blob: 1cf5f486bd806a6f5d26109569e07b7ffc1721be [file] [log] [blame]
/* Support routines for manipulating internal types for GDB.
Copyright (C) 1992-2024 Free Software Foundation, Inc.
Contributed by Cygnus Support, using pieces from other GDB modules.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "bfd.h"
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "expression.h"
#include "language.h"
#include "target.h"
#include "value.h"
#include "demangle.h"
#include "complaints.h"
#include "cli/cli-cmds.h"
#include "cp-abi.h"
#include "hashtab.h"
#include "cp-support.h"
#include "bcache.h"
#include "dwarf2/loc.h"
#include "dwarf2/read.h"
#include "gdbcore.h"
#include "floatformat.h"
#include "f-lang.h"
#include <algorithm>
#include "gmp-utils.h"
#include "rust-lang.h"
#include "ada-lang.h"
/* The value of an invalid conversion badness. */
#define INVALID_CONVERSION 100
static struct dynamic_prop_list *
copy_dynamic_prop_list (struct obstack *, struct dynamic_prop_list *);
/* Initialize BADNESS constants. */
const struct rank LENGTH_MISMATCH_BADNESS = {INVALID_CONVERSION,0};
const struct rank TOO_FEW_PARAMS_BADNESS = {INVALID_CONVERSION,0};
const struct rank INCOMPATIBLE_TYPE_BADNESS = {INVALID_CONVERSION,0};
const struct rank EXACT_MATCH_BADNESS = {0,0};
const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
const struct rank CV_CONVERSION_BADNESS = {1, 0};
const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
const struct rank BOOL_CONVERSION_BADNESS = {3,0};
const struct rank BASE_CONVERSION_BADNESS = {2,0};
const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
const struct rank VARARG_BADNESS = {4, 0};
/* Floatformat pairs. */
const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_half_big,
&floatformat_ieee_half_little
};
const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_single_big,
&floatformat_ieee_single_little
};
const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_double_big,
&floatformat_ieee_double_little
};
const struct floatformat *floatformats_ieee_quad[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_quad_big,
&floatformat_ieee_quad_little
};
const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_double_big,
&floatformat_ieee_double_littlebyte_bigword
};
const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
&floatformat_i387_ext,
&floatformat_i387_ext
};
const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
&floatformat_m68881_ext,
&floatformat_m68881_ext
};
const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
&floatformat_arm_ext_big,
&floatformat_arm_ext_littlebyte_bigword
};
const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ia64_spill_big,
&floatformat_ia64_spill_little
};
const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
&floatformat_vax_f,
&floatformat_vax_f
};
const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
&floatformat_vax_d,
&floatformat_vax_d
};
const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ibm_long_double_big,
&floatformat_ibm_long_double_little
};
const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
&floatformat_bfloat16_big,
&floatformat_bfloat16_little
};
/* Should opaque types be resolved? */
static bool opaque_type_resolution = true;
/* See gdbtypes.h. */
unsigned int overload_debug = 0;
/* A flag to enable strict type checking. */
static bool strict_type_checking = true;
/* A function to show whether opaque types are resolved. */
static void
show_opaque_type_resolution (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
gdb_printf (file, _("Resolution of opaque struct/class/union types "
"(if set before loading symbols) is %s.\n"),
value);
}
/* A function to show whether C++ overload debugging is enabled. */
static void
show_overload_debug (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
gdb_printf (file, _("Debugging of C++ overloading is %s.\n"),
value);
}
/* A function to show the status of strict type checking. */
static void
show_strict_type_checking (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
gdb_printf (file, _("Strict type checking is %s.\n"), value);
}
/* Helper function to initialize a newly allocated type. Set type code
to CODE and initialize the type-specific fields accordingly. */
static void
set_type_code (struct type *type, enum type_code code)
{
type->set_code (code);
switch (code)
{
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_NAMESPACE:
INIT_CPLUS_SPECIFIC (type);
break;
case TYPE_CODE_FLT:
TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
break;
case TYPE_CODE_FUNC:
INIT_FUNC_SPECIFIC (type);
break;
case TYPE_CODE_FIXED_POINT:
INIT_FIXED_POINT_SPECIFIC (type);
break;
}
}
/* See gdbtypes.h. */
type *
type_allocator::new_type ()
{
if (m_smash)
return m_data.type;
obstack *obstack = (m_is_objfile
? &m_data.objfile->objfile_obstack
: gdbarch_obstack (m_data.gdbarch));
/* Alloc the structure and start off with all fields zeroed. */
struct type *type = OBSTACK_ZALLOC (obstack, struct type);
TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (obstack, struct main_type);
TYPE_MAIN_TYPE (type)->m_lang = m_lang;
if (m_is_objfile)
{
OBJSTAT (m_data.objfile, n_types++);
type->set_owner (m_data.objfile);
}
else
type->set_owner (m_data.gdbarch);
/* Initialize the fields that might not be zero. */
type->set_code (TYPE_CODE_UNDEF);
TYPE_CHAIN (type) = type; /* Chain back to itself. */
return type;
}
/* See gdbtypes.h. */
type *
type_allocator::new_type (enum type_code code, int bit, const char *name)
{
struct type *type = new_type ();
set_type_code (type, code);
gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
type->set_length (bit / TARGET_CHAR_BIT);
if (name != nullptr)
{
obstack *obstack = (m_is_objfile
? &m_data.objfile->objfile_obstack
: gdbarch_obstack (m_data.gdbarch));
type->set_name (obstack_strdup (obstack, name));
}
return type;
}
/* See gdbtypes.h. */
gdbarch *
type_allocator::arch ()
{
if (m_smash)
return m_data.type->arch ();
if (m_is_objfile)
return m_data.objfile->arch ();
return m_data.gdbarch;
}
/* See gdbtypes.h. */
gdbarch *
type::arch () const
{
struct gdbarch *arch;
if (this->is_objfile_owned ())
arch = this->objfile_owner ()->arch ();
else
arch = this->arch_owner ();
/* The ARCH can be NULL if TYPE is associated with neither an objfile nor
a gdbarch, however, this is very rare, and even then, in most cases
that type::arch is called, we assume that a non-NULL value is
returned. */
gdb_assert (arch != nullptr);
return arch;
}
/* See gdbtypes.h. */
struct type *
get_target_type (struct type *type)
{
if (type != NULL)
{
type = type->target_type ();
if (type != NULL)
type = check_typedef (type);
}
return type;
}
/* See gdbtypes.h. */
unsigned int
type_length_units (struct type *type)
{
int unit_size = gdbarch_addressable_memory_unit_size (type->arch ());
return type->length () / unit_size;
}
/* Alloc a new type instance structure, fill it with some defaults,
and point it at OLDTYPE. Allocate the new type instance from the
same place as OLDTYPE. */
static struct type *
alloc_type_instance (struct type *oldtype)
{
struct type *type;
/* Allocate the structure. */
if (!oldtype->is_objfile_owned ())
type = GDBARCH_OBSTACK_ZALLOC (oldtype->arch_owner (), struct type);
else
type = OBSTACK_ZALLOC (&oldtype->objfile_owner ()->objfile_obstack,
struct type);
TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
return type;
}
/* Clear all remnants of the previous type at TYPE, in preparation for
replacing it with something else. Preserve owner information. */
static void
smash_type (struct type *type)
{
bool objfile_owned = type->is_objfile_owned ();
objfile *objfile = type->objfile_owner ();
gdbarch *arch = type->arch_owner ();
memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
/* Restore owner information. */
if (objfile_owned)
type->set_owner (objfile);
else
type->set_owner (arch);
/* For now, delete the rings. */
TYPE_CHAIN (type) = type;
/* For now, leave the pointer/reference types alone. */
}
/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
to a pointer to memory where the pointer type should be stored.
If *TYPEPTR is zero, update it to point to the pointer type we return.
We allocate new memory if needed. */
struct type *
make_pointer_type (struct type *type, struct type **typeptr)
{
struct type *ntype; /* New type */
struct type *chain;
ntype = TYPE_POINTER_TYPE (type);
if (ntype)
{
if (typeptr == 0)
return ntype; /* Don't care about alloc,
and have new type. */
else if (*typeptr == 0)
{
*typeptr = ntype; /* Tracking alloc, and have new type. */
return ntype;
}
}
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = type_allocator (type).new_type ();
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
chain = TYPE_CHAIN (ntype);
smash_type (ntype);
TYPE_CHAIN (ntype) = chain;
}
ntype->set_target_type (type);
TYPE_POINTER_TYPE (type) = ntype;
/* FIXME! Assumes the machine has only one representation for pointers! */
ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT);
ntype->set_code (TYPE_CODE_PTR);
/* Mark pointers as unsigned. The target converts between pointers
and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
gdbarch_address_to_pointer. */
ntype->set_is_unsigned (true);
/* Update the length of all the other variants of this type. */
chain = TYPE_CHAIN (ntype);
while (chain != ntype)
{
chain->set_length (ntype->length ());
chain = TYPE_CHAIN (chain);
}
return ntype;
}
/* Given a type TYPE, return a type of pointers to that type.
