| /* Target-dependent code for the NEC V850 for GDB, the GNU debugger. |
| |
| Copyright (C) 1996-2024 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "extract-store-integer.h" |
| #include "frame.h" |
| #include "frame-base.h" |
| #include "trad-frame.h" |
| #include "frame-unwind.h" |
| #include "dwarf2/frame.h" |
| #include "gdbtypes.h" |
| #include "inferior.h" |
| #include "gdbcore.h" |
| #include "arch-utils.h" |
| #include "regcache.h" |
| #include "dis-asm.h" |
| #include "osabi.h" |
| #include "elf-bfd.h" |
| #include "elf/v850.h" |
| #include "gdbarch.h" |
| |
| enum |
| { |
| /* General purpose registers. */ |
| E_R0_REGNUM, |
| E_R1_REGNUM, |
| E_R2_REGNUM, |
| E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM, |
| E_R4_REGNUM, |
| E_R5_REGNUM, |
| E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM, |
| E_R7_REGNUM, |
| E_R8_REGNUM, |
| E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM, |
| E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM, |
| E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM, |
| E_R12_REGNUM, |
| E_R13_REGNUM, |
| E_R14_REGNUM, |
| E_R15_REGNUM, |
| E_R16_REGNUM, |
| E_R17_REGNUM, |
| E_R18_REGNUM, |
| E_R19_REGNUM, |
| E_R20_REGNUM, |
| E_R21_REGNUM, |
| E_R22_REGNUM, |
| E_R23_REGNUM, |
| E_R24_REGNUM, |
| E_R25_REGNUM, |
| E_R26_REGNUM, |
| E_R27_REGNUM, |
| E_R28_REGNUM, |
| E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM, |
| E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM, |
| E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM, |
| |
| /* System registers - main banks. */ |
| E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM, |
| E_R33_REGNUM, |
| E_R34_REGNUM, |
| E_R35_REGNUM, |
| E_R36_REGNUM, |
| E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM, |
| E_R38_REGNUM, |
| E_R39_REGNUM, |
| E_R40_REGNUM, |
| E_R41_REGNUM, |
| E_R42_REGNUM, |
| E_R43_REGNUM, |
| E_R44_REGNUM, |
| E_R45_REGNUM, |
| E_R46_REGNUM, |
| E_R47_REGNUM, |
| E_R48_REGNUM, |
| E_R49_REGNUM, |
| E_R50_REGNUM, |
| E_R51_REGNUM, |
| E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM, |
| E_R53_REGNUM, |
| E_R54_REGNUM, |
| E_R55_REGNUM, |
| E_R56_REGNUM, |
| E_R57_REGNUM, |
| E_R58_REGNUM, |
| E_R59_REGNUM, |
| E_R60_REGNUM, |
| E_R61_REGNUM, |
| E_R62_REGNUM, |
| E_R63_REGNUM, |
| |
| /* PC. */ |
| E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM, |
| E_R65_REGNUM, |
| E_NUM_OF_V850_REGS, |
| E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS, |
| |
| /* System registers - MPV (PROT00) bank. */ |
| E_R66_REGNUM = E_NUM_OF_V850_REGS, |
| E_R67_REGNUM, |
| E_R68_REGNUM, |
| E_R69_REGNUM, |
| E_R70_REGNUM, |
| E_R71_REGNUM, |
| E_R72_REGNUM, |
| E_R73_REGNUM, |
| E_R74_REGNUM, |
| E_R75_REGNUM, |
| E_R76_REGNUM, |
| E_R77_REGNUM, |
| E_R78_REGNUM, |
| E_R79_REGNUM, |
| E_R80_REGNUM, |
| E_R81_REGNUM, |
| E_R82_REGNUM, |
| E_R83_REGNUM, |
| E_R84_REGNUM, |
| E_R85_REGNUM, |
| E_R86_REGNUM, |
| E_R87_REGNUM, |
| E_R88_REGNUM, |
| E_R89_REGNUM, |
| E_R90_REGNUM, |
| E_R91_REGNUM, |
| E_R92_REGNUM, |
| E_R93_REGNUM, |
| |
| /* System registers - MPU (PROT01) bank. */ |
| E_R94_REGNUM, |
| E_R95_REGNUM, |
| E_R96_REGNUM, |
| E_R97_REGNUM, |
| E_R98_REGNUM, |
| E_R99_REGNUM, |
| E_R100_REGNUM, |
| E_R101_REGNUM, |
| E_R102_REGNUM, |
| E_R103_REGNUM, |
| E_R104_REGNUM, |
| E_R105_REGNUM, |
| E_R106_REGNUM, |
| E_R107_REGNUM, |
| E_R108_REGNUM, |
| E_R109_REGNUM, |
| E_R110_REGNUM, |
| E_R111_REGNUM, |
| E_R112_REGNUM, |
| E_R113_REGNUM, |
| E_R114_REGNUM, |
| E_R115_REGNUM, |
| E_R116_REGNUM, |
| E_R117_REGNUM, |
| E_R118_REGNUM, |
| E_R119_REGNUM, |
| E_R120_REGNUM, |
| E_R121_REGNUM, |
| |
| /* FPU system registers. */ |
| E_R122_REGNUM, |
| E_R123_REGNUM, |
| E_R124_REGNUM, |
| E_R125_REGNUM, |
| E_R126_REGNUM, |
| E_R127_REGNUM, |
| E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM, |
| E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM, |
| E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM, |
| E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM, |
| E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM, |
| E_R133_REGNUM, |
| E_R134_REGNUM, |
| E_R135_REGNUM, |
| E_R136_REGNUM, |
| E_R137_REGNUM, |
| E_R138_REGNUM, |
| E_R139_REGNUM, |
| E_R140_REGNUM, |
| E_R141_REGNUM, |
| E_R142_REGNUM, |
| E_R143_REGNUM, |
| E_R144_REGNUM, |
| E_R145_REGNUM, |
| E_R146_REGNUM, |
| E_R147_REGNUM, |
| E_R148_REGNUM, |
| E_R149_REGNUM, |
| E_NUM_OF_V850E2_REGS, |
| |
| /* v850e3v5 system registers, selID 1 thru 7. */ |
| E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS, |
| E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31, |
| |
| E_SELID_2_R0_REGNUM, |
| E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31, |
| |
| E_SELID_3_R0_REGNUM, |
| E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31, |
| |
| E_SELID_4_R0_REGNUM, |
| E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31, |
| |
| E_SELID_5_R0_REGNUM, |
| E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31, |
| |
| E_SELID_6_R0_REGNUM, |
| E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31, |
| |
| E_SELID_7_R0_REGNUM, |
| E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31, |
| |
| /* v850e3v5 vector registers. */ |
| E_VR0_REGNUM, |
| E_VR31_REGNUM = E_VR0_REGNUM + 31, |
| |
