| /* MMIX-specific support for 64-bit ELF. |
| Copyright (C) 2001-2021 Free Software Foundation, Inc. |
| Contributed by Hans-Peter Nilsson <hp@bitrange.com> |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| |
| /* No specific ABI or "processor-specific supplement" defined. */ |
| |
| /* TODO: |
| - "Traditional" linker relaxation (shrinking whole sections). |
| - Merge reloc stubs jumping to same location. |
| - GETA stub relaxation (call a stub for out of range new |
| R_MMIX_GETA_STUBBABLE). */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf/mmix.h" |
| #include "opcode/mmix.h" |
| |
| #define MINUS_ONE (((bfd_vma) 0) - 1) |
| |
| #define MAX_PUSHJ_STUB_SIZE (5 * 4) |
| |
| /* Put these everywhere in new code. */ |
| #define FATAL_DEBUG \ |
| _bfd_abort (__FILE__, __LINE__, \ |
| "Internal: Non-debugged code (test-case missing)") |
| |
| #define BAD_CASE(x) \ |
| _bfd_abort (__FILE__, __LINE__, \ |
| "bad case for " #x) |
| |
| struct _mmix_elf_section_data |
| { |
| struct bfd_elf_section_data elf; |
| union |
| { |
| struct bpo_reloc_section_info *reloc; |
| struct bpo_greg_section_info *greg; |
| } bpo; |
| |
| struct pushj_stub_info |
| { |
| /* Maximum number of stubs needed for this section. */ |
| bfd_size_type n_pushj_relocs; |
| |
| /* Size of stubs after a mmix_elf_relax_section round. */ |
| bfd_size_type stubs_size_sum; |
| |
| /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum |
| of these. Allocated in mmix_elf_check_common_relocs. */ |
| bfd_size_type *stub_size; |
| |
| /* Offset of next stub during relocation. Somewhat redundant with the |
| above: error coverage is easier and we don't have to reset the |
| stubs_size_sum for relocation. */ |
| bfd_size_type stub_offset; |
| } pjs; |
| |
| /* Whether there has been a warning that this section could not be |
| linked due to a specific cause. FIXME: a way to access the |
| linker info or output section, then stuff the limiter guard |
| there. */ |
| bool has_warned_bpo; |
| bool has_warned_pushj; |
| }; |
| |
| #define mmix_elf_section_data(sec) \ |
| ((struct _mmix_elf_section_data *) elf_section_data (sec)) |
| |
| /* For each section containing a base-plus-offset (BPO) reloc, we attach |
| this struct as mmix_elf_section_data (section)->bpo, which is otherwise |
| NULL. */ |
| struct bpo_reloc_section_info |
| { |
| /* The base is 1; this is the first number in this section. */ |
| size_t first_base_plus_offset_reloc; |
| |
| /* Number of BPO-relocs in this section. */ |
| size_t n_bpo_relocs_this_section; |
| |
| /* Running index, used at relocation time. */ |
| size_t bpo_index; |
| |
| /* We don't have access to the bfd_link_info struct in |
| mmix_final_link_relocate. What we really want to get at is the |
| global single struct greg_relocation, so we stash it here. */ |
| asection *bpo_greg_section; |
| }; |
| |
| /* Helper struct (in global context) for the one below. |
| There's one of these created for every BPO reloc. */ |
| struct bpo_reloc_request |
| { |
| bfd_vma value; |
| |
| /* Valid after relaxation. The base is 0; the first register number |
| must be added. The offset is in range 0..255. */ |
| size_t regindex; |
| size_t offset; |
| |
| /* The order number for this BPO reloc, corresponding to the order in |
| which BPO relocs were found. Used to create an index after reloc |
| requests are sorted. */ |
| size_t bpo_reloc_no; |
| |
| /* Set when the value is computed. Better than coding "guard values" |
| into the other members. Is FALSE only for BPO relocs in a GC:ed |
| section. */ |
| bool valid; |
| }; |
| |
| /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated |
| greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME), |
| which is linked into the register contents section |
| (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the |
| linker; using the same hook as for usual with BPO relocs does not |
| collide. */ |
| struct bpo_greg_section_info |
| { |
| /* After GC, this reflects the number of remaining, non-excluded |
| BPO-relocs. */ |
| size_t n_bpo_relocs; |
| |
| /* This is the number of allocated bpo_reloc_requests; the size of |
| sorted_indexes. Valid after the check.*relocs functions are called |
| for all incoming sections. It includes the number of BPO relocs in |
| sections that were GC:ed. */ |
| size_t n_max_bpo_relocs; |
| |
| /* A counter used to find out when to fold the BPO gregs, since we |
| don't have a single "after-relaxation" hook. */ |
| size_t n_remaining_bpo_relocs_this_relaxation_round; |
| |
| /* The number of linker-allocated GREGs resulting from BPO relocs. |
| This is an approximation after _bfd_mmix_before_linker_allocation |
| and supposedly accurate after mmix_elf_relax_section is called for |
| all incoming non-collected sections. */ |
| size_t n_allocated_bpo_gregs; |
| |
| /* Index into reloc_request[], sorted on increasing "value", secondary |
| by increasing index for strict sorting order. */ |
| size_t *bpo_reloc_indexes; |
| |
| /* An array of all relocations, with the "value" member filled in by |
| the relaxation function. */ |
| struct bpo_reloc_request *reloc_request; |
| }; |
| |
| |
| extern bool mmix_elf_final_link (bfd *, struct bfd_link_info *); |
| |
| extern void mmix_elf_symbol_processing (bfd *, asymbol *); |
| |
| /* Only intended to be called from a debugger. */ |
| extern void mmix_dump_bpo_gregs |
| (struct bfd_link_info *, void (*) (const char *, ...)); |
| |
| static void |
| mmix_set_relaxable_size (bfd *, asection *, void *); |
| static bfd_reloc_status_type |
| mmix_elf_reloc (bfd *, arelent *, asymbol *, void *, |
| asection *, bfd *, char **); |
| static bfd_reloc_status_type |
| mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma, |
| bfd_signed_vma, bfd_vma, const char *, asection *, |
| char **); |
| |
| |
| /* Watch out: this currently needs to have elements with the same index as |
| their R_MMIX_ number. */ |
| static reloc_howto_type elf_mmix_howto_table[] = |
| { |
| /* This reloc does nothing. */ |
| HOWTO (R_MMIX_NONE, /* type */ |
| 0, /* rightshift */ |
| 3, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_NONE", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* An 8 bit absolute relocation. */ |
| HOWTO (R_MMIX_8, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_8", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* An 16 bit absolute relocation. */ |
| HOWTO (R_MMIX_16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_16", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* An 24 bit absolute relocation. */ |
| HOWTO (R_MMIX_24, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 24, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_24", /* name */ |
| false, /* partial_inplace */ |
| ~0xffffff, /* src_mask */ |
| 0xffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* A 32 bit absolute relocation. */ |
| HOWTO (R_MMIX_32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_32", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* 64 bit relocation. */ |
| HOWTO (R_MMIX_64, /* type */ |
| 0, /* rightshift */ |
| 4, /* size (0 = byte, 1 = short, 2 = long) */ |
| 64, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_64", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| MINUS_ONE, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* An 8 bit PC-relative relocation. */ |
| HOWTO (R_MMIX_PC_8, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_PC_8", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* An 16 bit PC-relative relocation. */ |
| HOWTO (R_MMIX_PC_16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_PC_16", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* An 24 bit PC-relative relocation. */ |
| HOWTO (R_MMIX_PC_24, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 24, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_PC_24", /* name */ |
| false, /* partial_inplace */ |
| ~0xffffff, /* src_mask */ |
| 0xffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* A 32 bit absolute PC-relative relocation. */ |
| HOWTO (R_MMIX_PC_32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_PC_32", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* 64 bit PC-relative relocation. */ |
| HOWTO (R_MMIX_PC_64, /* type */ |
| 0, /* rightshift */ |
| 4, /* size (0 = byte, 1 = short, 2 = long) */ |
| 64, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_MMIX_PC_64", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| MINUS_ONE, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* GNU extension to record C++ vtable hierarchy. */ |
| HOWTO (R_MMIX_GNU_VTINHERIT, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_MMIX_GNU_VTINHERIT", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* GNU extension to record C++ vtable member usage. */ |
| HOWTO (R_MMIX_GNU_VTENTRY, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| _bfd_elf_rel_vtable_reloc_fn, /* special_function */ |
| "R_MMIX_GNU_VTENTRY", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* The GETA relocation is supposed to get any address that could |
| possibly be reached by the GETA instruction. It can silently expand |
| to get a 64-bit operand, but will complain if any of the two least |
| significant bits are set. The howto members reflect a simple GETA. */ |
| HOWTO (R_MMIX_GETA, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_GETA", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_GETA_1, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_GETA_1", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_GETA_2, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_GETA_2", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_GETA_3, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_GETA_3", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* The conditional branches are supposed to reach any (code) address. |
| It can silently expand to a 64-bit operand, but will emit an error if |
| any of the two least significant bits are set. The howto members |
