| /* frv trap support |
| Copyright (C) 1999-2024 Free Software Foundation, Inc. |
| Contributed by Red Hat. |
| |
| This file is part of the GNU simulators. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| /* This must come before any other includes. */ |
| #include "defs.h" |
| |
| #define WANT_CPU frvbf |
| #define WANT_CPU_FRVBF |
| |
| #include "sim-main.h" |
| #include "cgen-engine.h" |
| #include "cgen-par.h" |
| #include "sim-fpu.h" |
| #include "sim-signal.h" |
| #include "sim/callback.h" |
| |
| #include "bfd.h" |
| #include "libiberty.h" |
| |
| #include <stdlib.h> |
| |
| CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot; |
| |
| /* The semantic code invokes this for invalid (unrecognized) instructions. */ |
| |
| SEM_PC |
| sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc) |
| { |
| frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| return vpc; |
| } |
| |
| /* Process an address exception. */ |
| |
| void |
| frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia, |
| unsigned int map, int nr_bytes, address_word addr, |
| transfer_type transfer, sim_core_signals sig) |
| { |
| if (sig == sim_core_unaligned_signal) |
| { |
| if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400 |
| || STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450) |
| frv_queue_data_access_error_interrupt (current_cpu, addr); |
| else |
| frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr); |
| } |
| |
| frv_term (sd); |
| sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig); |
| } |
| |
| void |
| frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia) |
| { |
| int i; |
| if (current_cpu != NULL) |
| CPU_PC_SET (current_cpu, cia); |
| |
| /* Invalidate the insn and data caches of all cpus. */ |
| for (i = 0; i < MAX_NR_PROCESSORS; ++i) |
| { |
| current_cpu = STATE_CPU (sd, i); |
| frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0); |
| frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1); |
| } |
| frv_term (sd); |
| } |
| |
| /* Read/write functions for system call interface. */ |
| |
| static int |
| syscall_read_mem (host_callback *cb, struct cb_syscall *sc, |
| unsigned long taddr, char *buf, int bytes) |
| { |
| SIM_DESC sd = (SIM_DESC) sc->p1; |
| SIM_CPU *cpu = (SIM_CPU *) sc->p2; |
| |
| frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1); |
| return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes); |
| } |
| |
| static int |
| syscall_write_mem (host_callback *cb, struct cb_syscall *sc, |
| unsigned long taddr, const char *buf, int bytes) |
| { |
| SIM_DESC sd = (SIM_DESC) sc->p1; |
| SIM_CPU *cpu = (SIM_CPU *) sc->p2; |
| |
| frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0); |
| frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1); |
| return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes); |
| } |
| |
| /* Handle TRA and TIRA insns. */ |
| void |
| frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| host_callback *cb = STATE_CALLBACK (sd); |
| USI num = ((base + offset) & 0x7f) + 0x80; |
| |
| if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT) |
| { |
| frv_queue_software_interrupt (current_cpu, num); |
| return; |
| } |
| |
| switch (num) |
| { |
| case TRAP_SYSCALL : |
| { |
| CB_SYSCALL s; |
| CB_SYSCALL_INIT (&s); |
| s.func = GET_H_GR (7); |
| s.arg1 = GET_H_GR (8); |
| s.arg2 = GET_H_GR (9); |
| s.arg3 = GET_H_GR (10); |
| |
| if (cb_target_to_host_syscall (cb, s.func) == CB_SYS_exit) |
| { |
| sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1); |
| } |
| |
| s.p1 = sd; |
| s.p2 = current_cpu; |
| s.read_mem = syscall_read_mem; |
| s.write_mem = syscall_write_mem; |
| cb_syscall (cb, &s); |
| SET_H_GR (8, s.result); |
