL_MAP (getpriority); |
| SYSCALL_MAP (reboot); |
| SYSCALL_MAP (setregid); |
| SYSCALL_MAP (setgid); |
| SYSCALL_MAP (setreuid); |
| SYSCALL_MAP (setuid); |
| SYSCALL_MAP (setresuid); |
| SYSCALL_MAP (getresuid); |
| SYSCALL_MAP (setresgid); |
| SYSCALL_MAP (getresgid); |
| SYSCALL_MAP (setfsuid); |
| SYSCALL_MAP (setfsgid); |
| SYSCALL_MAP (times); |
| SYSCALL_MAP (setpgid); |
| SYSCALL_MAP (getpgid); |
| SYSCALL_MAP (getsid); |
| SYSCALL_MAP (setsid); |
| SYSCALL_MAP (getgroups); |
| SYSCALL_MAP (setgroups); |
| SYSCALL_MAP (uname); |
| SYSCALL_MAP (sethostname); |
| SYSCALL_MAP (setdomainname); |
| SYSCALL_MAP (getrlimit); |
| SYSCALL_MAP (setrlimit); |
| SYSCALL_MAP (getrusage); |
| SYSCALL_MAP (umask); |
| SYSCALL_MAP (prctl); |
| SYSCALL_MAP (getcpu); |
| SYSCALL_MAP (gettimeofday); |
| SYSCALL_MAP (settimeofday); |
| SYSCALL_MAP (adjtimex); |
| SYSCALL_MAP (getpid); |
| SYSCALL_MAP (getppid); |
| SYSCALL_MAP (getuid); |
| SYSCALL_MAP (geteuid); |
| SYSCALL_MAP (getgid); |
| SYSCALL_MAP (getegid); |
| SYSCALL_MAP (gettid); |
| SYSCALL_MAP (sysinfo); |
| SYSCALL_MAP (mq_open); |
| SYSCALL_MAP (mq_unlink); |
| SYSCALL_MAP (mq_timedsend); |
| SYSCALL_MAP (mq_timedreceive); |
| SYSCALL_MAP (mq_notify); |
| SYSCALL_MAP (mq_getsetattr); |
| SYSCALL_MAP (msgget); |
| SYSCALL_MAP (msgctl); |
| SYSCALL_MAP (msgrcv); |
| SYSCALL_MAP (msgsnd); |
| SYSCALL_MAP (semget); |
| SYSCALL_MAP (semctl); |
| SYSCALL_MAP (semtimedop); |
| SYSCALL_MAP (semop); |
| SYSCALL_MAP (shmget); |
| SYSCALL_MAP (shmctl); |
| SYSCALL_MAP (shmat); |
| SYSCALL_MAP (shmdt); |
| SYSCALL_MAP (socket); |
| SYSCALL_MAP (socketpair); |
| SYSCALL_MAP (bind); |
| SYSCALL_MAP (listen); |
| SYSCALL_MAP (accept); |
| SYSCALL_MAP (connect); |
| SYSCALL_MAP (getsockname); |
| SYSCALL_MAP (getpeername); |
| SYSCALL_MAP (sendto); |
| SYSCALL_MAP (recvfrom); |
| SYSCALL_MAP (setsockopt); |
| SYSCALL_MAP (getsockopt); |
| SYSCALL_MAP (shutdown); |
| SYSCALL_MAP (sendmsg); |
| SYSCALL_MAP (recvmsg); |
| SYSCALL_MAP (readahead); |
| SYSCALL_MAP (brk); |
| SYSCALL_MAP (munmap); |
| SYSCALL_MAP (mremap); |
| SYSCALL_MAP (add_key); |
| SYSCALL_MAP (request_key); |
| SYSCALL_MAP (keyctl); |
| SYSCALL_MAP (clone); |
| SYSCALL_MAP (execve); |
| |
| case aarch64_sys_mmap: |
| return gdb_sys_mmap2; |
| |
| SYSCALL_MAP (fadvise64); |
| SYSCALL_MAP (swapon); |
| SYSCALL_MAP (swapoff); |
| SYSCALL_MAP (mprotect); |
| SYSCALL_MAP (msync); |
| SYSCALL_MAP (mlock); |
| SYSCALL_MAP (munlock); |
| SYSCALL_MAP (mlockall); |
| SYSCALL_MAP (munlockall); |
| SYSCALL_MAP (mincore); |
| SYSCALL_MAP (madvise); |
| SYSCALL_MAP (remap_file_pages); |
| SYSCALL_MAP (mbind); |
| SYSCALL_MAP (get_mempolicy); |
| SYSCALL_MAP (set_mempolicy); |
| SYSCALL_MAP (migrate_pages); |
| SYSCALL_MAP (move_pages); |
| UNSUPPORTED_SYSCALL_MAP (rt_tgsigqueueinfo); |
| UNSUPPORTED_SYSCALL_MAP (perf_event_open); |
| UNSUPPORTED_SYSCALL_MAP (accept4); |
| UNSUPPORTED_SYSCALL_MAP (recvmmsg); |
| |
| SYSCALL_MAP (wait4); |
| |
| UNSUPPORTED_SYSCALL_MAP (prlimit64); |
| UNSUPPORTED_SYSCALL_MAP (fanotify_init); |
| UNSUPPORTED_SYSCALL_MAP (fanotify_mark); |
| UNSUPPORTED_SYSCALL_MAP (name_to_handle_at); |
| UNSUPPORTED_SYSCALL_MAP (open_by_handle_at); |
| UNSUPPORTED_SYSCALL_MAP (clock_adjtime); |
| UNSUPPORTED_SYSCALL_MAP (syncfs); |
| UNSUPPORTED_SYSCALL_MAP (setns); |
| UNSUPPORTED_SYSCALL_MAP (sendmmsg); |
| UNSUPPORTED_SYSCALL_MAP (process_vm_readv); |
| UNSUPPORTED_SYSCALL_MAP (process_vm_writev); |
| UNSUPPORTED_SYSCALL_MAP (kcmp); |
| UNSUPPORTED_SYSCALL_MAP (finit_module); |
| UNSUPPORTED_SYSCALL_MAP (sched_setattr); |
| UNSUPPORTED_SYSCALL_MAP (sched_getattr); |
