blob: 2744dea46ac99b4890590af17a15ddbf84651cba [file] [log] [blame]
/* Copyright (C) 2000 Free Software Foundation
* Contributed by Alexandre Oliva <aoliva@cygnus.com>
*
* This file is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* Generator of tests for Maverick.
*
* See the following file for usage and documentation. */
#include "../all/test-gen.c"
/* These are the ARM registers. Some of them have canonical names
* other than r##, so we'll use both in the asm input, but only the
* canonical names in the expected disassembler output. */
char *arm_regs[] = {
/* Canonical names. */
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "sp", "lr", "pc",
/* Alternate names, i.e., those that can be used in the assembler,
* but that will never be emitted by the disassembler. */
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};
/* The various types of registers: ARM's registers, Maverick's
* f/d/fx/dx registers, Maverick's accumulators and Maverick's status
* register. */
#define armreg(shift) \
reg_r (arm_regs, shift, 0xf, mk_get_bits (5u))
#define mvreg(prefix, shift) \
reg_p ("mv" prefix, shift, mk_get_bits (4u))
#define acreg(shift) \
reg_p ("mvax", shift, mk_get_bits (2u))
#define dspsc \
literal ("dspsc"), tick_random
/* This outputs the condition flag that may follow each ARM insn.
* Since the condition 15 is invalid, we use it to check that the
* assembler recognizes the absence of a condition as `al'. However,
* the disassembler won't ever output `al', so, if we emit it in the
* assembler, expect the condition to be omitted in the disassembler
* output. */
int
arm_cond (func_arg *arg, insn_data *data)
#define arm_cond { arm_cond }
{
static const char conds[16][3] = {
"eq", "ne", "cs", "cc",
"mi", "pl", "vs", "vc",
"hi", "ls", "ge", "lt",
"gt", "le", "al", ""
};
unsigned val = get_bits (4u);
data->as_in = data->dis_out = strdup (conds[val]);
if (val == 14)
data->dis_out = strdup ("");
data->bits = (val == 15 ? 14 : val) << 28;
return 0;
}
/* The sign of an offset is actually used to determined whether the
* absolute value of the offset should be added or subtracted, so we
* must adjust negative values so that they do not overflow: -256 is
* not valid, but -0 is distinct from +0. */
int
off8s (func_arg *arg, insn_data *data)
#define off8s { off8s }
{
int val = get_bits (9s);
char value[6], *strt = value;
*strt++ = '#';
if (val < 0)
{
*strt++ = '-';
++val;
val = -val;
data->bits = val;
}
else
data->bits = val | (1 << 23);
sprintf (strt, "%i", val);
data->as_in = data->dis_out = strdup (value);
return 0;
}
/* This function generates a 7-bit signed constant, emitted as
* follows: the 4 least-significant bits are stored in the 4
* least-significant bits of the word; the 3 most-significant bits are
* stored in bits 7:5, i.e., bit 4 is skipped. */
int
imm7 (func_arg *arg, insn_data *data)
#define imm7 { imm7 }
{
int val = get_bits (7s);
char value[6];
data->bits = (val & 0x0f) | (2 * (val & 0x70));
sprintf (value, "#%i", val);
data->as_in = data->dis_out = strdup (value);
return 0;
}
/* Convenience wrapper to define_insn, that prefixes every insn with
* `cf' (so, if you specify command-line arguments, remember that `cf'
* must *not* be part of the string), and post-fixes a condition code.
* insname and insnvar specify the main insn name and a variant;
* they're just concatenated, and insnvar is often empty. word is the
* bit pattern that defines the insn, properly shifted, and funcs is a
* sequence of funcs that define the operands and the syntax of the
* insn. */
#define mv_insn(insname, insnvar, word, funcs...) \
define_insn(insname ## insnvar, \
literal ("cf"), \
insn_bits (insname, word), \
arm_cond, \
tab, \
## funcs)
/* Define a single LDC/STC variant. op is the main insn opcode; ld
* stands for load (it should be 0 on stores), dword selects 64-bit
* operations, pre should be enabled for pre-increment, and wb, for
* write-back. sep1, sep2 and sep3 are syntactical elements ([]!)