| SET_H_GR (9, s.result2); |
| SET_H_GR (10, s.errcode); |
| break; |
| } |
| |
| case TRAP_BREAKPOINT: |
| sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); |
| break; |
| |
| /* Add support for dumping registers, either at fixed traps, or all |
| unknown traps if configured with --enable-sim-trapdump. */ |
| default: |
| #if !TRAPDUMP |
| frv_queue_software_interrupt (current_cpu, num); |
| return; |
| #endif |
| |
| #ifdef TRAP_REGDUMP1 |
| case TRAP_REGDUMP1: |
| #endif |
| |
| #ifdef TRAP_REGDUMP2 |
| case TRAP_REGDUMP2: |
| #endif |
| |
| #if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2)) |
| { |
| char buf[256]; |
| int i; |
| |
| buf[0] = 0; |
| if (STATE_TEXT_SECTION (sd) |
| && pc >= STATE_TEXT_START (sd) |
| && pc < STATE_TEXT_END (sd)) |
| { |
| const char *pc_filename = (const char *)0; |
| const char *pc_function = (const char *)0; |
| unsigned int pc_linenum = 0; |
| |
| if (bfd_find_nearest_line (STATE_PROG_BFD (sd), |
| STATE_TEXT_SECTION (sd), |
| (struct bfd_symbol **) 0, |
| pc - STATE_TEXT_START (sd), |
| &pc_filename, &pc_function, &pc_linenum) |
| && (pc_function || pc_filename)) |
| { |
| char *p = buf+2; |
| buf[0] = ' '; |
| buf[1] = '('; |
| if (pc_function) |
| { |
| strcpy (p, pc_function); |
| p += strlen (p); |
| } |
| else |
| { |
| char *q = (char *) strrchr (pc_filename, '/'); |
| strcpy (p, (q) ? q+1 : pc_filename); |
| p += strlen (p); |
| } |
| |
| if (pc_linenum) |
| { |
| sprintf (p, " line %d", pc_linenum); |
| p += strlen (p); |
| } |
| |
| p[0] = ')'; |
| p[1] = '\0'; |
| if ((p+1) - buf > sizeof (buf)) |
| abort (); |
| } |
| } |
| |
| sim_io_printf (sd, |
| "\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n", |
| (unsigned)pc, buf, (unsigned)base, (int)offset); |
| |
| for (i = 0; i < 64; i += 8) |
| { |
| long g0 = (long)GET_H_GR (i); |
| long g1 = (long)GET_H_GR (i+1); |
| long g2 = (long)GET_H_GR (i+2); |
| long g3 = (long)GET_H_GR (i+3); |
| long g4 = (long)GET_H_GR (i+4); |
| long g5 = (long)GET_H_GR (i+5); |
| long g6 = (long)GET_H_GR (i+6); |
| long g7 = (long)GET_H_GR (i+7); |
| |
| if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0) |
| sim_io_printf (sd, |
| "\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", |
| i, i+7, g0, g1, g2, g3, g4, g5, g6, g7); |
| } |
| |
| for (i = 0; i < 64; i += 8) |
| { |
| long f0 = (long)GET_H_FR (i); |
| long f1 = (long)GET_H_FR (i+1); |
| long f2 = (long)GET_H_FR (i+2); |
| long f3 = (long)GET_H_FR (i+3); |
| long f4 = (long)GET_H_FR (i+4); |
| long f5 = (long)GET_H_FR (i+5); |
| long f6 = (long)GET_H_FR (i+6); |
| long f7 = (long)GET_H_FR (i+7); |
| |
| if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0) |
| sim_io_printf (sd, |
| "\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", |
| i, i+7, f0, f1, f2, f3, f4, f5, f6, f7); |
| } |
| |
| sim_io_printf (sd, |
| "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", |
| (long)GET_H_SPR (272), |
| (long)GET_H_SPR (273), |
| (long)GET_H_SPR (256), |
| (long)GET_H_SPR (263)); |
| } |
| break; |
| #endif |
| } |
| } |
| |
| /* Handle the MTRAP insn. */ |
| void |
| frv_mtrap (SIM_CPU *current_cpu) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| |
| /* Check the status of media exceptions in MSR0. */ |
| SI msr = GET_MSR (0); |
| if (GET_MSR_AOVF (msr) |
| || (GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)) |
| frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION); |
| } |
| |
| /* Handle the BREAK insn. */ |
| void |
| frv_break (SIM_CPU *current_cpu) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| |
| if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT) |
| { |
| /* Invalidate the insn cache because the debugger will presumably |
