| /* BFD back-end for HP PA-RISC ELF files. |
| Copyright (C) 1990-2021 Free Software Foundation, Inc. |
| |
| Original code by |
| Center for Software Science |
| Department of Computer Science |
| University of Utah |
| Largely rewritten by Alan Modra <alan@linuxcare.com.au> |
| Naming cleanup by Carlos O'Donell <carlos@systemhalted.org> |
| TLS support written by Randolph Chung <tausq@debian.org> |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf/hppa.h" |
| #include "libhppa.h" |
| #include "elf32-hppa.h" |
| #define ARCH_SIZE 32 |
| #include "elf32-hppa.h" |
| #include "elf-hppa.h" |
| |
| /* In order to gain some understanding of code in this file without |
| knowing all the intricate details of the linker, note the |
| following: |
| |
| Functions named elf32_hppa_* are called by external routines, other |
| functions are only called locally. elf32_hppa_* functions appear |
| in this file more or less in the order in which they are called |
| from external routines. eg. elf32_hppa_check_relocs is called |
| early in the link process, elf32_hppa_finish_dynamic_sections is |
| one of the last functions. */ |
| |
| /* We use two hash tables to hold information for linking PA ELF objects. |
| |
| The first is the elf32_hppa_link_hash_table which is derived |
| from the standard ELF linker hash table. We use this as a place to |
| attach other hash tables and static information. |
| |
| The second is the stub hash table which is derived from the |
| base BFD hash table. The stub hash table holds the information |
| necessary to build the linker stubs during a link. |
| |
| There are a number of different stubs generated by the linker. |
| |
| Long branch stub: |
| : ldil LR'X,%r1 |
| : be,n RR'X(%sr4,%r1) |
| |
| PIC long branch stub: |
| : b,l .+8,%r1 |
| : addil LR'X - ($PIC_pcrel$0 - 4),%r1 |
| : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1) |
| |
| Import stub to call shared library routine from normal object file |
| (single sub-space version) |
| : addil LR'lt_ptr+ltoff,%dp ; get PLT address |
| : ldo RR'lt_ptr+ltoff(%r1),%r22 ; |
| : ldw 0(%r22),%r21 ; get procedure entry point |
| : bv %r0(%r21) |
| : ldw 4(%r22),%r19 ; get new dlt value. |
| |
| Import stub to call shared library routine from shared library |
| (single sub-space version) |
| : addil LR'ltoff,%r19 ; get PLT address |
| : ldo RR'ltoff(%r1),%r22 |
| : ldw 0(%r22),%r21 ; get procedure entry point |
| : bv %r0(%r21) |
| : ldw 4(%r22),%r19 ; get new dlt value. |
| |
| Import stub to call shared library routine from normal object file |
| (multiple sub-space support) |
| : addil LR'lt_ptr+ltoff,%dp ; get PLT address |
| : ldo RR'lt_ptr+ltoff(%r1),%r22 ; |
| : ldw 0(%r22),%r21 ; get procedure entry point |
| : ldsid (%r21),%r1 ; get target sid |
| : ldw 4(%r22),%r19 ; get new dlt value. |
| : mtsp %r1,%sr0 |
| : be 0(%sr0,%r21) ; branch to target |
| : stw %rp,-24(%sp) ; save rp |
| |
| Import stub to call shared library routine from shared library |
| (multiple sub-space support) |
| : addil LR'ltoff,%r19 ; get PLT address |
| : ldo RR'ltoff(%r1),%r22 |
| : ldw 0(%r22),%r21 ; get procedure entry point |
| : ldsid (%r21),%r1 ; get target sid |
| : ldw 4(%r22),%r19 ; get new dlt value. |
| : mtsp %r1,%sr0 |
| : be 0(%sr0,%r21) ; branch to target |
| : stw %rp,-24(%sp) ; save rp |
| |
| Export stub to return from shared lib routine (multiple sub-space support) |
| One of these is created for each exported procedure in a shared |
| library (and stored in the shared lib). Shared lib routines are |
| called via the first instruction in the export stub so that we can |
| do an inter-space return. Not required for single sub-space. |
| : bl,n X,%rp ; trap the return |
| : nop |
| : ldw -24(%sp),%rp ; restore the original rp |
| : ldsid (%rp),%r1 |
| : mtsp %r1,%sr0 |
| : be,n 0(%sr0,%rp) ; inter-space return. */ |
| |
| |
| /* Variable names follow a coding style. |
| Please follow this (Apps Hungarian) style: |
| |
| Structure/Variable Prefix |
| elf_link_hash_table "etab" |
| elf_link_hash_entry "eh" |
| |
| elf32_hppa_link_hash_table "htab" |
| elf32_hppa_link_hash_entry "hh" |
| |
| bfd_hash_table "btab" |
| bfd_hash_entry "bh" |
| |
| bfd_hash_table containing stubs "bstab" |
| elf32_hppa_stub_hash_entry "hsh" |
| |
| Always remember to use GNU Coding Style. */ |
| |
| #define PLT_ENTRY_SIZE 8 |
| #define GOT_ENTRY_SIZE 4 |
| #define LONG_BRANCH_STUB_SIZE 8 |
| #define LONG_BRANCH_SHARED_STUB_SIZE 12 |
| #define IMPORT_STUB_SIZE 20 |
| #define IMPORT_SHARED_STUB_SIZE 32 |
| #define EXPORT_STUB_SIZE 24 |
| #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" |
| |
| static const bfd_byte plt_stub[] = |
| { |
| 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */ |
| 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */ |
| 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */ |
| #define PLT_STUB_ENTRY (3*4) |
| 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */ |
| 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */ |
| 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */ |
| 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */ |
| }; |
| |
| /* Section name for stubs is the associated section name plus this |
| string. */ |
| #define STUB_SUFFIX ".stub" |
| |
| /* We don't need to copy certain PC- or GP-relative dynamic relocs |
| into a shared object's dynamic section. All the relocs of the |
| limited class we are interested in, are absolute. */ |
| #ifndef RELATIVE_DYNRELOCS |
| #define RELATIVE_DYNRELOCS 0 |
| #define IS_ABSOLUTE_RELOC(r_type) 1 |
| #define pc_dynrelocs(hh) 0 |
| #endif |
| |
| /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid |
| copying dynamic variables from a shared lib into an app's dynbss |
| section, and instead use a dynamic relocation to point into the |
| shared lib. */ |
| #define ELIMINATE_COPY_RELOCS 1 |
| |
| enum elf32_hppa_stub_type |
| { |
| hppa_stub_long_branch, |
| hppa_stub_long_branch_shared, |
| hppa_stub_import, |
| hppa_stub_import_shared, |
| hppa_stub_export, |
| hppa_stub_none |
| }; |
| |
| struct elf32_hppa_stub_hash_entry |
| { |
| /* Base hash table entry structure. */ |
| struct bfd_hash_entry bh_root; |
| |
| /* The stub section. */ |
| asection *stub_sec; |
| |
| /* Offset within stub_sec of the beginning of this stub. */ |
| bfd_vma stub_offset; |
| |
| /* Given the symbol's value and its section we can determine its final |
| value when building the stubs (so the stub knows where to jump. */ |
| bfd_vma target_value; |
| asection *target_section; |
| |
| enum elf32_hppa_stub_type stub_type; |
| |
| /* The symbol table entry, if any, that this was derived from. */ |
| struct elf32_hppa_link_hash_entry *hh; |
| |
| /* Where this stub is being called from, or, in the case of combined |
| stub sections, the first input section in the group. */ |
| asection *id_sec; |
| }; |
| |
| enum _tls_type |
| { |
| GOT_UNKNOWN = 0, |
| GOT_NORMAL = 1, |
| GOT_TLS_GD = 2, |
| GOT_TLS_LDM = 4, |
| GOT_TLS_IE = 8 |
| }; |
| |
| struct elf32_hppa_link_hash_entry |
| { |
| struct elf_link_hash_entry eh; |
| |
| /* A pointer to the most recently used stub hash entry against this |
| symbol. */ |
| struct elf32_hppa_stub_hash_entry *hsh_cache; |
| |
| ENUM_BITFIELD (_tls_type) tls_type : 8; |
| |
| /* Set if this symbol is used by a plabel reloc. */ |
| unsigned int plabel:1; |
| }; |
| |
| struct elf32_hppa_link_hash_table |
| { |
| /* The main hash table. */ |
| struct elf_link_hash_table etab; |
| |
| /* The stub hash table. */ |
| struct bfd_hash_table bstab; |
| |
| /* Linker stub bfd. */ |
| bfd *stub_bfd; |
| |
| /* Linker call-backs. */ |
| asection * (*add_stub_section) (const char *, asection *); |
| void (*layout_sections_again) (void); |
| |
| /* Array to keep track of which stub sections have been created, and |
| information on stub grouping. */ |
| struct map_stub |
| { |
| /* This is the section to which stubs in the group will be |
| attached. */ |
| asection *link_sec; |
| /* The stub section. */ |
| asection *stub_sec; |
| } *stub_group; |
| |
| /* Assorted information used by elf32_hppa_size_stubs. */ |
| unsigned int bfd_count; |
| unsigned int top_index; |
| asection **input_list; |
| Elf_Internal_Sym **all_local_syms; |
| |
| /* Used during a final link to store the base of the text and data |
| segments so that we can perform SEGREL relocations. */ |
| bfd_vma text_segment_base; |
| bfd_vma data_segment_base; |
| |
| /* Whether we support multiple sub-spaces for shared libs. */ |
| unsigned int multi_subspace:1; |
| |
| /* Flags set when various size branches are detected. Used to |
| select suitable defaults for the stub group size. */ |
| unsigned int has_12bit_branch:1; |
| unsigned int has_17bit_branch:1; |
| unsigned int has_22bit_branch:1; |
| |
| /* Set if we need a .plt stub to support lazy dynamic linking. */ |
| unsigned int need_plt_stub:1; |
| |
| /* Data for LDM relocations. */ |
| union |
| { |
| bfd_signed_vma refcount; |
| bfd_vma offset; |
| } tls_ldm_got; |
| }; |
| |
| /* Various hash macros and functions. */ |
| #define hppa_link_hash_table(p) \ |
| ((is_elf_hash_table ((p)->hash) \ |
| && elf_hash_table_id (elf_hash_table (p)) == HPPA32_ELF_DATA) \ |
| ? (struct elf32_hppa_link_hash_table *) (p)->hash : NULL) |
| |
| #define hppa_elf_hash_entry(ent) \ |
| ((struct elf32_hppa_link_hash_entry *)(ent)) |
| |
| #define hppa_stub_hash_entry(ent) \ |
| ((struct elf32_hppa_stub_hash_entry *)(ent)) |
| |
| #define hppa_stub_hash_lookup(table, string, create, copy) \ |
| ((struct elf32_hppa_stub_hash_entry *) \ |
| bfd_hash_lookup ((table), (string), (create), (copy))) |
| |
| #define hppa_elf_local_got_tls_type(abfd) \ |
| ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2))) |
| |
| #define hh_name(hh) \ |
| (hh ? hh->eh.root.root.string : "<undef>") |
| |
| #define eh_name(eh) \ |
| (eh ? eh->root.root.string : "<undef>") |
| |
| /* Assorted hash table functions. */ |
| |
| /* Initialize an entry in the stub hash table. */ |
| |
| static struct bfd_hash_entry * |
| stub_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = bfd_hash_allocate (table, |
| sizeof (struct elf32_hppa_stub_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = bfd_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf32_hppa_stub_hash_entry *hsh; |
| |
| /* Initialize the local fields. */ |
| hsh = hppa_stub_hash_entry (entry); |
| hsh->stub_sec = NULL; |
| hsh->stub_offset = 0; |
| hsh->target_value = 0; |
| hsh->target_section = NULL; |
| hsh->stub_type = hppa_stub_long_branch; |
| hsh->hh = NULL; |
| hsh->id_sec = NULL; |
| } |
| |
| return entry; |
| } |
| |
| /* Initialize an entry in the link hash table. */ |
| |
| static struct bfd_hash_entry * |
| hppa_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = bfd_hash_allocate (table, |
| sizeof (struct elf32_hppa_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf32_hppa_link_hash_entry *hh; |
| |
| /* Initialize the local fields. */ |
| hh = hppa_elf_hash_entry (entry); |
| hh->hsh_cache = NULL; |
| hh->plabel = 0; |
| hh->tls_type = GOT_UNKNOWN; |
| } |
| |
| return entry; |
| } |
| |
| /* Free the derived linker hash table. */ |
| |
| static void |
| elf32_hppa_link_hash_table_free (bfd *obfd) |