* that the assembler will use to enable pre and wb. It would
* probably have been cleaner to couple the syntactical elements with
* the pre/wb bits directly, but it would have required the definition
* of more functions. */
#define LDST(insname, insnvar, op, ld, dword, regname, pre, wb, sep1, sep2, sep3) \
mv_insn (insname, insnvar, \
(12<<24)|(op<<8)|(ld<<20)|(pre<<24)|(dword<<22)|(wb<<21), \
mvreg (regname, 12), comma, \
lsqbkt, armreg (16), sep1, comma, off8s, sep2, sep3, \
tick_random)
/* Define all variants of an LDR or STR instruction, namely,
* pre-indexed without write-back, pre-indexed with write-back and
* post-indexed. */
#define LDSTall(insname, op, ld, dword, regname) \
LDST (insname, _p, op, ld, dword, regname, 1, 0, nothing, rsqbkt, nothing); \
LDST (insname, _pw, op, ld, dword, regname, 1, 1, nothing, rsqbkt, literal("!")); \
LDST (insname, ,op, ld, dword, regname, 0, 0, rsqbkt, nothing, nothing)
/* Produce the insn identifiers of all LDST variants of a given insn.
* To be used in the initialization of an insn group array. */
#define insns_LDSTall(insname) \
insn (insname ## _p), insn (insname ## _pw), insn (insname)
/* Define a CDP variant that uses two registers, at offsets 12 and 16.
* The two opcodes and the co-processor number identify the CDP
* insn. */
#define CDP2(insname, var, cpnum, opcode1, opcode2, reg1name, reg2name) \
mv_insn (insname##var, , \
(14<<24)|((opcode1)<<20)|((cpnum)<<8)|((opcode2)<<5), \
mvreg (reg1name, 12), comma, mvreg (reg2name, 16))
/* Define a 32-bit integer CDP instruction with two operands. */
#define CDP2fx(insname, opcode1, opcode2) \
CDP2 (insname, 32, 5, opcode1, opcode2, "fx", "fx")
/* Define a 64-bit integer CDP instruction with two operands. */
#define CDP2dx(insname, opcode1, opcode2) \
CDP2 (insname, 64, 5, opcode1, opcode2, "dx", "dx")
/* Define a float CDP instruction with two operands. */
#define CDP2f(insname, opcode1, opcode2) \
CDP2 (insname, s, 4, opcode1, opcode2, "f", "f")
/* Define a double CDP instruction with two operands. */
#define CDP2d(insname, opcode1, opcode2) \
CDP2 (insname, d, 4, opcode1, opcode2, "d", "d")
/* Define a CDP instruction with two register operands and one 7-bit
* signed immediate generated with imm7. */
#define CDP2_imm7(insname, cpnum, opcode1, reg1name, reg2name) \
mv_insn (insname, , (14<<24)|((opcode1)<<20)|((cpnum)<<8), \
mvreg (reg1name, 12), comma, mvreg (reg2name, 16), comma, imm7, \
tick_random)
/* Produce the insn identifiers of CDP floating-point or integer insn
* pairs (i.e., it appends the suffixes for 32-bit and 64-bit
* insns. */
#define CDPfp_insns(insname) \
insn (insname ## s), insn (insname ## d)
#define CDPx_insns(insname) \
insn (insname ## 32), insn (insname ## 64)
/* Define a CDP instruction with 3 operands, at offsets 12, 16, 0. */
#define CDP3(insname, var, cpnum, opcode1, opcode2, reg1name, reg2name, reg3name) \
mv_insn (insname##var, , \
(14<<24)|((opcode1)<<20)|((cpnum)<<8)|((opcode2)<<5), \
mvreg (reg1name, 12), comma, mvreg (reg2name, 16), comma, \
mvreg (reg3name, 0), tick_random)