| reflect a simple branch. */ |
| HOWTO (R_MMIX_CBRANCH, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_CBRANCH", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_CBRANCH_J, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_CBRANCH_J", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_CBRANCH_1, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_CBRANCH_1", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_CBRANCH_2, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_CBRANCH_2", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_CBRANCH_3, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_CBRANCH_3", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* The PUSHJ instruction can reach any (code) address, as long as it's |
| the beginning of a function (no usable restriction). It can silently |
| expand to a 64-bit operand, but will emit an error if any of the two |
| least significant bits are set. It can also expand into a call to a |
| stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple |
| PUSHJ. */ |
| HOWTO (R_MMIX_PUSHJ, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_PUSHJ", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_PUSHJ_1, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_PUSHJ_1", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_PUSHJ_2, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_PUSHJ_2", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_PUSHJ_3, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_PUSHJ_3", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* A JMP is supposed to reach any (code) address. By itself, it can |
| reach +-64M; the expansion can reach all 64 bits. Note that the 64M |
| limit is soon reached if you link the program in wildly different |
| memory segments. The howto members reflect a trivial JMP. */ |
| HOWTO (R_MMIX_JMP, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 27, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_JMP", /* name */ |
| false, /* partial_inplace */ |
| ~0x1ffffff, /* src_mask */ |
| 0x1ffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_JMP_1, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 27, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_JMP_1", /* name */ |
| false, /* partial_inplace */ |
| ~0x1ffffff, /* src_mask */ |
| 0x1ffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_JMP_2, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 27, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_JMP_2", /* name */ |
| false, /* partial_inplace */ |
| ~0x1ffffff, /* src_mask */ |
| 0x1ffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_JMP_3, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 27, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_JMP_3", /* name */ |
| false, /* partial_inplace */ |
| ~0x1ffffff, /* src_mask */ |
| 0x1ffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* When we don't emit link-time-relaxable code from the assembler, or |
| when relaxation has done all it can do, these relocs are used. For |
| GETA/PUSHJ/branches. */ |
| HOWTO (R_MMIX_ADDR19, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_ADDR19", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* For JMP. */ |
| HOWTO (R_MMIX_ADDR27, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 27, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_ADDR27", /* name */ |
| false, /* partial_inplace */ |
| ~0x1ffffff, /* src_mask */ |
| 0x1ffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| /* A general register or the value 0..255. If a value, then the |
| instruction (offset -3) needs adjusting. */ |
| HOWTO (R_MMIX_REG_OR_BYTE, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_REG_OR_BYTE", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* A general register. */ |
| HOWTO (R_MMIX_REG, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_REG", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* A register plus an index, corresponding to the relocation expression. |
| The sizes must correspond to the valid range of the expression, while |
| the bitmasks correspond to what we store in the image. */ |
| HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */ |
| 0, /* rightshift */ |
| 4, /* size (0 = byte, 1 = short, 2 = long) */ |
| 64, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_BASE_PLUS_OFFSET", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* A "magic" relocation for a LOCAL expression, asserting that the |
| expression is less than the number of global registers. No actual |
| modification of the contents is done. Implementing this as a |
| relocation was less intrusive than e.g. putting such expressions in a |
| section to discard *after* relocation. */ |
| HOWTO (R_MMIX_LOCAL, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_LOCAL", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */ |
| 2, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 19, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| mmix_elf_reloc, /* special_function */ |
| "R_MMIX_PUSHJ_STUBBABLE", /* name */ |
| false, /* partial_inplace */ |
| ~0x0100ffff, /* src_mask */ |
| 0x0100ffff, /* dst_mask */ |
| true) /* pcrel_offset */ |
| }; |
| |
| |
| /* Map BFD reloc types to MMIX ELF reloc types. */ |
| |
| struct mmix_reloc_map |
| { |
| bfd_reloc_code_real_type bfd_reloc_val; |
| enum elf_mmix_reloc_type elf_reloc_val; |
| }; |
| |
| |
| static const struct mmix_reloc_map mmix_reloc_map[] = |
| { |
| {BFD_RELOC_NONE, R_MMIX_NONE}, |
| {BFD_RELOC_8, R_MMIX_8}, |
| {BFD_RELOC_16, R_MMIX_16}, |
| {BFD_RELOC_24, R_MMIX_24}, |
| {BFD_RELOC_32, R_MMIX_32}, |
| {BFD_RELOC_64, R_MMIX_64}, |
| {BFD_RELOC_8_PCREL, R_MMIX_PC_8}, |
| {BFD_RELOC_16_PCREL, R_MMIX_PC_16}, |
| {BFD_RELOC_24_PCREL, R_MMIX_PC_24}, |
| {BFD_RELOC_32_PCREL, R_MMIX_PC_32}, |
| {BFD_RELOC_64_PCREL, R_MMIX_PC_64}, |
| {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT}, |
| {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY}, |
| {BFD_RELOC_MMIX_GETA, R_MMIX_GETA}, |
| {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH}, |
| {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ}, |
| {BFD_RELOC_MMIX_JMP, R_MMIX_JMP}, |
| {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19}, |
| {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27}, |
| {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE}, |
| {BFD_RELOC_MMIX_REG, R_MMIX_REG}, |
| {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET}, |
| {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}, |
| {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE} |
| }; |
| |
| static reloc_howto_type * |
| bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| unsigned int i; |
| |
| for (i = 0; |
| i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]); |
| i++) |
| { |
| if (mmix_reloc_map[i].bfd_reloc_val == code) |
| return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val]; |
| } |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = 0; |
| i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]); |
| i++) |
| if (elf_mmix_howto_table[i].name != NULL |
| && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0) |
| return &elf_mmix_howto_table[i]; |
| |
| return NULL; |
| } |
| |
| static bool |
| mmix_elf_new_section_hook (bfd *abfd, asection *sec) |
| { |
| if (!sec->used_by_bfd) |
| { |
| struct _mmix_elf_section_data *sdata; |
| size_t amt = sizeof (*sdata); |
| |
| sdata = bfd_zalloc (abfd, amt); |
| if (sdata == NULL) |
| return false; |
| sec->used_by_bfd = sdata; |
| } |
| |
| return _bfd_elf_new_section_hook (abfd, sec); |
| } |
| |
| |
| /* This function performs the actual bitfiddling and sanity check for a |
| final relocation. Each relocation gets its *worst*-case expansion |
| in size when it arrives here; any reduction in size should have been |
| caught in linker relaxation earlier. When we get here, the relocation |
| looks like the smallest instruction with SWYM:s (nop:s) appended to the |
| max size. We fill in those nop:s. |
| |
| R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra) |
| GETA $N,foo |
| -> |
| SETL $N,foo & 0xffff |
| INCML $N,(foo >> 16) & 0xffff |
| INCMH $N,(foo >> 32) & 0xffff |
| INCH $N,(foo >> 48) & 0xffff |
| |
| R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but |
| condbranches needing relaxation might be rare enough to not be |
| worthwhile.) |
| [P]Bcc $N,foo |
| -> |
| [~P]B~cc $N,.+20 |
| SETL $255,foo & ... |
| INCML ... |
| INCMH ... |
| INCH ... |
| GO $255,$255,0 |
| |
| R_MMIX_PUSHJ: (FIXME: Relaxation...) |
| PUSHJ $N,foo |
| -> |
| SETL $255,foo & ... |
| INCML ... |
| INCMH ... |
| INCH ... |
| PUSHGO $N,$255,0 |
| |
| R_MMIX_JMP: (FIXME: Relaxation...) |
| JMP foo |
| -> |
| SETL $255,foo & ... |
| INCML ... |
| INCMH ... |
| INCH ... |
| GO $255,$255,0 |
| |
| R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */ |
| |
| static bfd_reloc_status_type |
| mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto, |
| void *datap, bfd_vma addr, bfd_vma value, |
| char **error_message) |
| { |
| bfd *abfd = isec->owner; |
| bfd_reloc_status_type flag = bfd_reloc_ok; |
| bfd_reloc_status_type r; |
| int offs = 0; |
| int reg = 255; |
| |
| /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences. |
| We handle the differences here and the common sequence later. */ |
| switch (howto->type) |
| { |
| case R_MMIX_GETA: |
| offs = 0; |
| reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); |
| |
| /* We change to an absolute value. */ |
| value += addr; |
| break; |
| |
| case R_MMIX_CBRANCH: |
| { |
| int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16; |
| |
| /* Invert the condition and prediction bit, and set the offset |
| to five instructions ahead. |
| |
| We *can* do better if we want to. If the branch is found to be |
| within limits, we could leave the branch as is; there'll just |
| be a bunch of NOP:s after it. But we shouldn't see this |
| sequence often enough that it's worth doing it. */ |