| SYSCALL_MAP (getrandom); |
| default: |
| return gdb_sys_no_syscall; |
| } |
| } |
| |
| /* Retrieve the syscall number at a ptrace syscall-stop, either on syscall entry |
| or exit. Return -1 upon error. */ |
| |
| static LONGEST |
| aarch64_linux_get_syscall_number (struct gdbarch *gdbarch, thread_info *thread) |
| { |
| struct regcache *regs = get_thread_regcache (thread); |
| LONGEST ret; |
| |
| /* Get the system call number from register x8. */ |
| regs->cooked_read (AARCH64_X0_REGNUM + 8, &ret); |
| |
| /* On exit from a successful execve, we will be in a new process and all the |
| registers will be cleared - x0 to x30 will be 0, except for a 1 in x7. |
| This function will only ever get called when stopped at the entry or exit |
| of a syscall, so by checking for 0 in x0 (arg0/retval), x1 (arg1), x8 |
| (syscall), x29 (FP) and x30 (LR) we can infer: |
| 1) Either inferior is at exit from successful execve. |
| 2) Or inferior is at entry to a call to io_setup with invalid arguments and |
| a corrupted FP and LR. |
| It should be safe enough to assume case 1. */ |
| if (ret == 0) |
| { |
| LONGEST x1 = -1, fp = -1, lr = -1; |
| regs->cooked_read (AARCH64_X0_REGNUM + 1, &x1); |
| regs->cooked_read (AARCH64_FP_REGNUM, &fp); |
| regs->cooked_read (AARCH64_LR_REGNUM, &lr); |
| if (x1 == 0 && fp ==0 && lr == 0) |
| return aarch64_sys_execve; |
| } |
| |
| return ret; |
| } |
| |
| /* Record all registers but PC register for process-record. */ |
| |
| static int |
| aarch64_all_but_pc_registers_record (struct regcache *regcache) |
| { |
| int i; |
| |
| for (i = AARCH64_X0_REGNUM; i < AARCH64_PC_REGNUM; i++) |
| if (record_full_arch_list_add_reg (regcache, i)) |
| return -1; |
| |
| if (record_full_arch_list_add_reg (regcache, AARCH64_CPSR_REGNUM)) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* Handler for aarch64 system call instruction recording. */ |
| |
| static int |
| aarch64_linux_syscall_record (struct regcache *regcache, |
| unsigned long svc_number) |
| { |
| int ret = 0; |
| enum gdb_syscall syscall_gdb; |
| |
| syscall_gdb = |
| aarch64_canonicalize_syscall ((enum aarch64_syscall) svc_number); |
| |
| if (syscall_gdb < 0) |
| { |
| gdb_printf (gdb_stderr, |
| _("Process record and replay target doesn't " |
| "support syscall number %s\n"), |
| plongest (svc_number)); |
| return -1; |
| } |
| |
| if (syscall_gdb == gdb_sys_sigreturn |
| || syscall_gdb == gdb_sys_rt_sigreturn) |
| { |
| if (aarch64_all_but_pc_registers_record (regcache)) |
| return -1; |
| return 0; |
| } |
| |
| ret = record_linux_system_call (syscall_gdb, regcache, |
| &aarch64_linux_record_tdep); |
| if (ret != 0) |
| return ret; |
| |
| /* Record the return value of the system call. */ |
| if (record_full_arch_list_add_reg (regcache, AARCH64_X0_REGNUM)) |
| return -1; |
| /* Record LR. */ |
| if (record_full_arch_list_add_reg (regcache, AARCH64_LR_REGNUM)) |
| return -1; |
| /* Record CPSR. */ |
| if (record_full_arch_list_add_reg (regcache, AARCH64_CPSR_REGNUM)) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* Implement the "gcc_target_options" gdbarch method. */ |
| |
| static std::string |
| aarch64_linux_gcc_target_options (struct gdbarch *gdbarch) |
| { |
| /* GCC doesn't know "-m64". */ |
| return {}; |
| } |
| |
| /* Implement the tagged_address_p gdbarch method. */ |
| |
| static bool |
| aarch64_linux_tagged_address_p (struct gdbarch *gdbarch, CORE_ADDR address) |
| { |
| /* Remove the top byte for the memory range check. */ |
| address = gdbarch_remove_non_address_bits (gdbarch, address); |
| |
| /* Check if the page that contains ADDRESS is mapped with PROT_MTE. */ |
