| /* Target-dependent code for s390. |
| |
| Copyright (C) 2001-2024 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "arch-utils.h" |
| #include "ax-gdb.h" |
| #include "dwarf2/frame.h" |
| #include "elf/s390.h" |
| #include "elf-bfd.h" |
| #include "extract-store-integer.h" |
| #include "frame-base.h" |
| #include "frame-unwind.h" |
| #include "gdbarch.h" |
| #include "gdbcore.h" |
| #include "infrun.h" |
| #include "linux-tdep.h" |
| #include "objfiles.h" |
| #include "osabi.h" |
| #include "record-full.h" |
| #include "regcache.h" |
| #include "reggroups.h" |
| #include "s390-tdep.h" |
| #include "target-descriptions.h" |
| #include "trad-frame.h" |
| #include "value.h" |
| #include "inferior.h" |
| |
| #include "features/s390-linux32.c" |
| #include "features/s390x-linux64.c" |
| |
| /* Holds the current set of options to be passed to the disassembler. */ |
| static std::string s390_disassembler_options; |
| |
| /* Breakpoints. */ |
| |
| constexpr gdb_byte s390_break_insn[] = { 0x0, 0x1 }; |
| |
| typedef BP_MANIPULATION (s390_break_insn) s390_breakpoint; |
| |
| /* Types. */ |
| |
| /* Implement the gdbarch type alignment method. */ |
| |
| static ULONGEST |
| s390_type_align (gdbarch *gdbarch, struct type *t) |
| { |
| t = check_typedef (t); |
| |
| if (t->length () > 8) |
| { |
| switch (t->code ()) |
| { |
| case TYPE_CODE_INT: |
| case TYPE_CODE_RANGE: |
| case TYPE_CODE_FLT: |
| case TYPE_CODE_ENUM: |
| case TYPE_CODE_CHAR: |
| case TYPE_CODE_BOOL: |
| case TYPE_CODE_DECFLOAT: |
| return 8; |
| |
| case TYPE_CODE_ARRAY: |
| if (t->is_vector ()) |
| return 8; |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| /* Decoding S/390 instructions. */ |
| |
| /* Read a single instruction from address AT. */ |
| |
| static int |
| s390_readinstruction (bfd_byte instr[], CORE_ADDR at) |
| { |
| static int s390_instrlen[] = { 2, 4, 4, 6 }; |
| int instrlen; |
| |
| if (target_read_memory (at, &instr[0], 2)) |
| return -1; |
| instrlen = s390_instrlen[instr[0] >> 6]; |
| if (instrlen > 2) |
| { |
| if (target_read_memory (at + 2, &instr[2], instrlen - 2)) |
| return -1; |
| } |
| return instrlen; |
| } |
| |
| /* The functions below are for recognizing and decoding S/390 |
| instructions of various formats. Each of them checks whether INSN |
| is an instruction of the given format, with the specified opcodes. |
| If it is, it sets the remaining arguments to the values of the |
| instruction's fields, and returns a non-zero value; otherwise, it |
| returns zero. |
| |
| These functions' arguments appear in the order they appear in the |
| instruction, not in the machine-language form. So, opcodes always |
| come first, even though they're sometimes scattered around the |
| instructions. And displacements appear before base and extension |
| registers, as they do in the assembly syntax, not at the end, as |
| they do in the machine language. |
| |
| Test for RI instruction format. */ |
| |
| static int |
| is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2) |
| { |
| if (insn[0] == op1 && (insn[1] & 0xf) == op2) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| /* i2 is a 16-bit signed quantity. */ |
| *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| /* Test for RIL instruction format. See comment on is_ri for details. */ |
| |
| static int |
| is_ril (bfd_byte *insn, int op1, int op2, |
| unsigned int *r1, int *i2) |
| { |
| if (insn[0] == op1 && (insn[1] & 0xf) == op2) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| /* i2 is a signed quantity. If the host 'int' is 32 bits long, |
| no sign extension is necessary, but we don't want to assume |
| that. */ |
| *i2 = (((insn[2] << 24) |
| | (insn[3] << 16) |
| | (insn[4] << 8) |
| | (insn[5])) ^ 0x80000000) - 0x80000000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| /* Test for RR instruction format. See comment on is_ri for details. */ |
| |
| static int |
| is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) |
| { |
| if (insn[0] == op) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *r2 = insn[1] & 0xf; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| /* Test for RRE instruction format. See comment on is_ri for details. */ |
| |
| static int |
| is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) |
| { |
| if (((insn[0] << 8) | insn[1]) == op) |
| { |
| /* Yes, insn[3]. insn[2] is unused in RRE format. */ |
| *r1 = (insn[3] >> 4) & 0xf; |
| *r2 = insn[3] & 0xf; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| /* Test for RS instruction format. See comment on is_ri for details. */ |
| |
| static int |
| is_rs (bfd_byte *insn, int op, |
| unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2) |
| { |
| if (insn[0] == op) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *r3 = insn[1] & 0xf; |
| *b2 = (insn[2] >> 4) & 0xf; |
| *d2 = ((insn[2] & 0xf) << 8) | insn[3]; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| /* Test for RSY instruction format. See comment on is_ri for details. */ |
| |
| static int |
| is_rsy (bfd_byte *insn, int op1, int op2, |
| unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2) |
| { |
| if (insn[0] == op1 |
| && insn[5] == op2) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *r3 = insn[1] & 0xf; |
| *b2 = (insn[2] >> 4) & 0xf; |
| /* The 'long displacement' is a 20-bit signed integer. */ |
| *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) |
| ^ 0x80000) - 0x80000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| /* Test for RX instruction format. See comment on is_ri for details. */ |
| |
| static int |
| is_rx (bfd_byte *insn, int op, |
| unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2) |
| { |
| if (insn[0] == op) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *x2 = insn[1] & 0xf; |
| *b2 = (insn[2] >> 4) & 0xf; |
| *d2 = ((insn[2] & 0xf) << 8) | insn[3]; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| /* Test for RXY instruction format. See comment on is_ri for details. */ |
| |
| static int |
| is_rxy (bfd_byte *insn, int op1, int op2, |
| unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2) |
| { |
| if (insn[0] == op1 |
| && insn[5] == op2) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *x2 = insn[1] & 0xf; |
| *b2 = (insn[2] >> 4) & 0xf; |
| /* The 'long displacement' is a 20-bit signed integer. */ |
| *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) |
| ^ 0x80000) - 0x80000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| /* A helper for s390_software_single_step, decides if an instruction |
| is a partial-execution instruction that needs to be executed until |
| completion when in record mode. If it is, returns 1 and writes |
| instruction length to a pointer. */ |
| |
| static int |
| s390_is_partial_instruction (struct gdbarch *gdbarch, CORE_ADDR loc, int *len) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| uint16_t insn; |
| |
| insn = read_memory_integer (loc, 2, byte_order); |
| |
| switch (insn >> 8) |
| { |
| case 0xa8: /* MVCLE */ |
| *len = 4; |
| return 1; |
| |
| case 0xeb: |
| { |
| insn = read_memory_integer (loc + 4, 2, byte_order); |
| if ((insn & 0xff) == 0x8e) |
| { |
| /* MVCLU */ |
| *len = 6; |
| return 1; |
| } |
| } |
| break; |
| } |
| |
| switch (insn) |
| { |
| case 0xb255: /* MVST */ |
| case 0xb263: /* CMPSC */ |
| case 0xb2a5: /* TRE */ |
| case 0xb2a6: /* CU21 */ |
| case 0xb2a7: /* CU12 */ |
| case 0xb9b0: /* CU14 */ |
| case 0xb9b1: /* CU24 */ |
| case 0xb9b2: /* CU41 */ |
| case 0xb9b3: /* CU42 */ |
| case 0xb92a: /* KMF */ |
| case 0xb92b: /* KMO */ |
| case 0xb92f: /* KMC */ |
| case 0xb92d: /* KMCTR */ |
| case 0xb92e: /* KM */ |
| case 0xb93c: /* PPNO */ |
| case 0xb990: /* TRTT */ |
| case 0xb991: /* TRTO */ |
| case 0xb992: /* TROT */ |
| case 0xb993: /* TROO */ |
| *len = 4; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Implement the "software_single_step" gdbarch method, needed to single step |
| through instructions like MVCLE in record mode, to make sure they are |
| executed to completion. Without that, record will save the full length |
| of destination buffer on every iteration, even though the CPU will only |
| process about 4kiB of it each time, leading to O(n**2) memory and time |
| complexity. */ |
| |
| static std::vector<CORE_ADDR> |
| s390_software_single_step (struct regcache *regcache) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| CORE_ADDR loc = regcache_read_pc (regcache); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int len; |
| uint16_t insn; |
| |
| /* Special handling only if recording. */ |
| if (!record_full_is_used ()) |
| return {}; |
| |
| /* First, match a partial instruction. */ |
| if (!s390_is_partial_instruction (gdbarch, loc, &len)) |
| return {}; |
| |
| loc += len; |
| |
| /* Second, look for a branch back to it. */ |
| insn = read_memory_integer (loc, 2, byte_order); |
| if (insn != 0xa714) /* BRC with mask 1 */ |
| return {}; |
| |
| insn = read_memory_integer (loc + 2, 2, byte_order); |
| if (insn != (uint16_t) -(len / 2)) |
| return {}; |
| |
| loc += 4; |
| |
| /* Found it, step past the whole thing. */ |
| return {loc}; |
| } |
| |
| /* Displaced stepping. */ |
| |
| /* Return true if INSN is a non-branch RIL-b or RIL-c format |
| instruction. */ |
| |
| static int |
| is_non_branch_ril (gdb_byte *insn) |
| { |
| gdb_byte op1 = insn[0]; |
| |
| if (op1 == 0xc4) |
| { |
| gdb_byte op2 = insn[1] & 0x0f; |
| |
| switch (op2) |
| { |
| case 0x02: /* llhrl */ |
| case 0x04: /* lghrl */ |
| case 0x05: /* lhrl */ |
| case 0x06: /* llghrl */ |
| case 0x07: /* sthrl */ |
| case 0x08: /* lgrl */ |
| case 0x0b: /* stgrl */ |
| case 0x0c: /* lgfrl */ |
| case 0x0d: /* lrl */ |
| case 0x0e: /* llgfrl */ |
| case 0x0f: /* strl */ |
| return 1; |
| } |
| } |
| else if (op1 == 0xc6) |
| { |
| gdb_byte op2 = insn[1] & 0x0f; |
| |
| switch (op2) |
| { |
| case 0x00: /* exrl */ |
| case 0x02: /* pfdrl */ |
| case 0x04: /* cghrl */ |
| case 0x05: /* chrl */ |
| case 0x06: /* clghrl */ |
| case 0x07: /* clhrl */ |
| case 0x08: /* cgrl */ |
| case 0x0a: /* clgrl */ |
| case 0x0c: /* cgfrl */ |
| case 0x0d: /* crl */ |
| case 0x0e: /* clgfrl */ |
| case 0x0f: /* clrl */ |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| typedef buf_displaced_step_copy_insn_closure |
| s390_displaced_step_copy_insn_closure; |
| |
| /* Implementation of gdbarch_displaced_step_copy_insn. */ |
| |
| static displaced_step_copy_insn_closure_up |
| s390_displaced_step_copy_insn (struct gdbarch *gdbarch, |
| CORE_ADDR from, CORE_ADDR to, |
| struct regcache *regs) |
| { |
| size_t len = gdbarch_max_insn_length (gdbarch); |
| std::unique_ptr<s390_displaced_step_copy_insn_closure> closure |
| (new s390_displaced_step_copy_insn_closure (len)); |
| gdb_byte *buf = closure->buf.data (); |
| |
| read_memory (from, buf, len); |
| |
| /* Adjust the displacement field of PC-relative RIL instructions, |
| except branches. The latter are handled in the fixup hook. */ |
| if (is_non_branch_ril (buf)) |
| { |
| LONGEST offset; |
| |
| offset = extract_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG); |
| offset = (from - to + offset * 2) / 2; |
| |
| /* If the instruction is too far from the jump pad, punt. This |
| will usually happen with instructions in shared libraries. |
| We could probably support these by rewriting them to be |
| absolute or fully emulating them. */ |
| if (offset < INT32_MIN || offset > INT32_MAX) |
| { |