May need to construct such a type if this is the first use. */
struct type *
lookup_pointer_type (struct type *type)
{
return make_pointer_type (type, (struct type **) 0);
}
/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
points to a pointer to memory where the reference type should be
stored. If *TYPEPTR is zero, update it to point to the reference
type we return. We allocate new memory if needed. REFCODE denotes
the kind of reference type to lookup (lvalue or rvalue reference). */
struct type *
make_reference_type (struct type *type, struct type **typeptr,
enum type_code refcode)
{
struct type *ntype; /* New type */
struct type **reftype;
struct type *chain;
gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
: TYPE_RVALUE_REFERENCE_TYPE (type));
if (ntype)
{
if (typeptr == 0)
return ntype; /* Don't care about alloc,
and have new type. */
else if (*typeptr == 0)
{
*typeptr = ntype; /* Tracking alloc, and have new type. */
return ntype;
}
}
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = type_allocator (type).new_type ();
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
chain = TYPE_CHAIN (ntype);
smash_type (ntype);
TYPE_CHAIN (ntype) = chain;
}
ntype->set_target_type (type);
reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
: &TYPE_RVALUE_REFERENCE_TYPE (type));
*reftype = ntype;
/* FIXME! Assume the machine has only one representation for
references, and that it matches the (only) representation for
pointers! */
ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT);
ntype->set_code (refcode);
*reftype = ntype;
/* Update the length of all the other variants of this type. */
chain = TYPE_CHAIN (ntype);
while (chain != ntype)
{
chain->set_length (ntype->length ());
chain = TYPE_CHAIN (chain);
}
return ntype;
}
/* Same as above, but caller doesn't care about memory allocation
details. */
struct type *
lookup_reference_type (struct type *type, enum type_code refcode)
{
return make_reference_type (type, (struct type **) 0, refcode);
}
/* Lookup the lvalue reference type for the type TYPE. */
struct type *
lookup_lvalue_reference_type (struct type *type)
{
return lookup_reference_type (type, TYPE_CODE_REF);
}
/* Lookup the rvalue reference type for the type TYPE. */
struct type *
lookup_rvalue_reference_type (struct type *type)
{
return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
}
/* Lookup a function type that returns type TYPE. TYPEPTR, if
nonzero, points to a pointer to memory where the function type
should be stored. If *TYPEPTR is zero, update it to point to the
function type we return. We allocate new memory if needed. */
struct type *
make_function_type (struct type *type, struct type **typeptr)
{
struct type *ntype; /* New type */
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = type_allocator (type).new_type ();
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
smash_type (ntype);
}
ntype->set_target_type (type);
ntype->set_length (1);
ntype->set_code (TYPE_CODE_FUNC);
INIT_FUNC_SPECIFIC (ntype);
return ntype;
}
/* Given a type TYPE, return a type of functions that return that type.
May need to construct such a type if this is the first use. */
struct type *
lookup_function_type (struct type *type)
{
return make_function_type (type, (struct type **) 0);
}
/* Given a type TYPE and argument types, return the appropriate
function type. If the final type in PARAM_TYPES is NULL, make a
varargs function. */
struct type *
lookup_function_type_with_arguments (struct type *type,
int nparams,
struct type **param_types)
{
struct type *fn = make_function_type (type, (struct type **) 0);
int i;
if (nparams > 0)
{
if (param_types[nparams - 1] == NULL)
{
--nparams;
fn->set_has_varargs (true);
}
else if (check_typedef (param_types[nparams - 1])->code ()
== TYPE_CODE_VOID)
{
--nparams;
/* Caller should have ensured this. */
gdb_assert (nparams == 0);
fn->set_is_prototyped (true);
}
else
fn->set_is_prototyped (true);
}
fn->alloc_fields (nparams);
for (i = 0; i < nparams; ++i)
fn->field (i).set_type (param_types[i]);
return fn;
}
/* Identify address space identifier by name -- return a
type_instance_flags. */
type_instance_flags
address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
const char *space_identifier)
{
type_instance_flags type_flags;
/* Check for known address space delimiters. */
if (!strcmp (space_identifier, "code"))
return TYPE_INSTANCE_FLAG_CODE_SPACE;
else if (!strcmp (space_identifier, "data"))
return TYPE_INSTANCE_FLAG_DATA_SPACE;
else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
&& gdbarch_address_class_name_to_type_flags (gdbarch,
space_identifier,
&type_flags))
return type_flags;
else
error (_("Unknown address space specifier: \"%s\""), space_identifier);
}
/* Identify address space identifier by type_instance_flags and return
the string version of the adress space name. */
const char *
address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
type_instance_flags space_flag)
{
if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
return "code";
else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
return "data";
else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
&& gdbarch_address_class_type_flags_to_name_p (gdbarch))
return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
else
return NULL;
}
/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
If STORAGE is non-NULL, create the new type instance there.
STORAGE must be in the same obstack as TYPE. */
static struct type *
make_qualified_type (struct type *type, type_instance_flags new_flags,
struct type *storage)
{
struct type *ntype;
ntype = type;
do
{
if (ntype->instance_flags () == new_flags)
return ntype;
ntype = TYPE_CHAIN (ntype);
}
while (ntype != type);
/* Create a new type instance. */
if (storage == NULL)
ntype = alloc_type_instance (type);
else
{
/* If STORAGE was provided, it had better be in the same objfile
as TYPE. Otherwise, we can't link it into TYPE's cv chain:
if one objfile is freed and the other kept, we'd have
dangling pointers. */
gdb_assert (type->objfile_owner () == storage->objfile_owner ());
ntype = storage;
TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
TYPE_CHAIN (ntype) = ntype;
}
/* Pointers or references to the original type are not relevant to
the new type. */
TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
/* Chain the new qualified type to the old type. */
TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
TYPE_CHAIN (type) = ntype;
/* Now set the instance flags and return the new type. */
ntype->set_instance_flags (new_flags);
/* Set length of new type to that of the original type. */
ntype->set_length (type->length ());
return ntype;
}
/* Make an address-space-delimited variant of a type -- a type that
is identical to the one supplied except that it has an address
space attribute attached to it (such as "code" or "data").
The space attributes "code" and "data" are for Harvard
architectures. The address space attributes are for architectures
which have alternately sized pointers or pointers with alternate
representations. */
struct type *
make_type_with_address_space (struct type *type,
type_instance_flags space_flag)
{
type_instance_flags new_flags = ((type->instance_flags ()
& ~(TYPE_INSTANCE_FLAG_CODE_SPACE
| TYPE_INSTANCE_FLAG_DATA_SPACE
| TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
| space_flag);
return make_qualified_type (type, new_flags, NULL);
}
/* Make a "c-v" variant of a type -- a type that is identical to the
one supplied except that it may have const or volatile attributes
CNST is a flag for setting the const attribute
VOLTL is a flag for setting the volatile attribute
TYPE is the base type whose variant we are creating.
If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
storage to hold the new qualified type; *TYPEPTR and TYPE must be
in the same objfile. Otherwise, allocate fresh memory for the new
type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
new type we construct. */
struct type *
make_cv_type (int cnst, int voltl,
struct type *type,
struct type **typeptr)
{
struct type *ntype; /* New type */
type_instance_flags new_flags = (type->instance_flags ()
& ~(TYPE_INSTANCE_FLAG_CONST
| TYPE_INSTANCE_FLAG_VOLATILE));
if (cnst)
new_flags |= TYPE_INSTANCE_FLAG_CONST;
if (voltl)
new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
if (typeptr && *typeptr != NULL)
{
/* TYPE and *TYPEPTR must be in the same objfile. We can't have
a C-V variant chain that threads across objfiles: if one
objfile gets freed, then the other has a broken C-V chain.
This code used to try to copy over the main type from TYPE to
*TYPEPTR if they were in different objfiles, but that's
wrong, too: TYPE may have a field list or member function
lists, which refer to types of their own, etc. etc. The
whole shebang would need to be copied over recursively; you
can't have inter-objfile pointers. The only thing to do is
to leave stub types as stub types, and look them up afresh by
name each time you encounter them. */
gdb_assert ((*typeptr)->objfile_owner () == type->objfile_owner ());
}
ntype = make_qualified_type (type, new_flags,
typeptr ? *typeptr : NULL);
if (typeptr != NULL)
*typeptr = ntype;
return ntype;
}
/* Make a 'restrict'-qualified version of TYPE. */
struct type *
make_restrict_type (struct type *type)
{
return make_qualified_type (type,
(type->instance_flags ()
| TYPE_INSTANCE_FLAG_RESTRICT),
NULL);
}
/* Make a type without const, volatile, or restrict. */
struct type *
make_unqualified_type (struct type *type)
{
return make_qualified_type (type,
(type->instance_flags ()
& ~(TYPE_INSTANCE_FLAG_CONST
| TYPE_INSTANCE_FLAG_VOLATILE
| TYPE_INSTANCE_FLAG_RESTRICT)),
NULL);
}
/* Make a '_Atomic'-qualified version of TYPE. */
struct type *
make_atomic_type (struct type *type)
{
return make_qualified_type (type,
(type->instance_flags ()
| TYPE_INSTANCE_FLAG_ATOMIC),
NULL);
}
/* Replace the contents of ntype with the type *type. This changes the
contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
the changes are propagated to all types in the TYPE_CHAIN.
In order to build recursive types, it's inevitable that we'll need
to update types in place --- but this sort of indiscriminate
smashing is ugly, and needs to be replaced with something more
controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
clear if more steps are needed. */
void
replace_type (struct type *ntype, struct type *type)
{
struct type *chain;
/* These two types had better be in the same objfile. Otherwise,
the assignment of one type's main type structure to the other
will produce a type with references to objects (names; field
lists; etc.) allocated on an objfile other than its own. */
gdb_assert (ntype->objfile_owner () == type->objfile_owner ());
*TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
/* The type length is not a part of the main type. Update it for
each type on the variant chain. */
chain = ntype;
do
{
/* Assert that this element of the chain has no address-class bits
set in its flags. Such type variants might have type lengths
which are supposed to be different from the non-address-class
variants. This assertion shouldn't ever be triggered because
symbol readers which do construct address-class variants don't
call replace_type(). */
gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
chain->set_length (type->length ());
chain = TYPE_CHAIN (chain);
}
while (ntype != chain);
/* Assert that the two types have equivalent instance qualifiers.
This should be true for at least all of our debug readers. */
gdb_assert (ntype->instance_flags () == type->instance_flags ());
}
/* Implement direct support for MEMBER_TYPE in GNU C++.
May need to construct such a type if this is the first use.