| replace the breakpoint insn with the real one. */ |
| sim_engine_halt (sd, current_cpu, NULL, NULL_CIA, sim_stopped, |
| SIM_SIGTRAP); |
| } |
| |
| frv_queue_break_interrupt (current_cpu); |
| } |
| |
| /* Return from trap. */ |
| USI |
| frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field) |
| { |
| USI new_pc; |
| /* if (normal running mode and debug_field==0 |
| PC=PCSR |
| PSR.ET=1 |
| PSR.S=PSR.PS |
| else if (debug running mode and debug_field==1) |
| PC=(BPCSR) |
| PSR.ET=BPSR.BET |
| PSR.S=BPSR.BS |
| change to normal running mode |
| */ |
| int psr_s = GET_H_PSR_S (); |
| int psr_et = GET_H_PSR_ET (); |
| |
| /* Check for exceptions in the priority order listed in the FRV Architecture |
| Volume 2. */ |
| if (! psr_s) |
| { |
| /* Halt if PSR.ET is not set. See chapter 6 of the LSI. */ |
| if (! psr_et) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); |
| } |
| |
| /* privileged_instruction interrupt will have already been queued by |
| frv_detect_insn_access_interrupts. */ |
| new_pc = pc + 4; |
| } |
| else if (psr_et) |
| { |
| /* Halt if PSR.S is set. See chapter 6 of the LSI. */ |
| if (psr_s) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); |
| } |
| |
| frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| new_pc = pc + 4; |
| } |
| else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0) |
| { |
| USI psr = GET_PSR (); |
| /* Return from normal running state. */ |
| new_pc = GET_H_SPR (H_SPR_PCSR); |
| SET_PSR_ET (psr, 1); |
| SET_PSR_S (psr, GET_PSR_PS (psr)); |
| sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr); |
| } |
| else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1) |
| { |
| USI psr = GET_PSR (); |
| /* Return from debug state. */ |
| new_pc = GET_H_SPR (H_SPR_BPCSR); |
| SET_PSR_ET (psr, GET_H_BPSR_BET ()); |
| SET_PSR_S (psr, GET_H_BPSR_BS ()); |
| sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr); |
| CPU_DEBUG_STATE (current_cpu) = 0; |
| } |
| else |
| new_pc = pc + 4; |
| |
| return new_pc; |
| } |
| |
| /* Functions for handling non-excepting instruction side effects. */ |
| static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index) |
| { |
| FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); |
| if (control->spr[H_SPR_NECR].implemented) |
| { |
| int limit; |
| USI necr = GET_NECR (); |
| |
| /* See if any NESRs are implemented. First need to check the validity of |
| the NECR. */ |
| if (! GET_NECR_VALID (necr)) |
| return NO_NESR; |
| |
| limit = GET_NECR_NEN (necr); |
| for (++current_index; current_index < limit; ++current_index) |
| { |
| SI nesr = GET_NESR (current_index); |
| if (! GET_NESR_VALID (nesr)) |
| return current_index; |
| } |
| } |
| return NO_NESR; |
| } |
| |
| static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index) |
| { |
| FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); |
| if (control->spr[H_SPR_NECR].implemented) |
| { |
| int limit; |
| USI necr = GET_NECR (); |
| |
| /* See if any NESRs are implemented. First need to check the validity of |
| the NECR. */ |
| if (! GET_NECR_VALID (necr)) |
| return NO_NESR; |
| |
| limit = GET_NECR_NEN (necr); |
| for (++current_index; current_index < limit; ++current_index) |
| { |
| SI nesr = GET_NESR (current_index); |
| if (GET_NESR_VALID (nesr)) |
| return current_index; |
| } |
| } |
| return NO_NESR; |
| } |
| |
| BI |
| frvbf_check_non_excepting_load ( |
| SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index, |
| SI immediate_disp, QI data_size, BI is_float |
| ) |
| { |
| BI rc = 1; /* perform the load. */ |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| int daec = 0; |
| int rec = 0; |
| int ec = 0; |
| USI necr; |