| /* Let the core fall back to stepping over the breakpoint |
| in-line. */ |
| displaced_debug_printf ("can't displaced step RIL instruction: offset " |
| "%s out of range", plongest (offset)); |
| |
| return NULL; |
| } |
| |
| store_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG, offset); |
| } |
| |
| write_memory (to, buf, len); |
| |
| displaced_debug_printf ("copy %s->%s: %s", |
| paddress (gdbarch, from), paddress (gdbarch, to), |
| bytes_to_string (buf, len).c_str ()); |
| |
| /* This is a work around for a problem with g++ 4.8. */ |
| return displaced_step_copy_insn_closure_up (closure.release ()); |
| } |
| |
| /* Fix up the state of registers and memory after having single-stepped |
| a displaced instruction. */ |
| |
| static void |
| s390_displaced_step_fixup (struct gdbarch *gdbarch, |
| displaced_step_copy_insn_closure *closure_, |
| CORE_ADDR from, CORE_ADDR to, |
| struct regcache *regs, bool completed_p) |
| { |
| CORE_ADDR pc = regcache_read_pc (regs); |
| |
| /* If the displaced instruction didn't complete successfully then all we |
| need to do is restore the program counter. */ |
| if (!completed_p) |
| { |
| pc = from + (pc - to); |
| regcache_write_pc (regs, pc); |
| return; |
| } |
| |
| /* Our closure is a copy of the instruction. */ |
| s390_displaced_step_copy_insn_closure *closure |
| = (s390_displaced_step_copy_insn_closure *) closure_; |
| gdb_byte *insn = closure->buf.data (); |
| static int s390_instrlen[] = { 2, 4, 4, 6 }; |
| int insnlen = s390_instrlen[insn[0] >> 6]; |
| |
| /* Fields for various kinds of instructions. */ |
| unsigned int b2, r1, r2, x2, r3; |
| int i2, d2; |
| |
| /* Get addressing mode bit. */ |
| ULONGEST amode = 0; |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| { |
| regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode); |
| amode &= 0x80000000; |
| } |
| |
| displaced_debug_printf ("(s390) fixup (%s, %s) pc %s len %d amode 0x%x", |
| paddress (gdbarch, from), paddress (gdbarch, to), |
| paddress (gdbarch, pc), insnlen, (int) amode); |
| |
| /* Handle absolute branch and save instructions. */ |
| int op_basr_p = is_rr (insn, op_basr, &r1, &r2); |
| if (op_basr_p |
| || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)) |
| { |
| /* Recompute saved return address in R1. */ |
| regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, |
| amode | (from + insnlen)); |
| /* Update PC iff the instruction doesn't actually branch. */ |
| if (op_basr_p && r2 == 0) |
| regcache_write_pc (regs, from + insnlen); |
| } |
| |
| /* Handle absolute branch instructions. */ |
| else if (is_rr (insn, op_bcr, &r1, &r2) |
| || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) |
| || is_rr (insn, op_bctr, &r1, &r2) |
| || is_rre (insn, op_bctgr, &r1, &r2) |
| || is_rx (insn, op_bct, &r1, &d2, &x2, &b2) |
| || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2) |
| || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2) |
| || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2) |
| || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2) |
| || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2)) |
| { |
| /* Update PC iff branch was *not* taken. */ |
| if (pc == to + insnlen) |
| regcache_write_pc (regs, from + insnlen); |
| } |
| |
| /* Handle PC-relative branch and save instructions. */ |
| else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2) |
| || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2)) |
| { |
| /* Update PC. */ |
| regcache_write_pc (regs, pc - to + from); |
| /* Recompute saved return address in R1. */ |
| regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, |
| amode | (from + insnlen)); |
| } |
| |
| /* Handle LOAD ADDRESS RELATIVE LONG. */ |
| else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) |
| { |
| /* Update PC. */ |
| regcache_write_pc (regs, from + insnlen); |
| /* Recompute output address in R1. */ |
| regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, |
| from + i2 * 2); |
| } |
| |
| /* If we executed a breakpoint instruction, point PC right back at it. */ |
| else if (insn[0] == 0x0 && insn[1] == 0x1) |
| regcache_write_pc (regs, from); |
| |
| /* For any other insn, adjust PC by negated displacement. PC then |
| points right after the original instruction, except for PC-relative |
| branches, where it points to the adjusted branch target. */ |
| else |
| regcache_write_pc (regs, pc - to + from); |
| |
| displaced_debug_printf ("(s390) pc is now %s", |
| paddress (gdbarch, regcache_read_pc (regs))); |
| } |
| |
| /* Implement displaced_step_hw_singlestep gdbarch method. */ |
| |
| static bool |
| s390_displaced_step_hw_singlestep (struct gdbarch *gdbarch) |
| { |
| return true; |
| } |
| |
| /* Prologue analysis. */ |
| |
| struct s390_prologue_data { |
| |
| /* The stack. */ |
| struct pv_area *stack; |
| |
| /* The size and byte-order of a GPR or FPR. */ |
| int gpr_size; |
| int fpr_size; |
| enum bfd_endian byte_order; |
| |
| /* The general-purpose registers. */ |
| pv_t gpr[S390_NUM_GPRS]; |
| |
| /* The floating-point registers. */ |
| pv_t fpr[S390_NUM_FPRS]; |
| |
| /* The offset relative to the CFA where the incoming GPR N was saved |
| by the function prologue. 0 if not saved or unknown. */ |
| int gpr_slot[S390_NUM_GPRS]; |
| |
| /* Likewise for FPRs. */ |
| int fpr_slot[S390_NUM_FPRS]; |
| |
| /* Nonzero if the backchain was saved. This is assumed to be the |
| case when the incoming SP is saved at the current SP location. */ |
| int back_chain_saved_p; |
| }; |
| |
| /* Return the effective address for an X-style instruction, like: |
| |
| L R1, D2(X2, B2) |
| |
| Here, X2 and B2 are registers, and D2 is a signed 20-bit |
| constant; the effective address is the sum of all three. If either |
| X2 or B2 are zero, then it doesn't contribute to the sum --- this |
| means that r0 can't be used as either X2 or B2. */ |
| |
| static pv_t |
| s390_addr (struct s390_prologue_data *data, |
| int d2, unsigned int x2, unsigned int b2) |
| { |
| pv_t result; |
| |
| result = pv_constant (d2); |
| if (x2) |
| result = pv_add (result, data->gpr[x2]); |
| if (b2) |
| result = pv_add (result, data->gpr[b2]); |
| |
| return result; |
| } |
| |
| /* Do a SIZE-byte store of VALUE to D2(X2,B2). */ |
| |
| static void |
| s390_store (struct s390_prologue_data *data, |
| int d2, unsigned int x2, unsigned int b2, CORE_ADDR size, |
| pv_t value) |
| { |
| pv_t addr = s390_addr (data, d2, x2, b2); |
| pv_t offset; |
| |
| /* Check whether we are storing the backchain. */ |
| offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr); |
| |
| if (pv_is_constant (offset) && offset.k == 0) |
| if (size == data->gpr_size |
| && pv_is_register_k (value, S390_SP_REGNUM, 0)) |
| { |
| data->back_chain_saved_p = 1; |
| return; |
| } |
| |
| /* Check whether we are storing a register into the stack. */ |
| if (!data->stack->store_would_trash (addr)) |
| data->stack->store (addr, size, value); |
| |
| /* Note: If this is some store we cannot identify, you might think we |
| should forget our cached values, as any of those might have been hit. |
| |
| However, we make the assumption that the register save areas are only |
| ever stored to once in any given function, and we do recognize these |
| stores. Thus every store we cannot recognize does not hit our data. */ |
| } |
| |
| /* Do a SIZE-byte load from D2(X2,B2). */ |
| |
| static pv_t |
| s390_load (struct s390_prologue_data *data, |
| int d2, unsigned int x2, unsigned int b2, CORE_ADDR size) |
| |
| { |
| pv_t addr = s390_addr (data, d2, x2, b2); |
| |
| /* If it's a load from an in-line constant pool, then we can |
| simulate that, under the assumption that the code isn't |
| going to change between the time the processor actually |
| executed it creating the current frame, and the time when |
| we're analyzing the code to unwind past that frame. */ |
| if (pv_is_constant (addr)) |
| { |
| const struct target_section *secp |
| = target_section_by_addr (current_inferior ()->top_target (), addr.k); |
| if (secp != NULL |
| && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY)) |
| return pv_constant (read_memory_integer (addr.k, size, |
| data->byte_order)); |
| } |
| |
| /* Check whether we are accessing one of our save slots. */ |
| return data->stack->fetch (addr, size); |
| } |
| |
| /* Function for finding saved registers in a 'struct pv_area'; we pass |
| this to pv_area::scan. |
| |
| If VALUE is a saved register, ADDR says it was saved at a constant |
| offset from the frame base, and SIZE indicates that the whole |
| register was saved, record its offset in the reg_offset table in |
| PROLOGUE_UNTYPED. */ |
| |
| static void |
| s390_check_for_saved (void *data_untyped, pv_t addr, |
| CORE_ADDR size, pv_t value) |
| { |
| struct s390_prologue_data *data = (struct s390_prologue_data *) data_untyped; |
| int i, offset; |
| |
| if (!pv_is_register (addr, S390_SP_REGNUM)) |
| return; |
| |
| offset = 16 * data->gpr_size + 32 - addr.k; |
| |
| /* If we are storing the original value of a register, we want to |
| record the CFA offset. If the same register is stored multiple |
| times, the stack slot with the highest address counts. */ |
| |
| for (i = 0; i < S390_NUM_GPRS; i++) |
| if (size == data->gpr_size |
| && pv_is_register_k (value, S390_R0_REGNUM + i, 0)) |
| if (data->gpr_slot[i] == 0 |
| || data->gpr_slot[i] > offset) |
| { |
| data->gpr_slot[i] = offset; |
| return; |
| } |
| |
| for (i = 0; i < S390_NUM_FPRS; i++) |
| if (size == data->fpr_size |
| && pv_is_register_k (value, S390_F0_REGNUM + i, 0)) |
| if (data->fpr_slot[i] == 0 |
| || data->fpr_slot[i] > offset) |
| { |
| data->fpr_slot[i] = offset; |
| return; |
| } |
| } |
| |
| /* Analyze the prologue of the function starting at START_PC, continuing at |
| most until CURRENT_PC. Initialize DATA to hold all information we find |
| out about the state of the registers and stack slots. Return the address |
| of the instruction after the last one that changed the SP, FP, or back |
| chain; or zero on error. */ |
| |
| static CORE_ADDR |
| s390_analyze_prologue (struct gdbarch *gdbarch, |
| CORE_ADDR start_pc, |
| CORE_ADDR current_pc, |
| struct s390_prologue_data *data) |
| { |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| |
| /* Our return value: |
| The address of the instruction after the last one that changed |
| the SP, FP, or back chain; zero if we got an error trying to |
| read memory. */ |
| CORE_ADDR result = start_pc; |
| |
| /* The current PC for our abstract interpretation. */ |
| CORE_ADDR pc; |
| |
| /* The address of the next instruction after that. */ |
| CORE_ADDR next_pc; |
| |
| pv_area stack (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
| scoped_restore restore_stack = make_scoped_restore (&data->stack, &stack); |
| |
| /* Set up everything's initial value. */ |
| { |
| int i; |
| |
| /* For the purpose of prologue tracking, we consider the GPR size to |
| be equal to the ABI word size, even if it is actually larger |
| (i.e. when running a 32-bit binary under a 64-bit kernel). */ |
| data->gpr_size = word_size; |
| data->fpr_size = 8; |
| data->byte_order = gdbarch_byte_order (gdbarch); |
| |
| for (i = 0; i < S390_NUM_GPRS; i++) |
| data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0); |
| |
| for (i = 0; i < S390_NUM_FPRS; i++) |
| data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0); |
| |
| for (i = 0; i < S390_NUM_GPRS; i++) |
| data->gpr_slot[i] = 0; |