/* Define a 32-bit integer CDP instruction with three operands. */
#define CDP3fx(insname, opcode1, opcode2) \
CDP3 (insname, 32, 5, opcode1, opcode2, "fx", "fx", "fx")
/* Define a 64-bit integer CDP instruction with three operands. */
#define CDP3dx(insname, opcode1, opcode2) \
CDP3 (insname, 64, 5, opcode1, opcode2, "dx", "dx", "dx")
/* Define a float CDP instruction with three operands. */
#define CDP3f(insname, opcode1, opcode2) \
CDP3 (insname, s, 4, opcode1, opcode2, "f", "f", "f")
/* Define a double CDP instruction with three operands. */
#define CDP3d(insname, opcode1, opcode2) \
CDP3 (insname, d, 4, opcode1, opcode2, "d", "d", "d")
/* Define a CDP instruction with four operands, at offsets 5, 12, 16
* and 0. Used only for ACC instructions. */
#define CDP4(insname, opcode1, reg2spec, reg3name, reg4name) \
mv_insn (insname, , (14<<24)|((opcode1)<<20)|(6<<8), \
acreg (5), comma, reg2spec, comma, \
mvreg (reg3name, 16), comma, mvreg (reg4name, 0))
/* Define a CDP4 instruction with one accumulator operands. */
#define CDP41A(insname, opcode1) \
CDP4 (insname, opcode1, mvreg ("fx", 12), "fx", "fx")
/* Define a CDP4 instruction with two accumulator operands. */
#define CDP42A(insname, opcode1) \
CDP4 (insname, opcode1, acreg (12), "fx", "fx")
/* Define a MCR or MRC instruction with two register operands. */
#define MCRC2(insname, cpnum, opcode1, dir, opcode2, reg1spec, reg2spec) \
mv_insn (insname, , \
((14<<24)|((opcode1)<<21)|((dir)<<20)| \
((cpnum)<<8)|((opcode2)<<5)|(1<<4)), \
reg1spec, comma, reg2spec)
/* Define a move from a DSP register to an ARM register. */
#define MVDSPARM(insname, cpnum, opcode2, regDSPname) \
MCRC2 (mv ## insname, cpnum, 0, 0, opcode2, \
mvreg (regDSPname, 16), armreg(12))
/* Define a move from an ARM register to a DSP register. */
#define MVARMDSP(insname, cpnum, opcode2, regDSPname) \
MCRC2 (mv ## insname, cpnum, 0, 1, opcode2, \
armreg (12), mvreg (regDSPname, 16))
/* Define a move from a DSP register to a DSP accumulator. */
#define MVDSPACC(insname, opcode2, regDSPname) \
MCRC2 (mv ## insname, 6, 0, 1, opcode2, acreg (0), mvreg (regDSPname, 16))
/* Define a move from a DSP accumulator to a DSP register. */
#define MVACCDSP(insname, opcode2, regDSPname) \
MCRC2 (mv ## insname, 6, 0, 0, opcode2, mvreg (regDSPname, 0), acreg (16))
/* Define move insns between a float DSP register and an ARM
* register. */
#define MVf(nameAD, nameDA, opcode2) \
MVDSPARM (nameAD, 4, opcode2, "f"); \
MVARMDSP (nameDA, 4, opcode2, "f")
/* Define move insns between a double DSP register and an ARM
* register. */
#define MVd(nameAD, nameDA, opcode2) \
MVDSPARM (nameAD, 4, opcode2, "d"); \
MVARMDSP (nameDA, 4, opcode2, "d")
/* Define move insns between a 32-bit integer DSP register and an ARM
* register. */
#define MVfx(nameAD, nameDA, opcode2) \
MVDSPARM (nameAD, 5, opcode2, "fx"); \
MVARMDSP (nameDA, 5, opcode2, "fx")
/* Define move insns between a 64-bit integer DSP register and an ARM
* register. */
#define MVdx(nameAD, nameDA, opcode2) \
MVDSPARM (nameAD, 5, opcode2, "dx"); \