| if (!linux_address_in_memtag_page (address)) |
| return false; |
| |
| /* We have a valid tag in the top byte of the 64-bit address. */ |
| return true; |
| } |
| |
| |
| /* AArch64 Linux implementation of the report_signal_info gdbarch |
| hook. Displays information about possible memory tag violations. */ |
| |
| static void |
| aarch64_linux_report_signal_info (struct gdbarch *gdbarch, |
| struct ui_out *uiout, |
| enum gdb_signal siggnal) |
| { |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| |
| if (!tdep->has_mte () || siggnal != GDB_SIGNAL_SEGV) |
| return; |
| |
| CORE_ADDR fault_addr = 0; |
| long si_code = 0; |
| |
| try |
| { |
| /* Sigcode tells us if the segfault is actually a memory tag |
| violation. */ |
| si_code = parse_and_eval_long ("$_siginfo.si_code"); |
| |
| fault_addr |
| = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr"); |
| } |
| catch (const gdb_exception_error &exception) |
| { |
| exception_print (gdb_stderr, exception); |
| return; |
| } |
| |
| /* If this is not a memory tag violation, just return. */ |
| if (si_code != SEGV_MTEAERR && si_code != SEGV_MTESERR) |
| return; |
| |
| uiout->text ("\n"); |
| |
| uiout->field_string ("sigcode-meaning", _("Memory tag violation")); |
| |
| /* For synchronous faults, show additional information. */ |
| if (si_code == SEGV_MTESERR) |
| { |
| uiout->text (_(" while accessing address ")); |
| uiout->field_core_addr ("fault-addr", gdbarch, fault_addr); |
| uiout->text ("\n"); |
| |
| std::optional<CORE_ADDR> atag |
| = aarch64_mte_get_atag (gdbarch_remove_non_address_bits (gdbarch, |
| fault_addr)); |
| gdb_byte ltag = aarch64_mte_get_ltag (fault_addr); |
| |
| if (!atag.has_value ()) |
| uiout->text (_("Allocation tag unavailable")); |
| else |
| { |
| uiout->text (_("Allocation tag ")); |
| uiout->field_string ("allocation-tag", hex_string (*atag)); |
| uiout->text ("\n"); |
| uiout->text (_("Logical tag ")); |
| uiout->field_string ("logical-tag", hex_string (ltag)); |
| } |
| } |
| else |
| { |
| uiout->text ("\n"); |
| uiout->text (_("Fault address unavailable")); |
| } |
| } |
| |
| /* AArch64 Linux implementation of the gdbarch_create_memtag_section hook. */ |
| |
| static asection * |
| aarch64_linux_create_memtag_section (struct gdbarch *gdbarch, bfd *obfd, |
| CORE_ADDR address, size_t size) |
| { |
| gdb_assert (obfd != nullptr); |
| gdb_assert (size > 0); |
| |
| /* Create the section and associated program header. |
| |
| Make sure the section's flags has SEC_HAS_CONTENTS, otherwise BFD will |
| refuse to write data to this section. */ |
| asection *mte_section |
| = bfd_make_section_anyway_with_flags (obfd, "memtag", SEC_HAS_CONTENTS); |
| |
| if (mte_section == nullptr) |
| return nullptr; |
| |
| bfd_set_section_vma (mte_section, address); |
| /* The size of the memory range covered by the memory tags. We reuse the |
| section's rawsize field for this purpose. */ |
| mte_section->rawsize = size; |
| |
| /* Fetch the number of tags we need to save. */ |
| size_t tags_count |
| = aarch64_mte_get_tag_granules (address, size, AARCH64_MTE_GRANULE_SIZE); |
| /* Tags are stored packed as 2 tags per byte. */ |
| bfd_set_section_size (mte_section, (tags_count + 1) >> 1); |
| /* Store program header information. */ |
| bfd_record_phdr (obfd, PT_AARCH64_MEMTAG_MTE, 1, 0, 0, 0, 0, 0, 1, |
| &mte_section); |
| |
| return mte_section; |
| } |
| |
| /* Maximum number of tags to request. */ |
| #define MAX_TAGS_TO_TRANSFER 1024 |
| |
| /* AArch64 Linux implementation of the gdbarch_fill_memtag_section hook. */ |
| |
| static bool |
| aarch64_linux_fill_memtag_section (struct gdbarch *gdbarch, asection *osec) |
| { |
