| /* Miscellaneous utilities. |
| Copyright (C) 2019-2021 Free Software Foundation, Inc. |
| |
| This file is part of libctf. |
| |
| libctf is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| See the GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; see the file COPYING. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <ctf-impl.h> |
| #include <string.h> |
| #include "ctf-endian.h" |
| |
| /* Simple doubly-linked list append routine. This implementation assumes that |
| each list element contains an embedded ctf_list_t as the first member. |
| An additional ctf_list_t is used to store the head (l_next) and tail |
| (l_prev) pointers. The current head and tail list elements have their |
| previous and next pointers set to NULL, respectively. */ |
| |
| void |
| ctf_list_append (ctf_list_t *lp, void *newp) |
| { |
| ctf_list_t *p = lp->l_prev; /* p = tail list element. */ |
| ctf_list_t *q = newp; /* q = new list element. */ |
| |
| lp->l_prev = q; |
| q->l_prev = p; |
| q->l_next = NULL; |
| |
| if (p != NULL) |
| p->l_next = q; |
| else |
| lp->l_next = q; |
| } |
| |
| /* Prepend the specified existing element to the given ctf_list_t. The |
| existing pointer should be pointing at a struct with embedded ctf_list_t. */ |
| |
| void |
| ctf_list_prepend (ctf_list_t * lp, void *newp) |
| { |
| ctf_list_t *p = newp; /* p = new list element. */ |
| ctf_list_t *q = lp->l_next; /* q = head list element. */ |
| |
| lp->l_next = p; |
| p->l_prev = NULL; |
| p->l_next = q; |
| |
| if (q != NULL) |
| q->l_prev = p; |
| else |
| lp->l_prev = p; |
| } |
| |
| /* Delete the specified existing element from the given ctf_list_t. The |
| existing pointer should be pointing at a struct with embedded ctf_list_t. */ |
| |
| void |
| ctf_list_delete (ctf_list_t *lp, void *existing) |
| { |
| ctf_list_t *p = existing; |
| |
| if (p->l_prev != NULL) |
| p->l_prev->l_next = p->l_next; |
| else |
| lp->l_next = p->l_next; |
| |
| if (p->l_next != NULL) |
| p->l_next->l_prev = p->l_prev; |
| else |
| lp->l_prev = p->l_prev; |
| } |
| |
| /* Return 1 if the list is empty. */ |
| |
| int |
| ctf_list_empty_p (ctf_list_t *lp) |
| { |
| return (lp->l_next == NULL && lp->l_prev == NULL); |
| } |
| |
| /* Splice one entire list onto the end of another one. The existing list is |
| emptied. */ |
| |
| void |
| ctf_list_splice (ctf_list_t *lp, ctf_list_t *append) |
| { |
| if (ctf_list_empty_p (append)) |
| return; |
| |
| if (lp->l_prev != NULL) |
| lp->l_prev->l_next = append->l_next; |
| else |
| lp->l_next = append->l_next; |
| |
| append->l_next->l_prev = lp->l_prev; |
| lp->l_prev = append->l_prev; |
| append->l_next = NULL; |
| append->l_prev = NULL; |
| } |
| |
| /* Convert a 32-bit ELF symbol to a ctf_link_sym_t. */ |
| |
| ctf_link_sym_t * |
| ctf_elf32_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf32_Sym *src, |
| uint32_t symidx) |
| { |
| Elf32_Sym tmp; |
| int needs_flipping = 0; |
| |
| #ifdef WORDS_BIGENDIAN |
| if (fp->ctf_symsect_little_endian) |
| needs_flipping = 1; |
| #else |
| if (!fp->ctf_symsect_little_endian) |
| needs_flipping = 1; |
| #endif |
| |
| memcpy (&tmp, src, sizeof (Elf32_Sym)); |
| if (needs_flipping) |
| { |
| swap_thing (tmp.st_name); |
| swap_thing (tmp.st_size); |
| swap_thing (tmp.st_shndx); |
| swap_thing (tmp.st_value); |
| } |
| /* The name must be in the external string table. */ |
| if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len) |
| dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name; |
| else |
| dst->st_name = _CTF_NULLSTR; |
| dst->st_nameidx_set = 0; |
| dst->st_symidx = symidx; |
| dst->st_shndx = tmp.st_shndx; |
| dst->st_type = ELF32_ST_TYPE (tmp.st_info); |
| dst->st_value = tmp.st_value; |
| |
| return dst; |
| } |
| |
| /* Convert a 64-bit ELF symbol to a ctf_link_sym_t. */ |
| |
| ctf_link_sym_t * |
| ctf_elf64_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf64_Sym *src, |