| E_NUM_OF_V850E3V5_REGS, |
| |
| /* Total number of possible registers. */ |
| E_NUM_REGS = E_NUM_OF_V850E3V5_REGS |
| }; |
| |
| enum |
| { |
| v850_reg_size = 4 |
| }; |
| |
| /* Size of return datatype which fits into all return registers. */ |
| enum |
| { |
| E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size |
| }; |
| |
| /* When v850 support was added to GCC in the late nineties, the intention |
| was to follow the Green Hills ABI for v850. In fact, the authors of |
| that support at the time thought that they were doing so. As far as |
| I can tell, the calling conventions are correct, but the return value |
| conventions were not quite right. Over time, the return value code |
| in this file was modified to mostly reflect what GCC was actually |
| doing instead of to actually follow the Green Hills ABI as it did |
| when the code was first written. |
| |
| Renesas defined the RH850 ABI which they use in their compiler. It |
| is similar to the original Green Hills ABI with some minor |
| differences. */ |
| |
| enum v850_abi |
| { |
| V850_ABI_GCC, |
| V850_ABI_RH850 |
| }; |
| |
| /* Architecture specific data. */ |
| |
| struct v850_gdbarch_tdep : gdbarch_tdep_base |
| { |
| /* Fields from the ELF header. */ |
| int e_flags = 0; |
| int e_machine = 0; |
| |
| /* Which ABI are we using? */ |
| enum v850_abi abi {}; |
| int eight_byte_align = 0; |
| }; |
| |
| struct v850_frame_cache |
| { |
| /* Base address. */ |
| CORE_ADDR base; |
| LONGEST sp_offset; |
| CORE_ADDR pc; |
| |
| /* Flag showing that a frame has been created in the prologue code. */ |
| int uses_fp; |
| |
| /* Saved registers. */ |
| trad_frame_saved_reg *saved_regs; |
| }; |
| |
| /* Info gleaned from scanning a function's prologue. */ |
| struct pifsr /* Info about one saved register. */ |
| { |
| int offset; /* Offset from sp or fp. */ |
| int cur_frameoffset; /* Current frameoffset. */ |
| int reg; /* Saved register number. */ |
| }; |
| |
| static const char * |
| v850_register_name (struct gdbarch *gdbarch, int regnum) |
| { |
| static const char *v850_reg_names[] = |
| { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
| "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7", |
| "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15", |
| "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23", |
| "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31", |
| "pc", "fp" |
| }; |
| static_assert (E_NUM_OF_V850_REGS == ARRAY_SIZE (v850_reg_names)); |
| return v850_reg_names[regnum]; |
| } |
| |
| static const char * |
| v850e_register_name (struct gdbarch *gdbarch, int regnum) |
| { |
| static const char *v850e_reg_names[] = |
| { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
| "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7", |
| "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15", |
| "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23", |
| "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31", |
| "pc", "fp" |
| }; |
| static_assert (E_NUM_OF_V850E_REGS == ARRAY_SIZE (v850e_reg_names)); |
| return v850e_reg_names[regnum]; |
| } |
| |
| static const char * |
| v850e2_register_name (struct gdbarch *gdbarch, int regnum) |
| { |
| static const char *v850e2_reg_names[] = |
| { |
| /* General purpose registers. */ |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
| |
| /* System registers - main banks. */ |
| "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg", |
| "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic", |
| "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "", |
| "", "", "", "", "eiwr", "fewr", "dbwr", "bsel", |
| |
| |
| /* PC. */ |
| "pc", "", |
| |
| /* System registers - MPV (PROT00) bank. */ |
| "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "", |
| "vpecr", "vptid", "vpadr", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "mca", "mcs", "mcc", "mcr", |
| |
| /* System registers - MPU (PROT01) bank. */ |
| "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u", |
| "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u", |
| "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u", |
| "dpa4l", "dpa4u", "dpa5l", "dpa5u", |
| |
| /* FPU system registers. */ |
| "", "", "", "", "", "", "fpsr", "fpepc", |
| "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "fpspc" |
| }; |
| if (regnum >= E_NUM_OF_V850E2_REGS) |
| return ""; |
| return v850e2_reg_names[regnum]; |
| } |
| |
| /* Implement the "register_name" gdbarch method for v850e3v5. */ |
| |
| static const char * |
| v850e3v5_register_name (struct gdbarch *gdbarch, int regnum) |
| { |
| static const char *v850e3v5_reg_names[] = |
| { |
| /* General purpose registers. */ |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
| |
| /* selID 0, not including FPU registers. The FPU registers are |
| listed later on. */ |
| "eipc", "eipsw", "fepc", "fepsw", |
| "", "psw", "" /* fpsr */, "" /* fpepc */, |
| "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */, |
| "sesr", "eiic", "feic", "", |
| "ctpc", "ctpsw", "", "", "ctbp", "", "", "", |
| "", "", "", "", "eiwr", "fewr", "", "bsel", |
| |
| |
| /* PC. */ |
| "pc", "", |
| |
| /* v850e2 MPV bank. */ |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", |
| |
| /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need |