| int do_elos; |
| SI NE_flags[2]; |
| SI NE_base; |
| SI nesr; |
| SI ne_index; |
| FRV_REGISTER_CONTROL *control; |
| |
| SI address = GET_H_GR (base_index); |
| if (disp_index >= 0) |
| address += GET_H_GR (disp_index); |
| else |
| address += immediate_disp; |
| |
| /* Check for interrupt factors. */ |
| switch (data_size) |
| { |
| case NESR_UQI_SIZE: |
| case NESR_QI_SIZE: |
| break; |
| case NESR_UHI_SIZE: |
| case NESR_HI_SIZE: |
| if (address & 1) |
| ec = 1; |
| break; |
| case NESR_SI_SIZE: |
| if (address & 3) |
| ec = 1; |
| break; |
| case NESR_DI_SIZE: |
| if (address & 7) |
| ec = 1; |
| if (target_index & 1) |
| rec = 1; |
| break; |
| case NESR_XI_SIZE: |
| if (address & 0xf) |
| ec = 1; |
| if (target_index & 3) |
| rec = 1; |
| break; |
| default: |
| { |
| IADDR pc = GET_H_PC (); |
| sim_engine_abort (sd, current_cpu, pc, |
| "check_non_excepting_load: Incorrect data_size\n"); |
| break; |
| } |
| } |
| |
| control = CPU_REGISTER_CONTROL (current_cpu); |
| if (control->spr[H_SPR_NECR].implemented) |
| { |
| necr = GET_NECR (); |
| do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr); |
| } |
| else |
| do_elos = 0; |
| |
| /* NECR, NESR, NEEAR are only implemented for the full frv machine. */ |
| if (do_elos) |
| { |
| ne_index = next_available_nesr (current_cpu, NO_NESR); |
| if (ne_index == NO_NESR) |
| { |
| IADDR pc = GET_H_PC (); |
| sim_engine_abort (sd, current_cpu, pc, |
| "No available NESR register\n"); |
| } |
| |
| /* Fill in the basic fields of the NESR. */ |
| nesr = GET_NESR (ne_index); |
| SET_NESR_VALID (nesr); |
| SET_NESR_EAV (nesr); |
| SET_NESR_DRN (nesr, target_index); |
| SET_NESR_SIZE (nesr, data_size); |
| SET_NESR_NEAN (nesr, ne_index); |
| if (is_float) |
| SET_NESR_FR (nesr); |
| else |
| CLEAR_NESR_FR (nesr); |
| |
| /* Set the corresponding NEEAR. */ |
| SET_NEEAR (ne_index, address); |
| |
| SET_NESR_DAEC (nesr, 0); |
| SET_NESR_REC (nesr, 0); |
| SET_NESR_EC (nesr, 0); |
| } |
| |
| /* Set the NE flag corresponding to the target register if an interrupt |
| factor was detected. |
| daec is not checked here yet, but is declared for future reference. */ |
| if (is_float) |
| NE_base = H_SPR_FNER0; |
| else |
| NE_base = H_SPR_GNER0; |
| |
| GET_NE_FLAGS (NE_flags, NE_base); |
| if (rec) |
| { |
| SET_NE_FLAG (NE_flags, target_index); |
| if (do_elos) |
| SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED); |
| } |
| |
| if (ec) |
| { |
| SET_NE_FLAG (NE_flags, target_index); |
| if (do_elos) |
| SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED); |
| } |
| |
| if (do_elos) |
| SET_NESR (ne_index, nesr); |
| |
| /* If no interrupt factor was detected then set the NE flag on the |
| target register if the NE flag on one of the input registers |
| is already set. */ |
| if (! rec && ! ec && ! daec) |
| { |
| BI ne_flag = GET_NE_FLAG (NE_flags, base_index); |
| if (disp_index >= 0) |
| ne_flag |= GET_NE_FLAG (NE_flags, disp_index); |
| if (ne_flag) |
| { |
| SET_NE_FLAG (NE_flags, target_index); |
| rc = 0; /* Do not perform the load. */ |
| } |
| else |
| CLEAR_NE_FLAG (NE_flags, target_index); |
| } |
| |
| SET_NE_FLAGS (NE_base, NE_flags); |
| |
| return rc; /* perform the load? */ |
| } |
| |
| /* Record state for media exception: media_cr_not_aligned. */ |
| void |
| frvbf_media_cr_not_aligned (SIM_CPU *current_cpu) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| |
| /* On some machines this generates an illegal_instruction interrupt. */ |
| switch (STATE_ARCHITECTURE (sd)->mach) |
| { |
| /* Note: there is a discrepancy between V2.2 of the FR400 |
| instruction manual and the various FR4xx LSI specs. The former |
| claims that unaligned registers cause an mp_exception while the |