The TYPE is the type of the member. The DOMAIN is the type
of the aggregate that the member belongs to. */
struct type *
lookup_memberptr_type (struct type *type, struct type *domain)
{
struct type *mtype;
mtype = type_allocator (type).new_type ();
smash_to_memberptr_type (mtype, domain, type);
return mtype;
}
/* Return a pointer-to-method type, for a method of type TO_TYPE. */
struct type *
lookup_methodptr_type (struct type *to_type)
{
struct type *mtype;
mtype = type_allocator (to_type).new_type ();
smash_to_methodptr_type (mtype, to_type);
return mtype;
}
/* See gdbtypes.h. */
bool
operator== (const dynamic_prop &l, const dynamic_prop &r)
{
if (l.kind () != r.kind ())
return false;
switch (l.kind ())
{
case PROP_UNDEFINED:
return true;
case PROP_CONST:
return l.const_val () == r.const_val ();
case PROP_ADDR_OFFSET:
case PROP_LOCEXPR:
case PROP_LOCLIST:
return l.baton () == r.baton ();
case PROP_VARIANT_PARTS:
return l.variant_parts () == r.variant_parts ();
case PROP_TYPE:
return l.original_type () == r.original_type ();
}
gdb_assert_not_reached ("unhandled dynamic_prop kind");
}
/* See gdbtypes.h. */
bool
operator== (const range_bounds &l, const range_bounds &r)
{
#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
return (FIELD_EQ (low)
&& FIELD_EQ (high)
&& FIELD_EQ (flag_upper_bound_is_count)
&& FIELD_EQ (flag_bound_evaluated)
&& FIELD_EQ (bias));
#undef FIELD_EQ
}
/* See gdbtypes.h. */
struct type *
create_range_type (type_allocator &alloc, struct type *index_type,
const struct dynamic_prop *low_bound,
const struct dynamic_prop *high_bound,
LONGEST bias)
{
/* The INDEX_TYPE should be a type capable of holding the upper and lower
bounds, as such a zero sized, or void type makes no sense. */
gdb_assert (index_type->code () != TYPE_CODE_VOID);
gdb_assert (index_type->length () > 0);
struct type *result_type = alloc.new_type ();
result_type->set_code (TYPE_CODE_RANGE);
result_type->set_target_type (index_type);
if (index_type->is_stub ())
result_type->set_target_is_stub (true);
else
result_type->set_length (check_typedef (index_type)->length ());
range_bounds *bounds
= (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
bounds->low = *low_bound;
bounds->high = *high_bound;
bounds->bias = bias;
bounds->stride.set_const_val (0);
result_type->set_bounds (bounds);
if (index_type->code () == TYPE_CODE_FIXED_POINT)
result_type->set_is_unsigned (index_type->is_unsigned ());
else if (index_type->is_unsigned ())
{
/* If the underlying type is unsigned, then the range
necessarily is. */
result_type->set_is_unsigned (true);
}
/* Otherwise, the signed-ness of a range type can't simply be copied
from the underlying type. Consider a case where the underlying
type is 'int', but the range type can hold 0..65535, and where
the range is further specified to fit into 16 bits. In this
case, if we copy the underlying type's sign, then reading some
range values will cause an unwanted sign extension. So, we have
some heuristics here instead. */
else if (low_bound->is_constant () && low_bound->const_val () >= 0)
{
result_type->set_is_unsigned (true);
/* Ada allows the declaration of range types whose upper bound is
less than the lower bound, so checking the lower bound is not
enough. Make sure we do not mark a range type whose upper bound
is negative as unsigned. */
if (high_bound->is_constant () && high_bound->const_val () < 0)
result_type->set_is_unsigned (false);
}
result_type->set_endianity_is_not_default
(index_type->endianity_is_not_default ());
return result_type;
}
/* See gdbtypes.h. */
struct type *
create_range_type_with_stride (type_allocator &alloc,
struct type *index_type,
const struct dynamic_prop *low_bound,
const struct dynamic_prop *high_bound,
LONGEST bias,
const struct dynamic_prop *stride,
bool byte_stride_p)
{
struct type *result_type = create_range_type (alloc, index_type, low_bound,
high_bound, bias);
gdb_assert (stride != nullptr);
result_type->bounds ()->stride = *stride;
result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
return result_type;
}
/* See gdbtypes.h. */
struct type *
create_static_range_type (type_allocator &alloc, struct type *index_type,
LONGEST low_bound, LONGEST high_bound)
{
struct dynamic_prop low, high;
low.set_const_val (low_bound);
high.set_const_val (high_bound);
struct type *result_type = create_range_type (alloc, index_type,
&low, &high, 0);
return result_type;
}
/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
are static, otherwise returns 0. */
static bool
has_static_range (const struct range_bounds *bounds)
{
/* If the range doesn't have a defined stride then its stride field will
be initialized to the constant 0. */
return (bounds->low.is_constant ()
&& bounds->high.is_constant ()
&& bounds->stride.is_constant ());
}
/* See gdbtypes.h. */
std::optional<LONGEST>
get_discrete_low_bound (struct type *type)
{
type = check_typedef (type);
switch (type->code ())
{
case TYPE_CODE_RANGE:
{
/* This function only works for ranges with a constant low bound. */
if (!type->bounds ()->low.is_constant ())
return {};
LONGEST low = type->bounds ()->low.const_val ();
if (type->target_type ()->code () == TYPE_CODE_ENUM)
{
std::optional<LONGEST> low_pos
= discrete_position (type->target_type (), low);
if (low_pos.has_value ())
low = *low_pos;
}
return low;
}
case TYPE_CODE_ENUM:
{
if (type->num_fields () > 0)
{
/* The enums may not be sorted by value, so search all
entries. */
LONGEST low = type->field (0).loc_enumval ();
for (int i = 0; i < type->num_fields (); i++)
{
if (type->field (i).loc_enumval () < low)
low = type->field (i).loc_enumval ();
}
return low;
}
else
return 0;
}
case TYPE_CODE_BOOL:
return 0;
case TYPE_CODE_INT:
if (type->length () > sizeof (LONGEST)) /* Too big */
return {};
if (!type->is_unsigned ())
return -(1 << (type->length () * TARGET_CHAR_BIT - 1));
[[fallthrough]];
case TYPE_CODE_CHAR:
return 0;
default:
return {};
}
}
/* See gdbtypes.h. */
std::optional<LONGEST>
get_discrete_high_bound (struct type *type)
{
type = check_typedef (type);
switch (type->code ())
{
case TYPE_CODE_RANGE:
{
/* This function only works for ranges with a constant high bound. */
if (!type->bounds ()->high.is_constant ())
return {};
LONGEST high = type->bounds ()->high.const_val ();
if (type->target_type ()->code () == TYPE_CODE_ENUM)
{
std::optional<LONGEST> high_pos
= discrete_position (type->target_type (), high);
if (high_pos.has_value ())
high = *high_pos;
}
return high;
}
case TYPE_CODE_ENUM:
{
if (type->num_fields () > 0)
{
/* The enums may not be sorted by value, so search all
entries. */
LONGEST high = type->field (0).loc_enumval ();
for (int i = 0; i < type->num_fields (); i++)
{
if (type->field (i).loc_enumval () > high)
high = type->field (i).loc_enumval ();
}
return high;
}
else
return -1;
}
case TYPE_CODE_BOOL:
return 1;
case TYPE_CODE_INT:
if (type->length () > sizeof (LONGEST)) /* Too big */
return {};
if (!type->is_unsigned ())
{
LONGEST low = -(1 << (type->length () * TARGET_CHAR_BIT - 1));
return -low - 1;
}
[[fallthrough]];
case TYPE_CODE_CHAR:
{
/* This round-about calculation is to avoid shifting by
type->length () * TARGET_CHAR_BIT, which will not work
if type->length () == sizeof (LONGEST). */
LONGEST high = 1 << (type->length () * TARGET_CHAR_BIT - 1);
return (high - 1) | high;
}
default:
return {};
}
}
/* See gdbtypes.h. */
bool
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
{
std::optional<LONGEST> low = get_discrete_low_bound (type);
if (!low.has_value ())
return false;
std::optional<LONGEST> high = get_discrete_high_bound (type);
if (!high.has_value ())
return false;
*lowp = *low;
*highp = *high;
return true;
}
/* See gdbtypes.h */
bool
get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
{
struct type *index = type->index_type ();
LONGEST low = 0;
LONGEST high = 0;
if (index == NULL)
return false;
if (!get_discrete_bounds (index, &low, &high))
return false;
if (low_bound)
*low_bound = low;
if (high_bound)
*high_bound = high;
return true;
}
/* Assuming that TYPE is a discrete type and VAL is a valid integer
representation of a value of this type, save the corresponding
position number in POS.
Its differs from VAL only in the case of enumeration types. In
this case, the position number of the value of the first listed
enumeration literal is zero; the position number of the value of
each subsequent enumeration literal is one more than that of its
predecessor in the list.
Return 1 if the operation was successful. Return zero otherwise,
in which case the value of POS is unmodified.
*/
std::optional<LONGEST>
discrete_position (struct type *type, LONGEST val)
{
if (type->code () == TYPE_CODE_RANGE)
type = type->target_type ();
if (type->code () == TYPE_CODE_ENUM)
{
int i;
for (i = 0; i < type->num_fields (); i += 1)
{
if (val == type->field (i).loc_enumval ())
return i;
}
/* Invalid enumeration value. */
return {};
}
else
return val;
}
/* If the array TYPE has static bounds calculate and update its
size, then return true. Otherwise return false and leave TYPE
unchanged. */
static bool
update_static_array_size (struct type *type)
{
gdb_assert (type->code () == TYPE_CODE_ARRAY);
struct type *range_type = type->index_type ();
if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
&& has_static_range (range_type->bounds ())
&& (!type_not_associated (type)
&& !type_not_allocated (type)))
{
LONGEST low_bound, high_bound;
int stride;
struct type *element_type;
stride = type->bit_stride ();
if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
low_bound = high_bound = 0;
element_type = check_typedef (type->target_type ());
/* Be careful when setting the array length. Ada arrays can be
empty arrays with the high_bound being smaller than the low_bound.
In such cases, the array length should be zero. */
if (high_bound < low_bound)
type->set_length (0);
else if (stride != 0)
{
/* Ensure that the type length is always positive, even in the
case where (for example in Fortran) we have a negative
stride. It is possible to have a single element array with a
negative stride in Fortran (this doesn't mean anything
special, it's still just a single element array) so do
consider that case when touching this code. */
LONGEST element_count = std::abs (high_bound - low_bound + 1);
type->set_length (((std::abs (stride) * element_count) + 7) / 8);
}
else
type->set_length (element_type->length ()
* (high_bound - low_bound + 1));
/* If this array's element is itself an array with a bit stride,
then we want to update this array's bit stride to reflect the
size of the sub-array. Otherwise, we'll end up using the
wrong size when trying to find elements of the outer
array. */
if (element_type->code () == TYPE_CODE_ARRAY
&& (stride != 0 || element_type->is_multi_dimensional ())
&& element_type->length () != 0
&& element_type->field (0).bitsize () != 0
&& get_array_bounds (element_type, &low_bound, &high_bound)
&& high_bound >= low_bound)
type->field (0).set_bitsize
((high_bound - low_bound + 1)
* element_type->field (0).bitsize ());
return true;
}
return false;
}
/* See gdbtypes.h. */
struct type *
create_array_type_with_stride (type_allocator &alloc,
struct type *element_type,
struct type *range_type,
struct dynamic_prop *byte_stride_prop,
unsigned int bit_stride)
{
if (byte_stride_prop != nullptr && byte_stride_prop->is_constant ())
{
/* The byte stride is actually not dynamic. Pretend we were
called with bit_stride set instead of byte_stride_prop.