| { |
| struct elf32_hppa_link_hash_table *htab |
| = (struct elf32_hppa_link_hash_table *) obfd->link.hash; |
| |
| bfd_hash_table_free (&htab->bstab); |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| /* Create the derived linker hash table. The PA ELF port uses the derived |
| hash table to keep information specific to the PA ELF linker (without |
| using static variables). */ |
| |
| static struct bfd_link_hash_table * |
| elf32_hppa_link_hash_table_create (bfd *abfd) |
| { |
| struct elf32_hppa_link_hash_table *htab; |
| size_t amt = sizeof (*htab); |
| |
| htab = bfd_zmalloc (amt); |
| if (htab == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc, |
| sizeof (struct elf32_hppa_link_hash_entry), |
| HPPA32_ELF_DATA)) |
| { |
| free (htab); |
| return NULL; |
| } |
| |
| /* Init the stub hash table too. */ |
| if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc, |
| sizeof (struct elf32_hppa_stub_hash_entry))) |
| { |
| _bfd_elf_link_hash_table_free (abfd); |
| return NULL; |
| } |
| htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free; |
| htab->etab.dt_pltgot_required = true; |
| |
| htab->text_segment_base = (bfd_vma) -1; |
| htab->data_segment_base = (bfd_vma) -1; |
| return &htab->etab.root; |
| } |
| |
| /* Initialize the linker stubs BFD so that we can use it for linker |
| created dynamic sections. */ |
| |
| void |
| elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info) |
| { |
| struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
| |
| elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32; |
| htab->etab.dynobj = abfd; |
| } |
| |
| /* Build a name for an entry in the stub hash table. */ |
| |
| static char * |
| hppa_stub_name (const asection *input_section, |
| const asection *sym_sec, |
| const struct elf32_hppa_link_hash_entry *hh, |
| const Elf_Internal_Rela *rela) |
| { |
| char *stub_name; |
| bfd_size_type len; |
| |
| if (hh) |
| { |
| len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1; |
| stub_name = bfd_malloc (len); |
| if (stub_name != NULL) |
| sprintf (stub_name, "%08x_%s+%x", |
| input_section->id & 0xffffffff, |
| hh_name (hh), |
| (int) rela->r_addend & 0xffffffff); |
| } |
| else |
| { |
| len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; |
| stub_name = bfd_malloc (len); |
| if (stub_name != NULL) |
| sprintf (stub_name, "%08x_%x:%x+%x", |
| input_section->id & 0xffffffff, |
| sym_sec->id & 0xffffffff, |
| (int) ELF32_R_SYM (rela->r_info) & 0xffffffff, |
| (int) rela->r_addend & 0xffffffff); |
| } |
| return stub_name; |
| } |
| |
| /* Look up an entry in the stub hash. Stub entries are cached because |
| creating the stub name takes a bit of time. */ |
| |
| static struct elf32_hppa_stub_hash_entry * |
| hppa_get_stub_entry (const asection *input_section, |
| const asection *sym_sec, |
| struct elf32_hppa_link_hash_entry *hh, |
| const Elf_Internal_Rela *rela, |
| struct elf32_hppa_link_hash_table *htab) |
| { |
| struct elf32_hppa_stub_hash_entry *hsh_entry; |
| const asection *id_sec; |
| |
| /* If this input section is part of a group of sections sharing one |
| stub section, then use the id of the first section in the group. |
| Stub names need to include a section id, as there may well be |
| more than one stub used to reach say, printf, and we need to |
| distinguish between them. */ |
| id_sec = htab->stub_group[input_section->id].link_sec; |
| if (id_sec == NULL) |
| return NULL; |
| |
| if (hh != NULL && hh->hsh_cache != NULL |
| && hh->hsh_cache->hh == hh |
| && hh->hsh_cache->id_sec == id_sec) |
| { |
| hsh_entry = hh->hsh_cache; |
| } |
| else |
| { |
| char *stub_name; |
| |
| stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela); |
| if (stub_name == NULL) |
| return NULL; |
| |
| hsh_entry = hppa_stub_hash_lookup (&htab->bstab, |
| stub_name, false, false); |
| if (hh != NULL) |
| hh->hsh_cache = hsh_entry; |
| |
| free (stub_name); |
| } |
| |
| return hsh_entry; |
| } |
| |
| /* Add a new stub entry to the stub hash. Not all fields of the new |
| stub entry are initialised. */ |
| |
| static struct elf32_hppa_stub_hash_entry * |
| hppa_add_stub (const char *stub_name, |
| asection *section, |
| struct elf32_hppa_link_hash_table *htab) |
| { |
| asection *link_sec; |
| asection *stub_sec; |
| struct elf32_hppa_stub_hash_entry *hsh; |
| |
| link_sec = htab->stub_group[section->id].link_sec; |
| stub_sec = htab->stub_group[section->id].stub_sec; |
| if (stub_sec == NULL) |
| { |
| stub_sec = htab->stub_group[link_sec->id].stub_sec; |
| if (stub_sec == NULL) |
| { |
| size_t namelen; |
| bfd_size_type len; |
| char *s_name; |
| |
| namelen = strlen (link_sec->name); |
| len = namelen + sizeof (STUB_SUFFIX); |
| s_name = bfd_alloc (htab->stub_bfd, len); |
| if (s_name == NULL) |
| return NULL; |
| |
| memcpy (s_name, link_sec->name, namelen); |
| memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); |
| stub_sec = (*htab->add_stub_section) (s_name, link_sec); |
| if (stub_sec == NULL) |
| return NULL; |
| htab->stub_group[link_sec->id].stub_sec = stub_sec; |
| } |
| htab->stub_group[section->id].stub_sec = stub_sec; |
| } |
| |
| /* Enter this entry into the linker stub hash table. */ |
| hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name, |
| true, false); |
| if (hsh == NULL) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: cannot create stub entry %s"), |
| section->owner, stub_name); |
| return NULL; |
| } |
| |
| hsh->stub_sec = stub_sec; |
| hsh->stub_offset = 0; |
| hsh->id_sec = link_sec; |
| return hsh; |
| } |
| |
| /* Determine the type of stub needed, if any, for a call. */ |
| |
| static enum elf32_hppa_stub_type |
| hppa_type_of_stub (asection *input_sec, |
| const Elf_Internal_Rela *rela, |
| struct elf32_hppa_link_hash_entry *hh, |
| bfd_vma destination, |
| struct bfd_link_info *info) |
| { |
| bfd_vma location; |
| bfd_vma branch_offset; |
| bfd_vma max_branch_offset; |
| unsigned int r_type; |
| |
| if (hh != NULL |
| && hh->eh.plt.offset != (bfd_vma) -1 |
| && hh->eh.dynindx != -1 |
| && !hh->plabel |
| && (bfd_link_pic (info) |
| || !hh->eh.def_regular |
| || hh->eh.root.type == bfd_link_hash_defweak)) |
| { |
| /* We need an import stub. Decide between hppa_stub_import |
| and hppa_stub_import_shared later. */ |
| return hppa_stub_import; |
| } |
| |
| if (destination == (bfd_vma) -1) |
| return hppa_stub_none; |
| |
| /* Determine where the call point is. */ |
| location = (input_sec->output_offset |
| + input_sec->output_section->vma |
| + rela->r_offset); |
| |
| branch_offset = destination - location - 8; |
| r_type = ELF32_R_TYPE (rela->r_info); |
| |
| /* Determine if a long branch stub is needed. parisc branch offsets |
| are relative to the second instruction past the branch, ie. +8 |
| bytes on from the branch instruction location. The offset is |
| signed and counts in units of 4 bytes. */ |
| if (r_type == (unsigned int) R_PARISC_PCREL17F) |
| max_branch_offset = (1 << (17 - 1)) << 2; |
| |
| else if (r_type == (unsigned int) R_PARISC_PCREL12F) |
| max_branch_offset = (1 << (12 - 1)) << 2; |
| |
| else /* R_PARISC_PCREL22F. */ |
| max_branch_offset = (1 << (22 - 1)) << 2; |
| |
| if (branch_offset + max_branch_offset >= 2*max_branch_offset) |
| return hppa_stub_long_branch; |
| |
| return hppa_stub_none; |
| } |
| |
| /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. |
| IN_ARG contains the link info pointer. */ |
| |
| #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */ |
| #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */ |
| |
| #define BL_R1 0xe8200000 /* b,l .+8,%r1 */ |
| #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */ |
| #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */ |
| |
| #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */ |
| #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */ |
| #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */ |
| #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */ |
| |
| #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */ |
| #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */ |
| |
| #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */ |
| #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */ |
| #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */ |
| |
| #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */ |
| #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */ |
| #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */ |
| #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */ |
| |
| #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */ |
| #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */ |
| #define NOP 0x08000240 /* nop */ |
| #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */ |
| #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */ |
| #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */ |
| |
| #ifndef R19_STUBS |
| #define R19_STUBS 1 |
| #endif |
| |
| #if R19_STUBS |
| #define LDW_R1_DLT LDW_R1_R19 |
| #else |
| #define LDW_R1_DLT LDW_R1_DP |
| #endif |
| |
| static bool |
| hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg) |
| { |
| struct elf32_hppa_stub_hash_entry *hsh; |
| struct bfd_link_info *info; |
| struct elf32_hppa_link_hash_table *htab; |
| asection *stub_sec; |
| bfd *stub_bfd; |
| bfd_byte *loc; |
| bfd_vma sym_value; |
| bfd_vma insn; |
| bfd_vma off; |
| int val; |
| int size; |
| |
| /* Massage our args to the form they really have. */ |
| hsh = hppa_stub_hash_entry (bh); |
| info = (struct bfd_link_info *)in_arg; |
| |
| htab = hppa_link_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| stub_sec = hsh->stub_sec; |
| |
| /* Make a note of the offset within the stubs for this entry. */ |
| hsh->stub_offset = stub_sec->size; |
| loc = stub_sec->contents + hsh->stub_offset; |
| |
| stub_bfd = stub_sec->owner; |
| |
| switch (hsh->stub_type) |
| { |
| case hppa_stub_long_branch: |
| /* Fail if the target section could not be assigned to an output |
| section. The user should fix his linker script. */ |
| if (hsh->target_section->output_section == NULL |
| && info->non_contiguous_regions) |
| info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output " |
| "section. Retry without " |
| "--enable-non-contiguous-regions.\n"), |
| hsh->target_section); |
| |
| /* Create the long branch. A long branch is formed with "ldil" |
| loading the upper bits of the target address into a register, |
| then branching with "be" which adds in the lower bits. |
| The "be" has its delay slot nullified. */ |
| sym_value = (hsh->target_value |
| + hsh->target_section->output_offset |
| + hsh->target_section->output_section->vma); |
| |
| val = hppa_field_adjust (sym_value, 0, e_lrsel); |
| insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21); |
| bfd_put_32 (stub_bfd, insn, loc); |
| |
| val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2; |
| insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); |
| bfd_put_32 (stub_bfd, insn, loc + 4); |
| |
| size = LONG_BRANCH_STUB_SIZE; |
| break; |
| |
| case hppa_stub_long_branch_shared: |
| /* Fail if the target section could not be assigned to an output |
| section. The user should fix his linker script. */ |