| /* We only handle MTE tags for now. */ |
| |
| size_t segment_size = osec->rawsize; |
| CORE_ADDR start_address = bfd_section_vma (osec); |
| CORE_ADDR end_address = start_address + segment_size; |
| |
| /* Figure out how many tags we need to store in this memory range. */ |
| size_t granules = aarch64_mte_get_tag_granules (start_address, segment_size, |
| AARCH64_MTE_GRANULE_SIZE); |
| |
| /* If there are no tag granules to fetch, just return. */ |
| if (granules == 0) |
| return true; |
| |
| CORE_ADDR address = start_address; |
| |
| /* Vector of tags. */ |
| gdb::byte_vector tags; |
| |
| while (granules > 0) |
| { |
| /* Transfer tags in chunks. */ |
| gdb::byte_vector tags_read; |
| size_t xfer_len |
| = ((granules >= MAX_TAGS_TO_TRANSFER) |
| ? MAX_TAGS_TO_TRANSFER * AARCH64_MTE_GRANULE_SIZE |
| : granules * AARCH64_MTE_GRANULE_SIZE); |
| |
| if (!target_fetch_memtags (address, xfer_len, tags_read, |
| static_cast<int> (memtag_type::allocation))) |
| { |
| warning (_("Failed to read MTE tags from memory range [%s,%s)."), |
| phex_nz (start_address, sizeof (start_address)), |
| phex_nz (end_address, sizeof (end_address))); |
| return false; |
| } |
| |
| /* Transfer over the tags that have been read. */ |
| tags.insert (tags.end (), tags_read.begin (), tags_read.end ()); |
| |
| /* Adjust the remaining granules and starting address. */ |
| granules -= tags_read.size (); |
| address += tags_read.size () * AARCH64_MTE_GRANULE_SIZE; |
| } |
| |
| /* Pack the MTE tag bits. */ |
| aarch64_mte_pack_tags (tags); |
| |
| if (!bfd_set_section_contents (osec->owner, osec, tags.data (), |
| 0, tags.size ())) |
| { |
| warning (_("Failed to write %s bytes of corefile memory " |
| "tag content (%s)."), |
| pulongest (tags.size ()), |
| bfd_errmsg (bfd_get_error ())); |
| } |
| return true; |
| } |
| |
| /* AArch64 Linux implementation of the gdbarch_decode_memtag_section |
| hook. Decode a memory tag section and return the requested tags. |
| |
| The section is guaranteed to cover the [ADDRESS, ADDRESS + length) |
| range. */ |
| |
| static gdb::byte_vector |
| aarch64_linux_decode_memtag_section (struct gdbarch *gdbarch, |
| bfd_section *section, |
| int type, |
| CORE_ADDR address, size_t length) |
| { |
| gdb_assert (section != nullptr); |
| |
| /* The requested address must not be less than section->vma. */ |
| gdb_assert (section->vma <= address); |
| |
| /* Figure out how many tags we need to fetch in this memory range. */ |
| size_t granules = aarch64_mte_get_tag_granules (address, length, |
| AARCH64_MTE_GRANULE_SIZE); |
| /* Sanity check. */ |
| gdb_assert (granules > 0); |
| |
| /* Fetch the total number of tags in the range [VMA, address + length). */ |
| size_t granules_from_vma |
| = aarch64_mte_get_tag_granules (section->vma, |
| address - section->vma + length, |
| AARCH64_MTE_GRANULE_SIZE); |
| |
| /* Adjust the tags vector to contain the exact number of packed bytes. */ |
| gdb::byte_vector tags (((granules - 1) >> 1) + 1); |
| |
| /* Figure out the starting offset into the packed tags data. */ |
| file_ptr offset = ((granules_from_vma - granules) >> 1); |
| |
| if (!bfd_get_section_contents (section->owner, section, tags.data (), |
| offset, tags.size ())) |
| error (_("Couldn't read contents from memtag section.")); |
| |
| /* At this point, the tags are packed 2 per byte. Unpack them before |
| returning. */ |
| bool skip_first = ((granules_from_vma - granules) % 2) != 0; |
| aarch64_mte_unpack_tags (tags, skip_first); |
| |
| /* Resize to the exact number of tags that was requested. */ |
| tags.resize (granules); |
| |
| return tags; |
| } |
| |