| latter say it's an illegal_instruction. The LSI specs appear |
| to be correct since MTT is fixed at 1. */ |
| case bfd_mach_fr400: |
| case bfd_mach_fr450: |
| case bfd_mach_fr550: |
| frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| break; |
| default: |
| frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0); |
| break; |
| } |
| } |
| |
| /* Record state for media exception: media_acc_not_aligned. */ |
| void |
| frvbf_media_acc_not_aligned (SIM_CPU *current_cpu) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| |
| /* On some machines this generates an illegal_instruction interrupt. */ |
| switch (STATE_ARCHITECTURE (sd)->mach) |
| { |
| /* See comment in frvbf_cr_not_aligned(). */ |
| case bfd_mach_fr400: |
| case bfd_mach_fr450: |
| case bfd_mach_fr550: |
| frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| break; |
| default: |
| frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0); |
| break; |
| } |
| } |
| |
| /* Record state for media exception: media_register_not_aligned. */ |
| void |
| frvbf_media_register_not_aligned (SIM_CPU *current_cpu) |
| { |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| |
| /* On some machines this generates an illegal_instruction interrupt. */ |
| switch (STATE_ARCHITECTURE (sd)->mach) |
| { |
| /* See comment in frvbf_cr_not_aligned(). */ |
| case bfd_mach_fr400: |
| case bfd_mach_fr450: |
| case bfd_mach_fr550: |
| frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| break; |
| default: |
| frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0); |
| break; |
| } |
| } |
| |
| /* Record state for media exception: media_overflow. */ |
| void |
| frvbf_media_overflow (SIM_CPU *current_cpu, int sie) |
| { |
| frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie); |
| } |
| |
| /* Queue a division exception. */ |
| enum frv_dtt |
| frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt, |
| int target_index, int non_excepting) |
| { |
| /* If there was an overflow and it is masked, then record it in |
| ISR.AEXC. */ |
| USI isr = GET_ISR (); |
| if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr)) |
| { |
| dtt &= ~FRV_DTT_OVERFLOW; |
| SET_ISR_AEXC (isr); |
| SET_ISR (isr); |
| } |
| if (dtt != FRV_DTT_NO_EXCEPTION) |
| { |
| if (non_excepting) |
| { |
| /* Non excepting instruction, simply set the NE flag for the target |
| register. */ |
| SI NE_flags[2]; |
| GET_NE_FLAGS (NE_flags, H_SPR_GNER0); |
| SET_NE_FLAG (NE_flags, target_index); |
| SET_NE_FLAGS (H_SPR_GNER0, NE_flags); |
| } |
| else |
| frv_queue_division_exception_interrupt (current_cpu, dtt); |
| } |
| return dtt; |
| } |
| |
| void |
| frvbf_check_recovering_store ( |
| SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float |
| ) |
| { |
| FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); |
| int reg_ix; |
| |
| CPU_RSTR_INVALIDATE(current_cpu) = 0; |
| |
| for (reg_ix = next_valid_nesr (current_cpu, NO_NESR); |
| reg_ix != NO_NESR; |
| reg_ix = next_valid_nesr (current_cpu, reg_ix)) |
| { |
| if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix)) |
| { |
| SI nesr = GET_NESR (reg_ix); |
| int nesr_drn = GET_NESR_DRN (nesr); |
| BI nesr_fr = GET_NESR_FR (nesr); |
| SI remain; |
| |
| /* Invalidate cache block containing this address. |
| If we need to count cycles, then the cache operation will be |
| initiated from the model profiling functions. |
| See frvbf_model_.... */ |
| if (model_insn) |
| { |
| CPU_RSTR_INVALIDATE(current_cpu) = 1; |
| CPU_LOAD_ADDRESS (current_cpu) = address; |
| } |
| else |
| frv_cache_invalidate (cache, address, 1/* flush */); |
| |
| /* Copy the stored value to the register indicated by NESR.DRN. */ |