| |
| bfd_put_32 (abfd, |
| (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff) |
| | (24/4)), |
| (bfd_byte *) datap); |
| |
| /* Put a "GO $255,$255,0" after the common sequence. */ |
| bfd_put_32 (abfd, |
| ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00, |
| (bfd_byte *) datap + 20); |
| |
| /* Common sequence starts at offset 4. */ |
| offs = 4; |
| |
| /* We change to an absolute value. */ |
| value += addr; |
| } |
| break; |
| |
| case R_MMIX_PUSHJ_STUBBABLE: |
| /* If the address fits, we're fine. */ |
| if ((value & 3) == 0 |
| /* Note rightshift 0; see R_MMIX_JMP case below. */ |
| && (r = bfd_check_overflow (complain_overflow_signed, |
| howto->bitsize, |
| 0, |
| bfd_arch_bits_per_address (abfd), |
| value)) == bfd_reloc_ok) |
| goto pcrel_mmix_reloc_fits; |
| else |
| { |
| bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size; |
| |
| /* We have the bytes at the PUSHJ insn and need to get the |
| position for the stub. There's supposed to be room allocated |
| for the stub. */ |
| bfd_byte *stubcontents |
| = ((bfd_byte *) datap |
| - (addr - (isec->output_section->vma + isec->output_offset)) |
| + size |
| + mmix_elf_section_data (isec)->pjs.stub_offset); |
| bfd_vma stubaddr; |
| |
| if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0) |
| { |
| /* This shouldn't happen when linking to ELF or mmo, so |
| this is an attempt to link to "binary", right? We |
| can't access the output bfd, so we can't verify that |
| assumption. We only know that the critical |
| mmix_elf_check_common_relocs has not been called, |
| which happens when the output format is different |
| from the input format (and is not mmo). */ |
| if (! mmix_elf_section_data (isec)->has_warned_pushj) |
| { |
| /* For the first such error per input section, produce |
| a verbose message. */ |
| *error_message |
| = _("invalid input relocation when producing" |
| " non-ELF, non-mmo format output;" |
| " please use the objcopy program to convert from" |
| " ELF or mmo," |
| " or assemble using" |
| " \"-no-expand\" (for gcc, \"-Wa,-no-expand\""); |
| mmix_elf_section_data (isec)->has_warned_pushj = true; |
| return bfd_reloc_dangerous; |
| } |
| |
| /* For subsequent errors, return this one, which is |
| rate-limited but looks a little bit different, |
| hopefully without affecting user-friendliness. */ |
| return bfd_reloc_overflow; |
| } |
| |
| /* The address doesn't fit, so redirect the PUSHJ to the |
| location of the stub. */ |
| r = mmix_elf_perform_relocation (isec, |
| &elf_mmix_howto_table |
| [R_MMIX_ADDR19], |
| datap, |
| addr, |
| isec->output_section->vma |
| + isec->output_offset |
| + size |
| + (mmix_elf_section_data (isec) |
| ->pjs.stub_offset) |
| - addr, |
| error_message); |
| if (r != bfd_reloc_ok) |
| return r; |
| |
| stubaddr |
| = (isec->output_section->vma |
| + isec->output_offset |
| + size |
| + mmix_elf_section_data (isec)->pjs.stub_offset); |
| |
| /* We generate a simple JMP if that suffices, else the whole 5 |
| insn stub. */ |
| if (bfd_check_overflow (complain_overflow_signed, |
| elf_mmix_howto_table[R_MMIX_ADDR27].bitsize, |
| 0, |
| bfd_arch_bits_per_address (abfd), |
| addr + value - stubaddr) == bfd_reloc_ok) |
| { |
| bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents); |
| r = mmix_elf_perform_relocation (isec, |
| &elf_mmix_howto_table |
| [R_MMIX_ADDR27], |
| stubcontents, |
| stubaddr, |
| value + addr - stubaddr, |
| error_message); |
| mmix_elf_section_data (isec)->pjs.stub_offset += 4; |
| |
| if (size + mmix_elf_section_data (isec)->pjs.stub_offset |
| > isec->size) |
| abort (); |
| |
| return r; |
| } |
| else |
| { |
| /* Put a "GO $255,0" after the common sequence. */ |
| bfd_put_32 (abfd, |
| ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) |
| | 0xff00, (bfd_byte *) stubcontents + 16); |
| |
| /* Prepare for the general code to set the first part of the |
| linker stub, and */ |
| value += addr; |
| datap = stubcontents; |
| mmix_elf_section_data (isec)->pjs.stub_offset |
| += MAX_PUSHJ_STUB_SIZE; |
| } |
| } |
| break; |
| |
| case R_MMIX_PUSHJ: |
| { |
| int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); |
| |
| /* Put a "PUSHGO $N,$255,0" after the common sequence. */ |
| bfd_put_32 (abfd, |
| ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24) |
| | (inreg << 16) |
| | 0xff00, |
| (bfd_byte *) datap + 16); |
| |
| /* We change to an absolute value. */ |
| value += addr; |
| } |
| break; |
| |
| case R_MMIX_JMP: |
| /* This one is a little special. If we get here on a non-relaxing |
| link, and the destination is actually in range, we don't need to |
| execute the nops. |
| If so, we fall through to the bit-fiddling relocs. |
| |
| FIXME: bfd_check_overflow seems broken; the relocation is |
| rightshifted before testing, so supply a zero rightshift. */ |
| |
| if (! ((value & 3) == 0 |
| && (r = bfd_check_overflow (complain_overflow_signed, |
| howto->bitsize, |
| 0, |
| bfd_arch_bits_per_address (abfd), |
| value)) == bfd_reloc_ok)) |
| { |
| /* If the relocation doesn't fit in a JMP, we let the NOP:s be |
| modified below, and put a "GO $255,$255,0" after the |
| address-loading sequence. */ |
| bfd_put_32 (abfd, |
| ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) |
| | 0xffff00, |
| (bfd_byte *) datap + 16); |
| |
| /* We change to an absolute value. */ |
| value += addr; |
| break; |
| } |
| /* FALLTHROUGH. */ |
| case R_MMIX_ADDR19: |
| case R_MMIX_ADDR27: |
| pcrel_mmix_reloc_fits: |
| /* These must be in range, or else we emit an error. */ |
| if ((value & 3) == 0 |
| /* Note rightshift 0; see above. */ |
| && (r = bfd_check_overflow (complain_overflow_signed, |
| howto->bitsize, |
| 0, |
| bfd_arch_bits_per_address (abfd), |
| value)) == bfd_reloc_ok) |
| { |
| bfd_vma in1 |
| = bfd_get_32 (abfd, (bfd_byte *) datap); |
| bfd_vma highbit; |
| |
| if ((bfd_signed_vma) value < 0) |
| { |
| highbit = 1 << 24; |
| value += (1 << (howto->bitsize - 1)); |
| } |
| else |
| highbit = 0; |
| |
| value >>= 2; |
| |
| bfd_put_32 (abfd, |
| (in1 & howto->src_mask) |
| | highbit |
| | (value & howto->dst_mask), |
| (bfd_byte *) datap); |
| |
| return bfd_reloc_ok; |
| } |
| else |
| return bfd_reloc_overflow; |
| |
| case R_MMIX_BASE_PLUS_OFFSET: |
| { |
| struct bpo_reloc_section_info *bpodata |
| = mmix_elf_section_data (isec)->bpo.reloc; |
| asection *bpo_greg_section; |
| struct bpo_greg_section_info *gregdata; |
| size_t bpo_index; |
| |
| if (bpodata == NULL) |
| { |
| /* This shouldn't happen when linking to ELF or mmo, so |
| this is an attempt to link to "binary", right? We |
| can't access the output bfd, so we can't verify that |
| assumption. We only know that the critical |
| mmix_elf_check_common_relocs has not been called, which |
| happens when the output format is different from the |
| input format (and is not mmo). */ |
| if (! mmix_elf_section_data (isec)->has_warned_bpo) |
| { |
| /* For the first such error per input section, produce |
| a verbose message. */ |
| *error_message |
| = _("invalid input relocation when producing" |
| " non-ELF, non-mmo format output;" |
| " please use the objcopy program to convert from" |
| " ELF or mmo," |
| " or compile using the gcc-option" |
| " \"-mno-base-addresses\"."); |
| mmix_elf_section_data (isec)->has_warned_bpo = true; |
| return bfd_reloc_dangerous; |
| } |
| |
| /* For subsequent errors, return this one, which is |
| rate-limited but looks a little bit different, |
| hopefully without affecting user-friendliness. */ |
| return bfd_reloc_overflow; |
| } |
| |
| bpo_greg_section = bpodata->bpo_greg_section; |
| gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg; |
| bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++]; |
| |
| /* A consistency check: The value we now have in "relocation" must |
| be the same as the value we stored for that relocation. It |
| doesn't cost much, so can be left in at all times. */ |
| if (value != gregdata->reloc_request[bpo_index].value) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: Internal inconsistency error for value for\n\ |
| linker-allocated global register: linked: %#" PRIx64 " != relaxed: %#" PRIx64 ""), |
| isec->owner, |
| (uint64_t) value, |
| (uint64_t) gregdata->reloc_request[bpo_index].value); |
| bfd_set_error (bfd_error_bad_value); |
| return bfd_reloc_overflow; |
| } |
| |
| /* Then store the register number and offset for that register |
| into datap and datap + 1 respectively. */ |
| bfd_put_8 (abfd, |
| gregdata->reloc_request[bpo_index].regindex |
| + bpo_greg_section->output_section->vma / 8, |
| datap); |
| bfd_put_8 (abfd, |
| gregdata->reloc_request[bpo_index].offset, |
| ((unsigned char *) datap) + 1); |
| return bfd_reloc_ok; |
| } |
| |
| case R_MMIX_REG_OR_BYTE: |
| case R_MMIX_REG: |
| if (value > 255) |
| return bfd_reloc_overflow; |
| bfd_put_8 (abfd, value, datap); |
| return bfd_reloc_ok; |
| |
| default: |
| BAD_CASE (howto->type); |
| } |
| |
| /* This code adds the common SETL/INCML/INCMH/INCH worst-case |
| sequence. */ |
| |
| /* Lowest two bits must be 0. We return bfd_reloc_overflow for |
| everything that looks strange. */ |
| if (value & 3) |
| flag = bfd_reloc_overflow; |
| |
| bfd_put_32 (abfd, |
| (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16), |
| (bfd_byte *) datap + offs); |
| bfd_put_32 (abfd, |
| (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16), |
| (bfd_byte *) datap + offs + 4); |
| bfd_put_32 (abfd, |
| (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16), |
| (bfd_byte *) datap + offs + 8); |
| bfd_put_32 (abfd, |
| (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16), |
| (bfd_byte *) datap + offs + 12); |
| |
| return flag; |
| } |
| |
| /* Set the howto pointer for an MMIX ELF reloc (type RELA). */ |
| |
| static bool |
| mmix_info_to_howto_rela (bfd *abfd, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| unsigned int r_type; |
| |
| r_type = ELF64_R_TYPE (dst->r_info); |