| /* AArch64 Linux implementation of the |
| gdbarch_use_target_description_from_corefile_notes hook. */ |
| |
| static bool |
| aarch64_use_target_description_from_corefile_notes (gdbarch *gdbarch, |
| bfd *obfd) |
| { |
| /* Sanity check. */ |
| gdb_assert (obfd != nullptr); |
| |
| /* If the corefile contains any SVE or SME register data, we don't want to |
| use the target description note, as it may be incorrect. |
| |
| Currently the target description note contains a potentially incorrect |
| target description if the originating program changed the SVE or SME |
| vector lengths mid-execution. |
| |
| Once we support per-thread target description notes in the corefiles, we |
| can always trust those notes whenever they are available. */ |
| if (bfd_get_section_by_name (obfd, ".reg-aarch-sve") != nullptr |
| || bfd_get_section_by_name (obfd, ".reg-aarch-za") != nullptr |
| || bfd_get_section_by_name (obfd, ".reg-aarch-zt") != nullptr) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| aarch64_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| static const char *const stap_integer_prefixes[] = { "#", "", NULL }; |
| static const char *const stap_register_prefixes[] = { "", NULL }; |
| static const char *const stap_register_indirection_prefixes[] = { "[", |
| NULL }; |
| static const char *const stap_register_indirection_suffixes[] = { "]", |
| NULL }; |
| aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); |
| |
| tdep->lowest_pc = 0x8000; |
| |
| linux_init_abi (info, gdbarch, 1); |
| |
| set_solib_svr4_fetch_link_map_offsets (gdbarch, |
| linux_lp64_fetch_link_map_offsets); |
| |
| /* Enable TLS support. */ |
| set_gdbarch_fetch_tls_load_module_address (gdbarch, |
| svr4_fetch_objfile_link_map); |
| |
| /* Shared library handling. */ |
| set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); |
| set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); |
| |
| tramp_frame_prepend_unwinder (gdbarch, &aarch64_linux_rt_sigframe); |
| |
| /* Enable longjmp. */ |
| tdep->jb_pc = 11; |
| |
| set_gdbarch_iterate_over_regset_sections |
| (gdbarch, aarch64_linux_iterate_over_regset_sections); |
| set_gdbarch_core_read_description |
| (gdbarch, aarch64_linux_core_read_description); |
| |
| /* SystemTap related. */ |
| set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes); |
| set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes); |
| set_gdbarch_stap_register_indirection_prefixes (gdbarch, |
| stap_register_indirection_prefixes); |
| set_gdbarch_stap_register_indirection_suffixes (gdbarch, |
| stap_register_indirection_suffixes); |
| set_gdbarch_stap_is_single_operand (gdbarch, aarch64_stap_is_single_operand); |
| set_gdbarch_stap_parse_special_token (gdbarch, |
| aarch64_stap_parse_special_token); |
| |
| /* Reversible debugging, process record. */ |
| set_gdbarch_process_record (gdbarch, aarch64_process_record); |
| /* Syscall record. */ |
| tdep->aarch64_syscall_record = aarch64_linux_syscall_record; |
| |
| /* MTE-specific settings and hooks. */ |
| if (tdep->has_mte ()) |
| { |
| /* Register a hook for checking if an address is tagged or not. */ |
| set_gdbarch_tagged_address_p (gdbarch, aarch64_linux_tagged_address_p); |
| |
| set_gdbarch_report_signal_info (gdbarch, |
| aarch64_linux_report_signal_info); |
| |
| /* Core file helpers. */ |
| |
| /* Core file helper to create a memory tag section for a particular |
| PT_LOAD segment. */ |
| set_gdbarch_create_memtag_section |
| (gdbarch, aarch64_linux_create_memtag_section); |
| |
| /* Core file helper to fill a memory tag section with tag data. */ |
| set_gdbarch_fill_memtag_section |
| (gdbarch, aarch64_linux_fill_memtag_section); |