| if (hsh->target_section->output_section == NULL |
| && info->non_contiguous_regions) |
| info->callbacks->einfo (_("%F%P: Could not assign %pA to an output " |
| "section. Retry without " |
| "--enable-non-contiguous-regions.\n"), |
| hsh->target_section); |
| |
| /* Branches are relative. This is where we are going to. */ |
| sym_value = (hsh->target_value |
| + hsh->target_section->output_offset |
| + hsh->target_section->output_section->vma); |
| |
| /* And this is where we are coming from, more or less. */ |
| sym_value -= (hsh->stub_offset |
| + stub_sec->output_offset |
| + stub_sec->output_section->vma); |
| |
| bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc); |
| val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel); |
| insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21); |
| bfd_put_32 (stub_bfd, insn, loc + 4); |
| |
| val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2; |
| insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); |
| bfd_put_32 (stub_bfd, insn, loc + 8); |
| size = LONG_BRANCH_SHARED_STUB_SIZE; |
| break; |
| |
| case hppa_stub_import: |
| case hppa_stub_import_shared: |
| off = hsh->hh->eh.plt.offset; |
| if (off >= (bfd_vma) -2) |
| abort (); |
| |
| off &= ~ (bfd_vma) 1; |
| sym_value = (off |
| + htab->etab.splt->output_offset |
| + htab->etab.splt->output_section->vma |
| - elf_gp (htab->etab.splt->output_section->owner)); |
| |
| insn = ADDIL_DP; |
| #if R19_STUBS |
| if (hsh->stub_type == hppa_stub_import_shared) |
| insn = ADDIL_R19; |
| #endif |
| |
| /* Load function descriptor address into register %r22. It is |
| sometimes needed for lazy binding. */ |
| val = hppa_field_adjust (sym_value, 0, e_lrsel), |
| insn = hppa_rebuild_insn ((int) insn, val, 21); |
| bfd_put_32 (stub_bfd, insn, loc); |
| |
| val = hppa_field_adjust (sym_value, 0, e_rrsel); |
| insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14); |
| bfd_put_32 (stub_bfd, insn, loc + 4); |
| |
| bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8); |
| |
| if (htab->multi_subspace) |
| { |
| bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12); |
| bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16); |
| bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20); |
| bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24); |
| bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28); |
| |
| size = IMPORT_SHARED_STUB_SIZE; |
| } |
| else |
| { |
| bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12); |
| bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16); |
| |
| size = IMPORT_STUB_SIZE; |
| } |
| |
| break; |
| |
| case hppa_stub_export: |
| /* Fail if the target section could not be assigned to an output |
| section. The user should fix his linker script. */ |
| if (hsh->target_section->output_section == NULL |
| && info->non_contiguous_regions) |
| info->callbacks->einfo (_("%F%P: Could not assign %pA to an output " |
| "section. Retry without " |
| "--enable-non-contiguous-regions.\n"), |
| hsh->target_section); |
| |
| /* Branches are relative. This is where we are going to. */ |
| sym_value = (hsh->target_value |
| + hsh->target_section->output_offset |
| + hsh->target_section->output_section->vma); |
| |
| /* And this is where we are coming from. */ |
| sym_value -= (hsh->stub_offset |
| + stub_sec->output_offset |
| + stub_sec->output_section->vma); |
| |
| if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2)) |
| && (!htab->has_22bit_branch |
| || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2)))) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA+%#" PRIx64 "): " |
| "cannot reach %s, recompile with -ffunction-sections"), |
| hsh->target_section->owner, |
| stub_sec, |
| (uint64_t) hsh->stub_offset, |
| hsh->bh_root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2; |
| if (!htab->has_22bit_branch) |
| insn = hppa_rebuild_insn ((int) BL_RP, val, 17); |
| else |
| insn = hppa_rebuild_insn ((int) BL22_RP, val, 22); |
| bfd_put_32 (stub_bfd, insn, loc); |
| |
| bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4); |
| bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8); |
| bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12); |
| bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); |
| bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20); |
| |
| /* Point the function symbol at the stub. */ |
| hsh->hh->eh.root.u.def.section = stub_sec; |
| hsh->hh->eh.root.u.def.value = stub_sec->size; |
| |
| size = EXPORT_STUB_SIZE; |
| break; |
| |
| default: |
| BFD_FAIL (); |
| return false; |
| } |
| |
| stub_sec->size += size; |
| return true; |
| } |
| |
| #undef LDIL_R1 |
| #undef BE_SR4_R1 |
| #undef BL_R1 |
| #undef ADDIL_R1 |
| #undef DEPI_R1 |
| #undef LDW_R1_R21 |
| #undef LDW_R1_DLT |
| #undef LDW_R1_R19 |
| #undef ADDIL_R19 |
| #undef LDW_R1_DP |
| #undef LDSID_R21_R1 |
| #undef MTSP_R1 |
| #undef BE_SR0_R21 |
| #undef STW_RP |
| #undef BV_R0_R21 |
| #undef BL_RP |
| #undef NOP |
| #undef LDW_RP |
| #undef LDSID_RP_R1 |
| #undef BE_SR0_RP |
| |
| /* As above, but don't actually build the stub. Just bump offset so |
| we know stub section sizes. */ |
| |
| static bool |
| hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg) |
| { |
| struct elf32_hppa_stub_hash_entry *hsh; |
| struct elf32_hppa_link_hash_table *htab; |
| int size; |
| |
| /* Massage our args to the form they really have. */ |
| hsh = hppa_stub_hash_entry (bh); |
| htab = in_arg; |
| |
| if (hsh->stub_type == hppa_stub_long_branch) |
| size = LONG_BRANCH_STUB_SIZE; |
| else if (hsh->stub_type == hppa_stub_long_branch_shared) |
| size = LONG_BRANCH_SHARED_STUB_SIZE; |
| else if (hsh->stub_type == hppa_stub_export) |
| size = EXPORT_STUB_SIZE; |
| else /* hppa_stub_import or hppa_stub_import_shared. */ |
| { |
| if (htab->multi_subspace) |
| size = IMPORT_SHARED_STUB_SIZE; |
| else |
| size = IMPORT_STUB_SIZE; |
| } |
| |
| hsh->stub_sec->size += size; |
| return true; |
| } |
| |
| /* Return nonzero if ABFD represents an HPPA ELF32 file. |
| Additionally we set the default architecture and machine. */ |
| |
| static bool |
| elf32_hppa_object_p (bfd *abfd) |
| { |
| Elf_Internal_Ehdr * i_ehdrp; |
| unsigned int flags; |
| |
| i_ehdrp = elf_elfheader (abfd); |
| if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) |
| { |
| /* GCC on hppa-linux produces binaries with OSABI=GNU, |
| but the kernel produces corefiles with OSABI=SysV. */ |
| if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU && |
| i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ |
| return false; |
| } |
| else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0) |
| { |
| /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD, |
| but the kernel produces corefiles with OSABI=SysV. */ |
| if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD && |
| i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ |
| return false; |
| } |
| else |
| { |
| if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) |
| return false; |
| } |
| |
| flags = i_ehdrp->e_flags; |
| switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) |
| { |
| case EFA_PARISC_1_0: |
| return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); |
| case EFA_PARISC_1_1: |
| return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); |
| case EFA_PARISC_2_0: |
| return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); |
| case EFA_PARISC_2_0 | EF_PARISC_WIDE: |
| return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); |
| } |
| return true; |
| } |
| |
| /* Create the .plt and .got sections, and set up our hash table |
| short-cuts to various dynamic sections. */ |
| |
| static bool |
| elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
| { |
| struct elf32_hppa_link_hash_table *htab; |
| struct elf_link_hash_entry *eh; |
| |
| /* Don't try to create the .plt and .got twice. */ |
| htab = hppa_link_hash_table (info); |
| if (htab == NULL) |
| return false; |
| if (htab->etab.splt != NULL) |
| return true; |
| |
| /* Call the generic code to do most of the work. */ |
| if (! _bfd_elf_create_dynamic_sections (abfd, info)) |
| return false; |
| |
| /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main |
| application, because __canonicalize_funcptr_for_compare needs it. */ |
| eh = elf_hash_table (info)->hgot; |
| eh->forced_local = 0; |
| eh->other = STV_DEFAULT; |
| return bfd_elf_link_record_dynamic_symbol (info, eh); |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| static void |
| elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *eh_dir, |
| struct elf_link_hash_entry *eh_ind) |
| { |
| struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind; |
| |
| hh_dir = hppa_elf_hash_entry (eh_dir); |
| hh_ind = hppa_elf_hash_entry (eh_ind); |
| |
| if (eh_ind->root.type == bfd_link_hash_indirect) |
| { |
| hh_dir->plabel |= hh_ind->plabel; |
| hh_dir->tls_type |= hh_ind->tls_type; |
| hh_ind->tls_type = GOT_UNKNOWN; |
| } |
| |
| _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind); |
| } |
| |
| static int |
| elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| int r_type, int is_local ATTRIBUTE_UNUSED) |
| { |
| /* For now we don't support linker optimizations. */ |
| return r_type; |
| } |
| |
| /* Return a pointer to the local GOT, PLT and TLS reference counts |
| for ABFD. Returns NULL if the storage allocation fails. */ |
| |
| static bfd_signed_vma * |
| hppa32_elf_local_refcounts (bfd *abfd) |
| { |
| Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| bfd_signed_vma *local_refcounts; |
| |
| local_refcounts = elf_local_got_refcounts (abfd); |
| if (local_refcounts == NULL) |
| { |
| bfd_size_type size; |
| |
| /* Allocate space for local GOT and PLT reference |
| counts. Done this way to save polluting elf_obj_tdata |
| with another target specific pointer. */ |
| size = symtab_hdr->sh_info; |
| size *= 2 * sizeof (bfd_signed_vma); |
| /* Add in space to store the local GOT TLS types. */ |
| size += symtab_hdr->sh_info; |
| local_refcounts = bfd_zalloc (abfd, size); |
| if (local_refcounts == NULL) |
| return NULL; |
| elf_local_got_refcounts (abfd) = local_refcounts; |
| memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN, |
| symtab_hdr->sh_info); |
| } |
| return local_refcounts; |
| } |
| |
| |
| /* Look through the relocs for a section during the first phase, and |
| calculate needed space in the global offset table, procedure linkage |
| table, and dynamic reloc sections. At this point we haven't |
| necessarily read all the input files. */ |
| |
| static bool |
| elf32_hppa_check_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **eh_syms; |
| const Elf_Internal_Rela *rela; |
| const Elf_Internal_Rela *rela_end; |
| struct elf32_hppa_link_hash_table *htab; |
| asection *sreloc; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| htab = hppa_link_hash_table (info); |
| if (htab == NULL) |
| return false; |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| eh_syms = elf_sym_hashes (abfd); |
| sreloc = NULL; |
| |
| rela_end = relocs + sec->reloc_count; |
| for (rela = relocs; rela < rela_end; rela++) |
| { |
| enum { |
| NEED_GOT = 1, |
| NEED_PLT = 2, |
| NEED_DYNREL = 4, |
| PLT_PLABEL = 8 |
| }; |
| |