| if (r_type >= (unsigned int) R_MMIX_max) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| abfd, r_type); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| cache_ptr->howto = &elf_mmix_howto_table[r_type]; |
| return true; |
| } |
| |
| /* Any MMIX-specific relocation gets here at assembly time or when linking |
| to other formats (such as mmo); this is the relocation function from |
| the reloc_table. We don't get here for final pure ELF linking. */ |
| |
| static bfd_reloc_status_type |
| mmix_elf_reloc (bfd *abfd, |
| arelent *reloc_entry, |
| asymbol *symbol, |
| void * data, |
| asection *input_section, |
| bfd *output_bfd, |
| char **error_message) |
| { |
| bfd_vma relocation; |
| bfd_reloc_status_type r; |
| asection *reloc_target_output_section; |
| bfd_reloc_status_type flag = bfd_reloc_ok; |
| bfd_vma output_base = 0; |
| |
| r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, |
| input_section, output_bfd, error_message); |
| |
| /* If that was all that was needed (i.e. this isn't a final link, only |
| some segment adjustments), we're done. */ |
| if (r != bfd_reloc_continue) |
| return r; |
| |
| if (bfd_is_und_section (symbol->section) |
| && (symbol->flags & BSF_WEAK) == 0 |
| && output_bfd == (bfd *) NULL) |
| return bfd_reloc_undefined; |
| |
| /* Is the address of the relocation really within the section? */ |
| if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
| return bfd_reloc_outofrange; |
| |
| /* Work out which section the relocation is targeted at and the |
| initial relocation command value. */ |
| |
| /* Get symbol value. (Common symbols are special.) */ |
| if (bfd_is_com_section (symbol->section)) |
| relocation = 0; |
| else |
| relocation = symbol->value; |
| |
| reloc_target_output_section = bfd_asymbol_section (symbol)->output_section; |
| |
| /* Here the variable relocation holds the final address of the symbol we |
| are relocating against, plus any addend. */ |
| if (output_bfd) |
| output_base = 0; |
| else |
| output_base = reloc_target_output_section->vma; |
| |
| relocation += output_base + symbol->section->output_offset; |
| |
| if (output_bfd != (bfd *) NULL) |
| { |
| /* Add in supplied addend. */ |
| relocation += reloc_entry->addend; |
| |
| /* This is a partial relocation, and we want to apply the |
| relocation to the reloc entry rather than the raw data. |
| Modify the reloc inplace to reflect what we now know. */ |
| reloc_entry->addend = relocation; |
| reloc_entry->address += input_section->output_offset; |
| return flag; |
| } |
| |
| return mmix_final_link_relocate (reloc_entry->howto, input_section, |
| data, reloc_entry->address, |
| reloc_entry->addend, relocation, |
| bfd_asymbol_name (symbol), |
| reloc_target_output_section, |
| error_message); |
| } |
| |
| /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it |
| for guidance if you're thinking of copying this. */ |
| |
| static int |
| mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *relend; |
| bfd_size_type size; |
| size_t pjsno = 0; |
| |
| size = input_section->rawsize ? input_section->rawsize : input_section->size; |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (input_bfd); |
| relend = relocs + input_section->reloc_count; |
| |
| /* Zero the stub area before we start. */ |
| if (input_section->rawsize != 0 |
| && input_section->size > input_section->rawsize) |
| memset (contents + input_section->rawsize, 0, |
| input_section->size - input_section->rawsize); |
| |
| for (rel = relocs; rel < relend; rel ++) |
| { |
| reloc_howto_type *howto; |
| unsigned long r_symndx; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| struct elf_link_hash_entry *h; |
| bfd_vma relocation; |
| bfd_reloc_status_type r; |
| const char *name = NULL; |
| int r_type; |
| bool undefined_signalled = false; |
| |
| r_type = ELF64_R_TYPE (rel->r_info); |
| |
| if (r_type == R_MMIX_GNU_VTINHERIT |
| || r_type == R_MMIX_GNU_VTENTRY) |
| continue; |
| |
| r_symndx = ELF64_R_SYM (rel->r_info); |
| |
| howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info); |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections [r_symndx]; |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| |
| name = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| sym->st_name); |
| if (name == NULL) |
| name = bfd_section_name (sec); |
| } |
| else |
| { |
| bool unresolved_reloc, ignored; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| h, sec, relocation, |
| unresolved_reloc, undefined_signalled, |
| ignored); |
| name = h->root.root.string; |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| { |
| /* This is a relocatable link. For most relocs we don't have to |
| change anything, unless the reloc is against a section |
| symbol, in which case we have to adjust according to where |
| the section symbol winds up in the output section. */ |
| if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
| rel->r_addend += sec->output_offset; |
| |
| /* For PUSHJ stub relocs however, we may need to change the |
| reloc and the section contents, if the reloc doesn't reach |
| beyond the end of the output section and previous stubs. |
| Then we change the section contents to be a PUSHJ to the end |
| of the input section plus stubs (we can do that without using |
| a reloc), and then we change the reloc to be a R_MMIX_PUSHJ |
| at the stub location. */ |
| if (r_type == R_MMIX_PUSHJ_STUBBABLE) |
| { |
| /* We've already checked whether we need a stub; use that |
| knowledge. */ |
| if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno] |
| != 0) |
| { |
| Elf_Internal_Rela relcpy; |
| |
| if (mmix_elf_section_data (input_section) |
| ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE) |
| abort (); |
| |
| /* There's already a PUSHJ insn there, so just fill in |
| the offset bits to the stub. */ |
| if (mmix_final_link_relocate (elf_mmix_howto_table |
| + R_MMIX_ADDR19, |
| input_section, |
| contents, |
| rel->r_offset, |
| 0, |
| input_section |
| ->output_section->vma |
| + input_section->output_offset |
| + size |
| + mmix_elf_section_data (input_section) |
| ->pjs.stub_offset, |
| NULL, NULL, NULL) != bfd_reloc_ok) |
| return false; |
| |
| /* Put a JMP insn at the stub; it goes with the |
| R_MMIX_JMP reloc. */ |
| bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24, |
| contents |
| + size |
| + mmix_elf_section_data (input_section) |
| ->pjs.stub_offset); |
| |
| /* Change the reloc to be at the stub, and to a full |
| R_MMIX_JMP reloc. */ |
| rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP); |
| rel->r_offset |
| = (size |
| + mmix_elf_section_data (input_section) |
| ->pjs.stub_offset); |
| |
| mmix_elf_section_data (input_section)->pjs.stub_offset |
| += MAX_PUSHJ_STUB_SIZE; |
| |
| /* Shift this reloc to the end of the relocs to maintain |
| the r_offset sorted reloc order. */ |
| relcpy = *rel; |
| memmove (rel, rel + 1, (char *) relend - (char *) rel); |
| relend[-1] = relcpy; |
| |
| /* Back up one reloc, or else we'd skip the next reloc |
| in turn. */ |
| rel--; |
| } |
| |
| pjsno++; |
| } |
| continue; |
| } |
| |
| r = mmix_final_link_relocate (howto, input_section, |
| contents, rel->r_offset, |
| rel->r_addend, relocation, name, sec, NULL); |
| |
| if (r != bfd_reloc_ok) |
| { |
| const char * msg = (const char *) NULL; |
| |
| switch (r) |
| { |
| case bfd_reloc_overflow: |
| info->callbacks->reloc_overflow |
| (info, (h ? &h->root : NULL), name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| case bfd_reloc_undefined: |
| /* We may have sent this message above. */ |
| if (! undefined_signalled) |
| info->callbacks->undefined_symbol |
| (info, name, input_bfd, input_section, rel->r_offset, true); |
| undefined_signalled = true; |
| break; |
| |
| case bfd_reloc_outofrange: |
| msg = _("internal error: out of range error"); |
| break; |
| |
| case bfd_reloc_notsupported: |
| msg = _("internal error: unsupported relocation error"); |
| break; |
| |
| case bfd_reloc_dangerous: |
| msg = _("internal error: dangerous relocation"); |
| break; |
| |
| default: |
| msg = _("internal error: unknown error"); |
| break; |
| } |
| |
| if (msg) |
| (*info->callbacks->warning) (info, msg, name, input_bfd, |
| input_section, rel->r_offset); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Perform a single relocation. By default we use the standard BFD |
| routines. A few relocs we have to do ourselves. */ |
| |
| static bfd_reloc_status_type |
| mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section, |
| bfd_byte *contents, bfd_vma r_offset, |
| bfd_signed_vma r_addend, bfd_vma relocation, |
| const char *symname, asection *symsec, |
| char **error_message) |
| { |
| bfd_reloc_status_type r = bfd_reloc_ok; |
| bfd_vma addr |
| = (input_section->output_section->vma |
| + input_section->output_offset |
| + r_offset); |
| bfd_signed_vma srel |
| = (bfd_signed_vma) relocation + r_addend; |
| |
| switch (howto->type) |
| { |
| /* All these are PC-relative. */ |
| case R_MMIX_PUSHJ_STUBBABLE: |
| case R_MMIX_PUSHJ: |
| case R_MMIX_CBRANCH: |
| case R_MMIX_ADDR19: |
| case R_MMIX_GETA: |
| case R_MMIX_ADDR27: |
| case R_MMIX_JMP: |
| contents += r_offset; |
| |
| srel -= (input_section->output_section->vma |
| + input_section->output_offset |
| + r_offset); |
| |
| r = mmix_elf_perform_relocation (input_section, howto, contents, |
| addr, srel, error_message); |
| break; |
| |
| case R_MMIX_BASE_PLUS_OFFSET: |
| if (symsec == NULL) |
| return bfd_reloc_undefined; |
| |
| /* Check that we're not relocating against a register symbol. */ |
| if (strcmp (bfd_section_name (symsec), |
| MMIX_REG_CONTENTS_SECTION_NAME) == 0 |
| || strcmp (bfd_section_name (symsec), |
| MMIX_REG_SECTION_NAME) == 0) |
| { |
| /* Note: This is separated out into two messages in order |
| to ease the translation into other languages. */ |
| if (symname == NULL || *symname == 0) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: base-plus-offset relocation against register symbol:" |