This will give us the same result type, while avoiding
the need to handle this as a special case. */
bit_stride = byte_stride_prop->const_val () * 8;
byte_stride_prop = NULL;
}
struct type *result_type = alloc.new_type ();
result_type->set_code (TYPE_CODE_ARRAY);
result_type->set_target_type (element_type);
result_type->alloc_fields (1);
result_type->set_index_type (range_type);
if (byte_stride_prop != NULL)
result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
else if (bit_stride > 0)
result_type->field (0).set_bitsize (bit_stride);
if (!update_static_array_size (result_type))
{
/* This type is dynamic and its length needs to be computed
on demand. In the meantime, avoid leaving the TYPE_LENGTH
undefined by setting it to zero. Although we are not expected
to trust TYPE_LENGTH in this case, setting the size to zero
allows us to avoid allocating objects of random sizes in case
we accidently do. */
result_type->set_length (0);
}
/* TYPE_TARGET_STUB will take care of zero length arrays. */
if (result_type->length () == 0)
result_type->set_target_is_stub (true);
return result_type;
}
/* See gdbtypes.h. */
struct type *
create_array_type (type_allocator &alloc,
struct type *element_type,
struct type *range_type)
{
return create_array_type_with_stride (alloc, element_type,
range_type, NULL, 0);
}
struct type *
lookup_array_range_type (struct type *element_type,
LONGEST low_bound, LONGEST high_bound)
{
struct type *index_type;
struct type *range_type;
type_allocator alloc (element_type);
index_type = builtin_type (element_type->arch ())->builtin_int;
range_type = create_static_range_type (alloc, index_type,
low_bound, high_bound);
return create_array_type (alloc, element_type, range_type);
}
/* See gdbtypes.h. */
struct type *
create_string_type (type_allocator &alloc,
struct type *string_char_type,
struct type *range_type)
{
struct type *result_type = create_array_type (alloc,
string_char_type,
range_type);
result_type->set_code (TYPE_CODE_STRING);
return result_type;
}
struct type *
lookup_string_range_type (struct type *string_char_type,
LONGEST low_bound, LONGEST high_bound)
{
struct type *result_type;
result_type = lookup_array_range_type (string_char_type,
low_bound, high_bound);
result_type->set_code (TYPE_CODE_STRING);
return result_type;
}
struct type *
create_set_type (type_allocator &alloc, struct type *domain_type)
{
struct type *result_type = alloc.new_type ();
result_type->set_code (TYPE_CODE_SET);
result_type->alloc_fields (1);
if (!domain_type->is_stub ())
{
LONGEST low_bound, high_bound, bit_length;
if (!get_discrete_bounds (domain_type, &low_bound, &high_bound))
low_bound = high_bound = 0;
bit_length = high_bound - low_bound + 1;
result_type->set_length ((bit_length + TARGET_CHAR_BIT - 1)
/ TARGET_CHAR_BIT);
if (low_bound >= 0)
result_type->set_is_unsigned (true);
}
result_type->field (0).set_type (domain_type);
return result_type;
}
/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
and any array types nested inside it. */
void
make_vector_type (struct type *array_type)
{
struct type *inner_array, *elt_type;
/* Find the innermost array type, in case the array is
multi-dimensional. */
inner_array = array_type;
while (inner_array->target_type ()->code () == TYPE_CODE_ARRAY)
inner_array = inner_array->target_type ();
elt_type = inner_array->target_type ();
if (elt_type->code () == TYPE_CODE_INT)
{
type_instance_flags flags
= elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
elt_type = make_qualified_type (elt_type, flags, NULL);
inner_array->set_target_type (elt_type);
}
array_type->set_is_vector (true);
}
struct type *
init_vector_type (struct type *elt_type, int n)
{
struct type *array_type;
array_type = lookup_array_range_type (elt_type, 0, n - 1);
make_vector_type (array_type);
return array_type;
}
/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
confusing. "self" is a common enough replacement for "this".
TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
TYPE_CODE_METHOD. */
struct type *
internal_type_self_type (struct type *type)
{
switch (type->code ())
{
case TYPE_CODE_METHODPTR:
case TYPE_CODE_MEMBERPTR:
if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
return NULL;
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
return TYPE_MAIN_TYPE (type)->type_specific.self_type;
case TYPE_CODE_METHOD:
if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
return NULL;
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
default:
gdb_assert_not_reached ("bad type");
}
}
/* Set the type of the class that TYPE belongs to.
In c++ this is the class of "this".
TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
TYPE_CODE_METHOD. */
void
set_type_self_type (struct type *type, struct type *self_type)
{
switch (type->code ())
{
case TYPE_CODE_METHODPTR:
case TYPE_CODE_MEMBERPTR:
if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
break;
case TYPE_CODE_METHOD:
if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
INIT_FUNC_SPECIFIC (type);
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
break;
default:
gdb_assert_not_reached ("bad type");
}
}
/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
TO_TYPE. A member pointer is a wierd thing -- it amounts to a
typed offset into a struct, e.g. "an int at offset 8". A MEMBER
TYPE doesn't include the offset (that's the value of the MEMBER
itself), but does include the structure type into which it points
(for some reason).
When "smashing" the type, we preserve the objfile that the old type
pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_memberptr_type (struct type *type, struct type *self_type,
struct type *to_type)
{
smash_type (type);
type->set_code (TYPE_CODE_MEMBERPTR);
type->set_target_type (to_type);
set_type_self_type (type, self_type);
/* Assume that a data member pointer is the same size as a normal
pointer. */
type->set_length (gdbarch_ptr_bit (to_type->arch ()) / TARGET_CHAR_BIT);
}
/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
When "smashing" the type, we preserve the objfile that the old type
pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_methodptr_type (struct type *type, struct type *to_type)
{
smash_type (type);
type->set_code (TYPE_CODE_METHODPTR);
type->set_target_type (to_type);
set_type_self_type (type, TYPE_SELF_TYPE (to_type));
type->set_length (cplus_method_ptr_size (to_type));
}
/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
METHOD just means `function that gets an extra "this" argument'.
When "smashing" the type, we preserve the objfile that the old type
pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_method_type (struct type *type, struct type *self_type,
struct type *to_type, struct field *args,
int nargs, int varargs)
{
smash_type (type);
type->set_code (TYPE_CODE_METHOD);
type->set_target_type (to_type);
set_type_self_type (type, self_type);
type->set_fields (args);
type->set_num_fields (nargs);
if (varargs)
type->set_has_varargs (true);
/* In practice, this is never needed. */
type->set_length (1);
}
/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
Since GCC PR debug/47510 DWARF provides associated information to detect the
anonymous class linkage name from its typedef.
Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
apply it itself. */
const char *
type_name_or_error (struct type *type)
{
struct type *saved_type = type;
const char *name;
struct objfile *objfile;
type = check_typedef (type);
name = type->name ();
if (name != NULL)
return name;
name = saved_type->name ();
objfile = saved_type->objfile_owner ();
error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
name ? name : "<anonymous>",
objfile ? objfile_name (objfile) : "<arch>");
}
/* See gdbtypes.h. */
struct type *
lookup_typename (const struct language_defn *language,
const char *name,
const struct block *block, int noerr)
{
struct symbol *sym;
sym = lookup_symbol_in_language (name, block, SEARCH_TYPE_DOMAIN,
language->la_language, NULL).symbol;
if (sym != nullptr)
{
struct type *type = sym->type ();
/* Ensure the length of TYPE is valid. */
check_typedef (type);
return type;
}
if (noerr)
return NULL;
error (_("No type named %s."), name);
}
struct type *
lookup_unsigned_typename (const struct language_defn *language,
const char *name)
{
std::string uns;
uns.reserve (strlen (name) + strlen ("unsigned "));
uns = "unsigned ";
uns += name;
return lookup_typename (language, uns.c_str (), NULL, 0);
}
struct type *
lookup_signed_typename (const struct language_defn *language, const char *name)
{
/* In C and C++, "char" and "signed char" are distinct types. */
if (streq (name, "char"))
name = "signed char";
return lookup_typename (language, name, NULL, 0);
}
/* Lookup a structure type named "struct NAME",
visible in lexical block BLOCK. */
struct type *
lookup_struct (const char *name, const struct block *block)
{
struct symbol *sym;
sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol;
if (sym == NULL)
{
error (_("No struct type named %s."), name);
}
if (sym->type ()->code () != TYPE_CODE_STRUCT)
{
error (_("This context has class, union or enum %s, not a struct."),
name);
}
return (sym->type ());
}
/* Lookup a union type named "union NAME",
visible in lexical block BLOCK. */
struct type *
lookup_union (const char *name, const struct block *block)
{
struct symbol *sym;
struct type *t;
sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol;
if (sym == NULL)
error (_("No union type named %s."), name);
t = sym->type ();
if (t->code () == TYPE_CODE_UNION)
return t;
/* If we get here, it's not a union. */
error (_("This context has class, struct or enum %s, not a union."),
name);
}
/* Lookup an enum type named "enum NAME",
visible in lexical block BLOCK. */
struct type *
lookup_enum (const char *name, const struct block *block)
{
struct symbol *sym;
sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol;
if (sym == NULL)
{
error (_("No enum type named %s."), name);
}
if (sym->type ()->code () != TYPE_CODE_ENUM)
{
error (_("This context has class, struct or union %s, not an enum."),
name);
}
return (sym->type ());
}
/* Lookup a template type named "template NAME<TYPE>",
visible in lexical block BLOCK. */
struct type *
lookup_template_type (const char *name, struct type *type,
const struct block *block)
{
std::string nam;
nam.reserve (strlen (name) + strlen (type->name ()) + strlen ("< >"));
nam = name;
nam += "<";
nam += type->name ();
nam += " >"; /* FIXME, extra space still introduced in gcc? */
symbol *sym = lookup_symbol (nam.c_str (), block,
SEARCH_STRUCT_DOMAIN, 0).symbol;
if (sym == NULL)
{
error (_("No template type named %s."), name);
}
if (sym->type ()->code () != TYPE_CODE_STRUCT)
{
error (_("This context has class, union or enum %s, not a struct."),
name);
}
return (sym->type ());
}
/* See gdbtypes.h. */
struct_elt
lookup_struct_elt (struct type *type, const char *name, int noerr)
{
int i;
for (;;)
{
type = check_typedef (type);
if (type->code () != TYPE_CODE_PTR
&& type->code () != TYPE_CODE_REF)
break;
type = type->target_type ();
}
if (type->code () != TYPE_CODE_STRUCT
&& type->code () != TYPE_CODE_UNION)
{
std::string type_name = type_to_string (type);
error (_("Type %s is not a structure or union type."),
type_name.c_str ());
}
for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
{
const char *t_field_name = type->field (i).name ();
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
{
return {&type->field (i), type->field (i).loc_bitpos ()};
}
else if (!t_field_name || *t_field_name == '\0')
{
struct_elt elt
= lookup_struct_elt (type->field (i).type (), name, 1);
if (elt.field != NULL)
{
elt.offset += type->field (i).loc_bitpos ();
return elt;
}
}
}
/* OK, it's not in this class. Recursively check the baseclasses. */
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
{
struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
if (elt.field != NULL)
return elt;
}
if (noerr)
return {nullptr, 0};
std::string type_name = type_to_string (type);
error (_("Type %s has no component named %s."), type_name.c_str (), name);
}
/* See gdbtypes.h. */
struct type *
lookup_struct_elt_type (struct type *type, const char *name, int noerr)
{
struct_elt elt = lookup_struct_elt (type, name, noerr);
if (elt.field != NULL)
return elt.field->type ();
else
return NULL;
}
/* Return the largest number representable by unsigned integer type TYPE. */
ULONGEST
get_unsigned_type_max (struct type *type)
{
unsigned int n;
type = check_typedef (type);
gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
gdb_assert (type->length () <= sizeof (ULONGEST));
/* Written this way to avoid overflow. */
n = type->length () * TARGET_CHAR_BIT;
return ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
}
/* Store in *MIN, *MAX the smallest and largest numbers representable by
signed integer type TYPE. */
void
get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
{
unsigned int n;
type = check_typedef (type);
gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
gdb_assert (type->length () <= sizeof (LONGEST));
n = type->length () * TARGET_CHAR_BIT;
*min = -((ULONGEST) 1 << (n - 1));
*max = ((ULONGEST) 1 << (n - 1)) - 1;
}
/* Return the largest value representable by pointer type TYPE. */
CORE_ADDR
get_pointer_type_max (struct type *type)
{
unsigned int n;
type = check_typedef (type);
gdb_assert (type->code () == TYPE_CODE_PTR);
gdb_assert (type->length () <= sizeof (CORE_ADDR));
n = type->length () * TARGET_CHAR_BIT;
return ((((CORE_ADDR) 1 << (n - 1)) - 1) << 1) | 1;
}
/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
cplus_stuff.vptr_fieldno.
cplus_stuff is initialized to cplus_struct_default which does not
set vptr_fieldno to -1 for portability reasons (IWBN to use C99
designated initializers). We cope with that here. */
int
internal_type_vptr_fieldno (struct type *type)
{
type = check_typedef (type);
gdb_assert (type->code () == TYPE_CODE_STRUCT
|| type->code () == TYPE_CODE_UNION);
if (!HAVE_CPLUS_STRUCT (type))
return -1;
return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
}
/* Set the value of cplus_stuff.vptr_fieldno. */
void
set_type_vptr_fieldno (struct type *type, int fieldno)
{
type = check_typedef (type);
gdb_assert (type->code () == TYPE_CODE_STRUCT
|| type->code () == TYPE_CODE_UNION);
if (!HAVE_CPLUS_STRUCT (type))
ALLOCATE_CPLUS_STRUCT_TYPE (type);
TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
}
/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
cplus_stuff.vptr_basetype. */
struct type *
internal_type_vptr_basetype (struct type *type)
{
type = check_typedef (type);
gdb_assert (type->code () == TYPE_CODE_STRUCT
|| type->code () == TYPE_CODE_UNION);
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
}
/* Set the value of cplus_stuff.vptr_basetype. */
void
set_type_vptr_basetype (struct type *type, struct type *basetype)
{
type = check_typedef (type);
gdb_assert (type->code () == TYPE_CODE_STRUCT
|| type->code () == TYPE_CODE_UNION);
if (!HAVE_CPLUS_STRUCT (type))
ALLOCATE_CPLUS_STRUCT_TYPE (type);
TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
}
/* Lookup the vptr basetype/fieldno values for TYPE.
If found store vptr_basetype in *BASETYPEP if non-NULL, and return
vptr_fieldno. Also, if found and basetype is from the same objfile,
cache the results.
If not found, return -1 and ignore BASETYPEP.
Callers should be aware that in some cases (for example,
the type or one of its baseclasses is a stub type and we are
debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
this function will not be able to find the
virtual function table pointer, and vptr_fieldno will remain -1 and
vptr_basetype will remain NULL or incomplete. */
int
get_vptr_fieldno (struct type *type, struct type **basetypep)
{
type = check_typedef (type);
if (TYPE_VPTR_FIELDNO (type) < 0)
{
int i;
/* We must start at zero in case the first (and only) baseclass
is virtual (and hence we cannot share the table pointer). */
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
{
struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
int fieldno;
struct type *basetype;
fieldno = get_vptr_fieldno (baseclass, &basetype);
if (fieldno >= 0)
{
/* If the type comes from a different objfile we can't cache
it, it may have a different lifetime. PR 2384 */
if (type->objfile_owner () == basetype->objfile_owner ())
{
set_type_vptr_fieldno (type, fieldno);
set_type_vptr_basetype (type, basetype);
}
if (basetypep)
*basetypep = basetype;
return fieldno;
}
}
/* Not found. */
return -1;
}
else
{
if (basetypep)
*basetypep = TYPE_VPTR_BASETYPE (type);
return TYPE_VPTR_FIELDNO (type);
}
}
static void
stub_noname_complaint (void)
{
complaint (_("stub type has NULL name"));
}
/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
attached to it, and that property has a non-constant value. */
static int
array_type_has_dynamic_stride (struct type *type)
{
struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
return prop != nullptr && prop->is_constant ();
}
/* Worker for is_dynamic_type. */
static bool
is_dynamic_type_internal (struct type *type, bool top_level)
{
type = check_typedef (type);
/* We only want to recognize references and pointers at the outermost
level. */
if (top_level && type->is_pointer_or_reference ())
type = check_typedef (type->target_type ());
/* Types that have a dynamic TYPE_DATA_LOCATION are considered
dynamic, even if the type itself is statically defined.
From a user's point of view, this may appear counter-intuitive;
but it makes sense in this context, because the point is to determine
whether any part of the type needs to be resolved before it can
be exploited. */
if (TYPE_DATA_LOCATION (type) != NULL
&& (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
|| TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
return true;
if (TYPE_ASSOCIATED_PROP (type))
return true;
if (TYPE_ALLOCATED_PROP (type))
return true;
struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
if (prop != nullptr && prop->kind () != PROP_TYPE)
return true;
if (TYPE_HAS_DYNAMIC_LENGTH (type))
return true;
switch (type->code ())
{
case TYPE_CODE_RANGE:
{
/* A range type is obviously dynamic if it has at least one
dynamic bound. But also consider the range type to be
dynamic when its subtype is dynamic, even if the bounds
of the range type are static. It allows us to assume that
the subtype of a static range type is also static. */
return (!has_static_range (type->bounds ())
|| is_dynamic_type_internal (type->target_type (), false));
}
case TYPE_CODE_STRING:
/* Strings are very much like an array of characters, and can be
treated as one here. */
case TYPE_CODE_ARRAY:
{
gdb_assert (type->num_fields () == 1);
/* The array is dynamic if either the bounds are dynamic... */
if (is_dynamic_type_internal (type->index_type (), false))
return true;
/* ... or the elements it contains have a dynamic contents... */
if (is_dynamic_type_internal (type->target_type (), false))
return true;
/* ... or if it has a dynamic stride... */
if (array_type_has_dynamic_stride (type))
return true;
return false;
}
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
{
int i;
bool is_cplus = HAVE_CPLUS_STRUCT (type);
for (i = 0; i < type->num_fields (); ++i)
{
/* Static fields can be ignored here. */
if (type->field (i).is_static ())
continue;
/* If the field has dynamic type, then so does TYPE. */
if (is_dynamic_type_internal (type->field (i).type (), false))
return true;
/* If the field is at a fixed offset, then it is not
dynamic. */
if (type->field (i).loc_kind () != FIELD_LOC_KIND_DWARF_BLOCK)
continue;
/* Do not consider C++ virtual base types to be dynamic
due to the field's offset being dynamic; these are
handled via other means. */
if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
continue;
return true;
}
}
break;
}
return false;
}
/* See gdbtypes.h. */
bool
is_dynamic_type (struct type *type)
{
return is_dynamic_type_internal (type, true);
}
static struct type *resolve_dynamic_type_internal
(struct type *type, struct property_addr_info *addr_stack,
const frame_info_ptr &frame, bool top_level);
/* Given a dynamic range type (dyn_range_type) and a stack of
struct property_addr_info elements, return a static version
of that type.
When RESOLVE_P is true then the returned static range is created by
actually evaluating any dynamic properties within the range type, while
when RESOLVE_P is false the returned static range has all of the bounds
and stride information set to undefined. The RESOLVE_P set to false
case will be used when evaluating a dynamic array that is not
allocated, or not associated, i.e. the bounds information might not be
initialized yet.
RANK is the array rank for which we are resolving this range, and is a
zero based count. The rank should never be negative.