| for (remain = size; remain > 0; remain -= 4) |
| { |
| SI value; |
| |
| if (is_float) |
| value = GET_H_FR (regno); |
| else |
| value = GET_H_GR (regno); |
| |
| switch (size) |
| { |
| case 1: |
| value &= 0xff; |
| break; |
| case 2: |
| value &= 0xffff; |
| break; |
| default: |
| break; |
| } |
| |
| if (nesr_fr) |
| sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn, |
| value); |
| else |
| sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn, |
| value); |
| |
| nesr_drn++; |
| regno++; |
| } |
| break; /* Only consider the first matching register. */ |
| } |
| } /* loop over active neear registers. */ |
| } |
| |
| SI |
| frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno) |
| { |
| /* Only applicable to fr550 */ |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550) |
| return 1; |
| |
| /* On the fr550, media insns in slots 0 and 2 can only access |
| accumulators acc0-acc3. Insns in slots 1 and 3 can only access |
| accumulators acc4-acc7 */ |
| switch (frv_current_fm_slot) |
| { |
| case UNIT_FM0: |
| case UNIT_FM2: |
| if (regno <= 3) |
| return 1; /* all is ok */ |
| break; |
| case UNIT_FM1: |
| case UNIT_FM3: |
| if (regno >= 4) |
| return 1; /* all is ok */ |
| break; |
| } |
| |
| /* The specified accumulator is out of range. Queue an illegal_instruction |
| interrupt. */ |
| frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
| return 0; |
| } |
| |
| void |
| frvbf_check_swap_address (SIM_CPU *current_cpu, SI address) |
| { |
| /* Only applicable to fr550 */ |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550) |
| return; |
| |
| /* Adress must be aligned on a word boundary. */ |
| if (address & 0x3) |
| frv_queue_data_access_exception_interrupt (current_cpu); |
| } |
| |
| static void |
| clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float) |
| { |
| int reg_ix; |
| |
| /* Only implemented for full frv. */ |
| SIM_DESC sd = CPU_STATE (current_cpu); |
| if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv) |
| return; |
| |
| /* Clear the appropriate NESR and NEEAR registers. */ |
| for (reg_ix = next_valid_nesr (current_cpu, NO_NESR); |
| reg_ix != NO_NESR; |
| reg_ix = next_valid_nesr (current_cpu, reg_ix)) |
| { |
| SI nesr; |
| /* The register is available, now check if it is active. */ |
| nesr = GET_NESR (reg_ix); |
| if (GET_NESR_FR (nesr) == is_float) |
| { |
| if (target_index < 0 || GET_NESR_DRN (nesr) == target_index) |
| { |
| SET_NESR (reg_ix, 0); |
| SET_NEEAR (reg_ix, 0); |
| } |
| } |
| } |
| } |
| |
| static void |
| clear_ne_flags ( |
| SIM_CPU *current_cpu, |
| SI target_index, |
| int hi_available, |
| int lo_available, |
| SI NE_base |
| ) |
| { |
| SI NE_flags[2]; |
| |
| GET_NE_FLAGS (NE_flags, NE_base); |
| if (target_index >= 0) |
| CLEAR_NE_FLAG (NE_flags, target_index); |
| else |
| { |
| if (lo_available) |
| NE_flags[1] = 0; |
| if (hi_available) |
| NE_flags[0] = 0; |
| } |
| SET_NE_FLAGS (NE_base, NE_flags); |
| } |
| |
| /* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1 |
| means to check for any register available. */ |
| static void |
| which_registers_available ( |
| SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float |
| ) |
| { |
| if (is_float) |
| frv_fr_registers_available (current_cpu, hi_available, lo_available); |
| else |
| frv_gr_registers_available (current_cpu, hi_available, lo_available); |
| } |
| |
| void |
| frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float) |
| { |
| int hi_available; |
| int lo_available; |
| SI NE_base; |
| USI necr; |
| FRV_REGISTER_CONTROL *control; |
| |
| /* Check for availability of the target register(s). */ |
| which_registers_available (current_cpu, & hi_available, & lo_available, |