| |
| /* Core file helper to decode a memory tag section. */ |
| set_gdbarch_decode_memtag_section (gdbarch, |
| aarch64_linux_decode_memtag_section); |
| } |
| |
| /* Initialize the aarch64_linux_record_tdep. */ |
| /* These values are the size of the type that will be used in a system |
| call. They are obtained from Linux Kernel source. */ |
| aarch64_linux_record_tdep.size_pointer |
| = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; |
| aarch64_linux_record_tdep.size__old_kernel_stat = 32; |
| aarch64_linux_record_tdep.size_tms = 32; |
| aarch64_linux_record_tdep.size_loff_t = 8; |
| aarch64_linux_record_tdep.size_flock = 32; |
| aarch64_linux_record_tdep.size_oldold_utsname = 45; |
| aarch64_linux_record_tdep.size_ustat = 32; |
| aarch64_linux_record_tdep.size_old_sigaction = 32; |
| aarch64_linux_record_tdep.size_old_sigset_t = 8; |
| aarch64_linux_record_tdep.size_rlimit = 16; |
| aarch64_linux_record_tdep.size_rusage = 144; |
| aarch64_linux_record_tdep.size_timeval = 16; |
| aarch64_linux_record_tdep.size_timezone = 8; |
| aarch64_linux_record_tdep.size_old_gid_t = 2; |
| aarch64_linux_record_tdep.size_old_uid_t = 2; |
| aarch64_linux_record_tdep.size_fd_set = 128; |
| aarch64_linux_record_tdep.size_old_dirent = 280; |
| aarch64_linux_record_tdep.size_statfs = 120; |
| aarch64_linux_record_tdep.size_statfs64 = 120; |
| aarch64_linux_record_tdep.size_sockaddr = 16; |
| aarch64_linux_record_tdep.size_int |
| = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT; |
| aarch64_linux_record_tdep.size_long |
| = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; |
| aarch64_linux_record_tdep.size_ulong |
| = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; |
| aarch64_linux_record_tdep.size_msghdr = 56; |
| aarch64_linux_record_tdep.size_itimerval = 32; |
| aarch64_linux_record_tdep.size_stat = 144; |
| aarch64_linux_record_tdep.size_old_utsname = 325; |
| aarch64_linux_record_tdep.size_sysinfo = 112; |
| aarch64_linux_record_tdep.size_msqid_ds = 120; |
| aarch64_linux_record_tdep.size_shmid_ds = 112; |
| aarch64_linux_record_tdep.size_new_utsname = 390; |
| aarch64_linux_record_tdep.size_timex = 208; |
| aarch64_linux_record_tdep.size_mem_dqinfo = 24; |
| aarch64_linux_record_tdep.size_if_dqblk = 72; |
| aarch64_linux_record_tdep.size_fs_quota_stat = 80; |
| aarch64_linux_record_tdep.size_timespec = 16; |
| aarch64_linux_record_tdep.size_pollfd = 8; |
| aarch64_linux_record_tdep.size_NFS_FHSIZE = 32; |
| aarch64_linux_record_tdep.size_knfsd_fh = 132; |
| aarch64_linux_record_tdep.size_TASK_COMM_LEN = 16; |
| aarch64_linux_record_tdep.size_sigaction = 32; |
| aarch64_linux_record_tdep.size_sigset_t = 8; |
| aarch64_linux_record_tdep.size_siginfo_t = 128; |
| aarch64_linux_record_tdep.size_cap_user_data_t = 8; |
| aarch64_linux_record_tdep.size_stack_t = 24; |
| aarch64_linux_record_tdep.size_off_t = 8; |
| aarch64_linux_record_tdep.size_stat64 = 144; |
| aarch64_linux_record_tdep.size_gid_t = 4; |
| aarch64_linux_record_tdep.size_uid_t = 4; |
| aarch64_linux_record_tdep.size_PAGE_SIZE = 4096; |
| aarch64_linux_record_tdep.size_flock64 = 32; |
| aarch64_linux_record_tdep.size_user_desc = 16; |
| aarch64_linux_record_tdep.size_io_event = 32; |
| aarch64_linux_record_tdep.size_iocb = 64; |
| aarch64_linux_record_tdep.size_epoll_event = 12; |
| aarch64_linux_record_tdep.size_itimerspec = 32; |
| aarch64_linux_record_tdep.size_mq_attr = 64; |
| aarch64_linux_record_tdep.size_termios = 36; |
| aarch64_linux_record_tdep.size_termios2 = 44; |
| aarch64_linux_record_tdep.size_pid_t = 4; |
| aarch64_linux_record_tdep.size_winsize = 8; |