| 32 entries for this bank. */ |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", |
| |
| /* FPU system registers. These are actually in selID 0, but |
| are placed here to preserve register numbering compatibility |
| with previous architectures. */ |
| "", "", "", "", "", "", "fpsr", "fpepc", |
| "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", |
| |
| /* selID 1. */ |
| "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr", |
| "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel", |
| "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl", |
| "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "", |
| |
| /* selID 2. */ |
| "htcfg0", "", "", "", "", "htctl", "mea", "asid", |
| "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "", |
| "tlbsch", "", "", "", "", "", "", "htscctl", |
| "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3", |
| "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7", |
| |
| /* selID 3. */ |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| |
| /* selID 4. */ |
| "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1", |
| "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh", |
| "ictagl", "ictagh", "icdatl", "icdath", |
| "dctagl", "dctagh", "dcdatl", "dcdath", |
| "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "", |
| |
| /* selID 5. */ |
| "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "", |
| "mca", "mcs", "mcc", "mcr", "", "", "", "", |
| "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "", |
| "", "", "", "", "", "", "", "", |
| |
| /* selID 6. */ |
| "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "", |
| "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "", |
| "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "", |
| "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "", |
| |
| /* selID 7. */ |
| "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "", |
| "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "", |
| "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "", |
| "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "", |
| |
| /* Vector Registers */ |
| "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", |
| "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", |
| "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", |
| "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31", |
| }; |
| |
| static_assert (E_NUM_OF_V850E3V5_REGS |
| == ARRAY_SIZE (v850e3v5_reg_names)); |
| return v850e3v5_reg_names[regnum]; |
| } |
| |
| /* Returns the default type for register N. */ |
| |
| static struct type * |
| v850_register_type (struct gdbarch *gdbarch, int regnum) |
| { |
| if (regnum == E_PC_REGNUM) |
| return builtin_type (gdbarch)->builtin_func_ptr; |
| else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM) |
| return builtin_type (gdbarch)->builtin_uint64; |
| return builtin_type (gdbarch)->builtin_int32; |
| } |
| |
| static int |
| v850_type_is_scalar (struct type *t) |
| { |
| return (t->code () != TYPE_CODE_STRUCT |
| && t->code () != TYPE_CODE_UNION |
| && t->code () != TYPE_CODE_ARRAY); |
| } |
| |
| /* Should call_function allocate stack space for a struct return? */ |
| |
| static int |
| v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type) |
| { |
| int i; |
| struct type *fld_type, *tgt_type; |
| v850_gdbarch_tdep *tdep = gdbarch_tdep<v850_gdbarch_tdep> (gdbarch); |
| |
| if (tdep->abi == V850_ABI_RH850) |
| { |
| if (v850_type_is_scalar (type) && type->length () <= 8) |
| return 0; |
| |
| /* Structs are never returned in registers for this ABI. */ |
| return 1; |
| } |
| /* 1. The value is greater than 8 bytes -> returned by copying. */ |
| if (type->length () > 8) |
| return 1; |
| |
| /* 2. The value is a single basic type -> returned in register. */ |
| if (v850_type_is_scalar (type)) |
| return 0; |
| |
| /* The value is a structure or union with a single element and that |
| element is either a single basic type or an array of a single basic |
| type whose size is greater than or equal to 4 -> returned in register. */ |
| if ((type->code () == TYPE_CODE_STRUCT |
| || type->code () == TYPE_CODE_UNION) |
| && type->num_fields () == 1) |
| { |
| fld_type = type->field (0).type (); |
| if (v850_type_is_scalar (fld_type) && fld_type->length () >= 4) |
| return 0; |
| |
| if (fld_type->code () == TYPE_CODE_ARRAY) |
| { |
| tgt_type = fld_type->target_type (); |
| if (v850_type_is_scalar (tgt_type) && tgt_type->length () >= 4) |
| return 0; |
| } |
| } |
| |
| /* The value is a structure whose first element is an integer or a float, |
| and which contains no arrays of more than two elements -> returned in |
| register. */ |
| if (type->code () == TYPE_CODE_STRUCT |
| && v850_type_is_scalar (type->field (0).type ()) |
| && type->field (0).type ()->length () == 4) |
| { |
| for (i = 1; i < type->num_fields (); ++i) |
| { |
| fld_type = type->field (0).type (); |
| if (fld_type->code () == TYPE_CODE_ARRAY) |
| { |
| tgt_type = fld_type->target_type (); |
| if (tgt_type->length () > 0 |
| && fld_type->length () / tgt_type->length () > 2) |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* The value is a union which contains at least one field which |
| would be returned in registers according to these rules -> |