| is_float); |
| |
| /* Check to make sure that the target register is available. */ |
| if (! frv_check_register_access (current_cpu, target_index, |
| hi_available, lo_available)) |
| return; |
| |
| /* Determine whether we're working with GR or FR registers. */ |
| if (is_float) |
| NE_base = H_SPR_FNER0; |
| else |
| NE_base = H_SPR_GNER0; |
| |
| /* Always clear the appropriate NE flags. */ |
| clear_ne_flags (current_cpu, target_index, hi_available, lo_available, |
| NE_base); |
| |
| /* Clear the appropriate NESR and NEEAR registers. */ |
| control = CPU_REGISTER_CONTROL (current_cpu); |
| if (control->spr[H_SPR_NECR].implemented) |
| { |
| necr = GET_NECR (); |
| if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr)) |
| clear_nesr_neear (current_cpu, target_index, is_float); |
| } |
| } |
| |
| void |
| frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float) |
| { |
| SI NE_base; |
| SI NE_flags[2]; |
| BI NE_flag; |
| int hi_available; |
| int lo_available; |
| USI necr; |
| FRV_REGISTER_CONTROL *control; |
| |
| /* Check for availability of the target register(s). */ |
| which_registers_available (current_cpu, & hi_available, & lo_available, |
| is_float); |
| |
| /* Check to make sure that the target register is available. */ |
| if (! frv_check_register_access (current_cpu, target_index, |
| hi_available, lo_available)) |
| return; |
| |
| /* Determine whether we're working with GR or FR registers. */ |
| if (is_float) |
| NE_base = H_SPR_FNER0; |
| else |
| NE_base = H_SPR_GNER0; |
| |
| /* Determine whether a ne exception is pending. */ |
| GET_NE_FLAGS (NE_flags, NE_base); |
| if (target_index >= 0) |
| NE_flag = GET_NE_FLAG (NE_flags, target_index); |
| else |
| { |
| NE_flag = (hi_available && NE_flags[0] != 0) |
| || (lo_available && NE_flags[1] != 0); |
| } |
| |
| /* Always clear the appropriate NE flags. */ |
| clear_ne_flags (current_cpu, target_index, hi_available, lo_available, |
| NE_base); |
| |
| control = CPU_REGISTER_CONTROL (current_cpu); |
| if (control->spr[H_SPR_NECR].implemented) |
| { |
| necr = GET_NECR (); |
| if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag) |
| { |
| /* Clear the appropriate NESR and NEEAR registers. */ |
| clear_nesr_neear (current_cpu, target_index, is_float); |
| frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION); |
| } |
| } |
| } |
| |
| /* Generate the appropriate fp_exception(s) based on the given status code. */ |
| void |
| frvbf_fpu_error (CGEN_FPU* fpu, int status) |
| { |
| struct frv_fp_exception_info fp_info = { |
| FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION |
| }; |
| |
| if (status & |
| (sim_fpu_status_invalid_snan | |
| sim_fpu_status_invalid_qnan | |
| sim_fpu_status_invalid_isi | |
| sim_fpu_status_invalid_idi | |
| sim_fpu_status_invalid_zdz | |
| sim_fpu_status_invalid_imz | |
| sim_fpu_status_invalid_cvi | |
| sim_fpu_status_invalid_cmp | |
| sim_fpu_status_invalid_sqrt)) |
| fp_info.fsr_mask |= FSR_INVALID_OPERATION; |
| |
| if (status & sim_fpu_status_invalid_div0) |
| fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO; |
| |
| if (status & sim_fpu_status_inexact) |
| fp_info.fsr_mask |= FSR_INEXACT; |
| |
| if (status & sim_fpu_status_overflow) |
| fp_info.fsr_mask |= FSR_OVERFLOW; |
| |
| if (status & sim_fpu_status_underflow) |
| fp_info.fsr_mask |= FSR_UNDERFLOW; |
| |
| if (status & sim_fpu_status_denorm) |
| { |
| fp_info.fsr_mask |= FSR_DENORMAL_INPUT; |
| fp_info.ftt = FTT_DENORMAL_INPUT; |
| } |
| |
| if (fp_info.fsr_mask != FSR_NO_EXCEPTION) |
| { |
| SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner; |
| frv_queue_fp_exception_interrupt (current_cpu, & fp_info); |
| } |
| } |