| |
| for (i = 0; i < S390_NUM_FPRS; i++) |
| data->fpr_slot[i] = 0; |
| |
| data->back_chain_saved_p = 0; |
| } |
| |
| /* Start interpreting instructions, until we hit the frame's |
| current PC or the first branch instruction. */ |
| for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc) |
| { |
| bfd_byte insn[S390_MAX_INSTR_SIZE]; |
| int insn_len = s390_readinstruction (insn, pc); |
| |
| bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 }; |
| bfd_byte *insn32 = word_size == 4 ? insn : dummy; |
| bfd_byte *insn64 = word_size == 8 ? insn : dummy; |
| |
| /* Fields for various kinds of instructions. */ |
| unsigned int b2, r1, r2, x2, r3; |
| int i2, d2; |
| |
| /* The values of SP and FP before this instruction, |
| for detecting instructions that change them. */ |
| pv_t pre_insn_sp, pre_insn_fp; |
| /* Likewise for the flag whether the back chain was saved. */ |
| int pre_insn_back_chain_saved_p; |
| |
| /* If we got an error trying to read the instruction, report it. */ |
| if (insn_len < 0) |
| { |
| result = 0; |
| break; |
| } |
| |
| next_pc = pc + insn_len; |
| |
| pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
| pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; |
| pre_insn_back_chain_saved_p = data->back_chain_saved_p; |
| |
| /* LHI r1, i2 --- load halfword immediate. */ |
| /* LGHI r1, i2 --- load halfword immediate (64-bit version). */ |
| /* LGFI r1, i2 --- load fullword immediate. */ |
| if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2) |
| || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2) |
| || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2)) |
| data->gpr[r1] = pv_constant (i2); |
| |
| /* LR r1, r2 --- load from register. */ |
| /* LGR r1, r2 --- load from register (64-bit version). */ |
| else if (is_rr (insn32, op_lr, &r1, &r2) |
| || is_rre (insn64, op_lgr, &r1, &r2)) |
| data->gpr[r1] = data->gpr[r2]; |
| |
| /* L r1, d2(x2, b2) --- load. */ |
| /* LY r1, d2(x2, b2) --- load (long-displacement version). */ |
| /* LG r1, d2(x2, b2) --- load (64-bit version). */ |
| else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2) |
| || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2) |
| || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2)) |
| data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size); |
| |
| /* ST r1, d2(x2, b2) --- store. */ |
| /* STY r1, d2(x2, b2) --- store (long-displacement version). */ |
| /* STG r1, d2(x2, b2) --- store (64-bit version). */ |
| else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2) |
| || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2) |
| || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2)) |
| s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]); |
| |
| /* STD r1, d2(x2,b2) --- store floating-point register. */ |
| else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2)) |
| s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]); |
| |
| /* STM r1, r3, d2(b2) --- store multiple. */ |
| /* STMY r1, r3, d2(b2) --- store multiple (long-displacement |
| version). */ |
| /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */ |
| else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2) |
| || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2) |
| || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2)) |
| { |
| for (; r1 <= r3; r1++, d2 += data->gpr_size) |
| s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]); |
| } |
| |
| /* AHI r1, i2 --- add halfword immediate. */ |
| /* AGHI r1, i2 --- add halfword immediate (64-bit version). */ |
| /* AFI r1, i2 --- add fullword immediate. */ |
| /* AGFI r1, i2 --- add fullword immediate (64-bit version). */ |
| else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2) |
| || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2) |
| || is_ril (insn32, op1_afi, op2_afi, &r1, &i2) |
| || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2)) |
| data->gpr[r1] = pv_add_constant (data->gpr[r1], i2); |
| |
| /* ALFI r1, i2 --- add logical immediate. */ |
| /* ALGFI r1, i2 --- add logical immediate (64-bit version). */ |
| else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2) |
| || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2)) |
| data->gpr[r1] = pv_add_constant (data->gpr[r1], |
| (CORE_ADDR)i2 & 0xffffffff); |
| |
| /* AR r1, r2 -- add register. */ |
| /* AGR r1, r2 -- add register (64-bit version). */ |
| else if (is_rr (insn32, op_ar, &r1, &r2) |
| || is_rre (insn64, op_agr, &r1, &r2)) |
| data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]); |
| |
| /* A r1, d2(x2, b2) -- add. */ |
| /* AY r1, d2(x2, b2) -- add (long-displacement version). */ |
| /* AG r1, d2(x2, b2) -- add (64-bit version). */ |
| else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2) |
| || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2) |
| || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2)) |
| data->gpr[r1] = pv_add (data->gpr[r1], |
| s390_load (data, d2, x2, b2, data->gpr_size)); |
| |
| /* SLFI r1, i2 --- subtract logical immediate. */ |
| /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */ |
| else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2) |
| || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2)) |
| data->gpr[r1] = pv_add_constant (data->gpr[r1], |
| -((CORE_ADDR)i2 & 0xffffffff)); |
| |
| /* SR r1, r2 -- subtract register. */ |
| /* SGR r1, r2 -- subtract register (64-bit version). */ |
| else if (is_rr (insn32, op_sr, &r1, &r2) |
| || is_rre (insn64, op_sgr, &r1, &r2)) |
| data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]); |
| |
| /* S r1, d2(x2, b2) -- subtract. */ |
| /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */ |
| /* SG r1, d2(x2, b2) -- subtract (64-bit version). */ |
| else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2) |
| || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2) |
| || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2)) |
| data->gpr[r1] = pv_subtract (data->gpr[r1], |
| s390_load (data, d2, x2, b2, data->gpr_size)); |
| |
| /* LA r1, d2(x2, b2) --- load address. */ |
| /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */ |
| else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2) |
| || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2)) |
| data->gpr[r1] = s390_addr (data, d2, x2, b2); |
| |
| /* LARL r1, i2 --- load address relative long. */ |
| else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) |
| data->gpr[r1] = pv_constant (pc + i2 * 2); |
| |
| /* BASR r1, 0 --- branch and save. |
| Since r2 is zero, this saves the PC in r1, but doesn't branch. */ |
| else if (is_rr (insn, op_basr, &r1, &r2) |
| && r2 == 0) |
| data->gpr[r1] = pv_constant (next_pc); |
| |
| /* BRAS r1, i2 --- branch relative and save. */ |
| else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)) |
| { |
| data->gpr[r1] = pv_constant (next_pc); |
| next_pc = pc + i2 * 2; |
| |
| /* We'd better not interpret any backward branches. We'll |
| never terminate. */ |
| if (next_pc <= pc) |
| break; |
| } |
| |
| /* BRC/BRCL -- branch relative on condition. Ignore "branch |
| never", branch to following instruction, and "conditional |
| trap" (BRC +2). Otherwise terminate search. */ |
| else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)) |
| { |
| if (r1 != 0 && i2 != 1 && i2 != 2) |
| break; |
| } |
| else if (is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)) |
| { |
| if (r1 != 0 && i2 != 3) |
| break; |
| } |
| |
| /* Terminate search when hitting any other branch instruction. */ |
| else if (is_rr (insn, op_basr, &r1, &r2) |
| || is_rx (insn, op_bas, &r1, &d2, &x2, &b2) |
| || is_rr (insn, op_bcr, &r1, &r2) |
| || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) |
| || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2)) |
| break; |
| |
| else |
| { |
| /* An instruction we don't know how to simulate. The only |
| safe thing to do would be to set every value we're tracking |
| to 'unknown'. Instead, we'll be optimistic: we assume that |
| we *can* interpret every instruction that the compiler uses |
| to manipulate any of the data we're interested in here -- |
| then we can just ignore anything else. */ |
| } |
| |
| /* Record the address after the last instruction that changed |
| the FP, SP, or backlink. Ignore instructions that changed |
| them back to their original values --- those are probably |
| restore instructions. (The back chain is never restored, |
| just popped.) */ |
| { |
| pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
| pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; |
| |
| if ((! pv_is_identical (pre_insn_sp, sp) |
| && ! pv_is_register_k (sp, S390_SP_REGNUM, 0) |
| && sp.kind != pvk_unknown) |
| || (! pv_is_identical (pre_insn_fp, fp) |
| && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0) |
| && fp.kind != pvk_unknown) |
| || pre_insn_back_chain_saved_p != data->back_chain_saved_p) |
| result = next_pc; |
| } |
| } |
| |
| /* Record where all the registers were saved. */ |
| data->stack->scan (s390_check_for_saved, data); |
| |
| return result; |
| } |
| |
| /* Advance PC across any function entry prologue instructions to reach |
| some "real" code. */ |
| |
| static CORE_ADDR |
| s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| struct s390_prologue_data data; |
| CORE_ADDR skip_pc, func_addr; |
| |
| if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) |
| { |
| CORE_ADDR post_prologue_pc |
| = skip_prologue_using_sal (gdbarch, func_addr); |
| if (post_prologue_pc != 0) |
| return std::max (pc, post_prologue_pc); |
| } |
| |
| skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data); |
| return skip_pc ? skip_pc : pc; |
| } |
| |
| /* Register handling. */ |
| |
| /* ABI call-saved register information. */ |
| |
| static int |
| s390_register_call_saved (struct gdbarch *gdbarch, int regnum) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| |
| switch (tdep->abi) |
| { |
| case ABI_LINUX_S390: |
| if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) |
| || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM |
| || regnum == S390_A0_REGNUM) |
| return 1; |
| |
| break; |
| |
| case ABI_LINUX_ZSERIES: |
| if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) |
| || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM) |
| || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM)) |
| return 1; |
| |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* The "guess_tracepoint_registers" gdbarch method. */ |
| |
| static void |
| s390_guess_tracepoint_registers (struct gdbarch *gdbarch, |
| struct regcache *regcache, |
| CORE_ADDR addr) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| int sz = register_size (gdbarch, S390_PSWA_REGNUM); |
| gdb_byte *reg = (gdb_byte *) alloca (sz); |
| ULONGEST pswm, pswa; |
| |
| /* Set PSWA from the location and a default PSWM (the only part we're |
| unlikely to get right is the CC). */ |
| if (tdep->abi == ABI_LINUX_S390) |
| { |
| /* 31-bit PSWA needs high bit set (it's very unlikely the target |
| was in 24-bit mode). */ |
| pswa = addr | 0x80000000UL; |
| pswm = 0x070d0000UL; |
| } |
| else |
| { |
| pswa = addr; |
| pswm = 0x0705000180000000ULL; |
| } |
| |
| store_unsigned_integer (reg, sz, gdbarch_byte_order (gdbarch), pswa); |
| regcache->raw_supply (S390_PSWA_REGNUM, reg); |
| |
| store_unsigned_integer (reg, sz, gdbarch_byte_order (gdbarch), pswm); |