| " (unknown) in %pA"), |
| input_section->owner, symsec); |
| else |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: base-plus-offset relocation against register symbol:" |
| " %s in %pA"), |
| input_section->owner, symname, symsec); |
| return bfd_reloc_overflow; |
| } |
| goto do_mmix_reloc; |
| |
| case R_MMIX_REG_OR_BYTE: |
| case R_MMIX_REG: |
| /* For now, we handle these alike. They must refer to an register |
| symbol, which is either relative to the register section and in |
| the range 0..255, or is in the register contents section with vma |
| regno * 8. */ |
| |
| /* FIXME: A better way to check for reg contents section? |
| FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */ |
| if (symsec == NULL) |
| return bfd_reloc_undefined; |
| |
| if (strcmp (bfd_section_name (symsec), |
| MMIX_REG_CONTENTS_SECTION_NAME) == 0) |
| { |
| if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) |
| { |
| /* The bfd_reloc_outofrange return value, though intuitively |
| a better value, will not get us an error. */ |
| return bfd_reloc_overflow; |
| } |
| srel /= 8; |
| } |
| else if (strcmp (bfd_section_name (symsec), |
| MMIX_REG_SECTION_NAME) == 0) |
| { |
| if (srel < 0 || srel > 255) |
| /* The bfd_reloc_outofrange return value, though intuitively a |
| better value, will not get us an error. */ |
| return bfd_reloc_overflow; |
| } |
| else |
| { |
| /* Note: This is separated out into two messages in order |
| to ease the translation into other languages. */ |
| if (symname == NULL || *symname == 0) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: register relocation against non-register symbol:" |
| " (unknown) in %pA"), |
| input_section->owner, symsec); |
| else |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: register relocation against non-register symbol:" |
| " %s in %pA"), |
| input_section->owner, symname, symsec); |
| |
| /* The bfd_reloc_outofrange return value, though intuitively a |
| better value, will not get us an error. */ |
| return bfd_reloc_overflow; |
| } |
| do_mmix_reloc: |
| contents += r_offset; |
| r = mmix_elf_perform_relocation (input_section, howto, contents, |
| addr, srel, error_message); |
| break; |
| |
| case R_MMIX_LOCAL: |
| /* This isn't a real relocation, it's just an assertion that the |
| final relocation value corresponds to a local register. We |
| ignore the actual relocation; nothing is changed. */ |
| { |
| asection *regsec |
| = bfd_get_section_by_name (input_section->output_section->owner, |
| MMIX_REG_CONTENTS_SECTION_NAME); |
| bfd_vma first_global; |
| |
| /* Check that this is an absolute value, or a reference to the |
| register contents section or the register (symbol) section. |
| Absolute numbers can get here as undefined section. Undefined |
| symbols are signalled elsewhere, so there's no conflict in us |
| accidentally handling it. */ |
| if (!bfd_is_abs_section (symsec) |
| && !bfd_is_und_section (symsec) |
| && strcmp (bfd_section_name (symsec), |
| MMIX_REG_CONTENTS_SECTION_NAME) != 0 |
| && strcmp (bfd_section_name (symsec), |
| MMIX_REG_SECTION_NAME) != 0) |
| { |
| _bfd_error_handler |
| (_("%pB: directive LOCAL valid only with a register or absolute value"), |
| input_section->owner); |
| |
| return bfd_reloc_overflow; |
| } |
| |
| /* If we don't have a register contents section, then $255 is the |
| first global register. */ |
| if (regsec == NULL) |
| first_global = 255; |
| else |
| { |
| first_global = bfd_section_vma (regsec) / 8; |
| if (strcmp (bfd_section_name (symsec), |
| MMIX_REG_CONTENTS_SECTION_NAME) == 0) |
| { |
| if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) |
| /* The bfd_reloc_outofrange return value, though |
| intuitively a better value, will not get us an error. */ |
| return bfd_reloc_overflow; |
| srel /= 8; |
| } |
| } |
| |
| if ((bfd_vma) srel >= first_global) |
| { |
| /* FIXME: Better error message. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: LOCAL directive: " |
| "register $%" PRId64 " is not a local register;" |
| " first global register is $%" PRId64), |
| input_section->owner, (int64_t) srel, (int64_t) first_global); |
| |
| return bfd_reloc_overflow; |
| } |
| } |
| r = bfd_reloc_ok; |
| break; |
| |
| default: |
| r = _bfd_final_link_relocate (howto, input_section->owner, input_section, |
| contents, r_offset, |
| relocation, r_addend); |
| } |
| |
| return r; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| static asection * |
| mmix_elf_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELF64_R_TYPE (rel->r_info)) |
| { |
| case R_MMIX_GNU_VTINHERIT: |
| case R_MMIX_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Sort register relocs to come before expanding relocs. */ |
| |
| static int |
| mmix_elf_sort_relocs (const void * p1, const void * p2) |
| { |
| const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1; |
| const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2; |
| int r1_is_reg, r2_is_reg; |
| |
| /* Sort primarily on r_offset & ~3, so relocs are done to consecutive |
| insns. */ |
| if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3)) |
| return 1; |
| else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3)) |
| return -1; |
| |
| r1_is_reg |
| = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE |
| || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG); |
| r2_is_reg |
| = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE |
| || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG); |
| if (r1_is_reg != r2_is_reg) |
| return r2_is_reg - r1_is_reg; |
| |
| /* Neither or both are register relocs. Then sort on full offset. */ |
| if (r1->r_offset > r2->r_offset) |
| return 1; |
| else if (r1->r_offset < r2->r_offset) |
| return -1; |
| return 0; |
| } |
| |
| /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */ |
| |
| static bool |
| mmix_elf_check_common_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| bfd *bpo_greg_owner = NULL; |
| asection *allocated_gregs_section = NULL; |
| struct bpo_greg_section_info *gregdata = NULL; |
| struct bpo_reloc_section_info *bpodata = NULL; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| |
| /* We currently have to abuse this COFF-specific member, since there's |
| no target-machine-dedicated member. There's no alternative outside |
| the bfd_link_info struct; we can't specialize a hash-table since |
| they're different between ELF and mmo. */ |
| bpo_greg_owner = (bfd *) info->base_file; |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| switch (ELF64_R_TYPE (rel->r_info)) |
| { |
| /* This relocation causes a GREG allocation. We need to count |
| them, and we need to create a section for them, so we need an |
| object to fake as the owner of that section. We can't use |
| the ELF dynobj for this, since the ELF bits assume lots of |
| DSO-related stuff if that member is non-NULL. */ |
| case R_MMIX_BASE_PLUS_OFFSET: |
| /* We don't do anything with this reloc for a relocatable link. */ |
| if (bfd_link_relocatable (info)) |
| break; |
| |
| if (bpo_greg_owner == NULL) |
| { |
| bpo_greg_owner = abfd; |
| info->base_file = bpo_greg_owner; |
| } |
| |
| if (allocated_gregs_section == NULL) |
| allocated_gregs_section |
| = bfd_get_section_by_name (bpo_greg_owner, |
| MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
| |
| if (allocated_gregs_section == NULL) |
| { |
| allocated_gregs_section |
| = bfd_make_section_with_flags (bpo_greg_owner, |
| MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME, |
| (SEC_HAS_CONTENTS |
| | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED)); |
| /* Setting both SEC_ALLOC and SEC_LOAD means the section is |
| treated like any other section, and we'd get errors for |
| address overlap with the text section. Let's set none of |
| those flags, as that is what currently happens for usual |
| GREG allocations, and that works. */ |
| if (allocated_gregs_section == NULL |
| || !bfd_set_section_alignment (allocated_gregs_section, 3)) |
| return false; |
| |
| gregdata = (struct bpo_greg_section_info *) |
| bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info)); |
| if (gregdata == NULL) |
| return false; |
| mmix_elf_section_data (allocated_gregs_section)->bpo.greg |
| = gregdata; |
| } |
| else if (gregdata == NULL) |
| gregdata |
| = mmix_elf_section_data (allocated_gregs_section)->bpo.greg; |
| |
| /* Get ourselves some auxiliary info for the BPO-relocs. */ |
| if (bpodata == NULL) |
| { |
| /* No use doing a separate iteration pass to find the upper |
| limit - just use the number of relocs. */ |
| bpodata = (struct bpo_reloc_section_info *) |
| bfd_alloc (bpo_greg_owner, |
| sizeof (struct bpo_reloc_section_info) |
| * (sec->reloc_count + 1)); |
| if (bpodata == NULL) |
| return false; |
| mmix_elf_section_data (sec)->bpo.reloc = bpodata; |
| bpodata->first_base_plus_offset_reloc |
| = bpodata->bpo_index |
| = gregdata->n_max_bpo_relocs; |
| bpodata->bpo_greg_section |
| = allocated_gregs_section; |
| bpodata->n_bpo_relocs_this_section = 0; |
| } |
| |
| bpodata->n_bpo_relocs_this_section++; |
| gregdata->n_max_bpo_relocs++; |
| |
| /* We don't get another chance to set this before GC; we've not |
| set up any hook that runs before GC. */ |
| gregdata->n_bpo_relocs |
| = gregdata->n_max_bpo_relocs; |
| break; |
| |
| case R_MMIX_PUSHJ_STUBBABLE: |
| mmix_elf_section_data (sec)->pjs.n_pushj_relocs++; |
| break; |
| } |
| } |
| |
| /* Allocate per-reloc stub storage and initialize it to the max stub |
| size. */ |
| if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0) |
| { |
| size_t i; |
| |
| mmix_elf_section_data (sec)->pjs.stub_size |
| = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs |
| * sizeof (mmix_elf_section_data (sec) |
| ->pjs.stub_size[0])); |
| if (mmix_elf_section_data (sec)->pjs.stub_size == NULL) |
| return false; |
| |
| for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++) |
| mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE; |
| } |