| aarch64_linux_record_tdep.size_serial_struct = 72; |
| aarch64_linux_record_tdep.size_serial_icounter_struct = 80; |
| aarch64_linux_record_tdep.size_hayes_esp_config = 12; |
| aarch64_linux_record_tdep.size_size_t = 8; |
| aarch64_linux_record_tdep.size_iovec = 16; |
| aarch64_linux_record_tdep.size_time_t = 8; |
| |
| /* These values are the second argument of system call "sys_ioctl". |
| They are obtained from Linux Kernel source. */ |
| aarch64_linux_record_tdep.ioctl_TCGETS = 0x5401; |
| aarch64_linux_record_tdep.ioctl_TCSETS = 0x5402; |
| aarch64_linux_record_tdep.ioctl_TCSETSW = 0x5403; |
| aarch64_linux_record_tdep.ioctl_TCSETSF = 0x5404; |
| aarch64_linux_record_tdep.ioctl_TCGETA = 0x5405; |
| aarch64_linux_record_tdep.ioctl_TCSETA = 0x5406; |
| aarch64_linux_record_tdep.ioctl_TCSETAW = 0x5407; |
| aarch64_linux_record_tdep.ioctl_TCSETAF = 0x5408; |
| aarch64_linux_record_tdep.ioctl_TCSBRK = 0x5409; |
| aarch64_linux_record_tdep.ioctl_TCXONC = 0x540a; |
| aarch64_linux_record_tdep.ioctl_TCFLSH = 0x540b; |
| aarch64_linux_record_tdep.ioctl_TIOCEXCL = 0x540c; |
| aarch64_linux_record_tdep.ioctl_TIOCNXCL = 0x540d; |
| aarch64_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e; |
| aarch64_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f; |
| aarch64_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410; |
| aarch64_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411; |
| aarch64_linux_record_tdep.ioctl_TIOCSTI = 0x5412; |
| aarch64_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413; |
| aarch64_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414; |
| aarch64_linux_record_tdep.ioctl_TIOCMGET = 0x5415; |
| aarch64_linux_record_tdep.ioctl_TIOCMBIS = 0x5416; |
| aarch64_linux_record_tdep.ioctl_TIOCMBIC = 0x5417; |
| aarch64_linux_record_tdep.ioctl_TIOCMSET = 0x5418; |
| aarch64_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419; |
| aarch64_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a; |
| aarch64_linux_record_tdep.ioctl_FIONREAD = 0x541b; |
| aarch64_linux_record_tdep.ioctl_TIOCINQ = 0x541b; |
| aarch64_linux_record_tdep.ioctl_TIOCLINUX = 0x541c; |
| aarch64_linux_record_tdep.ioctl_TIOCCONS = 0x541d; |
| aarch64_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e; |
| aarch64_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f; |
| aarch64_linux_record_tdep.ioctl_TIOCPKT = 0x5420; |
| aarch64_linux_record_tdep.ioctl_FIONBIO = 0x5421; |
| aarch64_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422; |
| aarch64_linux_record_tdep.ioctl_TIOCSETD = 0x5423; |
| aarch64_linux_record_tdep.ioctl_TIOCGETD = 0x5424; |
| aarch64_linux_record_tdep.ioctl_TCSBRKP = 0x5425; |
| aarch64_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426; |
| aarch64_linux_record_tdep.ioctl_TIOCSBRK = 0x5427; |
| aarch64_linux_record_tdep.ioctl_TIOCCBRK = 0x5428; |
| aarch64_linux_record_tdep.ioctl_TIOCGSID = 0x5429; |
| aarch64_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a; |
| aarch64_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b; |
| aarch64_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c; |
| aarch64_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d; |
| aarch64_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430; |
| aarch64_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431; |
| aarch64_linux_record_tdep.ioctl_FIONCLEX = 0x5450; |
| aarch64_linux_record_tdep.ioctl_FIOCLEX = 0x5451; |
| aarch64_linux_record_tdep.ioctl_FIOASYNC = 0x5452; |
| aarch64_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453; |
| aarch64_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454; |
| aarch64_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455; |