| regcache->raw_supply (S390_PSWM_REGNUM, reg); |
| } |
| |
| /* Return the name of register REGNO. Return the empty string for |
| registers that shouldn't be visible. */ |
| |
| static const char * |
| s390_register_name (struct gdbarch *gdbarch, int regnum) |
| { |
| if (regnum >= S390_V0_LOWER_REGNUM |
| && regnum <= S390_V15_LOWER_REGNUM) |
| return ""; |
| return tdesc_register_name (gdbarch, regnum); |
| } |
| |
| /* DWARF Register Mapping. */ |
| |
| static const short s390_dwarf_regmap[] = |
| { |
| /* 0-15: General Purpose Registers. */ |
| S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, |
| S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, |
| S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, |
| S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, |
| |
| /* 16-31: Floating Point Registers / Vector Registers 0-15. */ |
| S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM, |
| S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM, |
| S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM, |
| S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM, |
| |
| /* 32-47: Control Registers (not mapped). */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| |
| /* 48-63: Access Registers. */ |
| S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM, |
| S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM, |
| S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM, |
| S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM, |
| |
| /* 64-65: Program Status Word. */ |
| S390_PSWM_REGNUM, |
| S390_PSWA_REGNUM, |
| |
| /* 66-67: Reserved. */ |
| -1, -1, |
| |
| /* 68-83: Vector Registers 16-31. */ |
| S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM, |
| S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM, |
| S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM, |
| S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM, |
| |
| /* End of "official" DWARF registers. The remainder of the map is |
| for GDB internal use only. */ |
| |
| /* GPR Lower Half Access. */ |
| S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, |
| S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, |
| S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, |
| S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, |
| }; |
| |
| enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 }; |
| |
| /* Convert DWARF register number REG to the appropriate register |
| number used by GDB. */ |
| |
| static int |
| s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| int gdb_reg = -1; |
| |
| /* In a 32-on-64 debug scenario, debug info refers to the full |
| 64-bit GPRs. Note that call frame information still refers to |
| the 32-bit lower halves, because s390_adjust_frame_regnum uses |
| special register numbers to access GPRs. */ |
| if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16) |
| return tdep->gpr_full_regnum + reg; |
| |
| if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap)) |
| gdb_reg = s390_dwarf_regmap[reg]; |
| |
| if (tdep->v0_full_regnum == -1) |
| { |
| if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM) |
| gdb_reg = -1; |
| } |
| else |
| { |
| if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM) |
| gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum; |
| } |
| |
| return gdb_reg; |
| } |
| |
| /* Pseudo registers. */ |
| |
| /* Check whether REGNUM indicates a coupled general purpose register. |
| These pseudo-registers are composed of two adjacent gprs. */ |
| |
| static int |
| regnum_is_gpr_full (s390_gdbarch_tdep *tdep, int regnum) |
| { |
| return (tdep->gpr_full_regnum != -1 |
| && regnum >= tdep->gpr_full_regnum |
| && regnum <= tdep->gpr_full_regnum + 15); |
| } |
| |
| /* Check whether REGNUM indicates a full vector register (v0-v15). |
| These pseudo-registers are composed of f0-f15 and v0l-v15l. */ |
| |
| static int |
| regnum_is_vxr_full (s390_gdbarch_tdep *tdep, int regnum) |
| { |
| return (tdep->v0_full_regnum != -1 |
| && regnum >= tdep->v0_full_regnum |
| && regnum <= tdep->v0_full_regnum + 15); |
| } |
| |
| /* 'float' values are stored in the upper half of floating-point |
| registers, even though we are otherwise a big-endian platform. The |
| same applies to a 'float' value within a vector. */ |
| |
| static value * |
| s390_value_from_register (gdbarch *gdbarch, type *type, int regnum, |
| const frame_info_ptr &this_frame) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| value *value |
| = default_value_from_register (gdbarch, type, regnum, this_frame); |
| check_typedef (type); |
| |
| if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM |
| && type->length () < 8) |
| || regnum_is_vxr_full (tdep, regnum) |
| || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM)) |
| value->set_offset (0); |
| |
| return value; |
| } |
| |
| /* Implement pseudo_register_name tdesc method. */ |
| |
| static const char * |
| s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| |
| if (regnum == tdep->pc_regnum) |
| return "pc"; |
| |
| if (regnum == tdep->cc_regnum) |
| return "cc"; |
| |
| if (regnum_is_gpr_full (tdep, regnum)) |
| { |
| static const char *full_name[] = { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
| }; |
| return full_name[regnum - tdep->gpr_full_regnum]; |
| } |
| |
| if (regnum_is_vxr_full (tdep, regnum)) |
| { |
| static const char *full_name[] = { |
| "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", |
| "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" |
| }; |
| return full_name[regnum - tdep->v0_full_regnum]; |
| } |
| |
| internal_error (_("invalid regnum")); |
| } |
| |
| /* Implement pseudo_register_type tdesc method. */ |
| |
| static struct type * |
| s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| |
| if (regnum == tdep->pc_regnum) |
| return builtin_type (gdbarch)->builtin_func_ptr; |
| |
| if (regnum == tdep->cc_regnum) |
| return builtin_type (gdbarch)->builtin_int; |
| |
| if (regnum_is_gpr_full (tdep, regnum)) |
| return builtin_type (gdbarch)->builtin_uint64; |
| |
| /* For the "concatenated" vector registers use the same type as v16. */ |
| if (regnum_is_vxr_full (tdep, regnum)) |
| return tdesc_register_type (gdbarch, S390_V16_REGNUM); |
| |
| internal_error (_("invalid regnum")); |
| } |
| |
| /* Implement pseudo_register_read gdbarch method. */ |
| |
| static enum register_status |
| s390_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
| int regnum, gdb_byte *buf) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int regsize = register_size (gdbarch, regnum); |
| ULONGEST val; |
| |
| if (regnum == tdep->pc_regnum) |
| { |
| enum register_status status; |
| |
| status = regcache->raw_read (S390_PSWA_REGNUM, &val); |
| if (status == REG_VALID) |
| { |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| val &= 0x7fffffff; |
| store_unsigned_integer (buf, regsize, byte_order, val); |
| } |
| return status; |
| } |
| |
| if (regnum == tdep->cc_regnum) |
| { |
| enum register_status status; |
| |
| status = regcache->raw_read (S390_PSWM_REGNUM, &val); |
| if (status == REG_VALID) |
| { |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| val = (val >> 12) & 3; |
| else |
| val = (val >> 44) & 3; |
| store_unsigned_integer (buf, regsize, byte_order, val); |
| } |
| return status; |
| } |
| |
| if (regnum_is_gpr_full (tdep, regnum)) |
| { |
| enum register_status status; |
| ULONGEST val_upper; |
| |
| regnum -= tdep->gpr_full_regnum; |
| |
| status = regcache->raw_read (S390_R0_REGNUM + regnum, &val); |
| if (status == REG_VALID) |
| status = regcache->raw_read (S390_R0_UPPER_REGNUM + regnum, |
| &val_upper); |
| if (status == REG_VALID) |
| { |
| val |= val_upper << 32; |
| store_unsigned_integer (buf, regsize, byte_order, val); |
| } |
| return status; |
| } |
| |
| if (regnum_is_vxr_full (tdep, regnum)) |
| { |
| enum register_status status; |
| |
| regnum -= tdep->v0_full_regnum; |
| |
| status = regcache->raw_read (S390_F0_REGNUM + regnum, buf); |
| if (status == REG_VALID) |
| status = regcache->raw_read (S390_V0_LOWER_REGNUM + regnum, buf + 8); |
| return status; |
| } |
| |
| internal_error (_("invalid regnum")); |
| } |
| |
| /* Implement pseudo_register_write gdbarch method. */ |
| |
| static void |
| s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, |
| int regnum, const gdb_byte *buf) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int regsize = register_size (gdbarch, regnum); |
| ULONGEST val, psw; |
| |
| if (regnum == tdep->pc_regnum) |
| { |
| val = extract_unsigned_integer (buf, regsize, byte_order); |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| { |
| regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw); |
| val = (psw & 0x80000000) | (val & 0x7fffffff); |
| } |
| regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val); |
| return; |
| } |
| |
| if (regnum == tdep->cc_regnum) |
| { |
| val = extract_unsigned_integer (buf, regsize, byte_order); |
| regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12); |
| else |
| val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44); |
| regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val); |
| return; |
| } |
| |
| if (regnum_is_gpr_full (tdep, regnum)) |
| { |
| regnum -= tdep->gpr_full_regnum; |
| val = extract_unsigned_integer (buf, regsize, byte_order); |
| regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum, |
| val & 0xffffffff); |
| regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum, |
| val >> 32); |
| return; |
| } |
| |
| if (regnum_is_vxr_full (tdep, regnum)) |
| { |
| regnum -= tdep->v0_full_regnum; |
| regcache->raw_write (S390_F0_REGNUM + regnum, buf); |
| regcache->raw_write (S390_V0_LOWER_REGNUM + regnum, buf + 8); |
| return; |
| } |
| |
| internal_error (_("invalid regnum")); |
| } |
| |
| /* Register groups. */ |
| |
| /* Implement pseudo_register_reggroup_p tdesc method. */ |
| |
| static int |
| s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
| const struct reggroup *group) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| |
| /* We usually save/restore the whole PSW, which includes PC and CC. |
| However, some older gdbservers may not support saving/restoring |
| the whole PSW yet, and will return an XML register description |
| excluding those from the save/restore register groups. In those |
| cases, we still need to explicitly save/restore PC and CC in order |
| to push or pop frames. Since this doesn't hurt anything if we |
| already save/restore the whole PSW (it's just redundant), we add |
| PC and CC at this point unconditionally. */ |
| if (group == save_reggroup || group == restore_reggroup) |
| return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum; |
| |
| if (group == vector_reggroup) |
| return regnum_is_vxr_full (tdep, regnum); |
| |
| if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum)) |
| return 0; |
| |
| return default_register_reggroup_p (gdbarch, regnum, group); |
| } |
| |
| /* The "ax_pseudo_register_collect" gdbarch method. */ |
| |
| static int |
| s390_ax_pseudo_register_collect (struct gdbarch *gdbarch, |
| struct agent_expr *ax, int regnum) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| if (regnum == tdep->pc_regnum) |
| { |
| ax_reg_mask (ax, S390_PSWA_REGNUM); |
| } |
| else if (regnum == tdep->cc_regnum) |
| { |
| ax_reg_mask (ax, S390_PSWM_REGNUM); |
| } |
| else if (regnum_is_gpr_full (tdep, regnum)) |
| { |
| regnum -= tdep->gpr_full_regnum; |