| |
| return true; |
| } |
| |
| /* Look through the relocs for a section during the first phase. */ |
| |
| static bool |
| mmix_elf_check_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| /* First we sort the relocs so that any register relocs come before |
| expansion-relocs to the same insn. FIXME: Not done for mmo. */ |
| qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
| mmix_elf_sort_relocs); |
| |
| /* Do the common part. */ |
| if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs)) |
| return false; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| struct elf_link_hash_entry *h; |
| unsigned long r_symndx; |
| |
| r_symndx = ELF64_R_SYM (rel->r_info); |
| if (r_symndx < symtab_hdr->sh_info) |
| h = NULL; |
| else |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| switch (ELF64_R_TYPE (rel->r_info)) |
| { |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_MMIX_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return false; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_MMIX_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| return false; |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo. |
| Copied from elf_link_add_object_symbols. */ |
| |
| bool |
| _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info) |
| { |
| asection *o; |
| |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| Elf_Internal_Rela *internal_relocs; |
| bool ok; |
| |
| if ((o->flags & SEC_RELOC) == 0 |
| || o->reloc_count == 0 |
| || ((info->strip == strip_all || info->strip == strip_debugger) |
| && (o->flags & SEC_DEBUGGING) != 0) |
| || bfd_is_abs_section (o->output_section)) |
| continue; |
| |
| internal_relocs |
| = _bfd_elf_link_read_relocs (abfd, o, NULL, |
| (Elf_Internal_Rela *) NULL, |
| info->keep_memory); |
| if (internal_relocs == NULL) |
| return false; |
| |
| ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs); |
| |
| if (! info->keep_memory) |
| free (internal_relocs); |
| |
| if (! ok) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Change symbols relative to the reg contents section to instead be to |
| the register section, and scale them down to correspond to the register |
| number. */ |
| |
| static int |
| mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| const char *name ATTRIBUTE_UNUSED, |
| Elf_Internal_Sym *sym, |
| asection *input_sec, |
| struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) |
| { |
| if (input_sec != NULL |
| && input_sec->name != NULL |
| && ELF_ST_TYPE (sym->st_info) != STT_SECTION |
| && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0) |
| { |
| sym->st_value /= 8; |
| sym->st_shndx = SHN_REGISTER; |
| } |
| |
| return 1; |
| } |
| |
| /* We fake a register section that holds values that are register numbers. |
| Having a SHN_REGISTER and register section translates better to other |
| formats (e.g. mmo) than for example a STT_REGISTER attribute. |
| This section faking is based on a construct in elf32-mips.c. */ |
| static asection mmix_elf_reg_section; |
| static const asymbol mmix_elf_reg_section_symbol = |
| GLOBAL_SYM_INIT (MMIX_REG_SECTION_NAME, &mmix_elf_reg_section); |
| static asection mmix_elf_reg_section = |
| BFD_FAKE_SECTION (mmix_elf_reg_section, &mmix_elf_reg_section_symbol, |
| MMIX_REG_SECTION_NAME, 0, SEC_NO_FLAGS); |
| |
| /* Handle the special section numbers that a symbol may use. */ |
| |
| void |
| mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym) |
| { |
| elf_symbol_type *elfsym; |
| |
| elfsym = (elf_symbol_type *) asym; |
| switch (elfsym->internal_elf_sym.st_shndx) |
| { |
| case SHN_REGISTER: |
| asym->section = &mmix_elf_reg_section; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Given a BFD section, try to locate the corresponding ELF section |
| index. */ |
| |
| static bool |
| mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED, |
| asection * sec, |
| int * retval) |
| { |
| if (strcmp (bfd_section_name (sec), MMIX_REG_SECTION_NAME) == 0) |
| *retval = SHN_REGISTER; |
| else |
| return false; |
| |
| return true; |
| } |
| |
| /* Hook called by the linker routine which adds symbols from an object |
| file. We must handle the special SHN_REGISTER section number here. |
| |
| We also check that we only have *one* each of the section-start |
| symbols, since otherwise having two with the same value would cause |
| them to be "merged", but with the contents serialized. */ |
| |
| static bool |
| mmix_elf_add_symbol_hook (bfd *abfd, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| Elf_Internal_Sym *sym, |
| const char **namep ATTRIBUTE_UNUSED, |
| flagword *flagsp ATTRIBUTE_UNUSED, |
| asection **secp, |
| bfd_vma *valp ATTRIBUTE_UNUSED) |
| { |
| if (sym->st_shndx == SHN_REGISTER) |
| { |
| *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME); |
| (*secp)->flags |= SEC_LINKER_CREATED; |
| } |
| else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.' |
| && startswith (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) |
| { |
| /* See if we have another one. */ |
| struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash, |
| *namep, |
| false, |
| false, |
| false); |
| |
| if (h != NULL && h->type != bfd_link_hash_undefined) |
| { |
| /* How do we get the asymbol (or really: the filename) from h? |
| h->u.def.section->owner is NULL. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: error: multiple definition of `%s'; start of %s " |
| "is set in a earlier linked file"), |
| abfd, *namep, |
| *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */ |
| |
| static bool |
| mmix_elf_is_local_label_name (bfd *abfd, const char *name) |
| { |
| const char *colpos; |
| int digits; |
| |
| /* Also include the default local-label definition. */ |
| if (_bfd_elf_is_local_label_name (abfd, name)) |
| return true; |
| |
| if (*name != 'L') |
| return false; |
| |
| /* If there's no ":", or more than one, it's not a local symbol. */ |
| colpos = strchr (name, ':'); |
| if (colpos == NULL || strchr (colpos + 1, ':') != NULL) |
| return false; |
| |
| /* Check that there are remaining characters and that they are digits. */ |
| if (colpos[1] == 0) |
| return false; |
| |
| digits = strspn (colpos + 1, "0123456789"); |
| return digits != 0 && colpos[1 + digits] == 0; |
| } |
| |
| /* We get rid of the register section here. */ |
| |
| bool |
| mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
| { |
| /* We never output a register section, though we create one for |
| temporary measures. Check that nobody entered contents into it. */ |
| asection *reg_section; |
| |
| reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME); |
| |
| if (reg_section != NULL) |
| { |
| /* FIXME: Pass error state gracefully. */ |
| if (bfd_section_flags (reg_section) & SEC_HAS_CONTENTS) |
| _bfd_abort (__FILE__, __LINE__, _("register section has contents\n")); |
| |
| /* Really remove the section, if it hasn't already been done. */ |
| if (!bfd_section_removed_from_list (abfd, reg_section)) |
| { |
| bfd_section_list_remove (abfd, reg_section); |
| --abfd->section_count; |
| } |
| } |
| |
| if (! bfd_elf_final_link (abfd, info)) |
| return false; |
| |
| /* Since this section is marked SEC_LINKER_CREATED, it isn't output by |
| the regular linker machinery. We do it here, like other targets with |
| special sections. */ |
| if (info->base_file != NULL) |
| { |
| asection *greg_section |
| = bfd_get_section_by_name ((bfd *) info->base_file, |
| MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
| if (!bfd_set_section_contents (abfd, |
| greg_section->output_section, |
| greg_section->contents, |
| (file_ptr) greg_section->output_offset, |
| greg_section->size)) |
| return false; |
| } |
| return true; |
| } |
| |
| /* We need to include the maximum size of PUSHJ-stubs in the initial |
| section size. This is expected to shrink during linker relaxation. */ |
| |
| static void |
| mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED, |
| asection *sec, |
| void *ptr) |
| { |
| struct bfd_link_info *info = ptr; |
| |
| /* Make sure we only do this for section where we know we want this, |
| otherwise we might end up resetting the size of COMMONs. */ |
| if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0) |
| return; |
| |
| sec->rawsize = sec->size; |
| sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs |
| * MAX_PUSHJ_STUB_SIZE); |
| |
| /* For use in relocatable link, we start with a max stubs size. See |
| mmix_elf_relax_section. */ |
| if (bfd_link_relocatable (info) && sec->output_section) |
| mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum |
| += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs |
| * MAX_PUSHJ_STUB_SIZE); |
| } |
| |
| /* Initialize stuff for the linker-generated GREGs to match |
| R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */ |
| |
| bool |
| _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info) |
| { |
| asection *bpo_gregs_section; |
| bfd *bpo_greg_owner; |
| struct bpo_greg_section_info *gregdata; |
| size_t n_gregs; |
| bfd_vma gregs_size; |
| size_t i; |
| size_t *bpo_reloc_indexes; |
| bfd *ibfd; |
| |
| /* Set the initial size of sections. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info); |
| |
| /* The bpo_greg_owner bfd is supposed to have been set by |
| mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen. |
| If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */ |
| bpo_greg_owner = (bfd *) info->base_file; |
| if (bpo_greg_owner == NULL) |
| return true; |
| |
| bpo_gregs_section |
| = bfd_get_section_by_name (bpo_greg_owner, |
| MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
| |
| if (bpo_gregs_section == NULL) |
| return true; |
| |
| /* We use the target-data handle in the ELF section data. */ |
| gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; |
| if (gregdata == NULL) |
| return false; |
| |
| n_gregs = gregdata->n_bpo_relocs; |
| gregdata->n_allocated_bpo_gregs = n_gregs; |
| |
| /* When this reaches zero during relaxation, all entries have been |