| unsigned int r_symndx, r_type; |
| struct elf32_hppa_link_hash_entry *hh; |
| int need_entry = 0; |
| |
| r_symndx = ELF32_R_SYM (rela->r_info); |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| hh = NULL; |
| else |
| { |
| hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]); |
| while (hh->eh.root.type == bfd_link_hash_indirect |
| || hh->eh.root.type == bfd_link_hash_warning) |
| hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); |
| } |
| |
| r_type = ELF32_R_TYPE (rela->r_info); |
| r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL); |
| |
| switch (r_type) |
| { |
| case R_PARISC_DLTIND14F: |
| case R_PARISC_DLTIND14R: |
| case R_PARISC_DLTIND21L: |
| /* This symbol requires a global offset table entry. */ |
| need_entry = NEED_GOT; |
| break; |
| |
| case R_PARISC_PLABEL14R: /* "Official" procedure labels. */ |
| case R_PARISC_PLABEL21L: |
| case R_PARISC_PLABEL32: |
| /* If the addend is non-zero, we break badly. */ |
| if (rela->r_addend != 0) |
| abort (); |
| |
| /* If we are creating a shared library, then we need to |
| create a PLT entry for all PLABELs, because PLABELs with |
| local symbols may be passed via a pointer to another |
| object. Additionally, output a dynamic relocation |
| pointing to the PLT entry. |
| |
| For executables, the original 32-bit ABI allowed two |
| different styles of PLABELs (function pointers): For |
| global functions, the PLABEL word points into the .plt |
| two bytes past a (function address, gp) pair, and for |
| local functions the PLABEL points directly at the |
| function. The magic +2 for the first type allows us to |
| differentiate between the two. As you can imagine, this |
| is a real pain when it comes to generating code to call |
| functions indirectly or to compare function pointers. |
| We avoid the mess by always pointing a PLABEL into the |
| .plt, even for local functions. */ |
| need_entry = PLT_PLABEL | NEED_PLT; |
| if (bfd_link_pic (info)) |
| need_entry |= NEED_DYNREL; |
| break; |
| |
| case R_PARISC_PCREL12F: |
| htab->has_12bit_branch = 1; |
| goto branch_common; |
| |
| case R_PARISC_PCREL17C: |
| case R_PARISC_PCREL17F: |
| htab->has_17bit_branch = 1; |
| goto branch_common; |
| |
| case R_PARISC_PCREL22F: |
| htab->has_22bit_branch = 1; |
| branch_common: |
| /* Function calls might need to go through the .plt, and |
| might require long branch stubs. */ |
| if (hh == NULL) |
| { |
| /* We know local syms won't need a .plt entry, and if |
| they need a long branch stub we can't guarantee that |
| we can reach the stub. So just flag an error later |
| if we're doing a shared link and find we need a long |
| branch stub. */ |
| continue; |
| } |
| else |
| { |
| /* Global symbols will need a .plt entry if they remain |
| global, and in most cases won't need a long branch |
| stub. Unfortunately, we have to cater for the case |
| where a symbol is forced local by versioning, or due |
| to symbolic linking, and we lose the .plt entry. */ |
| need_entry = NEED_PLT; |
| if (hh->eh.type == STT_PARISC_MILLI) |
| need_entry = 0; |
| } |
| break; |
| |
| case R_PARISC_SEGBASE: /* Used to set segment base. */ |
| case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */ |
| case R_PARISC_PCREL14F: /* PC relative load/store. */ |
| case R_PARISC_PCREL14R: |
| case R_PARISC_PCREL17R: /* External branches. */ |
| case R_PARISC_PCREL21L: /* As above, and for load/store too. */ |
| case R_PARISC_PCREL32: |
| /* We don't need to propagate the relocation if linking a |
| shared object since these are section relative. */ |
| continue; |
| |
| case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */ |
| case R_PARISC_DPREL14R: |
| case R_PARISC_DPREL21L: |
| if (bfd_link_pic (info)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"), |
| abfd, |
| elf_hppa_howto_table[r_type].name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| /* Fall through. */ |
| |
| case R_PARISC_DIR17F: /* Used for external branches. */ |
| case R_PARISC_DIR17R: |
| case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */ |
| case R_PARISC_DIR14R: |
| case R_PARISC_DIR21L: /* As above, and for ext branches too. */ |
| case R_PARISC_DIR32: /* .word relocs. */ |
| /* We may want to output a dynamic relocation later. */ |
| need_entry = NEED_DYNREL; |
| break; |
| |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_PARISC_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset)) |
| return false; |
| continue; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_PARISC_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend)) |
| return false; |
| continue; |
| |
| case R_PARISC_TLS_GD21L: |
| case R_PARISC_TLS_GD14R: |
| case R_PARISC_TLS_LDM21L: |
| case R_PARISC_TLS_LDM14R: |
| need_entry = NEED_GOT; |
| break; |
| |
| case R_PARISC_TLS_IE21L: |
| case R_PARISC_TLS_IE14R: |
| if (bfd_link_dll (info)) |
| info->flags |= DF_STATIC_TLS; |
| need_entry = NEED_GOT; |
| break; |
| |
| default: |
| continue; |
| } |
| |
| /* Now carry out our orders. */ |
| if (need_entry & NEED_GOT) |
| { |
| int tls_type = GOT_NORMAL; |
| |
| switch (r_type) |
| { |
| default: |
| break; |
| case R_PARISC_TLS_GD21L: |
| case R_PARISC_TLS_GD14R: |
| tls_type = GOT_TLS_GD; |
| break; |
| case R_PARISC_TLS_LDM21L: |
| case R_PARISC_TLS_LDM14R: |
| tls_type = GOT_TLS_LDM; |
| break; |
| case R_PARISC_TLS_IE21L: |
| case R_PARISC_TLS_IE14R: |
| tls_type = GOT_TLS_IE; |
| break; |
| } |
| |
| /* Allocate space for a GOT entry, as well as a dynamic |
| relocation for this entry. */ |
| if (htab->etab.sgot == NULL) |
| { |
| if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info)) |
| return false; |
| } |
| |
| if (hh != NULL) |
| { |
| if (tls_type == GOT_TLS_LDM) |
| htab->tls_ldm_got.refcount += 1; |
| else |
| hh->eh.got.refcount += 1; |
| hh->tls_type |= tls_type; |
| } |
| else |
| { |
| bfd_signed_vma *local_got_refcounts; |
| |
| /* This is a global offset table entry for a local symbol. */ |
| local_got_refcounts = hppa32_elf_local_refcounts (abfd); |
| if (local_got_refcounts == NULL) |
| return false; |
| if (tls_type == GOT_TLS_LDM) |
| htab->tls_ldm_got.refcount += 1; |
| else |
| local_got_refcounts[r_symndx] += 1; |
| |
| hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type; |
| } |
| } |
| |
| if (need_entry & NEED_PLT) |
| { |
| /* If we are creating a shared library, and this is a reloc |
| against a weak symbol or a global symbol in a dynamic |
| object, then we will be creating an import stub and a |
| .plt entry for the symbol. Similarly, on a normal link |
| to symbols defined in a dynamic object we'll need the |
| import stub and a .plt entry. We don't know yet whether |
| the symbol is defined or not, so make an entry anyway and |
| clean up later in adjust_dynamic_symbol. */ |
| if ((sec->flags & SEC_ALLOC) != 0) |
| { |
| if (hh != NULL) |
| { |
| hh->eh.needs_plt = 1; |
| hh->eh.plt.refcount += 1; |
| |
| /* If this .plt entry is for a plabel, mark it so |
| that adjust_dynamic_symbol will keep the entry |
| even if it appears to be local. */ |
| if (need_entry & PLT_PLABEL) |
| hh->plabel = 1; |
| } |
| else if (need_entry & PLT_PLABEL) |
| { |
| bfd_signed_vma *local_got_refcounts; |
| bfd_signed_vma *local_plt_refcounts; |
| |
| local_got_refcounts = hppa32_elf_local_refcounts (abfd); |
| if (local_got_refcounts == NULL) |
| return false; |
| local_plt_refcounts = (local_got_refcounts |
| + symtab_hdr->sh_info); |
| local_plt_refcounts[r_symndx] += 1; |
| } |
| } |
| } |
| |
| if ((need_entry & NEED_DYNREL) != 0 |
| && (sec->flags & SEC_ALLOC) != 0) |
| { |
| /* Flag this symbol as having a non-got, non-plt reference |
| so that we generate copy relocs if it turns out to be |
| dynamic. */ |
| if (hh != NULL) |
| hh->eh.non_got_ref = 1; |
| |
| /* If we are creating a shared library then we need to copy |
| the reloc into the shared library. However, if we are |
| linking with -Bsymbolic, we need only copy absolute |
| relocs or relocs against symbols that are not defined in |
| an object we are including in the link. PC- or DP- or |
| DLT-relative relocs against any local sym or global sym |
| with DEF_REGULAR set, can be discarded. At this point we |
| have not seen all the input files, so it is possible that |
| DEF_REGULAR is not set now but will be set later (it is |
| never cleared). We account for that possibility below by |
| storing information in the dyn_relocs field of the |
| hash table entry. |
| |
| A similar situation to the -Bsymbolic case occurs when |
| creating shared libraries and symbol visibility changes |
| render the symbol local. |
| |
| As it turns out, all the relocs we will be creating here |
| are absolute, so we cannot remove them on -Bsymbolic |
| links or visibility changes anyway. A STUB_REL reloc |
| is absolute too, as in that case it is the reloc in the |
| stub we will be creating, rather than copying the PCREL |
| reloc in the branch. |
| |
| If on the other hand, we are creating an executable, we |
| may need to keep relocations for symbols satisfied by a |
| dynamic library if we manage to avoid copy relocs for the |
| symbol. */ |
| if ((bfd_link_pic (info) |
| && (IS_ABSOLUTE_RELOC (r_type) |
| || (hh != NULL |
| && (!SYMBOLIC_BIND (info, &hh->eh) |
| || hh->eh.root.type == bfd_link_hash_defweak |
| || !hh->eh.def_regular)))) |
| || (ELIMINATE_COPY_RELOCS |
| && !bfd_link_pic (info) |
| && hh != NULL |
| && (hh->eh.root.type == bfd_link_hash_defweak |
| || !hh->eh.def_regular))) |
| { |
| struct elf_dyn_relocs *hdh_p; |
| struct elf_dyn_relocs **hdh_head; |
| |
| /* Create a reloc section in dynobj and make room for |
| this reloc. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ true); |
| |
| if (sreloc == NULL) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (hh != NULL) |
| { |
| hdh_head = &hh->eh.dyn_relocs; |
| } |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| asection *sr; |
| void *vpp; |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->etab.sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return false; |
| |
| sr = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (sr == NULL) |
| sr = sec; |
| |
| vpp = &elf_section_data (sr)->local_dynrel; |
| hdh_head = (struct elf_dyn_relocs **) vpp; |
| } |
| |
| hdh_p = *hdh_head; |
| if (hdh_p == NULL || hdh_p->sec != sec) |
| { |
| hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p); |
| if (hdh_p == NULL) |
| return false; |
| hdh_p->next = *hdh_head; |
| *hdh_head = hdh_p; |
| hdh_p->sec = sec; |
| hdh_p->count = 0; |
| #if RELATIVE_DYNRELOCS |
| hdh_p->pc_count = 0; |
| #endif |
| } |
| |
| hdh_p->count += 1; |
| #if RELATIVE_DYNRELOCS |
| if (!IS_ABSOLUTE_RELOC (rtype)) |
| hdh_p->pc_count += 1; |
| #endif |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Return the section that should be marked against garbage collection |
| for a given relocation. */ |
| |
| static asection * |
| elf32_hppa_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rela, |
| struct elf_link_hash_entry *hh, |
| Elf_Internal_Sym *sym) |
| { |
| if (hh != NULL) |
| switch ((unsigned int) ELF32_R_TYPE (rela->r_info)) |
| { |
| case R_PARISC_GNU_VTINHERIT: |
| case R_PARISC_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym); |