| ax_reg_mask (ax, S390_R0_REGNUM + regnum); |
| ax_reg_mask (ax, S390_R0_UPPER_REGNUM + regnum); |
| } |
| else if (regnum_is_vxr_full (tdep, regnum)) |
| { |
| regnum -= tdep->v0_full_regnum; |
| ax_reg_mask (ax, S390_F0_REGNUM + regnum); |
| ax_reg_mask (ax, S390_V0_LOWER_REGNUM + regnum); |
| } |
| else |
| { |
| internal_error (_("invalid regnum")); |
| } |
| return 0; |
| } |
| |
| /* The "ax_pseudo_register_push_stack" gdbarch method. */ |
| |
| static int |
| s390_ax_pseudo_register_push_stack (struct gdbarch *gdbarch, |
| struct agent_expr *ax, int regnum) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| if (regnum == tdep->pc_regnum) |
| { |
| ax_reg (ax, S390_PSWA_REGNUM); |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| { |
| ax_zero_ext (ax, 31); |
| } |
| } |
| else if (regnum == tdep->cc_regnum) |
| { |
| ax_reg (ax, S390_PSWM_REGNUM); |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| ax_const_l (ax, 12); |
| else |
| ax_const_l (ax, 44); |
| ax_simple (ax, aop_rsh_unsigned); |
| ax_zero_ext (ax, 2); |
| } |
| else if (regnum_is_gpr_full (tdep, regnum)) |
| { |
| regnum -= tdep->gpr_full_regnum; |
| ax_reg (ax, S390_R0_REGNUM + regnum); |
| ax_reg (ax, S390_R0_UPPER_REGNUM + regnum); |
| ax_const_l (ax, 32); |
| ax_simple (ax, aop_lsh); |
| ax_simple (ax, aop_bit_or); |
| } |
| else if (regnum_is_vxr_full (tdep, regnum)) |
| { |
| /* Too large to stuff on the stack. */ |
| return 1; |
| } |
| else |
| { |
| internal_error (_("invalid regnum")); |
| } |
| return 0; |
| } |
| |
| /* The "gen_return_address" gdbarch method. Since this is supposed to be |
| just a best-effort method, and we don't really have the means to run |
| the full unwinder here, just collect the link register. */ |
| |
| static void |
| s390_gen_return_address (struct gdbarch *gdbarch, |
| struct agent_expr *ax, struct axs_value *value, |
| CORE_ADDR scope) |
| { |
| value->type = register_type (gdbarch, S390_R14_REGNUM); |
| value->kind = axs_lvalue_register; |
| value->u.reg = S390_R14_REGNUM; |
| } |
| |
| /* Address handling. */ |
| |
| /* Implement addr_bits_remove gdbarch method. |
| Only used for ABI_LINUX_S390. */ |
| |
| static CORE_ADDR |
| s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| return addr & 0x7fffffff; |
| } |
| |
| /* Implement addr_class_type_flags gdbarch method. |
| Only used for ABI_LINUX_ZSERIES. */ |
| |
| static type_instance_flags |
| s390_address_class_type_flags (int byte_size, int dwarf2_addr_class) |
| { |
| if (byte_size == 4) |
| return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; |
| else |
| return 0; |
| } |
| |
| /* Implement addr_class_type_flags_to_name gdbarch method. |
| Only used for ABI_LINUX_ZSERIES. */ |
| |
| static const char * |
| s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, |
| type_instance_flags type_flags) |
| { |
| if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1) |
| return "mode32"; |
| else |
| return NULL; |
| } |
| |
| /* Implement addr_class_name_to_type_flags gdbarch method. |
| Only used for ABI_LINUX_ZSERIES. */ |
| |
| static bool |
| s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, |
| const char *name, |
| type_instance_flags *type_flags_ptr) |
| { |
| if (strcmp (name, "mode32") == 0) |
| { |
| *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| /* Inferior function calls. */ |
| |
| /* Dummy function calls. */ |
| |
| /* Unwrap any single-field structs in TYPE and return the effective |
| "inner" type. E.g., yield "float" for all these cases: |
| |
| float x; |
| struct { float x }; |
| struct { struct { float x; } x; }; |
| struct { struct { struct { float x; } x; } x; }; |
| |
| However, if an inner type is smaller than MIN_SIZE, abort the |
| unwrapping. */ |
| |
| static struct type * |
| s390_effective_inner_type (struct type *type, unsigned int min_size) |
| { |
| while (type->code () == TYPE_CODE_STRUCT) |
| { |
| struct type *inner = NULL; |
| |
| /* Find a non-static field, if any. Unless there's exactly one, |
| abort the unwrapping. */ |
| for (int i = 0; i < type->num_fields (); i++) |
| { |
| struct field f = type->field (i); |
| |
| if (f.is_static ()) |
| continue; |
| if (inner != NULL) |
| return type; |
| inner = f.type (); |
| } |
| |
| if (inner == NULL) |
| break; |
| inner = check_typedef (inner); |
| if (inner->length () < min_size) |
| break; |
| type = inner; |
| } |
| |
| return type; |
| } |
| |
| /* Return non-zero if TYPE should be passed like "float" or |
| "double". */ |
| |
| static int |
| s390_function_arg_float (struct type *type) |
| { |
| /* Note that long double as well as complex types are intentionally |
| excluded. */ |
| if (type->length () > 8) |
| return 0; |
| |
| /* A struct containing just a float or double is passed like a float |
| or double. */ |
| type = s390_effective_inner_type (type, 0); |
| |
| return (type->code () == TYPE_CODE_FLT |
| || type->code () == TYPE_CODE_DECFLOAT); |
| } |
| |
| /* Return non-zero if TYPE should be passed like a vector. */ |
| |
| static int |
| s390_function_arg_vector (struct type *type) |
| { |
| if (type->length () > 16) |
| return 0; |
| |
| /* Structs containing just a vector are passed like a vector. */ |
| type = s390_effective_inner_type (type, type->length ()); |
| |
| return type->code () == TYPE_CODE_ARRAY && type->is_vector (); |
| } |
| |
| /* Determine whether N is a power of two. */ |
| |
| static int |
| is_power_of_two (unsigned int n) |
| { |
| return n && ((n & (n - 1)) == 0); |
| } |
| |
| /* For an argument whose type is TYPE and which is not passed like a |
| float or vector, return non-zero if it should be passed like "int" |
| or "long long". */ |
| |
| static int |
| s390_function_arg_integer (struct type *type) |
| { |
| enum type_code code = type->code (); |
| |
| if (type->length () > 8) |
| return 0; |
| |
| if (code == TYPE_CODE_INT |
| || code == TYPE_CODE_ENUM |
| || code == TYPE_CODE_RANGE |
| || code == TYPE_CODE_CHAR |
| || code == TYPE_CODE_BOOL |
| || code == TYPE_CODE_PTR |
| || TYPE_IS_REFERENCE (type)) |
| return 1; |
| |
| return ((code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT) |
| && is_power_of_two (type->length ())); |
| } |
| |
| /* Argument passing state: Internal data structure passed to helper |
| routines of s390_push_dummy_call. */ |
| |
| struct s390_arg_state |
| { |
| /* Register cache, or NULL, if we are in "preparation mode". */ |
| struct regcache *regcache; |
| /* Next available general/floating-point/vector register for |
| argument passing. */ |
| int gr, fr, vr; |
| /* Current pointer to copy area (grows downwards). */ |
| CORE_ADDR copy; |
| /* Current pointer to parameter area (grows upwards). */ |
| CORE_ADDR argp; |
| }; |
| |
| /* Prepare one argument ARG for a dummy call and update the argument |
| passing state AS accordingly. If the regcache field in AS is set, |
| operate in "write mode" and write ARG into the inferior. Otherwise |
| run "preparation mode" and skip all updates to the inferior. */ |
| |
| static void |
| s390_handle_arg (struct s390_arg_state *as, struct value *arg, |
| s390_gdbarch_tdep *tdep, int word_size, |
| enum bfd_endian byte_order, int is_unnamed) |
| { |
| struct type *type = check_typedef (arg->type ()); |
| unsigned int length = type->length (); |
| int write_mode = as->regcache != NULL; |
| |
| if (s390_function_arg_float (type)) |
| { |
| /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass |
| arguments. The GNU/Linux for zSeries ABI uses 0, 2, 4, and |
| 6. */ |
| if (as->fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6)) |
| { |
| /* When we store a single-precision value in an FP register, |
| it occupies the leftmost bits. */ |
| if (write_mode) |
| as->regcache->cooked_write_part (S390_F0_REGNUM + as->fr, 0, length, |
| arg->contents ().data ()); |
| as->fr += 2; |
| } |
| else |
| { |
| /* When we store a single-precision value in a stack slot, |
| it occupies the rightmost bits. */ |
| as->argp = align_up (as->argp + length, word_size); |
| if (write_mode) |
| write_memory (as->argp - length, arg->contents ().data (), |
| length); |
| } |
| } |
| else if (tdep->vector_abi == S390_VECTOR_ABI_128 |
| && s390_function_arg_vector (type)) |
| { |
| static const char use_vr[] = {24, 26, 28, 30, 25, 27, 29, 31}; |
| |
| if (!is_unnamed && as->vr < ARRAY_SIZE (use_vr)) |
| { |
| int regnum = S390_V24_REGNUM + use_vr[as->vr] - 24; |
| |
| if (write_mode) |
| as->regcache->cooked_write_part (regnum, 0, length, |
| arg->contents ().data ()); |
| as->vr++; |
| } |
| else |
| { |
| if (write_mode) |
| write_memory (as->argp, arg->contents ().data (), length); |
| as->argp = align_up (as->argp + length, word_size); |
| } |
| } |
| else if (s390_function_arg_integer (type) && length <= word_size) |
| { |
| /* Initialize it just to avoid a GCC false warning. */ |
| ULONGEST val = 0; |
| |
| if (write_mode) |
| { |
| /* Place value in least significant bits of the register or |
| memory word and sign- or zero-extend to full word size. |
| This also applies to a struct or union. */ |
| val = type->is_unsigned () |
| ? extract_unsigned_integer (arg->contents ().data (), |
| length, byte_order) |
| : extract_signed_integer (arg->contents ().data (), |
| length, byte_order); |
| } |
| |
| if (as->gr <= 6) |
| { |
| if (write_mode) |
| regcache_cooked_write_unsigned (as->regcache, |
| S390_R0_REGNUM + as->gr, |
| val); |
| as->gr++; |
| } |
| else |
| { |
| if (write_mode) |
| write_memory_unsigned_integer (as->argp, word_size, |
| byte_order, val); |
| as->argp += word_size; |
| } |
| } |
| else if (s390_function_arg_integer (type) && length == 8) |
| { |
| if (as->gr <= 5) |
| { |
| if (write_mode) |
| { |
| as->regcache->cooked_write (S390_R0_REGNUM + as->gr, |
| arg->contents ().data ()); |
| as->regcache->cooked_write |
| (S390_R0_REGNUM + as->gr + 1, |
| arg->contents ().data () + word_size); |
| } |
| as->gr += 2; |
| } |
| else |
| { |
| /* If we skipped r6 because we couldn't fit a DOUBLE_ARG |
| in it, then don't go back and use it again later. */ |
| as->gr = 7; |
| |
| if (write_mode) |
| write_memory (as->argp, arg->contents ().data (), length); |
| as->argp += length; |
| } |
| } |
| else |
| { |
| /* This argument type is never passed in registers. Place the |
| value in the copy area and pass a pointer to it. Use 8-byte |
| alignment as a conservative assumption. */ |
| as->copy = align_down (as->copy - length, 8); |
| if (write_mode) |
| write_memory (as->copy, arg->contents ().data (), length); |
| |
| if (as->gr <= 6) |
| { |
| if (write_mode) |
| regcache_cooked_write_unsigned (as->regcache, |
| S390_R0_REGNUM + as->gr, |
| as->copy); |
| as->gr++; |
| } |
| else |
| { |
| if (write_mode) |
| write_memory_unsigned_integer (as->argp, word_size, |
| byte_order, as->copy); |
| as->argp += word_size; |
| } |
| } |
| } |
| |
| /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in |
| place to be passed to a function, as specified by the "GNU/Linux |
| for S/390 ELF Application Binary Interface Supplement". |
| |
| SP is the current stack pointer. We must put arguments, links, |
| padding, etc. whereever they belong, and return the new stack |
| pointer value. |
| |
| If STRUCT_RETURN is non-zero, then the function we're calling is |
| going to return a structure by value; STRUCT_ADDR is the address of |
| a block we've allocated for it on the stack. |
| |
| Our caller has taken care of any type promotions needed to satisfy |