*/
static struct type *
resolve_dynamic_range (struct type *dyn_range_type,
struct property_addr_info *addr_stack,
const frame_info_ptr &frame,
int rank, bool resolve_p = true)
{
CORE_ADDR value;
struct type *static_range_type, *static_target_type;
struct dynamic_prop low_bound, high_bound, stride;
gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
gdb_assert (rank >= 0);
const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
if (resolve_p)
{
if (dwarf2_evaluate_property (prop, frame, addr_stack, &value,
{ (CORE_ADDR) rank }))
low_bound.set_const_val (value);
else if (prop->kind () == PROP_UNDEFINED)
low_bound.set_undefined ();
else
low_bound.set_optimized_out ();
}
else
low_bound.set_undefined ();
prop = &dyn_range_type->bounds ()->high;
if (resolve_p)
{
if (dwarf2_evaluate_property (prop, frame, addr_stack, &value,
{ (CORE_ADDR) rank }))
{
high_bound.set_const_val (value);
if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
high_bound.set_const_val
(low_bound.const_val () + high_bound.const_val () - 1);
}
else if (prop->kind () == PROP_UNDEFINED)
high_bound.set_undefined ();
else
high_bound.set_optimized_out ();
}
else
high_bound.set_undefined ();
bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
prop = &dyn_range_type->bounds ()->stride;
if (resolve_p && dwarf2_evaluate_property (prop, frame, addr_stack, &value,
{ (CORE_ADDR) rank }))
{
stride.set_const_val (value);
/* If we have a bit stride that is not an exact number of bytes then
I really don't think this is going to work with current GDB, the
array indexing code in GDB seems to be pretty heavily tied to byte
offsets right now. Assuming 8 bits in a byte. */
struct gdbarch *gdbarch = dyn_range_type->arch ();
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
if (!byte_stride_p && (value % (unit_size * 8)) != 0)
error (_("bit strides that are not a multiple of the byte size "
"are currently not supported"));
}
else
{
stride.set_undefined ();
byte_stride_p = true;
}
static_target_type
= resolve_dynamic_type_internal (dyn_range_type->target_type (),
addr_stack, frame, false);
LONGEST bias = dyn_range_type->bounds ()->bias;
type_allocator alloc (dyn_range_type);
static_range_type = create_range_type_with_stride
(alloc, static_target_type,
&low_bound, &high_bound, bias, &stride, byte_stride_p);
static_range_type->set_name (dyn_range_type->name ());
static_range_type->bounds ()->flag_bound_evaluated = 1;
return static_range_type;
}
/* Helper function for resolve_dynamic_array_or_string. This function
resolves the properties for a single array at RANK within a nested array
of arrays structure. The RANK value is greater than or equal to 0, and
starts at it's maximum value and goes down by 1 for each recursive call
to this function. So, for a 3-dimensional array, the first call to this
function has RANK == 2, then we call ourselves recursively with RANK ==
1, than again with RANK == 0, and at that point we should return.
TYPE is updated as the dynamic properties are resolved, and so, should
be a copy of the dynamic type, rather than the original dynamic type
itself.
ADDR_STACK is a stack of struct property_addr_info to be used if needed
during the dynamic resolution.
When RESOLVE_P is true then the dynamic properties of TYPE are
evaluated, otherwise the dynamic properties of TYPE are not evaluated,
instead we assume the array is not allocated/associated yet. */
static struct type *
resolve_dynamic_array_or_string_1 (struct type *type,
struct property_addr_info *addr_stack,
const frame_info_ptr &frame,
int rank, bool resolve_p)
{
CORE_ADDR value;
struct type *elt_type;
struct type *range_type;
struct type *ary_dim;
struct dynamic_prop *prop;
unsigned int bit_stride = 0;
/* For dynamic type resolution strings can be treated like arrays of
characters. */
gdb_assert (type->code () == TYPE_CODE_ARRAY
|| type->code () == TYPE_CODE_STRING);
/* As the rank is a zero based count we expect this to never be
negative. */
gdb_assert (rank >= 0);
/* Resolve the allocated and associated properties before doing anything
else. If an array is not allocated or not associated then (at least
for Fortran) there is no guarantee that the data to define the upper
bound, lower bound, or stride will be correct. If RESOLVE_P is
already false at this point then this is not the first dimension of
the array and a more outer dimension has already marked this array as
not allocated/associated, as such we just ignore this property. This
is fine as GDB only checks the allocated/associated on the outer most
dimension of the array. */
prop = TYPE_ALLOCATED_PROP (type);
if (prop != NULL && resolve_p
&& dwarf2_evaluate_property (prop, frame, addr_stack, &value))
{
prop->set_const_val (value);
if (value == 0)
resolve_p = false;
}
prop = TYPE_ASSOCIATED_PROP (type);
if (prop != NULL && resolve_p
&& dwarf2_evaluate_property (prop, frame, addr_stack, &value))
{
prop->set_const_val (value);
if (value == 0)
resolve_p = false;
}
range_type = check_typedef (type->index_type ());
range_type
= resolve_dynamic_range (range_type, addr_stack, frame, rank, resolve_p);
ary_dim = check_typedef (type->target_type ());
if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
{
ary_dim = copy_type (ary_dim);
elt_type = resolve_dynamic_array_or_string_1 (ary_dim, addr_stack,
frame, rank - 1,
resolve_p);
}
else
elt_type = type->target_type ();
prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
if (prop != NULL && resolve_p)
{
if (dwarf2_evaluate_property (prop, frame, addr_stack, &value))
{
type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
bit_stride = (unsigned int) (value * 8);
}
else
{
/* Could be a bug in our code, but it could also happen
if the DWARF info is not correct. Issue a warning,
and assume no byte/bit stride (leave bit_stride = 0). */
warning (_("cannot determine array stride for type %s"),
type->name () ? type->name () : "<no name>");
}
}
else
bit_stride = type->field (0).bitsize ();
type_allocator alloc (type, type_allocator::SMASH);
return create_array_type_with_stride (alloc, elt_type, range_type, NULL,
bit_stride);
}
/* Resolve an array or string type with dynamic properties, return a new
type with the dynamic properties resolved to actual values. The
ADDR_STACK represents the location of the object being resolved. */
static struct type *
resolve_dynamic_array_or_string (struct type *type,
struct property_addr_info *addr_stack,
const frame_info_ptr &frame)
{
CORE_ADDR value;
int rank = 0;
/* For dynamic type resolution strings can be treated like arrays of
characters. */
gdb_assert (type->code () == TYPE_CODE_ARRAY
|| type->code () == TYPE_CODE_STRING);
type = copy_type (type);
/* Resolve the rank property to get rank value. */
struct dynamic_prop *prop = TYPE_RANK_PROP (type);
if (dwarf2_evaluate_property (prop, frame, addr_stack, &value))
{
prop->set_const_val (value);
rank = value;
if (rank == 0)
{
/* Rank is zero, if a variable is passed as an argument to a
function. In this case the resolved type should not be an
array, but should instead be that of an array element. */
struct type *dynamic_array_type = type;
type = copy_type (dynamic_array_type->target_type ());
struct dynamic_prop_list *prop_list
= TYPE_MAIN_TYPE (dynamic_array_type)->dyn_prop_list;
if (prop_list != nullptr)
{
struct obstack *obstack
= &type->objfile_owner ()->objfile_obstack;
TYPE_MAIN_TYPE (type)->dyn_prop_list
= copy_dynamic_prop_list (obstack, prop_list);
}
return type;
}
else if (type->code () == TYPE_CODE_STRING && rank != 1)
{
/* What would this even mean? A string with a dynamic rank
greater than 1. */
error (_("unable to handle string with dynamic rank greater than 1"));
}
else if (rank > 1)
{
/* Arrays with dynamic rank are initially just an array type
with a target type that is the array element.
However, now we know the rank of the array we need to build
the array of arrays structure that GDB expects, that is we
need an array type that has a target which is an array type,
and so on, until eventually, we have the element type at the
end of the chain. Create all the additional array types here
by copying the top level array type. */
struct type *element_type = type->target_type ();
struct type *rank_type = type;
for (int i = 1; i < rank; i++)
{
rank_type->set_target_type (copy_type (rank_type));
rank_type = rank_type->target_type ();
}
rank_type->set_target_type (element_type);
}
}
else
{
rank = 1;
for (struct type *tmp_type = check_typedef (type->target_type ());
tmp_type->code () == TYPE_CODE_ARRAY;
tmp_type = check_typedef (tmp_type->target_type ()))
++rank;
}
/* The rank that we calculated above is actually a count of the number of
ranks. However, when we resolve the type of each individual array
rank we should actually use a rank "offset", e.g. an array with a rank
count of 1 (calculated above) will use the rank offset 0 in order to
resolve the details of the first array dimension. As a result, we
reduce the rank by 1 here. */
--rank;
return resolve_dynamic_array_or_string_1 (type, addr_stack, frame, rank,
true);
}
/* Resolve dynamic bounds of members of the union TYPE to static
bounds. ADDR_STACK is a stack of struct property_addr_info
to be used if needed during the dynamic resolution. */
static struct type *
resolve_dynamic_union (struct type *type,
struct property_addr_info *addr_stack,
const frame_info_ptr &frame)
{
struct type *resolved_type;
int i;
unsigned int max_len = 0;
gdb_assert (type->code () == TYPE_CODE_UNION);
resolved_type = copy_type (type);
resolved_type->copy_fields (type);
for (i = 0; i < resolved_type->num_fields (); ++i)
{
struct type *t;
if (type->field (i).is_static ())
continue;
t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
addr_stack, frame, false);
resolved_type->field (i).set_type (t);
struct type *real_type = check_typedef (t);
if (real_type->length () > max_len)
max_len = real_type->length ();
}
resolved_type->set_length (max_len);
return resolved_type;
}
/* See gdbtypes.h. */
bool
variant::matches (ULONGEST value, bool is_unsigned) const
{
for (const discriminant_range &range : discriminants)
if (range.contains (value, is_unsigned))
return true;
return false;
}
static void
compute_variant_fields_inner (struct type *type,
struct property_addr_info *addr_stack,
const variant_part &part,
std::vector<bool> &flags);
/* A helper function to determine which variant fields will be active.
This handles both the variant's direct fields, and any variant
parts embedded in this variant. TYPE is the type we're examining.