| uint32_t symidx) |
| { |
| Elf64_Sym tmp; |
| int needs_flipping = 0; |
| |
| #ifdef WORDS_BIGENDIAN |
| if (fp->ctf_symsect_little_endian) |
| needs_flipping = 1; |
| #else |
| if (!fp->ctf_symsect_little_endian) |
| needs_flipping = 1; |
| #endif |
| |
| memcpy (&tmp, src, sizeof (Elf64_Sym)); |
| if (needs_flipping) |
| { |
| swap_thing (tmp.st_name); |
| swap_thing (tmp.st_size); |
| swap_thing (tmp.st_shndx); |
| swap_thing (tmp.st_value); |
| } |
| |
| /* The name must be in the external string table. */ |
| if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len) |
| dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name; |
| else |
| dst->st_name = _CTF_NULLSTR; |
| dst->st_nameidx_set = 0; |
| dst->st_symidx = symidx; |
| dst->st_shndx = tmp.st_shndx; |
| dst->st_type = ELF32_ST_TYPE (tmp.st_info); |
| |
| /* We only care if the value is zero, so avoid nonzeroes turning into |
| zeroes. */ |
| if (_libctf_unlikely_ (tmp.st_value != 0 && ((uint32_t) tmp.st_value == 0))) |
| dst->st_value = 1; |
| else |
| dst->st_value = (uint32_t) tmp.st_value; |
| |
| return dst; |
| } |
| |
| /* A string appender working on dynamic strings. Returns NULL on OOM. */ |
| |
| char * |
| ctf_str_append (char *s, const char *append) |
| { |
| size_t s_len = 0; |
| |
| if (append == NULL) |
| return s; |
| |
| if (s != NULL) |
| s_len = strlen (s); |
| |
| size_t append_len = strlen (append); |
| |
| if ((s = realloc (s, s_len + append_len + 1)) == NULL) |
| return NULL; |
| |
| memcpy (s + s_len, append, append_len); |
| s[s_len + append_len] = '\0'; |
| |
| return s; |
| } |
| |
| /* A version of ctf_str_append that returns the old string on OOM. */ |
| |
| char * |
| ctf_str_append_noerr (char *s, const char *append) |
| { |
| char *new_s; |
| |
| new_s = ctf_str_append (s, append); |
| if (!new_s) |
| return s; |
| return new_s; |
| } |
| |
| /* A realloc() that fails noisily if called with any ctf_str_num_users. */ |
| void * |
| ctf_realloc (ctf_dict_t *fp, void *ptr, size_t size) |
| { |
| if (fp->ctf_str_num_refs > 0) |
| { |
| ctf_dprintf ("%p: attempt to realloc() string table with %lu active refs\n", |
| (void *) fp, (unsigned long) fp->ctf_str_num_refs); |
| return NULL; |
| } |
| return realloc (ptr, size); |
| } |
| |
| /* Store the specified error code into errp if it is non-NULL, and then |
| return NULL for the benefit of the caller. */ |
| |
| void * |
| ctf_set_open_errno (int *errp, int error) |
| { |
| if (errp != NULL) |
| *errp = error; |
| return NULL; |
| } |
| |
| /* Store the specified error code into the CTF dict, and then return CTF_ERR / |
| -1 for the benefit of the caller. */ |
| |
| unsigned long |
| ctf_set_errno (ctf_dict_t *fp, int err) |
| { |
| fp->ctf_errno = err; |
| return CTF_ERR; |
| } |
| |
| /* Create a ctf_next_t. */ |
| |
| ctf_next_t * |
| ctf_next_create (void) |
| { |
| return calloc (1, sizeof (struct ctf_next)); |
| } |
| |
| /* Destroy a ctf_next_t, for early exit from iterators. */ |
| |
| void |
| ctf_next_destroy (ctf_next_t *i) |
| { |
| if (i == NULL) |
| return; |
| |
| if (i->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) |
| free (i->u.ctn_sorted_hkv); |
| if (i->ctn_next) |
| ctf_next_destroy (i->ctn_next); |
| free (i); |
| } |
| |
| /* Copy a ctf_next_t. */ |
| |
| ctf_next_t * |
| ctf_next_copy (ctf_next_t *i) |
| { |
| ctf_next_t *i2; |
| |
| if ((i2 = ctf_next_create()) == NULL) |
| return NULL; |
| memcpy (i2, i, sizeof (struct ctf_next)); |
| |
| if (i2->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) |
| { |
| size_t els = ctf_dynhash_elements ((ctf_dynhash_t *) i->cu.ctn_h); |
| if ((i2->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL) |
| { |
| free (i2); |
| return NULL; |
| } |
| memcpy (i2->u.ctn_sorted_hkv, i->u.ctn_sorted_hkv, |
| els * sizeof (ctf_next_hkv_t)); |
| } |
| return i2; |
| } |