| prototypes or the old K&R argument-passing rules. */ |
| |
| static CORE_ADDR |
| s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int i; |
| struct s390_arg_state arg_state, arg_prep; |
| CORE_ADDR param_area_start, new_sp; |
| struct type *ftype = check_typedef (function->type ()); |
| |
| if (ftype->code () == TYPE_CODE_PTR) |
| ftype = check_typedef (ftype->target_type ()); |
| |
| arg_prep.copy = sp; |
| arg_prep.gr = (return_method == return_method_struct) ? 3 : 2; |
| arg_prep.fr = 0; |
| arg_prep.vr = 0; |
| arg_prep.argp = 0; |
| arg_prep.regcache = NULL; |
| |
| /* Initialize arg_state for "preparation mode". */ |
| arg_state = arg_prep; |
| |
| /* Update arg_state.copy with the start of the reference-to-copy area |
| and arg_state.argp with the size of the parameter area. */ |
| for (i = 0; i < nargs; i++) |
| s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order, |
| ftype->has_varargs () && i >= ftype->num_fields ()); |
| |
| param_area_start = align_down (arg_state.copy - arg_state.argp, 8); |
| |
| /* Allocate the standard frame areas: the register save area, the |
| word reserved for the compiler, and the back chain pointer. */ |
| new_sp = param_area_start - (16 * word_size + 32); |
| |
| /* Now we have the final stack pointer. Make sure we didn't |
| underflow; on 31-bit, this would result in addresses with the |
| high bit set, which causes confusion elsewhere. Note that if we |
| error out here, stack and registers remain untouched. */ |
| if (gdbarch_addr_bits_remove (gdbarch, new_sp) != new_sp) |
| error (_("Stack overflow")); |
| |
| /* Pass the structure return address in general register 2. */ |
| if (return_method == return_method_struct) |
| regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, struct_addr); |
| |
| /* Initialize arg_state for "write mode". */ |
| arg_state = arg_prep; |
| arg_state.argp = param_area_start; |
| arg_state.regcache = regcache; |
| |
| /* Write all parameters. */ |
| for (i = 0; i < nargs; i++) |
| s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order, |
| ftype->has_varargs () && i >= ftype->num_fields ()); |
| |
| /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */ |
| if (word_size == 4) |
| { |
| ULONGEST pswa; |
| regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa); |
| bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000); |
| } |
| regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr); |
| |
| /* Store updated stack pointer. */ |
| regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, new_sp); |
| |
| /* We need to return the 'stack part' of the frame ID, |
| which is actually the top of the register save area. */ |
| return param_area_start; |
| } |
| |
| /* Assuming THIS_FRAME is a dummy, return the frame ID of that |
| dummy frame. The frame ID's base needs to match the TOS value |
| returned by push_dummy_call, and the PC match the dummy frame's |
| breakpoint. */ |
| |
| static struct frame_id |
| s390_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame) |
| { |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
| sp = gdbarch_addr_bits_remove (gdbarch, sp); |
| |
| return frame_id_build (sp + 16*word_size + 32, |
| get_frame_pc (this_frame)); |
| } |
| |
| /* Implement frame_align gdbarch method. */ |
| |
| static CORE_ADDR |
| s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| /* Both the 32- and 64-bit ABI's say that the stack pointer should |
| always be aligned on an eight-byte boundary. */ |
| return (addr & -8); |
| } |
| |
| /* Helper for s390_return_value: Set or retrieve a function return |
| value if it resides in a register. */ |
| |
| static void |
| s390_register_return_value (struct gdbarch *gdbarch, struct type *type, |
| struct regcache *regcache, |
| gdb_byte *out, const gdb_byte *in) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| int length = type->length (); |
| int code = type->code (); |
| |
| if (code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) |
| { |
| /* Float-like value: left-aligned in f0. */ |
| if (in != NULL) |
| regcache->cooked_write_part (S390_F0_REGNUM, 0, length, in); |
| else |
| regcache->cooked_read_part (S390_F0_REGNUM, 0, length, out); |
| } |
| else if (code == TYPE_CODE_ARRAY) |
| { |
| /* Vector: left-aligned in v24. */ |
| if (in != NULL) |
| regcache->cooked_write_part (S390_V24_REGNUM, 0, length, in); |
| else |
| regcache->cooked_read_part (S390_V24_REGNUM, 0, length, out); |
| } |
| else if (length <= word_size) |
| { |
| /* Integer: zero- or sign-extended in r2. */ |
| if (out != NULL) |
| regcache->cooked_read_part (S390_R2_REGNUM, word_size - length, length, |
| out); |
| else if (type->is_unsigned ()) |
| regcache_cooked_write_unsigned |
| (regcache, S390_R2_REGNUM, |
| extract_unsigned_integer (in, length, byte_order)); |
| else |
| regcache_cooked_write_signed |
| (regcache, S390_R2_REGNUM, |
| extract_signed_integer (in, length, byte_order)); |
| } |
| else if (length == 2 * word_size) |
| { |
| /* Double word: in r2 and r3. */ |
| if (in != NULL) |
| { |
| regcache->cooked_write (S390_R2_REGNUM, in); |
| regcache->cooked_write (S390_R3_REGNUM, in + word_size); |
| } |
| else |
| { |
| regcache->cooked_read (S390_R2_REGNUM, out); |
| regcache->cooked_read (S390_R3_REGNUM, out + word_size); |
| } |
| } |
| else |
| internal_error (_("invalid return type")); |
| } |
| |
| /* Implement the 'return_value' gdbarch method. */ |
| |
| static enum return_value_convention |
| s390_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *type, struct regcache *regcache, |
| gdb_byte *out, const gdb_byte *in) |
| { |
| enum return_value_convention rvc; |
| |
| type = check_typedef (type); |
| |
| switch (type->code ()) |
| { |
| case TYPE_CODE_STRUCT: |
| case TYPE_CODE_UNION: |
| case TYPE_CODE_COMPLEX: |
| rvc = RETURN_VALUE_STRUCT_CONVENTION; |
| break; |
| case TYPE_CODE_ARRAY: |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| rvc = (tdep->vector_abi == S390_VECTOR_ABI_128 |
| && type->length () <= 16 && type->is_vector ()) |
| ? RETURN_VALUE_REGISTER_CONVENTION |
| : RETURN_VALUE_STRUCT_CONVENTION; |
| break; |
| } |
| default: |
| rvc = type->length () <= 8 |
| ? RETURN_VALUE_REGISTER_CONVENTION |
| : RETURN_VALUE_STRUCT_CONVENTION; |
| } |
| |
| if (in != NULL || out != NULL) |
| { |
| if (rvc == RETURN_VALUE_REGISTER_CONVENTION) |
| s390_register_return_value (gdbarch, type, regcache, out, in); |
| else if (in != NULL) |
| error (_("Cannot set function return value.")); |
| else |
| error (_("Function return value unknown.")); |
| } |
| |
| return rvc; |
| } |
| |
| /* Frame unwinding. */ |
| |
| /* Implement the stack_frame_destroyed_p gdbarch method. */ |
| |
| static int |
| s390_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| |
| /* In frameless functions, there's no frame to destroy and thus |
| we don't care about the epilogue. |
| |
| In functions with frame, the epilogue sequence is a pair of |
| a LM-type instruction that restores (amongst others) the |
| return register %r14 and the stack pointer %r15, followed |
| by a branch 'br %r14' --or equivalent-- that effects the |
| actual return. |
| |
| In that situation, this function needs to return 'true' in |
| exactly one case: when pc points to that branch instruction. |
| |
| Thus we try to disassemble the one instructions immediately |
| preceding pc and check whether it is an LM-type instruction |
| modifying the stack pointer. |
| |
| Note that disassembling backwards is not reliable, so there |
| is a slight chance of false positives here ... */ |
| |
| bfd_byte insn[6]; |
| unsigned int r1, r3, b2; |
| int d2; |
| |
| if (word_size == 4 |
| && !target_read_memory (pc - 4, insn, 4) |
| && is_rs (insn, op_lm, &r1, &r3, &d2, &b2) |
| && r3 == S390_SP_REGNUM - S390_R0_REGNUM) |
| return 1; |
| |
| if (word_size == 4 |
| && !target_read_memory (pc - 6, insn, 6) |
| && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2) |
| && r3 == S390_SP_REGNUM - S390_R0_REGNUM) |
| return 1; |
| |
| if (word_size == 8 |
| && !target_read_memory (pc - 6, insn, 6) |
| && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2) |
| && r3 == S390_SP_REGNUM - S390_R0_REGNUM) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Implement unwind_pc gdbarch method. */ |
| |
| static CORE_ADDR |
| s390_unwind_pc (struct gdbarch *gdbarch, const frame_info_ptr &next_frame) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| ULONGEST pc; |
| pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum); |
| return gdbarch_addr_bits_remove (gdbarch, pc); |
| } |
| |
| /* Implement unwind_sp gdbarch method. */ |
| |
| static CORE_ADDR |
| s390_unwind_sp (struct gdbarch *gdbarch, const frame_info_ptr &next_frame) |
| { |
| ULONGEST sp; |
| sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); |
| return gdbarch_addr_bits_remove (gdbarch, sp); |
| } |
| |
| /* Helper routine to unwind pseudo registers. */ |
| |
| static struct value * |
| s390_unwind_pseudo_register (const frame_info_ptr &this_frame, int regnum) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| struct type *type = register_type (gdbarch, regnum); |
| |
| /* Unwind PC via PSW address. */ |
| if (regnum == tdep->pc_regnum) |
| { |
| struct value *val; |
| |
| val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM); |
| if (!val->optimized_out ()) |
| { |
| LONGEST pswa = value_as_long (val); |
| |
| if (type->length () == 4) |
| return value_from_pointer (type, pswa & 0x7fffffff); |
| else |
| return value_from_pointer (type, pswa); |
| } |
| } |
| |
| /* Unwind CC via PSW mask. */ |
| if (regnum == tdep->cc_regnum) |
| { |
| struct value *val; |
| |
| val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM); |
| if (!val->optimized_out ()) |
| { |
| LONGEST pswm = value_as_long (val); |
| |
| if (type->length () == 4) |
| return value_from_longest (type, (pswm >> 12) & 3); |
| else |
| return value_from_longest (type, (pswm >> 44) & 3); |
| } |
| } |
| |
| /* Unwind full GPRs to show at least the lower halves (as the |
| upper halves are undefined). */ |
| if (regnum_is_gpr_full (tdep, regnum)) |
| { |
| int reg = regnum - tdep->gpr_full_regnum; |
| struct value *val; |
| |
| val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg); |
| if (!val->optimized_out ()) |
| return value_cast (type, val); |
| } |
| |
| return value::allocate_optimized_out (type); |
| } |
| |
| /* Translate a .eh_frame register to DWARF register, or adjust a |
| .debug_frame register. */ |
| |
| static int |
| s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) |
| { |
| /* See s390_dwarf_reg_to_regnum for comments. */ |
| return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num; |
| } |
| |
| /* DWARF-2 frame unwinding. */ |
| |
| /* Function to unwind a pseudo-register in dwarf2_frame unwinder. Used by |
| s390_dwarf2_frame_init_reg. */ |
| |
| static struct value * |
| s390_dwarf2_prev_register (const frame_info_ptr &this_frame, void **this_cache, |
| int regnum) |
| { |
| return s390_unwind_pseudo_register (this_frame, regnum); |
| } |
| |
| /* Implement init_reg dwarf2_frame method. */ |
| |
| static void |
| s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, |
| struct dwarf2_frame_state_reg *reg, |
| const frame_info_ptr &this_frame) |
| { |
| /* The condition code (and thus PSW mask) is call-clobbered. */ |
| if (regnum == S390_PSWM_REGNUM) |
| reg->how = DWARF2_FRAME_REG_UNDEFINED; |
| |