ADDR_STACK holds information about the concrete object. VARIANT is
the current variant to be handled. FLAGS is where the results are
stored -- this function sets the Nth element in FLAGS if the
corresponding field is enabled. ENABLED is whether this variant is
enabled or not. */
static void
compute_variant_fields_recurse (struct type *type,
struct property_addr_info *addr_stack,
const variant &variant,
std::vector<bool> &flags,
bool enabled)
{
for (int field = variant.first_field; field < variant.last_field; ++field)
flags[field] = enabled;
for (const variant_part &new_part : variant.parts)
{
if (enabled)
compute_variant_fields_inner (type, addr_stack, new_part, flags);
else
{
for (const auto &sub_variant : new_part.variants)
compute_variant_fields_recurse (type, addr_stack, sub_variant,
flags, enabled);
}
}
}
/* A helper function to determine which variant fields will be active.
This evaluates the discriminant, decides which variant (if any) is
active, and then updates FLAGS to reflect which fields should be
available. TYPE is the type we're examining. ADDR_STACK holds
information about the concrete object. VARIANT is the current
variant to be handled. FLAGS is where the results are stored --
this function sets the Nth element in FLAGS if the corresponding
field is enabled. */
static void
compute_variant_fields_inner (struct type *type,
struct property_addr_info *addr_stack,
const variant_part &part,
std::vector<bool> &flags)
{
/* Evaluate the discriminant. */
std::optional<ULONGEST> discr_value;
if (part.discriminant_index != -1)
{
int idx = part.discriminant_index;
if (type->field (idx).loc_kind () != FIELD_LOC_KIND_BITPOS)
error (_("Cannot determine struct field location"
" (invalid location kind)"));
if (addr_stack->valaddr.data () != NULL)
discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
idx);
else
{
CORE_ADDR addr = (addr_stack->addr
+ (type->field (idx).loc_bitpos ()
/ TARGET_CHAR_BIT));
LONGEST bitsize = type->field (idx).bitsize ();
LONGEST size = bitsize / 8;
if (size == 0)
size = type->field (idx).type ()->length ();
gdb_byte bits[sizeof (ULONGEST)];
read_memory (addr, bits, size);
LONGEST bitpos = (type->field (idx).loc_bitpos ()
% TARGET_CHAR_BIT);
discr_value = unpack_bits_as_long (type->field (idx).type (),
bits, bitpos, bitsize);
}
}
/* Go through each variant and see which applies. */
const variant *default_variant = nullptr;
const variant *applied_variant = nullptr;
for (const auto &variant : part.variants)
{
if (variant.is_default ())
default_variant = &variant;
else if (discr_value.has_value ()
&& variant.matches (*discr_value, part.is_unsigned))
{
applied_variant = &variant;
break;
}
}
if (applied_variant == nullptr)
applied_variant = default_variant;
for (const auto &variant : part.variants)
compute_variant_fields_recurse (type, addr_stack, variant,
flags, applied_variant == &variant);
}
/* Determine which variant fields are available in TYPE. The enabled
fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
about the concrete object. PARTS describes the top-level variant
parts for this type. */
static void
compute_variant_fields (struct type *type,
struct type *resolved_type,
struct property_addr_info *addr_stack,
const gdb::array_view<variant_part> &parts)
{
/* Assume all fields are included by default. */
std::vector<bool> flags (resolved_type->num_fields (), true);
/* Now disable fields based on the variants that control them. */
for (const auto &part : parts)
compute_variant_fields_inner (type, addr_stack, part, flags);
unsigned int nfields = std::count (flags.begin (), flags.end (), true);
/* No need to zero-initialize the newly allocated fields, they'll be
initialized by the copy in the loop below. */
resolved_type->alloc_fields (nfields, false);
int out = 0;
for (int i = 0; i < type->num_fields (); ++i)
{
if (!flags[i])
continue;
resolved_type->field (out) = type->field (i);
++out;
}
}
/* Resolve dynamic bounds of members of the struct TYPE to static
bounds. ADDR_STACK is a stack of struct property_addr_info to
be used if needed during the dynamic resolution. */
static struct type *
resolve_dynamic_struct (struct type *type,
struct property_addr_info *addr_stack,
const frame_info_ptr &frame)
{
struct type *resolved_type;
int i;
unsigned resolved_type_bit_length = 0;
gdb_assert (type->code () == TYPE_CODE_STRUCT);
resolved_type = copy_type (type);
dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
{
compute_variant_fields (type, resolved_type, addr_stack,
*variant_prop->variant_parts ());
/* We want to leave the property attached, so that the Rust code
can tell whether the type was originally an enum. */
variant_prop->set_original_type (type);
}
else
{
resolved_type->copy_fields (type);
}
for (i = 0; i < resolved_type->num_fields (); ++i)
{
unsigned new_bit_length;
struct property_addr_info pinfo;
if (resolved_type->field (i).is_static ())
continue;
if (resolved_type->field (i).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK)
{
struct dwarf2_property_baton baton;
baton.property_type
= lookup_pointer_type (resolved_type->field (i).type ());
baton.locexpr = *resolved_type->field (i).loc_dwarf_block ();
struct dynamic_prop prop;
prop.set_locexpr (&baton);
CORE_ADDR addr;
if (dwarf2_evaluate_property (&prop, frame, addr_stack, &addr,
{addr_stack->addr}))
resolved_type->field (i).set_loc_bitpos
(TARGET_CHAR_BIT * (addr - addr_stack->addr));
}
/* As we know this field is not a static field, the field's
field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
this is the case, but only trigger a simple error rather
than an internal error if that fails. While failing
that verification indicates a bug in our code, the error
is not severe enough to suggest to the user he stops
his debugging session because of it. */
if (resolved_type->field (i).loc_kind () != FIELD_LOC_KIND_BITPOS)
error (_("Cannot determine struct field location"
" (invalid location kind)"));
pinfo.type = check_typedef (resolved_type->field (i).type ());
size_t offset = resolved_type->field (i).loc_bitpos () / TARGET_CHAR_BIT;
pinfo.valaddr = addr_stack->valaddr;
if (!pinfo.valaddr.empty ())
pinfo.valaddr = pinfo.valaddr.slice (offset);
pinfo.addr = addr_stack->addr + offset;
pinfo.next = addr_stack;
resolved_type->field (i).set_type
(resolve_dynamic_type_internal (resolved_type->field (i).type (),
&pinfo, frame, false));
gdb_assert (resolved_type->field (i).loc_kind ()
== FIELD_LOC_KIND_BITPOS);
new_bit_length = resolved_type->field (i).loc_bitpos ();
if (resolved_type->field (i).bitsize () != 0)
new_bit_length += resolved_type->field (i).bitsize ();
else
{
struct type *real_type
= check_typedef (resolved_type->field (i).type ());
new_bit_length += (real_type->length () * TARGET_CHAR_BIT);
}
/* Normally, we would use the position and size of the last field
to determine the size of the enclosing structure. But GCC seems
to be encoding the position of some fields incorrectly when
the struct contains a dynamic field that is not placed last.
So we compute the struct size based on the field that has
the highest position + size - probably the best we can do. */
if (new_bit_length > resolved_type_bit_length)
resolved_type_bit_length = new_bit_length;
}
/* The length of a type won't change for fortran, but it does for C and Ada.
For fortran the size of dynamic fields might change over time but not the
type length of the structure. If we adapt it, we run into problems
when calculating the element offset for arrays of structs. */
if (current_language->la_language != language_fortran)
resolved_type->set_length ((resolved_type_bit_length + TARGET_CHAR_BIT - 1)
/ TARGET_CHAR_BIT);
/* The Ada language uses this field as a cache for static fixed types: reset
it as RESOLVED_TYPE must have its own static fixed type. */
resolved_type->set_target_type (nullptr);
return resolved_type;
}
/* Worker for resolved_dynamic_type. */
static struct type *
resolve_dynamic_type_internal (struct type *type,
struct property_addr_info *addr_stack,
const frame_info_ptr &frame,
bool top_level)
{
struct type *real_type = check_typedef (type);
struct type *resolved_type = nullptr;
struct dynamic_prop *prop;
CORE_ADDR value;
if (!is_dynamic_type_internal (real_type, top_level))
return type;
std::optional<CORE_ADDR> type_length;
prop = TYPE_DYNAMIC_LENGTH (type);
if (prop != NULL
&& dwarf2_evaluate_property (prop, frame, addr_stack, &value))
type_length = value;
if (type->code () == TYPE_CODE_TYPEDEF)
{
resolved_type = copy_type (type);
resolved_type->set_target_type
(resolve_dynamic_type_internal (type->target_type (), addr_stack,
frame, top_level));
}
else
{
/* Before trying to resolve TYPE, make sure it is not a stub. */
type = real_type;
switch (type->code ())
{
case TYPE_CODE_REF:
case TYPE_CODE_PTR:
case TYPE_CODE_RVALUE_REF:
{
struct property_addr_info pinfo;
pinfo.type = check_typedef (type->target_type ());
pinfo.valaddr = {};
if (addr_stack->valaddr.data () != NULL)
pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
type);
else
pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
pinfo.next = addr_stack;
/* Special case a NULL pointer here -- we don't want to
dereference it. */
if (pinfo.addr != 0)
{
resolved_type = copy_type (type);
resolved_type->set_target_type
(resolve_dynamic_type_internal (type->target_type (),
&pinfo, frame, true));
}
break;
}
case TYPE_CODE_STRING:
/* Strings are very much like an array of characters, and can be
treated as one here. */
case TYPE_CODE_ARRAY:
resolved_type = resolve_dynamic_array_or_string (type, addr_stack,
frame);
break;
case TYPE_CODE_RANGE:
/* Pass 0 for the rank value here, which indicates this is a
range for the first rank of an array. The assumption is that
this rank value is not actually required for the resolution of
the dynamic range, otherwise, we'd be resolving this range
within the context of a dynamic array. */
resolved_type = resolve_dynamic_range (type, addr_stack, frame, 0);
break;
case TYPE_CODE_UNION:
resolved_type = resolve_dynamic_union (type, addr_stack, frame);
break;
case TYPE_CODE_STRUCT:
resolved_type = resolve_dynamic_struct (type, addr_stack, frame);
break;
}
}
if (resolved_type == nullptr)
return type;
if (type_length.has_value ())
{
resolved_type->set_length (*type_length);
resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
}
/* Resolve data_location attribute. */
prop = TYPE_DATA_LOCATION (resolved_type);
if (prop != NULL
&& dwarf2_evaluate_property (prop, frame, addr_stack, &value))
{
/* Start of Fortran hack. See comment in f-lang.h for what is going
on here.*/
if (current_language->la_language == language_fortran
&& resolved_type->code () == TYPE_CODE_ARRAY)
value = fortran_adjust_dynamic_array_base_address_hack (resolved_type,
value);
/* End of Fortran hack. */
prop->set_const_val (value);
}
return resolved_type;
}
/* See gdbtypes.h */
struct type *
resolve_dynamic_type (struct type *type,
gdb::array_view<const gdb_byte> valaddr,
CORE_ADDR addr,
const frame_info_ptr *in_frame)
{
struct property_addr_info pinfo
= {check_typedef (type), valaddr, addr, NULL};
frame_info_ptr frame;
if (in_frame != nullptr)
frame = *in_frame;
return resolve_dynamic_type_internal (type, &pinfo, frame, true);
}
/* See gdbtypes.h */
dynamic_prop *
type::dyn_prop (dynamic_prop_node_kind prop_kind) const
{
dynamic_prop_list *node = this->main_type->dyn_prop_list;
while (node != NULL)
{
if (node->prop_kind == prop_kind)
return &node->prop;
node = node->next;
}
return NULL;
}
/* See gdbtypes.h */
void
type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
{
struct dynamic_prop_list *temp;
gdb_assert (this->is_objfile_owned ());
temp = XOBNEW (&this->objfile_owner ()->objfile_obstack,
struct dynamic_prop_list);
temp->prop_kind = prop_kind;
temp->prop = prop;
temp->next = this->main_type->dyn_prop_list;
this->main_type->dyn_prop_list = temp;
}
/* See gdbtypes.h. */
void
type::remove_dyn_prop (dynamic_prop_node_kind kind)
{
struct dynamic_prop_list *prev_node, *curr_node;
curr_node = this->main_type->dyn_prop_list;
prev_node = NULL;
while (NULL != curr_node)
{
if (curr_node->prop_kind == kind)
{
/* Update the linked list but don't free anything.