| aarch64_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456; |
| aarch64_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457; |
| aarch64_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458; |
| aarch64_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459; |
| aarch64_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a; |
| aarch64_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b; |
| aarch64_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c; |
| aarch64_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d; |
| aarch64_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e; |
| aarch64_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f; |
| aarch64_linux_record_tdep.ioctl_FIOQSIZE = 0x5460; |
| |
| /* These values are the second argument of system call "sys_fcntl" |
| and "sys_fcntl64". They are obtained from Linux Kernel source. */ |
| aarch64_linux_record_tdep.fcntl_F_GETLK = 5; |
| aarch64_linux_record_tdep.fcntl_F_GETLK64 = 12; |
| aarch64_linux_record_tdep.fcntl_F_SETLK64 = 13; |
| aarch64_linux_record_tdep.fcntl_F_SETLKW64 = 14; |
| |
| /* The AArch64 syscall calling convention: reg x0-x6 for arguments, |
| reg x8 for syscall number and return value in reg x0. */ |
| aarch64_linux_record_tdep.arg1 = AARCH64_X0_REGNUM + 0; |
| aarch64_linux_record_tdep.arg2 = AARCH64_X0_REGNUM + 1; |
| aarch64_linux_record_tdep.arg3 = AARCH64_X0_REGNUM + 2; |
| aarch64_linux_record_tdep.arg4 = AARCH64_X0_REGNUM + 3; |
| aarch64_linux_record_tdep.arg5 = AARCH64_X0_REGNUM + 4; |
| aarch64_linux_record_tdep.arg6 = AARCH64_X0_REGNUM + 5; |
| aarch64_linux_record_tdep.arg7 = AARCH64_X0_REGNUM + 6; |
| |
| /* `catch syscall' */ |
| set_xml_syscall_file_name (gdbarch, "syscalls/aarch64-linux.xml"); |
| set_gdbarch_get_syscall_number (gdbarch, aarch64_linux_get_syscall_number); |
| |
| /* Displaced stepping. */ |
| set_gdbarch_max_insn_length (gdbarch, 4); |
| set_gdbarch_displaced_step_buffer_length |
| (gdbarch, 4 * AARCH64_DISPLACED_MODIFIED_INSNS); |
| set_gdbarch_displaced_step_copy_insn (gdbarch, |
| aarch64_displaced_step_copy_insn); |
| set_gdbarch_displaced_step_fixup (gdbarch, aarch64_displaced_step_fixup); |
| set_gdbarch_displaced_step_hw_singlestep (gdbarch, |
| aarch64_displaced_step_hw_singlestep); |
| |
| set_gdbarch_gcc_target_options (gdbarch, aarch64_linux_gcc_target_options); |
| |
| /* Hook to decide if the target description should be obtained from |
| corefile target description note(s) or inferred from the corefile |
| sections. */ |
| set_gdbarch_use_target_description_from_corefile_notes (gdbarch, |
| aarch64_use_target_description_from_corefile_notes); |
| } |
| |
| #if GDB_SELF_TEST |
| |
| namespace selftests { |
| |
| /* Verify functions to read and write logical tags. */ |
| |
| static void |
| aarch64_linux_ltag_tests (void) |
| { |
| /* We have 4 bits of tags, but we test writing all the bits of the top |
| byte of address. */ |
| for (int i = 0; i < 1 << 8; i++) |
| { |
| CORE_ADDR addr = ((CORE_ADDR) i << 56) | 0xdeadbeef; |
| SELF_CHECK (aarch64_mte_get_ltag (addr) == (i & 0xf)); |
| |
| addr = aarch64_mte_set_ltag (0xdeadbeef, i); |
| SELF_CHECK (addr = ((CORE_ADDR) (i & 0xf) << 56) | 0xdeadbeef); |
| } |
| } |
| |
| } // namespace selftests |
| #endif /* GDB_SELF_TEST */ |
| |
| void _initialize_aarch64_linux_tdep (); |
| void |
| _initialize_aarch64_linux_tdep () |
| { |
| gdbarch_register_osabi (bfd_arch_aarch64, 0, GDB_OSABI_LINUX, |
| aarch64_linux_init_abi); |
| |
| #if GDB_SELF_TEST |
| selftests::register_test ("aarch64-linux-tagged-address", |
| selftests::aarch64_linux_ltag_tests); |
| #endif |
| } |