| } |
| |
| /* Support for core dump NOTE sections. */ |
| |
| static bool |
| elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| int offset; |
| size_t size; |
| |
| switch (note->descsz) |
| { |
| default: |
| return false; |
| |
| case 396: /* Linux/hppa */ |
| /* pr_cursig */ |
| elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
| |
| /* pr_reg */ |
| offset = 72; |
| size = 320; |
| |
| break; |
| } |
| |
| /* Make a ".reg/999" section. */ |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
| size, note->descpos + offset); |
| } |
| |
| static bool |
| elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| switch (note->descsz) |
| { |
| default: |
| return false; |
| |
| case 124: /* Linux/hppa elf_prpsinfo. */ |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); |
| } |
| |
| /* Note that for some reason, a spurious space is tacked |
| onto the end of the args in some (at least one anyway) |
| implementations, so strip it off if it exists. */ |
| { |
| char *command = elf_tdata (abfd)->core->command; |
| int n = strlen (command); |
| |
| if (0 < n && command[n - 1] == ' ') |
| command[n - 1] = '\0'; |
| } |
| |
| return true; |
| } |
| |
| /* Our own version of hide_symbol, so that we can keep plt entries for |
| plabels. */ |
| |
| static void |
| elf32_hppa_hide_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *eh, |
| bool force_local) |
| { |
| if (force_local) |
| { |
| eh->forced_local = 1; |
| if (eh->dynindx != -1) |
| { |
| eh->dynindx = -1; |
| _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, |
| eh->dynstr_index); |
| } |
| |
| /* PR 16082: Remove version information from hidden symbol. */ |
| eh->verinfo.verdef = NULL; |
| eh->verinfo.vertree = NULL; |
| } |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (! hppa_elf_hash_entry (eh)->plabel |
| && eh->type != STT_GNU_IFUNC) |
| { |
| eh->needs_plt = 0; |
| eh->plt = elf_hash_table (info)->init_plt_offset; |
| } |
| } |
| |
| /* Return true if we have dynamic relocs against H or any of its weak |
| aliases, that apply to read-only sections. Cannot be used after |
| size_dynamic_sections. */ |
| |
| static bool |
| alias_readonly_dynrelocs (struct elf_link_hash_entry *eh) |
| { |
| struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
| do |
| { |
| if (_bfd_elf_readonly_dynrelocs (&hh->eh)) |
| return true; |
| hh = hppa_elf_hash_entry (hh->eh.u.alias); |
| } while (hh != NULL && &hh->eh != eh); |
| |
| return false; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bool |
| elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *eh) |
| { |
| struct elf32_hppa_link_hash_table *htab; |
| asection *sec, *srel; |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later. */ |
| if (eh->type == STT_FUNC |
| || eh->needs_plt) |
| { |
| bool local = (SYMBOL_CALLS_LOCAL (info, eh) |
| || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)); |
| /* Discard dyn_relocs when non-pic if we've decided that a |
| function symbol is local. */ |
| if (!bfd_link_pic (info) && local) |
| eh->dyn_relocs = NULL; |
| |
| /* If the symbol is used by a plabel, we must allocate a PLT slot. |
| The refcounts are not reliable when it has been hidden since |
| hide_symbol can be called before the plabel flag is set. */ |
| if (hppa_elf_hash_entry (eh)->plabel) |
| eh->plt.refcount = 1; |
| |
| /* Note that unlike some other backends, the refcount is not |
| incremented for a non-call (and non-plabel) function reference. */ |
| else if (eh->plt.refcount <= 0 |
| || local) |
| { |
| /* The .plt entry is not needed when: |
| a) Garbage collection has removed all references to the |
| symbol, or |
| b) We know for certain the symbol is defined in this |
| object, and it's not a weak definition, nor is the symbol |
| used by a plabel relocation. Either this object is the |
| application or we are doing a shared symbolic link. */ |
| eh->plt.offset = (bfd_vma) -1; |
| eh->needs_plt = 0; |
| } |
| |
| /* Unlike other targets, elf32-hppa.c does not define a function |
| symbol in a non-pic executable on PLT stub code, so we don't |
| have a local definition in that case. ie. dyn_relocs can't |
| be discarded. */ |
| |
| /* Function symbols can't have copy relocs. */ |
| return true; |
| } |
| else |
| eh->plt.offset = (bfd_vma) -1; |
| |
| htab = hppa_link_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (eh->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (eh); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| eh->root.u.def.section = def->root.u.def.section; |
| eh->root.u.def.value = def->root.u.def.value; |
| if (def->root.u.def.section == htab->etab.sdynbss |
| || def->root.u.def.section == htab->etab.sdynrelro) |
| eh->dyn_relocs = NULL; |
| return true; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (bfd_link_pic (info)) |
| return true; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!eh->non_got_ref) |
| return true; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc) |
| return true; |
| |
| /* If we don't find any dynamic relocs in read-only sections, then |
| we'll be keeping the dynamic relocs and avoiding the copy reloc. */ |
| if (ELIMINATE_COPY_RELOCS |
| && !alias_readonly_dynrelocs (eh)) |
| return true; |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| if ((eh->root.u.def.section->flags & SEC_READONLY) != 0) |
| { |
| sec = htab->etab.sdynrelro; |
| srel = htab->etab.sreldynrelro; |
| } |
| else |
| { |
| sec = htab->etab.sdynbss; |
| srel = htab->etab.srelbss; |
| } |
| if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0) |
| { |
| /* We must generate a COPY reloc to tell the dynamic linker to |
| copy the initial value out of the dynamic object and into the |
| runtime process image. */ |
| srel->size += sizeof (Elf32_External_Rela); |
| eh->needs_copy = 1; |
| } |
| |
| /* We no longer want dyn_relocs. */ |
| eh->dyn_relocs = NULL; |
| return _bfd_elf_adjust_dynamic_copy (info, eh, sec); |
| } |
| |
| /* If EH is undefined, make it dynamic if that makes sense. */ |
| |
| static bool |
| ensure_undef_dynamic (struct bfd_link_info *info, |
| struct elf_link_hash_entry *eh) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| if (htab->dynamic_sections_created |
| && (eh->root.type == bfd_link_hash_undefweak |
| || eh->root.type == bfd_link_hash_undefined) |
| && eh->dynindx == -1 |
| && !eh->forced_local |
| && eh->type != STT_PARISC_MILLI |
| && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh) |
| && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT) |
| return bfd_elf_link_record_dynamic_symbol (info, eh); |
| return true; |
| } |
| |
| /* Allocate space in the .plt for entries that won't have relocations. |
| ie. plabel entries. */ |
| |
| static bool |
| allocate_plt_static (struct elf_link_hash_entry *eh, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct elf32_hppa_link_hash_table *htab; |
| struct elf32_hppa_link_hash_entry *hh; |
| asection *sec; |
| |
| if (eh->root.type == bfd_link_hash_indirect) |
| return true; |
| |
| info = (struct bfd_link_info *) inf; |
| hh = hppa_elf_hash_entry (eh); |
| htab = hppa_link_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| if (htab->etab.dynamic_sections_created |
| && eh->plt.refcount > 0) |
| { |
| if (!ensure_undef_dynamic (info, eh)) |
| return false; |
| |
| if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh)) |
| { |
| /* Allocate these later. From this point on, h->plabel |
| means that the plt entry is only used by a plabel. |
| We'll be using a normal plt entry for this symbol, so |
| clear the plabel indicator. */ |
| |
| hh->plabel = 0; |
| } |
| else if (hh->plabel) |
| { |
| /* Make an entry in the .plt section for plabel references |
| that won't have a .plt entry for other reasons. */ |
| sec = htab->etab.splt; |
| eh->plt.offset = sec->size; |
| sec->size += PLT_ENTRY_SIZE; |
| if (bfd_link_pic (info)) |
| htab->etab.srelplt->size += sizeof (Elf32_External_Rela); |
| } |
| else |
| { |
| /* No .plt entry needed. */ |
| eh->plt.offset = (bfd_vma) -1; |
| eh->needs_plt = 0; |
| } |
| } |
| else |
| { |
| eh->plt.offset = (bfd_vma) -1; |
| eh->needs_plt = 0; |
| } |
| |
| return true; |
| } |
| |
| /* Calculate size of GOT entries for symbol given its TLS_TYPE. */ |
| |
| static inline unsigned int |
| got_entries_needed (int tls_type) |
| { |
| unsigned int need = 0; |
| |
| if ((tls_type & GOT_NORMAL) != 0) |
| need += GOT_ENTRY_SIZE; |
| if ((tls_type & GOT_TLS_GD) != 0) |
| need += GOT_ENTRY_SIZE * 2; |
| if ((tls_type & GOT_TLS_IE) != 0) |
| need += GOT_ENTRY_SIZE; |
| return need; |
| } |
| |
| /* Calculate size of relocs needed for symbol given its TLS_TYPE and |
| NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be |
| calculated at link time. DTPREL_KNOWN says the same for a DTPREL |
| offset. */ |
| |
| static inline unsigned int |
| got_relocs_needed (int tls_type, unsigned int need, |
| bool dtprel_known, bool tprel_known) |
| { |
| /* All the entries we allocated need relocs. |
| Except for GD and IE with local symbols. */ |
| if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known) |
| need -= GOT_ENTRY_SIZE; |
| if ((tls_type & GOT_TLS_IE) != 0 && tprel_known) |
| need -= GOT_ENTRY_SIZE; |
| return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| global syms. */ |
| |
| static bool |
| allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct elf32_hppa_link_hash_table *htab; |
| asection *sec; |
| struct elf32_hppa_link_hash_entry *hh; |
| struct elf_dyn_relocs *hdh_p; |
| |
| if (eh->root.type == bfd_link_hash_indirect) |
| return true; |
| |
| info = inf; |
| htab = hppa_link_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| hh = hppa_elf_hash_entry (eh); |
| |
| if (htab->etab.dynamic_sections_created |
| && eh->plt.offset != (bfd_vma) -1 |
| && !hh->plabel |
| && eh->plt.refcount > 0) |
| { |
| /* Make an entry in the .plt section. */ |
| sec = htab->etab.splt; |
| eh->plt.offset = sec->size; |
| sec->size += PLT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .rela.plt section. */ |
| htab->etab.srelplt->size += sizeof (Elf32_External_Rela); |
| htab->need_plt_stub = 1; |
| } |
| |
| if (eh->got.refcount > 0) |
| { |
| unsigned int need; |
| |
| if (!ensure_undef_dynamic (info, eh)) |
| return false; |
| |
| sec = htab->etab.sgot; |
| eh->got.offset = sec->size; |
| need = got_entries_needed (hh->tls_type); |
| sec->size += need; |
| if (htab->etab.dynamic_sections_created |
| && (bfd_link_dll (info) |
| || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0) |
| || (eh->dynindx != -1 |
| && !SYMBOL_REFERENCES_LOCAL (info, eh))) |
| && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) |
| { |
| bool local = SYMBOL_REFERENCES_LOCAL (info, eh); |
| htab->etab.srelgot->size |
| += got_relocs_needed (hh->tls_type, need, local, |
| local && bfd_link_executable (info)); |
| } |
| } |
| else |
| eh->got.offset = (bfd_vma) -1; |
| |
| /* If no dynamic sections we can't have dynamic relocs. */ |
| if (!htab->etab.dynamic_sections_created) |
| eh->dyn_relocs = NULL; |
| |
| /* Discard relocs on undefined syms with non-default visibility. */ |
| else if ((eh->root.type == bfd_link_hash_undefined |
| && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT) |
| || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) |
| eh->dyn_relocs = NULL; |
| |
| if (eh->dyn_relocs == NULL) |
| return true; |
| |
| /* If this is a -Bsymbolic shared link, then we need to discard all |
| space allocated for dynamic pc-relative relocs against symbols |
| defined in a regular object. For the normal shared case, discard |
| space for relocs that have become local due to symbol visibility |
| changes. */ |
| if (bfd_link_pic (info)) |
| { |
| #if RELATIVE_DYNRELOCS |
| if (SYMBOL_CALLS_LOCAL (info, eh)) |
| { |
| struct elf_dyn_relocs **hdh_pp; |
| |
| for (hdh_pp = &eh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) |
| { |
| hdh_p->count -= hdh_p->pc_count; |
| hdh_p->pc_count = 0; |
| if (hdh_p->count == 0) |
| *hdh_pp = hdh_p->next; |
| else |
| hdh_pp = &hdh_p->next; |
| } |
| } |
| #endif |
| |
| if (eh->dyn_relocs != NULL) |
| { |
| if (!ensure_undef_dynamic (info, eh)) |
| return false; |
| } |
| } |
| else if (ELIMINATE_COPY_RELOCS) |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. */ |
| |
| if (eh->dynamic_adjusted |
| && !eh->def_regular |
| && !ELF_COMMON_DEF_P (eh)) |
| { |
| if (!ensure_undef_dynamic (info, eh)) |
| return false; |
| |
| if (eh->dynindx == -1) |
| eh->dyn_relocs = NULL; |
| } |
| else |
| eh->dyn_relocs = NULL; |
| } |
| |
| /* Finally, allocate space. */ |
| for (hdh_p = eh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next) |
| { |
| asection *sreloc = elf_section_data (hdh_p->sec)->sreloc; |
| sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela); |
| } |
| |
| return true; |
| } |
| |
| /* This function is called via elf_link_hash_traverse to force |
| millicode symbols local so they do not end up as globals in the |
| dynamic symbol table. We ought to be able to do this in |
| adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called |
| for all dynamic symbols. Arguably, this is a bug in |
| elf_adjust_dynamic_symbol. */ |
| |
| static bool |
| clobber_millicode_symbols (struct elf_link_hash_entry *eh, |
| void *info) |
| { |
| if (eh->type == STT_PARISC_MILLI |
| && !eh->forced_local) |
| elf32_hppa_hide_symbol ((struct bfd_link_info *) info, eh, true); |
| return true; |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| static bool |
| elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info) |
| { |
| struct elf32_hppa_link_hash_table *htab; |
| bfd *dynobj; |
| bfd *ibfd; |
| asection *sec; |
| bool relocs; |
| |
| htab = hppa_link_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| dynobj = htab->etab.dynobj; |
| if (dynobj == NULL) |
| abort (); |
| |
| if (htab->etab.dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| sec = bfd_get_linker_section (dynobj, ".interp"); |
| if (sec == NULL) |
| abort (); |
| sec->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| } |
| |
| /* Force millicode symbols local. */ |
| elf_link_hash_traverse (&htab->etab, |
| clobber_millicode_symbols, |
| info); |
| } |
| |
| /* Set up .got and .plt offsets for local syms, and space for local |
| dynamic relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| bfd_signed_vma *local_got; |
| bfd_signed_vma *end_local_got; |
| bfd_signed_vma *local_plt; |
| bfd_signed_vma *end_local_plt; |
| bfd_size_type locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| char *local_tls_type; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
| continue; |
| |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| { |
| struct elf_dyn_relocs *hdh_p; |
| |
| for (hdh_p = ((struct elf_dyn_relocs *) |
| elf_section_data (sec)->local_dynrel); |
| hdh_p != NULL; |
| hdh_p = hdh_p->next) |
| { |
| if (!bfd_is_abs_section (hdh_p->sec) |
| && bfd_is_abs_section (hdh_p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (hdh_p->count != 0) |
| { |
| srel = elf_section_data (hdh_p->sec)->sreloc; |
| srel->size += hdh_p->count * sizeof (Elf32_External_Rela); |
| if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) |
| info->flags |= DF_TEXTREL; |
| } |
| } |
| } |
| |
| local_got = elf_local_got_refcounts (ibfd); |
| if (!local_got) |
| continue; |
| |
| symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; |
| locsymcount = symtab_hdr->sh_info; |
| end_local_got = local_got + locsymcount; |
| local_tls_type = hppa_elf_local_got_tls_type (ibfd); |
| sec = htab->etab.sgot; |
| srel = htab->etab.srelgot; |
| for (; local_got < end_local_got; ++local_got) |
| { |
| if (*local_got > 0) |
| { |
| unsigned int need; |
| |
| *local_got = sec->size; |
| need = got_entries_needed (*local_tls_type); |
| sec->size += need; |
| if (bfd_link_dll (info) |
| || (bfd_link_pic (info) |
| && (*local_tls_type & GOT_NORMAL) != 0)) |
| htab->etab.srelgot->size |
| += got_relocs_needed (*local_tls_type, need, true, |
| bfd_link_executable (info)); |
| } |
| else |
| *local_got = (bfd_vma) -1; |
| |
| ++local_tls_type; |
| } |
| |
| local_plt = end_local_got; |
| end_local_plt = local_plt + locsymcount; |
| if (! htab->etab.dynamic_sections_created) |
| { |
| /* Won't be used, but be safe. */ |
| for (; local_plt < end_local_plt; ++local_plt) |
| *local_plt = (bfd_vma) -1; |
| } |
| else |
| { |
| sec = htab->etab.splt; |
| srel = htab->etab.srelplt; |
| for (; local_plt < end_local_plt; ++local_plt) |
| { |
| if (*local_plt > 0) |
| { |
| *local_plt = sec->size; |
| sec->size += PLT_ENTRY_SIZE; |
| if (bfd_link_pic (info)) |
| srel->size += sizeof (Elf32_External_Rela); |
| } |
| else |
| *local_plt = (bfd_vma) -1; |
| } |
| } |
| } |
| |
| if (htab->tls_ldm_got.refcount > 0) |
| { |
| /* Allocate 2 got entries and 1 dynamic reloc for |
| R_PARISC_TLS_DTPMOD32 relocs. */ |
| htab->tls_ldm_got.offset = htab->etab.sgot->size; |
| htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2); |
| htab->etab.srelgot->size += sizeof (Elf32_External_Rela); |
| } |
| else |
| htab->tls_ldm_got.offset = -1; |
| |
| /* Do all the .plt entries without relocs first. The dynamic linker |
| uses the last .plt reloc to find the end of the .plt (and hence |
| the start of the .got) for lazy linking. */ |
| elf_link_hash_traverse (&htab->etab, allocate_plt_static, info); |
| |
| /* Allocate global sym .plt and .got entries, and space for global |
| sym dynamic relocs. */ |
| elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info); |
| |
| /* The check_relocs and adjust_dynamic_symbol entry points have |
| determined the sizes of the various dynamic sections. Allocate |
| memory for them. */ |
| relocs = false; |
| for (sec = dynobj->sections; sec != NULL; sec = sec->next) |
| { |
| if ((sec->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| if (sec == htab->etab.splt) |
| { |
| if (htab->need_plt_stub) |
| { |
| /* Make space for the plt stub at the end of the .plt |
| section. We want this stub right at the end, up |
| against the .got section. */ |
| int gotalign = bfd_section_alignment (htab->etab.sgot); |
| int pltalign = bfd_section_alignment (sec); |
| int align = gotalign > 3 ? gotalign : 3; |
| bfd_size_type mask; |
| |
| if (align > pltalign) |
| bfd_set_section_alignment (sec, align); |
| mask = ((bfd_size_type) 1 << gotalign) - 1; |
| sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask; |
| } |
| } |
| else if (sec == htab->etab.sgot |
| || sec == htab->etab.sdynbss |
| || sec == htab->etab.sdynrelro) |
| ; |
| else if (startswith (bfd_section_name (sec), ".rela")) |
| { |
| if (sec->size != 0) |
| { |
| /* Remember whether there are any reloc sections other |
| than .rela.plt. */ |
| if (sec != htab->etab.srelplt) |
| relocs = true; |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| sec->reloc_count = 0; |
| } |
| } |
| else |
| { |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| } |
| |
| if (sec->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rela.bss and |
| .rela.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| sec->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((sec->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. Zero it, because |
| we may not fill in all the reloc sections. */ |
| sec->contents = bfd_zalloc (dynobj, sec->size); |
| if (sec->contents == NULL) |
| return false; |
| } |
| |
| return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs); |
| } |
| |
| /* External entry points for sizing and building linker stubs. */ |
| |
| /* Set up various things so that we can make a list of input sections |
| for each output section included in the link. Returns -1 on error, |
| 0 when no stubs will be needed, and 1 on success. */ |
| |
| int |
| elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| bfd *input_bfd; |
| unsigned int bfd_count; |
| unsigned int top_id, top_index; |
| asection *section; |
| asection **input_list, **list; |
| size_t amt; |
| struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
| |
| if (htab == NULL) |
| return -1; |
| |
| /* Count the number of input BFDs and find the top input section id. */ |
| for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next) |
| { |
| bfd_count += 1; |
| for (section = input_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| if (top_id < section->id) |
| top_id = section->id; |
| } |
| } |
| htab->bfd_count = bfd_count; |
| |
| amt = sizeof (struct map_stub) * (top_id + 1); |
| htab->stub_group = bfd_zmalloc (amt); |
| if (htab->stub_group == NULL) |
| return -1; |
| |
| /* We can't use output_bfd->section_count here to find the top output |
| section index as some sections may have been removed, and |
| strip_excluded_output_sections doesn't renumber the indices. */ |
| for (section = output_bfd->sections, top_index = 0; |
| section != NULL; |
| section = section->next) |
| { |
| if (top_index < section->index) |
| top_index = section->index; |
| } |
| |
| htab->top_index = top_index; |
| amt = sizeof (asection *) * (top_index + 1); |
| input_list = bfd_malloc (amt); |
| htab->input_list = input_list; |
| if (input_list == NULL) |
| return -1; |
| |
| /* For sections we aren't interested in, mark their entries with a |
| value we can check later. */ |
| list = input_list + top_index; |
| do |
| *list = bfd_abs_section_ptr; |
| while (list-- != input_list); |
| |
| for (section = output_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| if ((section->flags & SEC_CODE) != 0) |
| input_list[section->index] = NULL; |
| } |
| |
| return 1; |
| } |
| |
| /* The linker repeatedly calls this function for each input section, |
| in the order that input sections are linked into output sections. |
| Build lists of input sections to determine groupings between which |
| we may insert linker stubs. */ |
| |
| void |
| elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec) |
| { |
| struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
| |
| if (htab == NULL) |
| return; |
| |
| if (isec->output_section->index <= htab->top_index) |
| { |
| asection **list = htab->input_list + isec->output_section->index; |
| if (*list != bfd_abs_section_ptr) |
| { |
| /* Steal the link_sec pointer for our list. */ |
| #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) |
| /* This happens to make the list in reverse order, |
| which is what we want. */ |
| PREV_SEC (isec) = *list; |
| *list = isec; |
| } |
| } |
| } |
| |