| returned in register. */ |
| if (type->code () == TYPE_CODE_UNION) |
| { |
| for (i = 0; i < type->num_fields (); ++i) |
| { |
| fld_type = type->field (0).type (); |
| if (!v850_use_struct_convention (gdbarch, fld_type)) |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Structure for mapping bits in register lists to register numbers. */ |
| |
| struct reg_list |
| { |
| long mask; |
| int regno; |
| }; |
| |
| /* Helper function for v850_scan_prologue to handle prepare instruction. */ |
| |
| static void |
| v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr, |
| struct v850_frame_cache *pi, struct pifsr **pifsr_ptr) |
| { |
| CORE_ADDR current_pc = *current_pc_ptr; |
| struct pifsr *pifsr = *pifsr_ptr; |
| long next = insn2 & 0xffff; |
| long list12 = ((insn & 1) << 16) + (next & 0xffe0); |
| long offset = (insn & 0x3e) << 1; |
| static struct reg_list reg_table[] = |
| { |
| {0x00800, 20}, /* r20 */ |
| {0x00400, 21}, /* r21 */ |
| {0x00200, 22}, /* r22 */ |
| {0x00100, 23}, /* r23 */ |
| {0x08000, 24}, /* r24 */ |
| {0x04000, 25}, /* r25 */ |
| {0x02000, 26}, /* r26 */ |
| {0x01000, 27}, /* r27 */ |
| {0x00080, 28}, /* r28 */ |
| {0x00040, 29}, /* r29 */ |
| {0x10000, 30}, /* ep */ |
| {0x00020, 31}, /* lp */ |
| {0, 0} /* end of table */ |
| }; |
| int i; |
| |
| if ((next & 0x1f) == 0x0b) /* skip imm16 argument */ |
| current_pc += 2; |
| else if ((next & 0x1f) == 0x13) /* skip imm16 argument */ |
| current_pc += 2; |
| else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */ |
| current_pc += 4; |
| |
| /* Calculate the total size of the saved registers, and add it to the |
| immediate value used to adjust SP. */ |
| for (i = 0; reg_table[i].mask != 0; i++) |
| if (list12 & reg_table[i].mask) |
| offset += v850_reg_size; |
| pi->sp_offset -= offset; |
| |
| /* Calculate the offsets of the registers relative to the value the SP |
| will have after the registers have been pushed and the imm5 value has |
| been subtracted from it. */ |
| if (pifsr) |
| { |
| for (i = 0; reg_table[i].mask != 0; i++) |
| { |
| if (list12 & reg_table[i].mask) |
| { |
| int reg = reg_table[i].regno; |
| offset -= v850_reg_size; |
| pifsr->reg = reg; |
| pifsr->offset = offset; |
| pifsr->cur_frameoffset = pi->sp_offset; |
| pifsr++; |
| } |
| } |
| } |
| |
| /* Set result parameters. */ |
| *current_pc_ptr = current_pc; |
| *pifsr_ptr = pifsr; |
| } |
| |
| |
| /* Helper function for v850_scan_prologue to handle pushm/pushl instructions. |
| The SR bit of the register list is not supported. gcc does not generate |
| this bit. */ |
| |
| static void |
| v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi, |
| struct pifsr **pifsr_ptr) |
| { |
| struct pifsr *pifsr = *pifsr_ptr; |
| long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0); |
| long offset = 0; |
| static struct reg_list pushml_reg_table[] = |
| { |
| {0x80000, E_PS_REGNUM}, /* PSW */ |
| {0x40000, 1}, /* r1 */ |
| {0x20000, 2}, /* r2 */ |
| {0x10000, 3}, /* r3 */ |
| {0x00800, 4}, /* r4 */ |
| {0x00400, 5}, /* r5 */ |
| {0x00200, 6}, /* r6 */ |
| {0x00100, 7}, /* r7 */ |
| {0x08000, 8}, /* r8 */ |
| {0x04000, 9}, /* r9 */ |
| {0x02000, 10}, /* r10 */ |
| {0x01000, 11}, /* r11 */ |
| {0x00080, 12}, /* r12 */ |
| {0x00040, 13}, /* r13 */ |
| {0x00020, 14}, /* r14 */ |
| {0x00010, 15}, /* r15 */ |
| {0, 0} /* end of table */ |
| }; |
| static struct reg_list pushmh_reg_table[] = |
| { |
| {0x80000, 16}, /* r16 */ |
| {0x40000, 17}, /* r17 */ |
| {0x20000, 18}, /* r18 */ |
| {0x10000, 19}, /* r19 */ |
| {0x00800, 20}, /* r20 */ |
| {0x00400, 21}, /* r21 */ |
| {0x00200, 22}, /* r22 */ |
| {0x00100, 23}, /* r23 */ |
| {0x08000, 24}, /* r24 */ |
| {0x04000, 25}, /* r25 */ |
| {0x02000, 26}, /* r26 */ |
| {0x01000, 27}, /* r27 */ |
| {0x00080, 28}, /* r28 */ |
| {0x00040, 29}, /* r29 */ |
| {0x00010, 30}, /* r30 */ |
| {0x00020, 31}, /* r31 */ |
| {0, 0} /* end of table */ |
| }; |
| struct reg_list *reg_table; |
| int i; |
| |
| /* Is this a pushml or a pushmh? */ |
| if ((insn2 & 7) == 1) |
| reg_table = pushml_reg_table; |
| else |
| reg_table = pushmh_reg_table; |
| |
| /* Calculate the total size of the saved registers, and add it to the |
| immediate value used to adjust SP. */ |
| for (i = 0; reg_table[i].mask != 0; i++) |
| if (list12 & reg_table[i].mask) |
| offset += v850_reg_size; |
| pi->sp_offset -= offset; |
| |
| /* Calculate the offsets of the registers relative to the value the SP |
| will have after the registers have been pushed and the imm5 value is |
| subtracted from it. */ |
| if (pifsr) |
| { |
| for (i = 0; reg_table[i].mask != 0; i++) |
| { |
| if (list12 & reg_table[i].mask) |
| { |
| int reg = reg_table[i].regno; |
| offset -= v850_reg_size; |
| pifsr->reg = reg; |
| pifsr->offset = offset; |
| pifsr->cur_frameoffset = pi->sp_offset; |
| pifsr++; |
| } |
| } |
| } |
| |
| /* Set result parameters. */ |
| *pifsr_ptr = pifsr; |
| } |
| |
| /* Helper function to evaluate if register is one of the "save" registers. |
| This allows to simplify conditionals in v850_analyze_prologue a lot. */ |
| |
| static int |
| v850_is_save_register (int reg) |
| { |
| /* The caller-save registers are R2, R20 - R29 and R31. All other |
| registers are either special purpose (PC, SP), argument registers, |