| filled in and the size of the linker gregs can be calculated. */ |
| gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs; |
| |
| /* Set the zeroth-order estimate for the GREGs size. */ |
| gregs_size = n_gregs * 8; |
| |
| if (!bfd_set_section_size (bpo_gregs_section, gregs_size)) |
| return false; |
| |
| /* Allocate and set up the GREG arrays. They're filled in at relaxation |
| time. Note that we must use the max number ever noted for the array, |
| since the index numbers were created before GC. */ |
| gregdata->reloc_request |
| = bfd_zalloc (bpo_greg_owner, |
| sizeof (struct bpo_reloc_request) |
| * gregdata->n_max_bpo_relocs); |
| |
| gregdata->bpo_reloc_indexes |
| = bpo_reloc_indexes |
| = bfd_alloc (bpo_greg_owner, |
| gregdata->n_max_bpo_relocs |
| * sizeof (size_t)); |
| if (bpo_reloc_indexes == NULL) |
| return false; |
| |
| /* The default order is an identity mapping. */ |
| for (i = 0; i < gregdata->n_max_bpo_relocs; i++) |
| { |
| bpo_reloc_indexes[i] = i; |
| gregdata->reloc_request[i].bpo_reloc_no = i; |
| } |
| |
| return true; |
| } |
| |
| /* Fill in contents in the linker allocated gregs. Everything is |
| calculated at this point; we just move the contents into place here. */ |
| |
| bool |
| _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *link_info) |
| { |
| asection *bpo_gregs_section; |
| bfd *bpo_greg_owner; |
| struct bpo_greg_section_info *gregdata; |
| size_t n_gregs; |
| size_t i, j; |
| size_t lastreg; |
| bfd_byte *contents; |
| |
| /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs |
| when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such |
| object, there was no R_MMIX_BASE_PLUS_OFFSET. */ |
| bpo_greg_owner = (bfd *) link_info->base_file; |
| if (bpo_greg_owner == NULL) |
| return true; |
| |
| bpo_gregs_section |
| = bfd_get_section_by_name (bpo_greg_owner, |
| MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
| |
| /* This can't happen without DSO handling. When DSOs are handled |
| without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such |
| section. */ |
| if (bpo_gregs_section == NULL) |
| return true; |
| |
| /* We use the target-data handle in the ELF section data. */ |
| |
| gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; |
| if (gregdata == NULL) |
| return false; |
| |
| n_gregs = gregdata->n_allocated_bpo_gregs; |
| |
| bpo_gregs_section->contents |
| = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size); |
| if (contents == NULL) |
| return false; |
| |
| /* Sanity check: If these numbers mismatch, some relocation has not been |
| accounted for and the rest of gregdata is probably inconsistent. |
| It's a bug, but it's more helpful to identify it than segfaulting |
| below. */ |
| if (gregdata->n_remaining_bpo_relocs_this_relaxation_round |
| != gregdata->n_bpo_relocs) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("internal inconsistency: remaining %lu != max %lu;" |
| " please report this bug"), |
| (unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round, |
| (unsigned long) gregdata->n_bpo_relocs); |
| return false; |
| } |
| |
| for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++) |
| if (gregdata->reloc_request[i].regindex != lastreg) |
| { |
| bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value, |
| contents + j * 8); |
| lastreg = gregdata->reloc_request[i].regindex; |
| j++; |
| } |
| |
| return true; |
| } |
| |
| /* Sort valid relocs to come before non-valid relocs, then on increasing |
| value. */ |
| |
| static int |
| bpo_reloc_request_sort_fn (const void * p1, const void * p2) |
| { |
| const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1; |
| const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2; |
| |
| /* Primary function is validity; non-valid relocs sorted after valid |
| ones. */ |
| if (r1->valid != r2->valid) |
| return r2->valid - r1->valid; |
| |
| /* Then sort on value. Don't simplify and return just the difference of |
| the values: the upper bits of the 64-bit value would be truncated on |
| a host with 32-bit ints. */ |
| if (r1->value != r2->value) |
| return r1->value > r2->value ? 1 : -1; |
| |
| /* As a last re-sort, use the relocation number, so we get a stable |
| sort. The *addresses* aren't stable since items are swapped during |
| sorting. It depends on the qsort implementation if this actually |
| happens. */ |
| return r1->bpo_reloc_no > r2->bpo_reloc_no |
| ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0); |
| } |
| |
| /* For debug use only. Dumps the global register allocations resulting |
| from base-plus-offset relocs. */ |
| |
| void |
| mmix_dump_bpo_gregs (struct bfd_link_info *link_info, |
| void (*pf) (const char *fmt, ...)) |
| { |
| bfd *bpo_greg_owner; |
| asection *bpo_gregs_section; |
| struct bpo_greg_section_info *gregdata; |
| unsigned int i; |
| |
| if (link_info == NULL || link_info->base_file == NULL) |
| return; |
| |
| bpo_greg_owner = (bfd *) link_info->base_file; |
| |
| bpo_gregs_section |
| = bfd_get_section_by_name (bpo_greg_owner, |
| MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); |
| |
| if (bpo_gregs_section == NULL) |
| return; |
| |
| gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; |
| if (gregdata == NULL) |
| return; |
| |
| if (pf == NULL) |
| pf = _bfd_error_handler; |
| |
| /* These format strings are not translated. They are for debug purposes |
| only and never displayed to an end user. Should they escape, we |
| surely want them in original. */ |
| (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\ |
| n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs, |
| gregdata->n_max_bpo_relocs, |
| gregdata->n_remaining_bpo_relocs_this_relaxation_round, |
| gregdata->n_allocated_bpo_gregs); |
| |
| if (gregdata->reloc_request) |
| for (i = 0; i < gregdata->n_max_bpo_relocs; i++) |
| (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n", |
| i, |
| (gregdata->bpo_reloc_indexes != NULL |
| ? gregdata->bpo_reloc_indexes[i] : (size_t) -1), |
| gregdata->reloc_request[i].bpo_reloc_no, |
| gregdata->reloc_request[i].valid, |
| |
| (unsigned long) (gregdata->reloc_request[i].value >> 32), |
| (unsigned long) gregdata->reloc_request[i].value, |
| gregdata->reloc_request[i].regindex, |
| gregdata->reloc_request[i].offset); |
| } |
| |
| /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and |
| when the last such reloc is done, an index-array is sorted according to |
| the values and iterated over to produce register numbers (indexed by 0 |
| from the first allocated register number) and offsets for use in real |
| relocation. (N.B.: Relocatable runs are handled, not just punted.) |
| |
| PUSHJ stub accounting is also done here. |
| |
| Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */ |
| |
| static bool |
| mmix_elf_relax_section (bfd *abfd, |
| asection *sec, |
| struct bfd_link_info *link_info, |
| bool *again) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *irel, *irelend; |
| asection *bpo_gregs_section = NULL; |
| struct bpo_greg_section_info *gregdata; |
| struct bpo_reloc_section_info *bpodata |
| = mmix_elf_section_data (sec)->bpo.reloc; |
| /* The initialization is to quiet compiler warnings. The value is to |
| spot a missing actual initialization. */ |
| size_t bpono = (size_t) -1; |
| size_t pjsno = 0; |
| size_t pjsno_undefs = 0; |
| Elf_Internal_Sym *isymbuf = NULL; |
| bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size; |
| |
| mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0; |
| |
| /* Assume nothing changes. */ |
| *again = false; |
| |
| /* We don't have to do anything if this section does not have relocs, or |
| if this is not a code section. */ |
| if ((sec->flags & SEC_RELOC) == 0 |
| || sec->reloc_count == 0 |
| || (sec->flags & SEC_CODE) == 0 |
| || (sec->flags & SEC_LINKER_CREATED) != 0 |
| /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs, |
| then nothing to do. */ |
| || (bpodata == NULL |
| && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)) |
| return true; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| if (bpodata != NULL) |
| { |
| bpo_gregs_section = bpodata->bpo_greg_section; |
| gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; |
| bpono = bpodata->first_base_plus_offset_reloc; |
| } |
| else |
| gregdata = NULL; |
| |
| /* Get a copy of the native relocations. */ |
| internal_relocs |
| = _bfd_elf_link_read_relocs (abfd, sec, NULL, |
| (Elf_Internal_Rela *) NULL, |
| link_info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_return; |
| |
| /* Walk through them looking for relaxing opportunities. */ |
| irelend = internal_relocs + sec->reloc_count; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| bfd_vma symval; |
| struct elf_link_hash_entry *h = NULL; |
| |
| /* We only process two relocs. */ |
| if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET |
| && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE) |
| continue; |
| |
| /* We process relocs in a distinctly different way when this is a |
| relocatable link (for one, we don't look at symbols), so we avoid |
| mixing its code with that for the "normal" relaxation. */ |
| if (bfd_link_relocatable (link_info)) |
| { |
| /* The only transformation in a relocatable link is to generate |
| a full stub at the location of the stub calculated for the |
| input section, if the relocated stub location, the end of the |
| output section plus earlier stubs, cannot be reached. Thus |
| relocatable linking can only lead to worse code, but it still |
| works. */ |
| if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) |
| { |
| /* If we can reach the end of the output-section and beyond |
| any current stubs, then we don't need a stub for this |
| reloc. The relaxed order of output stub allocation may |
| not exactly match the straightforward order, so we always |
| assume presence of output stubs, which will allow |
| relaxation only on relocations indifferent to the |