| /* See whether we can group stub sections together. Grouping stub |
| sections may result in fewer stubs. More importantly, we need to |
| put all .init* and .fini* stubs at the beginning of the .init or |
| .fini output sections respectively, because glibc splits the |
| _init and _fini functions into multiple parts. Putting a stub in |
| the middle of a function is not a good idea. */ |
| |
| static void |
| group_sections (struct elf32_hppa_link_hash_table *htab, |
| bfd_size_type stub_group_size, |
| bool stubs_always_before_branch) |
| { |
| asection **list = htab->input_list + htab->top_index; |
| do |
| { |
| asection *tail = *list; |
| if (tail == bfd_abs_section_ptr) |
| continue; |
| while (tail != NULL) |
| { |
| asection *curr; |
| asection *prev; |
| bfd_size_type total; |
| bool big_sec; |
| |
| curr = tail; |
| total = tail->size; |
| big_sec = total >= stub_group_size; |
| |
| while ((prev = PREV_SEC (curr)) != NULL |
| && ((total += curr->output_offset - prev->output_offset) |
| < stub_group_size)) |
| curr = prev; |
| |
| /* OK, the size from the start of CURR to the end is less |
| than 240000 bytes and thus can be handled by one stub |
| section. (or the tail section is itself larger than |
| 240000 bytes, in which case we may be toast.) |
| We should really be keeping track of the total size of |
| stubs added here, as stubs contribute to the final output |
| section size. That's a little tricky, and this way will |
| only break if stubs added total more than 22144 bytes, or |
| 2768 long branch stubs. It seems unlikely for more than |
| 2768 different functions to be called, especially from |
| code only 240000 bytes long. This limit used to be |
| 250000, but c++ code tends to generate lots of little |
| functions, and sometimes violated the assumption. */ |
| do |
| { |
| prev = PREV_SEC (tail); |
| /* Set up this stub group. */ |
| htab->stub_group[tail->id].link_sec = curr; |
| } |
| while (tail != curr && (tail = prev) != NULL); |
| |
| /* But wait, there's more! Input sections up to 240000 |
| bytes before the stub section can be handled by it too. |
| Don't do this if we have a really large section after the |
| stubs, as adding more stubs increases the chance that |
| branches may not reach into the stub section. */ |
| if (!stubs_always_before_branch && !big_sec) |
| { |
| total = 0; |
| while (prev != NULL |
| && ((total += tail->output_offset - prev->output_offset) |
| < stub_group_size)) |
| { |
| tail = prev; |
| prev = PREV_SEC (tail); |
| htab->stub_group[tail->id].link_sec = curr; |
| } |
| } |
| tail = prev; |
| } |
| } |
| while (list-- != htab->input_list); |
| free (htab->input_list); |
| #undef PREV_SEC |
| } |
| |
| /* Read in all local syms for all input bfds, and create hash entries |
| for export stubs if we are building a multi-subspace shared lib. |
| Returns -1 on error, 1 if export stubs created, 0 otherwise. */ |
| |
| static int |
| get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info) |
| { |
| unsigned int bfd_indx; |
| Elf_Internal_Sym *local_syms, **all_local_syms; |
| int stub_changed = 0; |
| struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
| |
| if (htab == NULL) |
| return -1; |
| |
| /* We want to read in symbol extension records only once. To do this |
| we need to read in the local symbols in parallel and save them for |
| later use; so hold pointers to the local symbols in an array. */ |
| size_t amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count; |
| all_local_syms = bfd_zmalloc (amt); |
| htab->all_local_syms = all_local_syms; |
| if (all_local_syms == NULL) |
| return -1; |
| |
| /* Walk over all the input BFDs, swapping in local symbols. |
| If we are creating a shared library, create hash entries for the |
| export stubs. */ |
| for (bfd_indx = 0; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next, bfd_indx++) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| |
| /* We'll need the symbol table in a second. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (symtab_hdr->sh_info == 0) |
| continue; |
| |
| /* We need an array of the local symbols attached to the input bfd. */ |
| local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (local_syms == NULL) |
| { |
| local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| /* Cache them for elf_link_input_bfd. */ |
| symtab_hdr->contents = (unsigned char *) local_syms; |
| } |
| if (local_syms == NULL) |
| return -1; |
| |
| all_local_syms[bfd_indx] = local_syms; |
| |
| if (bfd_link_pic (info) && htab->multi_subspace) |
| { |
| struct elf_link_hash_entry **eh_syms; |
| struct elf_link_hash_entry **eh_symend; |
| unsigned int symcount; |
| |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd); |
| eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount); |
| |
| /* Look through the global syms for functions; We need to |
| build export stubs for all globally visible functions. */ |
| for (; eh_syms < eh_symend; eh_syms++) |
| { |
| struct elf32_hppa_link_hash_entry *hh; |
| |
| hh = hppa_elf_hash_entry (*eh_syms); |
| |
| while (hh->eh.root.type == bfd_link_hash_indirect |
| || hh->eh.root.type == bfd_link_hash_warning) |
| hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); |
| |
| /* At this point in the link, undefined syms have been |
| resolved, so we need to check that the symbol was |
| defined in this BFD. */ |
| if ((hh->eh.root.type == bfd_link_hash_defined |
| || hh->eh.root.type == bfd_link_hash_defweak) |
| && hh->eh.type == STT_FUNC |
| && hh->eh.root.u.def.section->output_section != NULL |
| && (hh->eh.root.u.def.section->output_section->owner |
| == output_bfd) |
| && hh->eh.root.u.def.section->owner == input_bfd |
| && hh->eh.def_regular |
| && !hh->eh.forced_local |
| && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT) |
| { |
| asection *sec; |
| const char *stub_name; |
| struct elf32_hppa_stub_hash_entry *hsh; |
| |
| sec = hh->eh.root.u.def.section; |
| stub_name = hh_name (hh); |
| hsh = hppa_stub_hash_lookup (&htab->bstab, |
| stub_name, |
| false, false); |
| if (hsh == NULL) |
| { |
| hsh = hppa_add_stub (stub_name, sec, htab); |
| if (!hsh) |
| return -1; |
| |
| hsh->target_value = hh->eh.root.u.def.value; |
| hsh->target_section = hh->eh.root.u.def.section; |
| hsh->stub_type = hppa_stub_export; |
| hsh->hh = hh; |
| stub_changed = 1; |
| } |
| else |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: duplicate export stub %s"), |
| input_bfd, stub_name); |
| } |
| } |
| } |
| } |
| } |
| |
| return stub_changed; |
| } |
| |
| /* Determine and set the size of the stub section for a final link. |
| |
| The basic idea here is to examine all the relocations looking for |
| PC-relative calls to a target that is unreachable with a "bl" |
| instruction. */ |
| |
| bool |
| elf32_hppa_size_stubs |
| (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info, |
| bool multi_subspace, bfd_signed_vma group_size, |
| asection * (*add_stub_section) (const char *, asection *), |
| void (*layout_sections_again) (void)) |
| { |
| bfd_size_type stub_group_size; |
| bool stubs_always_before_branch; |
| bool stub_changed; |
| struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); |
| |
| if (htab == NULL) |
| return false; |
| |
| /* Stash our params away. */ |
| htab->stub_bfd = stub_bfd; |
| htab->multi_subspace = multi_subspace; |
| htab->add_stub_section = add_stub_section; |
| htab->layout_sections_again = layout_sections_again; |
| stubs_always_before_branch = group_size < 0; |
| if (group_size < 0) |
| stub_group_size = -group_size; |
| else |
| stub_group_size = group_size; |
| if (stub_group_size == 1) |
| { |
| /* Default values. */ |
| if (stubs_always_before_branch) |
| { |
| stub_group_size = 7680000; |
| if (htab->has_17bit_branch || htab->multi_subspace) |
| stub_group_size = 240000; |
| if (htab->has_12bit_branch) |
| stub_group_size = 7500; |
| } |
| else |
| { |
| stub_group_size = 6971392; |
| if (htab->has_17bit_branch || htab->multi_subspace) |
| stub_group_size = 217856; |
| if (htab->has_12bit_branch) |
| stub_group_size = 6808; |
| } |
| } |
| |
| group_sections (htab, stub_group_size, stubs_always_before_branch); |
| |
| switch (get_local_syms (output_bfd, info->input_bfds, info)) |
| { |
| default: |
| if (htab->all_local_syms) |
| goto error_ret_free_local; |
| return false; |
| |
| case 0: |
| stub_changed = false; |
| break; |
| |
| case 1: |
| stub_changed = true; |
| break; |
| } |
| |
| while (1) |
| { |
| bfd *input_bfd; |
| unsigned int bfd_indx; |
| asection *stub_sec; |
| |
| for (input_bfd = info->input_bfds, bfd_indx = 0; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next, bfd_indx++) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *section; |
| Elf_Internal_Sym *local_syms; |
| |
| /* We'll need the symbol table in a second. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (symtab_hdr->sh_info == 0) |
| continue; |
| |
| local_syms = htab->all_local_syms[bfd_indx]; |
| |
| /* Walk over each section attached to the input bfd. */ |
| for (section = input_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| Elf_Internal_Rela *internal_relocs, *irelaend, *irela; |
| |
| /* If there aren't any relocs, then there's nothing more |
| to do. */ |
| if ((section->flags & SEC_RELOC) == 0 |
| || (section->flags & SEC_ALLOC) == 0 |
| || (section->flags & SEC_LOAD) == 0 |
| || (section->flags & SEC_CODE) == 0 |
| || section->reloc_count == 0) |
| continue; |
| |
| /* If this section is a link-once section that will be |
| discarded, then don't create any stubs. */ |
| if (section->output_section == NULL |
| || section->output_section->owner != output_bfd) |
| continue; |
| |
| /* Get the relocs. */ |
| internal_relocs |
| = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, |
| info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_ret_free_local; |
| |
| /* Now examine each relocation. */ |
| irela = internal_relocs; |
| irelaend = irela + section->reloc_count; |
| for (; irela < irelaend; irela++) |
| { |
| unsigned int r_type, r_indx; |
| enum elf32_hppa_stub_type stub_type; |
| struct elf32_hppa_stub_hash_entry *hsh; |
| asection *sym_sec; |
| bfd_vma sym_value; |
| bfd_vma destination; |
| struct elf32_hppa_link_hash_entry *hh; |
| char *stub_name; |
| const asection *id_sec; |
| |
| r_type = ELF32_R_TYPE (irela->r_info); |
| r_indx = ELF32_R_SYM (irela->r_info); |
| |
| if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| error_ret_free_internal: |
| if (elf_section_data (section)->relocs == NULL) |
| free (internal_relocs); |
| goto error_ret_free_local; |
| } |
| |
| /* Only look for stubs on call instructions. */ |
| if (r_type != (unsigned int) R_PARISC_PCREL12F |
| && r_type != (unsigned int) R_PARISC_PCREL17F |
| && r_type != (unsigned int) R_PARISC_PCREL22F) |
| continue; |
| |
| /* Now determine the call target, its name, value, |
| section. */ |
| sym_sec = NULL; |
| sym_value = 0; |
| destination = -1; |
| hh = NULL; |
| if (r_indx < symtab_hdr->sh_info) |
| { |
| /* It's a local symbol. */ |
| Elf_Internal_Sym *sym; |
| Elf_Internal_Shdr *hdr; |
| unsigned int shndx; |
| |
| sym = local_syms + r_indx; |
| if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) |