| or just considered free for use in the caller. */ |
| return reg == E_R2_REGNUM |
| || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM) |
| || reg == E_R31_REGNUM; |
| } |
| |
| /* Scan the prologue of the function that contains PC, and record what |
| we find in PI. Returns the pc after the prologue. Note that the |
| addresses saved in frame->saved_regs are just frame relative (negative |
| offsets from the frame pointer). This is because we don't know the |
| actual value of the frame pointer yet. In some circumstances, the |
| frame pointer can't be determined till after we have scanned the |
| prologue. */ |
| |
| static CORE_ADDR |
| v850_analyze_prologue (struct gdbarch *gdbarch, |
| CORE_ADDR func_addr, CORE_ADDR pc, |
| struct v850_frame_cache *pi, ULONGEST ctbp) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR prologue_end, current_pc; |
| struct pifsr pifsrs[E_NUM_REGS + 1]; |
| struct pifsr *pifsr, *pifsr_tmp; |
| int ep_used; |
| int reg; |
| CORE_ADDR save_pc, save_end; |
| int regsave_func_p; |
| int r12_tmp; |
| |
| memset (&pifsrs, 0, sizeof pifsrs); |
| pifsr = &pifsrs[0]; |
| |
| prologue_end = pc; |
| |
| /* Now, search the prologue looking for instructions that setup fp, save |
| rp, adjust sp and such. We also record the frame offset of any saved |
| registers. */ |
| |
| pi->sp_offset = 0; |
| pi->uses_fp = 0; |
| ep_used = 0; |
| regsave_func_p = 0; |
| save_pc = 0; |
| save_end = 0; |
| r12_tmp = 0; |
| |
| for (current_pc = func_addr; current_pc < prologue_end;) |
| { |
| int insn; |
| int insn2 = -1; /* dummy value */ |
| |
| insn = read_memory_integer (current_pc, 2, byte_order); |
| current_pc += 2; |
| if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */ |
| { |
| insn2 = read_memory_integer (current_pc, 2, byte_order); |
| current_pc += 2; |
| } |
| |
| if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p) |
| { /* jarl <func>,10 */ |
| long low_disp = insn2 & ~(long) 1; |
| long disp = (((((insn & 0x3f) << 16) + low_disp) |
| & ~(long) 1) ^ 0x00200000) - 0x00200000; |
| |
| save_pc = current_pc; |
| save_end = prologue_end; |
| regsave_func_p = 1; |
| current_pc += disp - 4; |
| prologue_end = (current_pc |
| + (2 * 3) /* moves to/from ep */ |
| + 4 /* addi <const>,sp,sp */ |
| + 2 /* jmp [r10] */ |
| + (2 * 12) /* sst.w to save r2, r20-r29, r31 */ |
| + 20); /* slop area */ |
| } |
| else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p) |
| { /* callt <imm6> */ |
| long adr = ctbp + ((insn & 0x3f) << 1); |
| |
| save_pc = current_pc; |
| save_end = prologue_end; |
| regsave_func_p = 1; |
| current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order) |
| & 0xffff); |
| prologue_end = (current_pc |
| + (2 * 3) /* prepare list2,imm5,sp/imm */ |
| + 4 /* ctret */ |
| + 20); /* slop area */ |
| continue; |
| } |
| else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */ |
| { |
| v850_handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr); |
| continue; |
| } |
| else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144) |
| { /* ctret after processing register save. */ |
| current_pc = save_pc; |
| prologue_end = save_end; |
| regsave_func_p = 0; |
| continue; |
| } |
| else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1) |
| { /* pushml, pushmh */ |
| v850_handle_pushm (insn, insn2, pi, &pifsr); |
| continue; |
| } |
| else if ((insn & 0xffe0) == 0x0060 && regsave_func_p) |
| { /* jmp after processing register save. */ |
| current_pc = save_pc; |
| prologue_end = save_end; |
| regsave_func_p = 0; |
| continue; |
| } |
| else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */ |
| || (insn & 0xffe0) == 0x0060 /* jmp */ |
| || (insn & 0x0780) == 0x0580) /* branch */ |
| { |
| break; /* Ran into end of prologue. */ |
| } |
| |
| else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240)) |
| /* add <imm>,sp */ |
| pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10; |
| else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM)) |
| /* addi <imm>,sp,sp */ |
| pi->sp_offset += insn2; |
| else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) |
| /* mov sp,fp */ |
| pi->uses_fp = 1; |
| else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM)) |
| /* movhi hi(const),r0,r12 */ |
| r12_tmp = insn2 << 16; |
| else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM)) |
| /* movea lo(const),r12,r12 */ |
| r12_tmp += insn2; |
| else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp) |
| /* add r12,sp */ |
| pi->sp_offset += r12_tmp; |
| else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) |
| /* mov sp,ep */ |
| ep_used = 1; |
| else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM)) |
| /* mov r1,ep */ |
| ep_used = 0; |
| else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM) |
| || (pi->uses_fp |
| && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM))) |
| && pifsr |
| && v850_is_save_register (reg = (insn >> 11) & 0x1f)) |
| { |
| /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */ |
| pifsr->reg = reg; |
| pifsr->offset = insn2 & ~1; |
| pifsr->cur_frameoffset = pi->sp_offset; |
| pifsr++; |
| } |
| else if (ep_used |
| && ((insn & 0x0781) == 0x0501) |
| && pifsr |
| && v850_is_save_register (reg = (insn >> 11) & 0x1f)) |
| { |
| /* sst.w <reg>,<offset>[ep] */ |