| presence of output stub allocations for other relocations |
| and thus the order of output stub allocation. */ |
| if (bfd_check_overflow (complain_overflow_signed, |
| 19, |
| 0, |
| bfd_arch_bits_per_address (abfd), |
| /* Output-stub location. */ |
| sec->output_section->rawsize |
| + (mmix_elf_section_data (sec |
| ->output_section) |
| ->pjs.stubs_size_sum) |
| /* Location of this PUSHJ reloc. */ |
| - (sec->output_offset + irel->r_offset) |
| /* Don't count *this* stub twice. */ |
| - (mmix_elf_section_data (sec) |
| ->pjs.stub_size[pjsno] |
| + MAX_PUSHJ_STUB_SIZE)) |
| == bfd_reloc_ok) |
| mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; |
| |
| mmix_elf_section_data (sec)->pjs.stubs_size_sum |
| += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; |
| |
| pjsno++; |
| } |
| |
| continue; |
| } |
| |
| /* Get the value of the symbol referred to by the reloc. */ |
| if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym; |
| asection *sym_sec; |
| |
| /* Read this BFD's local symbols if we haven't already. */ |
| if (isymbuf == NULL) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == 0) |
| goto error_return; |
| } |
| |
| isym = isymbuf + ELF64_R_SYM (irel->r_info); |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| symval = (isym->st_value |
| + sym_sec->output_section->vma |
| + sym_sec->output_offset); |
| } |
| else |
| { |
| unsigned long indx; |
| |
| /* An external symbol. */ |
| indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; |
| h = elf_sym_hashes (abfd)[indx]; |
| BFD_ASSERT (h != NULL); |
| if (h->root.type == bfd_link_hash_undefweak) |
| /* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to |
| the canonical value 0 for an unresolved weak symbol to |
| consider: as the debug-friendly approach, resolve to "abort" |
| (or a port-specific function), or as the space-friendly |
| approach resolve to the next instruction (like some other |
| ports, notably ARM and AArch64). These alternatives require |
| matching code in mmix_elf_perform_relocation or its caller. */ |
| symval = 0; |
| else if (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| symval = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| else |
| { |
| /* This appears to be a reference to an undefined symbol. Just |
| ignore it--it will be caught by the regular reloc processing. |
| We need to keep BPO reloc accounting consistent, though |
| else we'll abort instead of emitting an error message. */ |
| if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET |
| && gregdata != NULL) |
| { |
| gregdata->n_remaining_bpo_relocs_this_relaxation_round--; |
| bpono++; |
| } |
| |
| /* Similarly, keep accounting consistent for PUSHJ |
| referring to an undefined symbol. */ |
| if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) |
| pjsno_undefs++; |
| continue; |
| } |
| } |
| |
| if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE) |
| { |
| bfd_vma value = symval + irel->r_addend; |
| bfd_vma dot |
| = (sec->output_section->vma |
| + sec->output_offset |
| + irel->r_offset); |
| bfd_vma stubaddr |
| = (sec->output_section->vma |
| + sec->output_offset |
| + size |
| + mmix_elf_section_data (sec)->pjs.stubs_size_sum); |
| |
| if ((value & 3) == 0 |
| && bfd_check_overflow (complain_overflow_signed, |
| 19, |
| 0, |
| bfd_arch_bits_per_address (abfd), |
| value - dot |
| - (value > dot |
| ? mmix_elf_section_data (sec) |
| ->pjs.stub_size[pjsno] |
| : 0)) |
| == bfd_reloc_ok) |
| /* If the reloc fits, no stub is needed. */ |
| mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; |
| else |
| /* Maybe we can get away with just a JMP insn? */ |
| if ((value & 3) == 0 |
| && bfd_check_overflow (complain_overflow_signed, |
| 27, |
| 0, |
| bfd_arch_bits_per_address (abfd), |
| value - stubaddr |
| - (value > dot |
| ? mmix_elf_section_data (sec) |
| ->pjs.stub_size[pjsno] - 4 |
| : 0)) |
| == bfd_reloc_ok) |
| /* Yep, account for a stub consisting of a single JMP insn. */ |
| mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4; |
| else |
| /* Nope, go for the full insn stub. It doesn't seem useful to |
| emit the intermediate sizes; those will only be useful for |
| a >64M program assuming contiguous code. */ |
| mmix_elf_section_data (sec)->pjs.stub_size[pjsno] |
| = MAX_PUSHJ_STUB_SIZE; |
| |
| mmix_elf_section_data (sec)->pjs.stubs_size_sum |
| += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; |
| pjsno++; |
| continue; |
| } |
| |
| /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */ |
| |
| gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value |
| = symval + irel->r_addend; |
| gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = true; |
| gregdata->n_remaining_bpo_relocs_this_relaxation_round--; |
| } |
| |
| /* Check if that was the last BPO-reloc. If so, sort the values and |
| calculate how many registers we need to cover them. Set the size of |
| the linker gregs, and if the number of registers changed, indicate |
| that we need to relax some more because we have more work to do. */ |
| if (gregdata != NULL |
| && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0) |
| { |
| size_t i; |
| bfd_vma prev_base; |
| size_t regindex; |
| |
| /* First, reset the remaining relocs for the next round. */ |
| gregdata->n_remaining_bpo_relocs_this_relaxation_round |
| = gregdata->n_bpo_relocs; |
| |
| qsort (gregdata->reloc_request, |
| gregdata->n_max_bpo_relocs, |
| sizeof (struct bpo_reloc_request), |
| bpo_reloc_request_sort_fn); |
| |
| /* Recalculate indexes. When we find a change (however unlikely |
| after the initial iteration), we know we need to relax again, |
| since items in the GREG-array are sorted by increasing value and |
| stored in the relaxation phase. */ |
| for (i = 0; i < gregdata->n_max_bpo_relocs; i++) |
| if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] |
| != i) |
| { |
| gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] |
| = i; |
| *again = true; |
| } |
| |
| /* Allocate register numbers (indexing from 0). Stop at the first |
| non-valid reloc. */ |
| for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value; |
| i < gregdata->n_bpo_relocs; |
| i++) |
| { |
| if (gregdata->reloc_request[i].value > prev_base + 255) |
| { |
| regindex++; |
| prev_base = gregdata->reloc_request[i].value; |
| } |
| gregdata->reloc_request[i].regindex = regindex; |
| gregdata->reloc_request[i].offset |
| = gregdata->reloc_request[i].value - prev_base; |
| } |
| |
| /* If it's not the same as the last time, we need to relax again, |
| because the size of the section has changed. I'm not sure we |
| actually need to do any adjustments since the shrinking happens |
| at the start of this section, but better safe than sorry. */ |
| if (gregdata->n_allocated_bpo_gregs != regindex + 1) |
| { |
| gregdata->n_allocated_bpo_gregs = regindex + 1; |
| *again = true; |
| } |
| |
| bpo_gregs_section->size = (regindex + 1) * 8; |
| } |
| |
| if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) |
| { |
| if (! link_info->keep_memory) |
| free (isymbuf); |
| else |
| { |
| /* Cache the symbols for elf_link_input_bfd. */ |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| } |
| } |
| |
| BFD_ASSERT(pjsno + pjsno_undefs |
| == mmix_elf_section_data (sec)->pjs.n_pushj_relocs); |
| |
| if (elf_section_data (sec)->relocs != internal_relocs) |
| free (internal_relocs); |
| |
| if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) |
| abort (); |
| |
| if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) |
| { |
| sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum; |
| *again = true; |
| } |
| |
| return true; |
| |
| error_return: |
| if ((unsigned char *) isymbuf != symtab_hdr->contents) |
| free (isymbuf); |
| if (elf_section_data (sec)->relocs != internal_relocs) |
| free (internal_relocs); |
| return false; |
| } |
| |
| #define ELF_ARCH bfd_arch_mmix |
| #define ELF_MACHINE_CODE EM_MMIX |
| |
| /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL). |
| However, that's too much for something somewhere in the linker part of |
| BFD; perhaps the start-address has to be a non-zero multiple of this |
| number, or larger than this number. The symptom is that the linker |
| complains: "warning: allocated section `.text' not in segment". We |
| settle for 64k; the page-size used in examples is 8k. |
| #define ELF_MAXPAGESIZE 0x10000 |
| |
| Unfortunately, this causes excessive padding in the supposedly small |
| for-education programs that are the expected usage (where people would |
| inspect output). We stick to 256 bytes just to have *some* default |
| alignment. */ |
| #define ELF_MAXPAGESIZE 0x100 |
| |
| #define TARGET_BIG_SYM mmix_elf64_vec |
| #define TARGET_BIG_NAME "elf64-mmix" |
| |
| #define elf_info_to_howto_rel NULL |
| #define elf_info_to_howto mmix_info_to_howto_rela |
| #define elf_backend_relocate_section mmix_elf_relocate_section |
| #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook |
| |
| #define elf_backend_link_output_symbol_hook \ |
| mmix_elf_link_output_symbol_hook |
| #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook |
| |
| #define elf_backend_check_relocs mmix_elf_check_relocs |
| #define elf_backend_symbol_processing mmix_elf_symbol_processing |
| #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all |
| |
| #define bfd_elf64_bfd_copy_link_hash_symbol_type \ |
| _bfd_generic_copy_link_hash_symbol_type |
| |
| #define bfd_elf64_bfd_is_local_label_name \ |
| mmix_elf_is_local_label_name |
| |
| #define elf_backend_may_use_rel_p 0 |
| #define elf_backend_may_use_rela_p 1 |
| #define elf_backend_default_use_rela_p 1 |
| |
| #define elf_backend_can_gc_sections 1 |
| #define elf_backend_section_from_bfd_section \ |
| mmix_elf_section_from_bfd_section |
| |
| #define bfd_elf64_new_section_hook mmix_elf_new_section_hook |
| #define bfd_elf64_bfd_final_link mmix_elf_final_link |
| #define bfd_elf64_bfd_relax_section mmix_elf_relax_section |
| |
| #include "elf64-target.h" |