| sym_value = sym->st_value; |
| shndx = sym->st_shndx; |
| if (shndx < elf_numsections (input_bfd)) |
| { |
| hdr = elf_elfsections (input_bfd)[shndx]; |
| sym_sec = hdr->bfd_section; |
| destination = (sym_value + irela->r_addend |
| + sym_sec->output_offset |
| + sym_sec->output_section->vma); |
| } |
| } |
| else |
| { |
| /* It's an external symbol. */ |
| int e_indx; |
| |
| e_indx = r_indx - symtab_hdr->sh_info; |
| hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]); |
| |
| while (hh->eh.root.type == bfd_link_hash_indirect |
| || hh->eh.root.type == bfd_link_hash_warning) |
| hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); |
| |
| if (hh->eh.root.type == bfd_link_hash_defined |
| || hh->eh.root.type == bfd_link_hash_defweak) |
| { |
| sym_sec = hh->eh.root.u.def.section; |
| sym_value = hh->eh.root.u.def.value; |
| if (sym_sec->output_section != NULL) |
| destination = (sym_value + irela->r_addend |
| + sym_sec->output_offset |
| + sym_sec->output_section->vma); |
| } |
| else if (hh->eh.root.type == bfd_link_hash_undefweak) |
| { |
| if (! bfd_link_pic (info)) |
| continue; |
| } |
| else if (hh->eh.root.type == bfd_link_hash_undefined) |
| { |
| if (! (info->unresolved_syms_in_objects == RM_IGNORE |
| && (ELF_ST_VISIBILITY (hh->eh.other) |
| == STV_DEFAULT) |
| && hh->eh.type != STT_PARISC_MILLI)) |
| continue; |
| } |
| else |
| { |
| bfd_set_error (bfd_error_bad_value); |
| goto error_ret_free_internal; |
| } |
| } |
| |
| /* Determine what (if any) linker stub is needed. */ |
| stub_type = hppa_type_of_stub (section, irela, hh, |
| destination, info); |
| if (stub_type == hppa_stub_none) |
| continue; |
| |
| /* Support for grouping stub sections. */ |
| id_sec = htab->stub_group[section->id].link_sec; |
| |
| /* Get the name of this stub. */ |
| stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela); |
| if (!stub_name) |
| goto error_ret_free_internal; |
| |
| hsh = hppa_stub_hash_lookup (&htab->bstab, |
| stub_name, |
| false, false); |
| if (hsh != NULL) |
| { |
| /* The proper stub has already been created. */ |
| free (stub_name); |
| continue; |
| } |
| |
| hsh = hppa_add_stub (stub_name, section, htab); |
| if (hsh == NULL) |
| { |
| free (stub_name); |
| goto error_ret_free_internal; |
| } |
| |
| hsh->target_value = sym_value; |
| hsh->target_section = sym_sec; |
| hsh->stub_type = stub_type; |
| if (bfd_link_pic (info)) |
| { |
| if (stub_type == hppa_stub_import) |
| hsh->stub_type = hppa_stub_import_shared; |
| else if (stub_type == hppa_stub_long_branch) |
| hsh->stub_type = hppa_stub_long_branch_shared; |
| } |
| hsh->hh = hh; |
| stub_changed = true; |
| } |
| |
| /* We're done with the internal relocs, free them. */ |
| if (elf_section_data (section)->relocs == NULL) |
| free (internal_relocs); |
| } |
| } |
| |
| if (!stub_changed) |
| break; |
| |
| /* OK, we've added some stubs. Find out the new size of the |
| stub sections. */ |
| for (stub_sec = htab->stub_bfd->sections; |
| stub_sec != NULL; |
| stub_sec = stub_sec->next) |
| if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) |
| stub_sec->size = 0; |
| |
| bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab); |
| |
| /* Ask the linker to do its stuff. */ |
| (*htab->layout_sections_again) (); |
| stub_changed = false; |
| } |
| |
| free (htab->all_local_syms); |
| return true; |
| |
| error_ret_free_local: |
| free (htab->all_local_syms); |
| return false; |
| } |
| |
| /* For a final link, this function is called after we have sized the |
| stubs to provide a value for __gp. */ |
| |
| bool |
| elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info) |
| { |
| struct bfd_link_hash_entry *h; |
| asection *sec = NULL; |
| bfd_vma gp_val = 0; |
| |
| h = bfd_link_hash_lookup (info->hash, "$global$", false, false, false); |
| |
| if (h != NULL |
| && (h->type == bfd_link_hash_defined |
| || h->type == bfd_link_hash_defweak)) |
| { |
| gp_val = h->u.def.value; |
| sec = h->u.def.section; |
| } |
| else |
| { |
| asection *splt = bfd_get_section_by_name (abfd, ".plt"); |
| asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
| |
| /* Choose to point our LTP at, in this order, one of .plt, .got, |
| or .data, if these sections exist. In the case of choosing |
| .plt try to make the LTP ideal for addressing anywhere in the |
| .plt or .got with a 14 bit signed offset. Typically, the end |
| of the .plt is the start of the .got, so choose .plt + 0x2000 |
| if either the .plt or .got is larger than 0x2000. If both |
| the .plt and .got are smaller than 0x2000, choose the end of |
| the .plt section. */ |
| sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0 |
| ? NULL : splt; |
| if (sec != NULL) |
| { |
| gp_val = sec->size; |
| if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000)) |
| { |
| gp_val = 0x2000; |
| } |
| } |
| else |
| { |
| sec = sgot; |
| if (sec != NULL) |
| { |
| if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0) |
| { |
| /* We know we don't have a .plt. If .got is large, |
| offset our LTP. */ |
| if (sec->size > 0x2000) |
| gp_val = 0x2000; |
| } |
| } |
| else |
| { |
| /* No .plt or .got. Who cares what the LTP is? */ |
| sec = bfd_get_section_by_name (abfd, ".data"); |
| } |
| } |
| |
| if (h != NULL) |
| { |
| h->type = bfd_link_hash_defined; |
| h->u.def.value = gp_val; |
| if (sec != NULL) |
| h->u.def.section = sec; |
| else |
| h->u.def.section = bfd_abs_section_ptr; |
| } |
| } |
| |
| if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
| { |
| if (sec != NULL && sec->output_section != NULL) |
| gp_val += sec->output_section->vma + sec->output_offset; |
| |
| elf_gp (abfd) = gp_val; |
| } |
| return true; |
| } |
| |
| /* Build all the stubs associated with the current output file. The |
| stubs are kept in a hash table attached to the main linker hash |
| table. We also set up the .plt entries for statically linked PIC |
| functions here. This function is called via hppaelf_finish in the |
| linker. */ |
| |
| bool |
| elf32_hppa_build_stubs (struct bfd_link_info *info) |
| { |
| asection *stub_sec; |
| struct bfd_hash_table *table; |
| struct elf32_hppa_link_hash_table *htab; |
| |
| htab = hppa_link_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| for (stub_sec = htab->stub_bfd->sections; |
| stub_sec != NULL; |
| stub_sec = stub_sec->next) |
| if ((stub_sec->flags & SEC_LINKER_CREATED) == 0 |
| && stub_sec->size != 0) |
| { |
| /* Allocate memory to hold the linker stubs. */ |
| stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size); |
| if (stub_sec->contents == NULL) |
| return false; |
| stub_sec->size = 0; |
| } |
| |
| /* Build the stubs as directed by the stub hash table. */ |
| table = &htab->bstab; |
| bfd_hash_traverse (table, hppa_build_one_stub, info); |
| |
| return true; |
| } |
| |
| /* Return the base vma address which should be subtracted from the real |
| address when resolving a dtpoff relocation. |
| This is PT_TLS segment p_vaddr. */ |
| |
| static bfd_vma |
| dtpoff_base (struct bfd_link_info *info) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return elf_hash_table (info)->tls_sec->vma; |
| } |
| |
| /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */ |
| |
| static bfd_vma |
| tpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (htab->tls_sec == NULL) |
| return 0; |
| /* hppa TLS ABI is variant I and static TLS block start just after |
| tcbhead structure which has 2 pointer fields. */ |
| return (address - htab->tls_sec->vma |
| + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power)); |
| } |
| |
| /* Perform a final link. */ |
| |
| static bool |
| elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info) |
| { |
| struct stat buf; |
| |
| /* Invoke the regular ELF linker to do all the work. */ |
| if (!bfd_elf_final_link (abfd, info)) |
| return false; |
| |
| /* If we're producing a final executable, sort the contents of the |
| unwind section. */ |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| /* Do not attempt to sort non-regular files. This is here |
| especially for configure scripts and kernel builds which run |
| tests with "ld [...] -o /dev/null". */ |
| if (stat (bfd_get_filename (abfd), &buf) != 0 |
| || !S_ISREG(buf.st_mode)) |
| return true; |
| |
| return elf_hppa_sort_unwind (abfd); |
| } |
| |
| /* Record the lowest address for the data and text segments. */ |
| |
| static void |
| hppa_record_segment_addr (bfd *abfd, asection *section, void *data) |
| { |
| struct elf32_hppa_link_hash_table *htab; |
| |
| htab = (struct elf32_hppa_link_hash_table*) data; |
| if (htab == NULL) |
| return; |
| |
| if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) |
| { |
| bfd_vma value; |
| Elf_Internal_Phdr *p; |
| |
| p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); |
| BFD_ASSERT (p != NULL); |
| value = p->p_vaddr; |
| |
| if ((section->flags & SEC_READONLY) != 0) |
| { |
| if (value < htab->text_segment_base) |
| htab->text_segment_base = value; |
| } |
| else |
| { |
| if (value < htab->data_segment_base) |
| htab->data_segment_base = value; |
| } |
| } |
| } |
| |
| /* Perform a relocation as part of a final link. */ |
| |
| static bfd_reloc_status_type |
| final_link_relocate (asection *input_section, |
| bfd_byte *contents, |
| const Elf_Internal_Rela *rela, |
| bfd_vma value, |
| struct elf32_hppa_link_hash_table *htab, |
| asection *sym_sec, |
| struct elf32_hppa_link_hash_entry *hh, |
| struct bfd_link_info *info) |
| { |
| unsigned int insn; |
| unsigned int r_type = ELF32_R_TYPE (rela->r_info); |
| unsigned int orig_r_type = r_type; |
| reloc_howto_type *howto = elf_hppa_howto_table + r_type; |
| int r_format = howto->bitsize; |
| enum hppa_reloc_field_selector_type_alt r_field; |
| bfd *input_bfd = input_section->owner; |
| bfd_vma offset = rela->r_offset; |
| bfd_vma max_branch_offset = 0; |
| bfd_byte *hit_data = contents + offset; |
| bfd_signed_vma addend = rela->r_addend; |
| bfd_vma location; |
| struct elf32_hppa_stub_hash_entry *hsh = NULL; |
| int val; |
| |
| if (r_type == R_PARISC_NONE) |
| return bfd_reloc_ok; |
| |
| insn = bfd_get_32 (input_bfd, hit_data); |
| |
| /* Find out where we are and where we're going. */ |
| location = (offset + |
| input_section->output_offset + |
| input_section->output_section->vma); |
| |
| /* If we are not building a shared library, convert DLTIND relocs to |
| DPREL relocs. */ |
| if (!bfd_link_pic (info)) |
| { |
| switch (r_type) |
| { |
| case R_PARISC_DLTIND21L: |
| case R_PARISC_TLS_GD21L: |
| case R_PARISC_TLS_LDM21L: |
| case R_PARISC_TLS_IE21L: |
| r_type = R_PARISC_DPREL21L; |
| break; |
| |
| case R_PARISC_DLTIND14R: |
| case R_PARISC_TLS_GD14R: |
| case R_PARISC_TLS_LDM14R: |
| case R_PARISC_TLS_IE14R: |
| r_type = R_PARISC_DPREL14R; |
| break; |
| |
| case R_PARISC_DLTIND14F: |
| r_type = R_PARISC_DPREL14F; |
| break; |
| } |
| } |
| |
| switch (r_type) |
| { |
| case R_PARISC_PCREL12F: |
| case R_PARISC_PCREL17F: |
| case R_PARISC_PCREL22F: |
| /* If this call should go via the plt, find the import stub in |
| the stub hash. */ |
| if (sym_sec == NULL |
| || sym_sec->output_section == NULL |
| || (hh != NULL |
| && hh->eh.plt.offset != (bfd_vma) -1 |
| && hh->eh.dynindx != -1 |
| && !hh->plabel |
|