| pifsr->reg = reg; |
| pifsr->offset = (insn & 0x007e) << 1; |
| pifsr->cur_frameoffset = pi->sp_offset; |
| pifsr++; |
| } |
| } |
| |
| /* Fix up any offsets to the final offset. If a frame pointer was created, |
| use it instead of the stack pointer. */ |
| for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++) |
| { |
| pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset; |
| pi->saved_regs[pifsr_tmp->reg].set_addr (pifsr_tmp->offset); |
| } |
| |
| return current_pc; |
| } |
| |
| /* Return the address of the first code past the prologue of the function. */ |
| |
| static CORE_ADDR |
| v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| CORE_ADDR func_addr, func_end; |
| |
| /* See what the symbol table says. */ |
| |
| if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
| { |
| struct symtab_and_line sal; |
| |
| sal = find_pc_line (func_addr, 0); |
| if (sal.line != 0 && sal.end < func_end) |
| return sal.end; |
| |
| /* Either there's no line info, or the line after the prologue is after |
| the end of the function. In this case, there probably isn't a |
| prologue. */ |
| return pc; |
| } |
| |
| /* We can't find the start of this function, so there's nothing we |
| can do. */ |
| return pc; |
| } |
| |
| /* Return 1 if the data structure has any 8-byte fields that'll require |
| the entire data structure to be aligned. Otherwise, return 0. */ |
| |
| static int |
| v850_eight_byte_align_p (struct type *type) |
| { |
| type = check_typedef (type); |
| |
| if (v850_type_is_scalar (type)) |
| return (type->length () == 8); |
| else |
| { |
| int i; |
| |
| for (i = 0; i < type->num_fields (); i++) |
| { |
| if (v850_eight_byte_align_p (type->field (i).type ())) |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static CORE_ADDR |
| v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp) |
| { |
| return sp & ~3; |
| } |
| |
| /* Setup arguments and LP for a call to the target. First four args |
| go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs |
| are passed by reference. 64 bit quantities (doubles and long longs) |
| may be split between the regs and the stack. When calling a function |
| that returns a struct, a pointer to the struct is passed in as a secret |
| first argument (always in R6). |
| |
| Stack space for the args has NOT been allocated: that job is up to us. */ |
| |
| static CORE_ADDR |
| v850_push_dummy_call (struct gdbarch *gdbarch, |
| struct value *function, |
| struct regcache *regcache, |
| CORE_ADDR bp_addr, |
| int nargs, |
| struct value **args, |
| CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int argreg; |
| int argnum; |
| int arg_space = 0; |
| int stack_offset; |
| v850_gdbarch_tdep *tdep = gdbarch_tdep<v850_gdbarch_tdep> (gdbarch); |
| |
| if (tdep->abi == V850_ABI_RH850) |
| stack_offset = 0; |
| else |
| { |
| /* The offset onto the stack at which we will start copying parameters |
| (after the registers are used up) begins at 16 rather than at zero. |
| That's how the ABI is defined, though there's no indication that these |
| 16 bytes are used for anything, not even for saving incoming |
| argument registers. */ |
| stack_offset = 16; |
| } |
| |
| /* Now make space on the stack for the args. */ |
| for (argnum = 0; argnum < nargs; argnum++) |
| arg_space += ((args[argnum]->type ()->length () + 3) & ~3); |
| sp -= arg_space + stack_offset; |
| |
| argreg = E_ARG0_REGNUM; |
| /* The struct_return pointer occupies the first parameter register. */ |
| if (return_method == return_method_struct) |
| regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); |
| |
| /* Now load as many as possible of the first arguments into |
| registers, and push the rest onto the stack. There are 16 bytes |
| in four registers available. Loop thru args from first to last. */ |
| for (argnum = 0; argnum < nargs; argnum++) |
| { |
| int len; |
| gdb_byte *val; |
| gdb_byte valbuf[v850_reg_size]; |
| |
| if (!v850_type_is_scalar ((*args)->type ()) |
| && tdep->abi == V850_ABI_GCC |
| && (*args)->type ()->length () > E_MAX_RETTYPE_SIZE_IN_REGS) |
| { |
| store_unsigned_integer (valbuf, 4, byte_order, |
| (*args)->address ()); |
| len = 4; |
| val = valbuf; |
| } |
| else |
| { |
| len = (*args)->type ()->length (); |
| val = (gdb_byte *) (*args)->contents ().data (); |
| } |
| |
| if (tdep->eight_byte_align |
| && v850_eight_byte_align_p ((*args)->type ())) |
| { |
| if (argreg <= E_ARGLAST_REGNUM && (argreg & 1)) |
| argreg++; |
| else if (stack_offset & 0x4) |
| stack_offset += 4; |
| } |
| |
| while (len > 0) |
| if (argreg <= E_ARGLAST_REGNUM) |
| { |
| CORE_ADDR regval; |
| |
| regval = extract_unsigned_integer (val, v850_reg_size, byte_order); |
| regcache_cooked_write_unsigned (regcache, argreg, regval); |
| |
| len -= v850_reg_size; |
| val += v850_reg_size; |
| argreg++; |
| } |
| else |
| { |
| write_memory (sp + stack_offset, val, 4); |
| |
| len -= 4; |
| val += 4; |
| stack_offset += 4; |
| } |
| args++; |
| } |
| |
| /* Store return address. */ |
| regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr); |
| |
| /* Update stack pointer. */ |
| regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); |
| |
| return sp; |
| } |
| |
| static void |
| v850_extract_return_value (struct type *type, struct regcache *regcache, |