| /* The PSW address unwinds to the return address. */ |
| else if (regnum == S390_PSWA_REGNUM) |
| reg->how = DWARF2_FRAME_REG_RA; |
| |
| /* Fixed registers are call-saved or call-clobbered |
| depending on the ABI in use. */ |
| else if (regnum < S390_NUM_REGS) |
| { |
| if (s390_register_call_saved (gdbarch, regnum)) |
| reg->how = DWARF2_FRAME_REG_SAME_VALUE; |
| else |
| reg->how = DWARF2_FRAME_REG_UNDEFINED; |
| } |
| |
| /* We install a special function to unwind pseudos. */ |
| else |
| { |
| reg->how = DWARF2_FRAME_REG_FN; |
| reg->loc.fn = s390_dwarf2_prev_register; |
| } |
| } |
| |
| /* Frame unwinding. */ |
| |
| /* Wrapper for trad_frame_get_prev_register to allow for s390 pseudo |
| register translation. */ |
| |
| struct value * |
| s390_trad_frame_prev_register (const frame_info_ptr &this_frame, |
| trad_frame_saved_reg saved_regs[], |
| int regnum) |
| { |
| if (regnum < S390_NUM_REGS) |
| return trad_frame_get_prev_register (this_frame, saved_regs, regnum); |
| else |
| return s390_unwind_pseudo_register (this_frame, regnum); |
| } |
| |
| /* Normal stack frames. */ |
| |
| struct s390_unwind_cache { |
| |
| CORE_ADDR func; |
| CORE_ADDR frame_base; |
| CORE_ADDR local_base; |
| |
| trad_frame_saved_reg *saved_regs; |
| }; |
| |
| /* Unwind THIS_FRAME and write the information into unwind cache INFO using |
| prologue analysis. Helper for s390_frame_unwind_cache. */ |
| |
| static int |
| s390_prologue_frame_unwind_cache (const frame_info_ptr &this_frame, |
| struct s390_unwind_cache *info) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| struct s390_prologue_data data; |
| pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; |
| pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
| int i; |
| CORE_ADDR cfa; |
| CORE_ADDR func; |
| CORE_ADDR result; |
| ULONGEST reg; |
| CORE_ADDR prev_sp; |
| int frame_pointer; |
| int size; |
| frame_info_ptr next_frame; |
| |
| /* Try to find the function start address. If we can't find it, we don't |
| bother searching for it -- with modern compilers this would be mostly |
| pointless anyway. Trust that we'll either have valid DWARF-2 CFI data |
| or else a valid backchain ... */ |
| if (!get_frame_func_if_available (this_frame, &info->func)) |
| { |
| info->func = -1; |
| return 0; |
| } |
| func = info->func; |
| |
| /* Try to analyze the prologue. */ |
| result = s390_analyze_prologue (gdbarch, func, |
| get_frame_pc (this_frame), &data); |
| if (!result) |
| return 0; |
| |
| /* If this was successful, we should have found the instruction that |
| sets the stack pointer register to the previous value of the stack |
| pointer minus the frame size. */ |
| if (!pv_is_register (*sp, S390_SP_REGNUM)) |
| return 0; |
| |
| /* A frame size of zero at this point can mean either a real |
| frameless function, or else a failure to find the prologue. |
| Perform some sanity checks to verify we really have a |
| frameless function. */ |
| if (sp->k == 0) |
| { |
| /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame |
| size zero. This is only possible if the next frame is a sentinel |
| frame, a dummy frame, or a signal trampoline frame. */ |
| /* FIXME: cagney/2004-05-01: This sanity check shouldn't be |
| needed, instead the code should simpliy rely on its |
| analysis. */ |
| next_frame = get_next_frame (this_frame); |
| while (next_frame && get_frame_type (next_frame) == INLINE_FRAME) |
| next_frame = get_next_frame (next_frame); |
| if (next_frame |
| && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) |
| return 0; |
| |
| /* If we really have a frameless function, %r14 must be valid |
| -- in particular, it must point to a different function. */ |
| reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM); |
| reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1; |
| if (get_pc_function_start (reg) == func) |
| { |
| /* However, there is one case where it *is* valid for %r14 |
| to point to the same function -- if this is a recursive |
| call, and we have stopped in the prologue *before* the |
| stack frame was allocated. |
| |
| Recognize this case by looking ahead a bit ... */ |
| |
| struct s390_prologue_data data2; |
| pv_t *sp2 = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
| |
| if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2) |
| && pv_is_register (*sp2, S390_SP_REGNUM) |
| && sp2->k != 0)) |
| return 0; |
| } |
| } |
| |
| /* OK, we've found valid prologue data. */ |
| size = -sp->k; |
| |
| /* If the frame pointer originally also holds the same value |
| as the stack pointer, we're probably using it. If it holds |
| some other value -- even a constant offset -- it is most |
| likely used as temp register. */ |
| if (pv_is_identical (*sp, *fp)) |
| frame_pointer = S390_FRAME_REGNUM; |
| else |
| frame_pointer = S390_SP_REGNUM; |
| |
| /* If we've detected a function with stack frame, we'll still have to |
| treat it as frameless if we're currently within the function epilog |
| code at a point where the frame pointer has already been restored. |
| This can only happen in an innermost frame. */ |
| /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed, |
| instead the code should simpliy rely on its analysis. */ |
| next_frame = get_next_frame (this_frame); |
| while (next_frame && get_frame_type (next_frame) == INLINE_FRAME) |
| next_frame = get_next_frame (next_frame); |
| if (size > 0 |
| && (next_frame == NULL |
| || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME)) |
| { |
| /* See the comment in s390_stack_frame_destroyed_p on why this is |
| not completely reliable ... */ |
| if (s390_stack_frame_destroyed_p (gdbarch, get_frame_pc (this_frame))) |
| { |
| memset (&data, 0, sizeof (data)); |
| size = 0; |
| frame_pointer = S390_SP_REGNUM; |
| } |
| } |
| |
| /* Once we know the frame register and the frame size, we can unwind |
| the current value of the frame register from the next frame, and |
| add back the frame size to arrive that the previous frame's |
| stack pointer value. */ |
| prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size; |
| cfa = prev_sp + 16*word_size + 32; |
| |
| /* Set up ABI call-saved/call-clobbered registers. */ |
| for (i = 0; i < S390_NUM_REGS; i++) |
| if (!s390_register_call_saved (gdbarch, i)) |
| info->saved_regs[i].set_unknown (); |
| |
| /* CC is always call-clobbered. */ |
| info->saved_regs[S390_PSWM_REGNUM].set_unknown (); |
| |
| /* Record the addresses of all register spill slots the prologue parser |
| has recognized. Consider only registers defined as call-saved by the |
| ABI; for call-clobbered registers the parser may have recognized |
| spurious stores. */ |
| |
| for (i = 0; i < 16; i++) |
| if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i) |
| && data.gpr_slot[i] != 0) |
| info->saved_regs[S390_R0_REGNUM + i].set_addr (cfa - data.gpr_slot[i]); |
| |
| for (i = 0; i < 16; i++) |
| if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i) |
| && data.fpr_slot[i] != 0) |
| info->saved_regs[S390_F0_REGNUM + i].set_addr (cfa - data.fpr_slot[i]); |
| |
| /* Function return will set PC to %r14. */ |
| info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; |
| |
| /* In frameless functions, we unwind simply by moving the return |
| address to the PC. However, if we actually stored to the |
| save area, use that -- we might only think the function frameless |
| because we're in the middle of the prologue ... */ |
| if (size == 0 |
| && !info->saved_regs[S390_PSWA_REGNUM].is_addr ()) |
| { |
| info->saved_regs[S390_PSWA_REGNUM].set_realreg (S390_RETADDR_REGNUM); |
| } |
| |
| /* Another sanity check: unless this is a frameless function, |
| we should have found spill slots for SP and PC. |
| If not, we cannot unwind further -- this happens e.g. in |
| libc's thread_start routine. */ |
| if (size > 0) |
| { |
| if (!info->saved_regs[S390_SP_REGNUM].is_addr () |
| || !info->saved_regs[S390_PSWA_REGNUM].is_addr ()) |
| prev_sp = -1; |
| } |
| |
| /* We use the current value of the frame register as local_base, |
| and the top of the register save area as frame_base. */ |
| if (prev_sp != -1) |
| { |
| info->frame_base = prev_sp + 16*word_size + 32; |
| info->local_base = prev_sp - size; |
| } |
| |
| return 1; |
| } |
| |
| /* Unwind THIS_FRAME and write the information into unwind cache INFO using |
| back chain unwinding. Helper for s390_frame_unwind_cache. */ |
| |
| static void |
| s390_backchain_frame_unwind_cache (const frame_info_ptr &this_frame, |
| struct s390_unwind_cache *info) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR backchain; |
| ULONGEST reg; |
| LONGEST sp, tmp; |
| int i; |
| |
| /* Set up ABI call-saved/call-clobbered registers. */ |
| for (i = 0; i < S390_NUM_REGS; i++) |
| if (!s390_register_call_saved (gdbarch, i)) |
| info->saved_regs[i].set_unknown (); |
| |
| /* CC is always call-clobbered. */ |
| info->saved_regs[S390_PSWM_REGNUM].set_unknown (); |
| |
| /* Get the backchain. */ |
| reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
| if (!safe_read_memory_integer (reg, word_size, byte_order, &tmp)) |
| tmp = 0; |
| backchain = (CORE_ADDR) tmp; |
| |
| /* A zero backchain terminates the frame chain. As additional |
| sanity check, let's verify that the spill slot for SP in the |
| save area pointed to by the backchain in fact links back to |
| the save area. */ |
| if (backchain != 0 |
| && safe_read_memory_integer (backchain + 15*word_size, |
| word_size, byte_order, &sp) |
| && (CORE_ADDR)sp == backchain) |
| { |
| /* We don't know which registers were saved, but it will have |
| to be at least %r14 and %r15. This will allow us to continue |
| unwinding, but other prev-frame registers may be incorrect ... */ |
| info->saved_regs[S390_SP_REGNUM].set_addr (backchain + 15*word_size); |
| info->saved_regs[S390_RETADDR_REGNUM].set_addr (backchain + 14*word_size); |
| |
| /* Function return will set PC to %r14. */ |
| info->saved_regs[S390_PSWA_REGNUM] |
| = info->saved_regs[S390_RETADDR_REGNUM]; |
| |
| /* We use the current value of the frame register as local_base, |
| and the top of the register save area as frame_base. */ |
| info->frame_base = backchain + 16*word_size + 32; |
| info->local_base = reg; |
| } |
| |
| info->func = get_frame_pc (this_frame); |
| } |
| |
| /* Unwind THIS_FRAME and return the corresponding unwind cache for |
| s390_frame_unwind and s390_frame_base. */ |
| |
| static struct s390_unwind_cache * |
| s390_frame_unwind_cache (const frame_info_ptr &this_frame, |
| void **this_prologue_cache) |
| { |
| struct s390_unwind_cache *info; |
| |
| if (*this_prologue_cache) |
| return (struct s390_unwind_cache *) *this_prologue_cache; |
| |
| info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache); |
| *this_prologue_cache = info; |
| info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| info->func = -1; |
| info->frame_base = -1; |
| info->local_base = -1; |
| |
| try |
| { |
| /* Try to use prologue analysis to fill the unwind cache. |
| If this fails, fall back to reading the stack backchain. */ |
| if (!s390_prologue_frame_unwind_cache (this_frame, info)) |
| s390_backchain_frame_unwind_cache (this_frame, info); |
| } |
| catch (const gdb_exception_error &ex) |
| { |
| if (ex.error != NOT_AVAILABLE_ERROR) |
| throw; |
| } |
| |
| return info; |
| } |
| |
| /* Implement this_id frame_unwind method for s390_frame_unwind. */ |
| |
| static void |
| s390_frame_this_id (const frame_info_ptr &this_frame, |