The property was allocated on obstack and it is not known
if we are on top of it. Nevertheless, everything is released
when the complete obstack is freed. */
if (NULL == prev_node)
this->main_type->dyn_prop_list = curr_node->next;
else
prev_node->next = curr_node->next;
return;
}
prev_node = curr_node;
curr_node = curr_node->next;
}
}
/* Find the real type of TYPE. This function returns the real type,
after removing all layers of typedefs, and completing opaque or stub
types. Completion changes the TYPE argument, but stripping of
typedefs does not.
Instance flags (e.g. const/volatile) are preserved as typedefs are
stripped. If necessary a new qualified form of the underlying type
is created.
NOTE: This will return a typedef if type::target_type for the typedef has
not been computed and we're either in the middle of reading symbols, or
there was no name for the typedef in the debug info.
NOTE: Lookup of opaque types can throw errors for invalid symbol files.
QUITs in the symbol reading code can also throw.
Thus this function can throw an exception.
If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
the target type.
If this is a stubbed struct (i.e. declared as struct foo *), see if
we can find a full definition in some other file. If so, copy this
definition, so we can use it in future. There used to be a comment
(but not any code) that if we don't find a full definition, we'd
set a flag so we don't spend time in the future checking the same
type. That would be a mistake, though--we might load in more
symbols which contain a full definition for the type. */
struct type *
check_typedef (struct type *type)
{
struct type *orig_type = type;
gdb_assert (type);
/* While we're removing typedefs, we don't want to lose qualifiers.
E.g., const/volatile. */
type_instance_flags instance_flags = type->instance_flags ();
while (type->code () == TYPE_CODE_TYPEDEF)
{
if (!type->target_type ())
{
const char *name;
struct symbol *sym;
/* It is dangerous to call lookup_symbol if we are currently
reading a symtab. Infinite recursion is one danger. */
if (currently_reading_symtab)
return make_qualified_type (type, instance_flags, NULL);
name = type->name ();
if (name == NULL)
{
stub_noname_complaint ();
return make_qualified_type (type, instance_flags, NULL);
}
domain_search_flag flag
= ((type->language () == language_c
|| type->language () == language_objc
|| type->language () == language_opencl
|| type->language () == language_minimal)
? SEARCH_STRUCT_DOMAIN
: SEARCH_TYPE_DOMAIN);
sym = lookup_symbol (name, nullptr, flag, nullptr).symbol;
if (sym)
type->set_target_type (sym->type ());
else /* TYPE_CODE_UNDEF */
type->set_target_type (type_allocator (type->arch ()).new_type ());
}
type = type->target_type ();
/* Preserve the instance flags as we traverse down the typedef chain.
Handling address spaces/classes is nasty, what do we do if there's a
conflict?
E.g., what if an outer typedef marks the type as class_1 and an inner
typedef marks the type as class_2?
This is the wrong place to do such error checking. We leave it to
the code that created the typedef in the first place to flag the
error. We just pick the outer address space (akin to letting the
outer cast in a chain of casting win), instead of assuming
"it can't happen". */
{
const type_instance_flags ALL_SPACES
= (TYPE_INSTANCE_FLAG_CODE_SPACE
| TYPE_INSTANCE_FLAG_DATA_SPACE);
const type_instance_flags ALL_CLASSES
= TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
type_instance_flags new_instance_flags = type->instance_flags ();
/* Treat code vs data spaces and address classes separately. */
if ((instance_flags & ALL_SPACES) != 0)
new_instance_flags &= ~ALL_SPACES;
if ((instance_flags & ALL_CLASSES) != 0)
new_instance_flags &= ~ALL_CLASSES;
instance_flags |= new_instance_flags;
}
}
/* If this is a struct/class/union with no fields, then check
whether a full definition exists somewhere else. This is for
systems where a type definition with no fields is issued for such
types, instead of identifying them as stub types in the first
place. */
if (TYPE_IS_OPAQUE (type)
&& opaque_type_resolution
&& !currently_reading_symtab)
{
const char *name = type->name ();
struct type *newtype;
if (name == NULL)
{
stub_noname_complaint ();
return make_qualified_type (type, instance_flags, NULL);
}
newtype = lookup_transparent_type (name);
if (newtype)
{
/* If the resolved type and the stub are in the same
objfile, then replace the stub type with the real deal.
But if they're in separate objfiles, leave the stub
alone; we'll just look up the transparent type every time
we call check_typedef. We can't create pointers between
types allocated to different objfiles, since they may
have different lifetimes. Trying to copy NEWTYPE over to
TYPE's objfile is pointless, too, since you'll have to
move over any other types NEWTYPE refers to, which could
be an unbounded amount of stuff. */
if (newtype->objfile_owner () == type->objfile_owner ())
type = make_qualified_type (newtype, type->instance_flags (), type);
else
type = newtype;
}
}
/* Otherwise, rely on the stub flag being set for opaque/stubbed
types. */
else if (type->is_stub () && !currently_reading_symtab)
{
const char *name = type->name ();
struct symbol *sym;
if (name == NULL)
{
stub_noname_complaint ();
return make_qualified_type (type, instance_flags, NULL);
}
domain_search_flag flag
= ((type->language () == language_c
|| type->language () == language_objc
|| type->language () == language_opencl
|| type->language () == language_minimal)
? SEARCH_STRUCT_DOMAIN
: SEARCH_TYPE_DOMAIN);
sym = lookup_symbol (name, nullptr, flag, nullptr).symbol;
if (sym)
{
/* Same as above for opaque types, we can replace the stub
with the complete type only if they are in the same
objfile. */
if (sym->type ()->objfile_owner () == type->objfile_owner ())
type = make_qualified_type (sym->type (),
type->instance_flags (), type);
else
type = sym->type ();
}
}
if (type->target_is_stub ())
{
struct type *target_type = check_typedef (type->target_type ());
if (target_type->is_stub () || target_type->target_is_stub ())
{
/* Nothing we can do. */
}
else if (type->code () == TYPE_CODE_RANGE)
{
type->set_length (target_type->length ());
type->set_target_is_stub (false);
}
else if (type->code () == TYPE_CODE_ARRAY
&& update_static_array_size (type))
type->set_target_is_stub (false);
}
type = make_qualified_type (type, instance_flags, NULL);
/* Cache TYPE_LENGTH for future use. */
orig_type->set_length (type->length ());
return type;
}
/* Parse a type expression in the string [P..P+LENGTH). If an error
occurs, silently return a void type. */
static struct type *
safe_parse_type (struct gdbarch *gdbarch, const char *p, int length)
{
struct type *type = NULL; /* Initialize to keep gcc happy. */
/* Suppress error messages. */
scoped_restore saved_gdb_stderr = make_scoped_restore (&gdb_stderr,
&null_stream);
/* Call parse_and_eval_type() without fear of longjmp()s. */
try
{
type = parse_and_eval_type (p, length);
}
catch (const gdb_exception_error &except)
{
type = builtin_type (gdbarch)->builtin_void;
}
return type;
}
/* Ugly hack to convert method stubs into method types.
He ain't kiddin'. This demangles the name of the method into a
string including argument types, parses out each argument type,
generates a string casting a zero to that type, evaluates the
string, and stuffs the resulting type into an argtype vector!!!
Then it knows the type of the whole function (including argument
types for overloading), which info used to be in the stab's but was
removed to hack back the space required for them. */
static void
check_stub_method (struct type *type, int method_id, int signature_id)
{
struct gdbarch *gdbarch = type->arch ();
struct fn_field *f;
char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
gdb::unique_xmalloc_ptr<char> demangled_name
= gdb_demangle (mangled_name, DMGL_PARAMS | DMGL_ANSI);
char *argtypetext, *p;
int depth = 0, argcount = 1;
struct field *argtypes;
struct type *mtype;
/* Make sure we got back a function string that we can use. */
if (demangled_name)
p = strchr (demangled_name.get (), '(');
else
p = NULL;
if (demangled_name == NULL || p == NULL)
error (_("Internal: Cannot demangle mangled name `%s'."),
mangled_name);
/* Now, read in the parameters that define this type. */
p += 1;
argtypetext = p;
while (*p)
{
if (*p == '(' || *p == '<')
{
depth += 1;
}
else if (*p == ')' || *p == '>')
{
depth -= 1;