| gdb_byte *valbuf) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int len = type->length (); |
| |
| if (len <= v850_reg_size) |
| { |
| ULONGEST val; |
| |
| regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val); |
| store_unsigned_integer (valbuf, len, byte_order, val); |
| } |
| else if (len <= 2 * v850_reg_size) |
| { |
| int i, regnum = E_V0_REGNUM; |
| gdb_byte buf[v850_reg_size]; |
| for (i = 0; len > 0; i += 4, len -= 4) |
| { |
| regcache->raw_read (regnum++, buf); |
| memcpy (valbuf + i, buf, len > 4 ? 4 : len); |
| } |
| } |
| } |
| |
| static void |
| v850_store_return_value (struct type *type, struct regcache *regcache, |
| const gdb_byte *valbuf) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int len = type->length (); |
| |
| if (len <= v850_reg_size) |
| regcache_cooked_write_unsigned |
| (regcache, E_V0_REGNUM, |
| extract_unsigned_integer (valbuf, len, byte_order)); |
| else if (len <= 2 * v850_reg_size) |
| { |
| int i, regnum = E_V0_REGNUM; |
| for (i = 0; i < len; i += 4) |
| regcache->raw_write (regnum++, valbuf + i); |
| } |
| } |
| |
| static enum return_value_convention |
| v850_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *type, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| if (v850_use_struct_convention (gdbarch, type)) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| if (writebuf) |
| v850_store_return_value (type, regcache, writebuf); |
| else if (readbuf) |
| v850_extract_return_value (type, regcache, readbuf); |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
| |
| static int |
| v850_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) |
| { |
| return 2; |
| } |
| |
| /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
| |
| static const gdb_byte * |
| v850_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) |
| { |
| *size = kind; |
| |
| switch (gdbarch_bfd_arch_info (gdbarch)->mach) |
| { |
| case bfd_mach_v850e2: |
| case bfd_mach_v850e2v3: |
| case bfd_mach_v850e3v5: |
| { |
| /* Implement software breakpoints by using the dbtrap instruction. |
| Older architectures had no such instruction. For those, an |
| unconditional branch to self instruction is used. */ |
| |
| static unsigned char dbtrap_breakpoint[] = { 0x40, 0xf8 }; |
| |
| return dbtrap_breakpoint; |
| } |
| break; |
| default: |
| { |
| static unsigned char breakpoint[] = { 0x85, 0x05 }; |
| |
| return breakpoint; |
| } |
| break; |
| } |
| } |
| |
| static struct v850_frame_cache * |
| v850_alloc_frame_cache (const frame_info_ptr &this_frame) |
| { |
| struct v850_frame_cache *cache; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache); |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| /* Base address. */ |
| cache->base = 0; |
| cache->sp_offset = 0; |
| cache->pc = 0; |
| |
| /* Frameless until proven otherwise. */ |
| cache->uses_fp = 0; |
| |
| return cache; |
| } |
| |
| static struct v850_frame_cache * |
| v850_frame_cache (const frame_info_ptr &this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct v850_frame_cache *cache; |
| CORE_ADDR current_pc; |
| int i; |
| |
| if (*this_cache) |
| return (struct v850_frame_cache *) *this_cache; |
| |
| cache = v850_alloc_frame_cache (this_frame); |
| *this_cache = cache; |
| |
| /* In principle, for normal frames, fp holds the frame pointer, |
| which holds the base address for the current stack frame. |
| However, for functions that don't need it, the frame pointer is |
| optional. For these "frameless" functions the frame pointer is |
| actually the frame pointer of the calling frame. */ |
| cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM); |
| if (cache->base == 0) |
| return cache; |
| |
| cache->pc = get_frame_func (this_frame); |
| current_pc = get_frame_pc (this_frame); |
| if (cache->pc != 0) |
| { |
| ULONGEST ctbp; |
| ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM); |
| v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp); |
| } |
| |
| if (!cache->uses_fp) |
| { |
| /* We didn't find a valid frame, which means that CACHE->base |
| currently holds the frame pointer for our calling frame. If |
| we're at the start of a function, or somewhere half-way its |
| prologue, the function's frame probably hasn't been fully |
| setup yet. Try to reconstruct the base address for the stack |
| frame by looking at the stack pointer. For truly "frameless" |
| functions this might work too. */ |
| cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM); |
| } |
| |
| /* Now that we have the base address for the stack frame we can |
| calculate the value of sp in the calling frame. */ |
| cache->saved_regs[E_SP_REGNUM].set_value (cache->base - cache->sp_offset); |
| |
| /* Adjust all the saved registers such that they contain addresses |
| instead of offsets. */ |
| for (i = 0; i < gdbarch_num_regs (gdbarch); i++) |
| if (cache->saved_regs[i].is_addr ()) |
| cache->saved_regs[i].set_addr (cache->saved_regs[i].addr () |
| + cache->base); |
| |
| /* The call instruction moves the caller's PC in the callee's LP. |
| Since this is an unwind, do the reverse. Copy the location of LP |
| into PC (the address / regnum) so that a request for PC will be |
| converted into a request for the LP. */ |
| |
| cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM]; |
| |
| return cache; |
| } |
| |
| |
| static struct value * |
| v850_frame_prev_register (const frame_info_ptr &this_frame, |
| void **this_cache, int regnum) |
| { |
| struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache); |
| |
| gdb_assert (regnum >= 0); |
| |
| return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum); |
| } |
| |
| static void |
| v850_frame_this_id (const frame_info_ptr &this_frame, void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache); |
| |
| /* This marks the outermost frame. */ |
| if (cache->base == 0) |
| return; |
| |
| *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr (), cache->pc); |
| } |
| |
| static const struct frame_unwind v850_frame_unwind = { |
| "v850 prologue", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| v850_frame_this_id, |
| v850_frame_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| static CORE_ADDR |
| v850_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) |
| { |
| struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache); |
| |
| return cache->base; |
| } |
| |
| static const struct frame_base v850_frame_base = { |
| &v850_frame_unwind, |
| v850_frame_base_address, |
| v850_frame_base_address, |
| v850_frame_base_address |
| }; |
| |
| static struct gdbarch * |
| v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| { |
| int e_flags, e_machine; |
| |
| /* Extract the elf_flags if available. */ |
| if (info.abfd != NULL |
| && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) |
| { |
| e_flags = elf_elfheader (info.abfd)->e_flags; |
| e_machine = elf_elfheader (info.abfd)->e_machine; |
| } |
| else |
| { |
| e_flags = 0; |
| e_machine = 0; |
| } |
| |
| |
| /* Try to find the architecture in the list of already defined |
| architectures. */ |
| for (arches = gdbarch_list_lookup_by_info (arches, &info); |
| arches != NULL; |
| arches = gdbarch_list_lookup_by_info (arches->next, &info)) |
| { |
| v850_gdbarch_tdep *tdep |
| = gdbarch_tdep<v850_gdbarch_tdep> (arches->gdbarch); |
| |
| if (tdep->e_flags != e_flags || tdep->e_machine != e_machine) |
| continue; |
| |
| return arches->gdbarch; |
| } |
| |
| gdbarch *gdbarch |
| = gdbarch_alloc (&info, gdbarch_tdep_up (new v850_gdbarch_tdep)); |
| v850_gdbarch_tdep *tdep = gdbarch_tdep<v850_gdbarch_tdep> (gdbarch); |
| |
| tdep->e_flags = e_flags; |
| tdep->e_machine = e_machine; |
| |
| switch (tdep->e_machine) |
| { |
| case EM_V800: |
| tdep->abi = V850_ABI_RH850; |
| break; |
| default: |
| tdep->abi = V850_ABI_GCC; |
| break; |
| } |
| |
| tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0; |
| |
| switch (info.bfd_arch_info->mach) |
| { |
| case bfd_mach_v850: |
| set_gdbarch_register_name (gdbarch, v850_register_name); |
| set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS); |
| break; |
| case bfd_mach_v850e: |
| case bfd_mach_v850e1: |
| set_gdbarch_register_name (gdbarch, v850e_register_name); |
| set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS); |
| break; |
| case bfd_mach_v850e2: |
| case bfd_mach_v850e2v3: |
| set_gdbarch_register_name (gdbarch, v850e2_register_name); |
| set_gdbarch_num_regs (gdbarch, E_NUM_REGS); |
| break; |
| case bfd_mach_v850e3v5: |
| set_gdbarch_register_name (gdbarch, v850e3v5_register_name); |
| set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS); |
| break; |
| } |
| |
| set_gdbarch_num_pseudo_regs (gdbarch, 0); |
| set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); |
| set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); |
| set_gdbarch_fp0_regnum (gdbarch, -1); |
| |
| set_gdbarch_register_type (gdbarch, v850_register_type); |
| |
| set_gdbarch_char_signed (gdbarch, 1); |
| set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
| set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); |
| set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); |
| set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); |
| |
| set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); |
| set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); |
| set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); |
| |
| set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); |
| set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); |
| |
| set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| |
| set_gdbarch_breakpoint_kind_from_pc (gdbarch, v850_breakpoint_kind_from_pc); |
| set_gdbarch_sw_breakpoint_from_kind (gdbarch, v850_sw_breakpoint_from_kind); |
| set_gdbarch_return_value (gdbarch, v850_return_value); |
| set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call); |
| set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue); |
| |
| set_gdbarch_frame_align (gdbarch, v850_frame_align); |
| frame_base_set_default (gdbarch, &v850_frame_base); |
| |
| /* Hook in ABI-specific overrides, if they have been registered. */ |
| gdbarch_init_osabi (info, gdbarch); |
| |
| dwarf2_append_unwinders (gdbarch); |
| frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind); |
| |
| return gdbarch; |
| } |
| |
| void _initialize_v850_tdep (); |
| void |
| _initialize_v850_tdep () |
| { |
| gdbarch_register (bfd_arch_v850, v850_gdbarch_init); |
| gdbarch_register (bfd_arch_v850_rh850, v850_gdbarch_init); |
| } |