| void **this_prologue_cache, |
| struct frame_id *this_id) |
| { |
| struct s390_unwind_cache *info |
| = s390_frame_unwind_cache (this_frame, this_prologue_cache); |
| |
| if (info->frame_base == -1) |
| { |
| if (info->func != -1) |
| *this_id = frame_id_build_unavailable_stack (info->func); |
| return; |
| } |
| |
| *this_id = frame_id_build (info->frame_base, info->func); |
| } |
| |
| /* Implement prev_register frame_unwind method for s390_frame_unwind. */ |
| |
| static struct value * |
| s390_frame_prev_register (const frame_info_ptr &this_frame, |
| void **this_prologue_cache, int regnum) |
| { |
| struct s390_unwind_cache *info |
| = s390_frame_unwind_cache (this_frame, this_prologue_cache); |
| |
| return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum); |
| } |
| |
| /* Default S390 frame unwinder. */ |
| |
| static const struct frame_unwind s390_frame_unwind = { |
| "s390 prologue", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| s390_frame_this_id, |
| s390_frame_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| /* Code stubs and their stack frames. For things like PLTs and NULL |
| function calls (where there is no true frame and the return address |
| is in the RETADDR register). */ |
| |
| struct s390_stub_unwind_cache |
| { |
| CORE_ADDR frame_base; |
| trad_frame_saved_reg *saved_regs; |
| }; |
| |
| /* Unwind THIS_FRAME and return the corresponding unwind cache for |
| s390_stub_frame_unwind. */ |
| |
| static struct s390_stub_unwind_cache * |
| s390_stub_frame_unwind_cache (const frame_info_ptr &this_frame, |
| void **this_prologue_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| struct s390_stub_unwind_cache *info; |
| ULONGEST reg; |
| |
| if (*this_prologue_cache) |
| return (struct s390_stub_unwind_cache *) *this_prologue_cache; |
| |
| info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache); |
| *this_prologue_cache = info; |
| info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| /* The return address is in register %r14. */ |
| info->saved_regs[S390_PSWA_REGNUM].set_realreg (S390_RETADDR_REGNUM); |
| |
| /* Retrieve stack pointer and determine our frame base. */ |
| reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
| info->frame_base = reg + 16*word_size + 32; |
| |
| return info; |
| } |
| |
| /* Implement this_id frame_unwind method for s390_stub_frame_unwind. */ |
| |
| static void |
| s390_stub_frame_this_id (const frame_info_ptr &this_frame, |
| void **this_prologue_cache, |
| struct frame_id *this_id) |
| { |
| struct s390_stub_unwind_cache *info |
| = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
| *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame)); |
| } |
| |
| /* Implement prev_register frame_unwind method for s390_stub_frame_unwind. */ |
| |
| static struct value * |
| s390_stub_frame_prev_register (const frame_info_ptr &this_frame, |
| void **this_prologue_cache, int regnum) |
| { |
| struct s390_stub_unwind_cache *info |
| = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
| return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum); |
| } |
| |
| /* Implement sniffer frame_unwind method for s390_stub_frame_unwind. */ |
| |
| static int |
| s390_stub_frame_sniffer (const struct frame_unwind *self, |
| const frame_info_ptr &this_frame, |
| void **this_prologue_cache) |
| { |
| CORE_ADDR addr_in_block; |
| bfd_byte insn[S390_MAX_INSTR_SIZE]; |
| |
| /* If the current PC points to non-readable memory, we assume we |
| have trapped due to an invalid function pointer call. We handle |
| the non-existing current function like a PLT stub. */ |
| addr_in_block = get_frame_address_in_block (this_frame); |
| if (in_plt_section (addr_in_block) |
| || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0) |
| return 1; |
| return 0; |
| } |
| |
| /* S390 stub frame unwinder. */ |
| |
| static const struct frame_unwind s390_stub_frame_unwind = { |
| "s390 stub", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| s390_stub_frame_this_id, |
| s390_stub_frame_prev_register, |
| NULL, |
| s390_stub_frame_sniffer |
| }; |
| |
| /* Frame base handling. */ |
| |
| static CORE_ADDR |
| s390_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) |
| { |
| struct s390_unwind_cache *info |
| = s390_frame_unwind_cache (this_frame, this_cache); |
| return info->frame_base; |
| } |
| |
| static CORE_ADDR |
| s390_local_base_address (const frame_info_ptr &this_frame, void **this_cache) |
| { |
| struct s390_unwind_cache *info |
| = s390_frame_unwind_cache (this_frame, this_cache); |
| return info->local_base; |
| } |
| |
| static const struct frame_base s390_frame_base = { |
| &s390_frame_unwind, |
| s390_frame_base_address, |
| s390_local_base_address, |
| s390_local_base_address |
| }; |
| |
| /* Process record-replay */ |
| |
| /* Takes the intermediate sum of address calculations and masks off upper |
| bits according to current addressing mode. */ |
| |
| static CORE_ADDR |
| s390_record_address_mask (struct gdbarch *gdbarch, struct regcache *regcache, |
| CORE_ADDR val) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| ULONGEST pswm, pswa; |
| int am; |
| if (tdep->abi == ABI_LINUX_S390) |
| { |
| regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa); |
| am = pswa >> 31 & 1; |
| } |
| else |
| { |
| regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &pswm); |
| am = pswm >> 31 & 3; |
| } |
| switch (am) |
| { |
| case 0: |
| return val & 0xffffff; |
| case 1: |
| return val & 0x7fffffff; |
| case 3: |
| return val; |
| default: |
| gdb_printf (gdb_stdlog, "Warning: Addressing mode %d used.", am); |
| return 0; |
| } |
| } |
| |
| /* Calculates memory address using pre-calculated index, raw instruction word |
| with b and d/dl fields, and raw instruction byte with dh field. Index and |
| dh should be set to 0 if unused. */ |
| |
| static CORE_ADDR |
| s390_record_calc_disp_common (struct gdbarch *gdbarch, struct regcache *regcache, |
| ULONGEST x, uint16_t bd, int8_t dh) |
| { |
| uint8_t rb = bd >> 12 & 0xf; |
| int32_t d = (bd & 0xfff) | ((int32_t)dh << 12); |
| ULONGEST b; |
| CORE_ADDR res = d + x; |
| if (rb) |
| { |
| regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + rb, &b); |
| res += b; |
| } |
| return s390_record_address_mask (gdbarch, regcache, res); |
| } |
| |
| /* Calculates memory address using raw x, b + d/dl, dh fields from |
| instruction. rx and dh should be set to 0 if unused. */ |
| |
| static CORE_ADDR |
| s390_record_calc_disp (struct gdbarch *gdbarch, struct regcache *regcache, |
| uint8_t rx, uint16_t bd, int8_t dh) |
| { |
| ULONGEST x = 0; |
| if (rx) |
| regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + rx, &x); |
| return s390_record_calc_disp_common (gdbarch, regcache, x, bd, dh); |
| } |
| |
| /* Calculates memory address for VSCE[GF] instructions. */ |
| |
| static int |
| s390_record_calc_disp_vsce (struct gdbarch *gdbarch, struct regcache *regcache, |
| uint8_t vx, uint8_t el, uint8_t es, uint16_t bd, |
| int8_t dh, CORE_ADDR *res) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| ULONGEST x; |
| gdb_byte buf[16]; |
| if (tdep->v0_full_regnum == -1 || el * es >= 16) |
| return -1; |
| if (vx < 16) |
| regcache->cooked_read (tdep->v0_full_regnum + vx, buf); |
| else |
| regcache->raw_read (S390_V16_REGNUM + vx - 16, buf); |
| x = extract_unsigned_integer (buf + el * es, es, byte_order); |
| *res = s390_record_calc_disp_common (gdbarch, regcache, x, bd, dh); |
| return 0; |
| } |
| |
| /* Calculates memory address for instructions with relative long addressing. */ |
| |
| static CORE_ADDR |
| s390_record_calc_rl (struct gdbarch *gdbarch, struct regcache *regcache, |
| CORE_ADDR addr, uint16_t i1, uint16_t i2) |
| { |
| int32_t ri = i1 << 16 | i2; |
| return s390_record_address_mask (gdbarch, regcache, addr + (LONGEST)ri * 2); |
| } |
| |
| /* Population count helper. */ |
| |
| static int s390_popcnt (unsigned int x) { |
| int res = 0; |
| while (x) |
| { |
| if (x & 1) |
| res++; |
| x >>= 1; |
| } |
| return res; |
| } |
| |
| /* Record 64-bit register. */ |
| |
| static int |
| s390_record_gpr_g (struct gdbarch *gdbarch, struct regcache *regcache, int i) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| if (record_full_arch_list_add_reg (regcache, S390_R0_REGNUM + i)) |
| return -1; |
| if (tdep->abi == ABI_LINUX_S390) |
| if (record_full_arch_list_add_reg (regcache, S390_R0_UPPER_REGNUM + i)) |
| return -1; |
| return 0; |
| } |
| |
| /* Record high 32 bits of a register. */ |
| |
| static int |
| s390_record_gpr_h (struct gdbarch *gdbarch, struct regcache *regcache, int i) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| if (tdep->abi == ABI_LINUX_S390) |
| { |
| if (record_full_arch_list_add_reg (regcache, S390_R0_UPPER_REGNUM + i)) |
| return -1; |
| } |
| else |
| { |
| if (record_full_arch_list_add_reg (regcache, S390_R0_REGNUM + i)) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Record vector register. */ |
| |
| static int |
| s390_record_vr (struct gdbarch *gdbarch, struct regcache *regcache, int i) |
| { |
| if (i < 16) |
| { |
| if (record_full_arch_list_add_reg (regcache, S390_F0_REGNUM + i)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, S390_V0_LOWER_REGNUM + i)) |
| return -1; |
| } |
| else |
| { |
| if (record_full_arch_list_add_reg (regcache, S390_V16_REGNUM + i - 16)) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Implement process_record gdbarch method. */ |
| |
| static int |
| s390_process_record (struct gdbarch *gdbarch, struct regcache *regcache, |
| CORE_ADDR addr) |
| { |
| s390_gdbarch_tdep *tdep = gdbarch_tdep<s390_gdbarch_tdep> (gdbarch); |
| uint16_t insn[3] = {0}; |
| /* Instruction as bytes. */ |
| uint8_t ibyte[6]; |
| /* Instruction as nibbles. */ |
| uint8_t inib[12]; |
| /* Instruction vector registers. */ |
| uint8_t ivec[4]; |
| CORE_ADDR oaddr, oaddr2, oaddr3; |
| ULONGEST tmp; |
| int i, n; |
| /* if EX/EXRL instruction used, here's the reg parameter */ |
| int ex = -1; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* Attempting to use EX or EXRL jumps back here */ |
| ex: |
| |
| /* Read instruction. */ |
| insn[0] = read_memory_unsigned_integer (addr, 2, byte_order); |
| /* If execute was involved, do the adjustment. */ |
| if (ex != -1) |
| insn[0] |= ex & 0xff; |
| /* Two highest bits determine instruction size. */ |
| if (insn[0] >= 0x4000) |
| insn[1] = read_memory_unsigned_integer (addr+2, 2, byte_order); |
| else |
| /* Not necessary, but avoids uninitialized variable warnings. */ |
| insn[1] = 0; |
| if (insn[0] >= 0xc000) |
| insn[2] = read_memory_unsigned_integer (addr+4, 2, byte_order); |
| else |
| insn[2] = 0; |
| /* Split instruction into bytes and nibbles. */ |
| for (i = 0; i < 3; i++) |
| { |
| ibyte[i*2] = insn[i] >> 8 & 0xff; |
| ibyte[i*2+1] = insn[i] & 0xff; |
| } |
| for (i = 0; i < 6; i++) |
| { |
| inib[i*2] = ibyte[i] >> 4 & 0xf; |
| inib[i*2+1] = ibyte[i] & 0xf; |
| } |
| /* Compute vector registers, if applicable. */ |
| ivec[0] = (inib[9] >> 3 & 1) << 4 | inib[2]; |
| ivec[1] = (inib[9] >> 2 & 1) << 4 | inib[3]; |
| ivec[2] = (inib[9] >> 1 & 1) << 4 | inib[4]; |
| ivec[3] = (inib[9] >> 0 & 1) << 4 | inib[8]; |
| |
| switch (ibyte[0]) |
| { |
| /* 0x00 undefined */ |
| |
| case 0x01: |
| /* E-format instruction */ |
| switch (ibyte[1]) |
| { |
| /* 0x00 undefined */ |
| /* 0x01 unsupported: PR - program return */ |
| /* 0x02 unsupported: UPT */ |
| /* 0x03 undefined */ |
| |