MVARMDSP (nameDA, 5, opcode2, "dx")
/* Define move insns between a 32-bit DSP register and a DSP
* accumulator. */
#define MVfxa(nameFA, nameAF, opcode2) \
MVDSPACC (nameFA, opcode2, "fx"); \
MVACCDSP (nameAF, opcode2, "fx")
/* Define move insns between a 64-bit DSP register and a DSP
* accumulator. */
#define MVdxa(nameDA, nameAD, opcode2) \
MVDSPACC (nameDA, opcode2, "dx"); \
MVACCDSP (nameAD, opcode2, "dx")
/* Produce the insn identifiers for a pair of mv insns. */
#define insns_MV(name1, name2) \
insn (mv ## name1), insn (mv ## name2)
/* Define a MCR or MRC instruction with three register operands. */
#define MCRC3(insname, cpnum, opcode1, dir, opcode2, reg1spec, reg2spec, reg3spec) \
mv_insn (insname, , \
((14<<24)|((opcode1)<<21)|((dir)<<20)| \
((cpnum)<<8)|((opcode2)<<5)|(1<<4)), \
reg1spec, comma, reg2spec, comma, reg3spec, \
tick_random)
/* Define all load_store insns. */
LDSTall (ldrs, 4, 1, 0, "f");
LDSTall (ldrd, 4, 1, 1, "d");
LDSTall (ldr32, 5, 1, 0, "fx");
LDSTall (ldr64, 5, 1, 1, "dx");
LDSTall (strs, 4, 0, 0, "f");
LDSTall (strd, 4, 0, 1, "d");
LDSTall (str32, 5, 0, 0, "fx");
LDSTall (str64, 5, 0, 1, "dx");
/* Create the load_store insn group. */
func *load_store_insns[] = {
insns_LDSTall (ldrs), insns_LDSTall (ldrd),
insns_LDSTall (ldr32), insns_LDSTall (ldr64),
insns_LDSTall (strs), insns_LDSTall (strd),
insns_LDSTall (str32), insns_LDSTall (str64),
0
};
/* Define all move insns. */
MVf (sr, rs, 2);
MVd (dlr, rdl, 0);
MVd (dhr, rdh, 1);
MVdx (64lr, r64l, 0);
MVdx (64hr, r64h, 1);
MVfxa (al32, 32al, 0);
MVfxa (am32, 32am, 1);
MVfxa (ah32, 32ah, 2);
MVfxa (a32, 32a, 3);
MVdxa (a64, 64a, 4);
MCRC2 (mvsc32, 6, 0, 1, 5, dspsc, mvreg ("fx", 16));
MCRC2 (mv32sc, 6, 0, 0, 5, mvreg ("fx", 0), dspsc);
CDP2 (cpys, , 4, 0, 0, "f", "f");
CDP2 (cpyd, , 4, 0, 1, "d", "d");
/* Create the move insns group. */
func *move_insns[] = {
insns_MV (sr, rs), insns_MV (dlr, rdl), insns_MV (dhr, rdh),
insns_MV (64lr, r64l), insns_MV (64hr, r64h),
insns_MV (al32, 32al), insns_MV (am32, 32am), insns_MV (ah32, 32ah),
insns_MV (a32, 32a), insns_MV (a64, 64a),
insn (mvsc32), insn (mv32sc), insn (cpys), insn (cpyd),
0
};
/* Define all conversion insns. */
CDP2 (cvtsd, , 4, 0, 3, "d", "f");
CDP2 (cvtds, , 4, 0, 2, "f", "d");
CDP2 (cvt32s, , 4, 0, 4, "f", "fx");
CDP2 (cvt32d, , 4, 0, 5, "d", "fx");
CDP2 (cvt64s, , 4, 0, 6, "f", "dx");
CDP2 (cvt64d, , 4, 0, 7, "d", "dx");
CDP2 (cvts32, , 5, 1, 4, "fx", "f");
CDP2 (cvtd32, , 5, 1, 5, "fx", "d");
CDP2 (truncs32, , 5, 1, 6, "fx", "f");
CDP2 (truncd32, , 5, 1, 7, "fx", "d");
/* Create the conv insns group. */
func *conv_insns[] = {
insn (cvtsd), insn (cvtds), insn (cvt32s), insn (cvt32d),
insn (cvt64s), insn (cvt64d), insn (cvts32), insn (cvtd32),
insn (truncs32), insn (truncd32),
0
};
/* Define all shift insns. */
MCRC3 (rshl32, 5, 0, 0, 2, mvreg ("fx", 16), mvreg ("fx", 0), armreg(12));
MCRC3 (rshl64, 5, 0, 0, 3, mvreg ("dx", 16), mvreg ("dx", 0), armreg(12));
CDP2_imm7 (sh32, 5, 0, "fx", "fx");
CDP2_imm7 (sh64, 5, 2, "dx", "dx");
/* Create the shift insns group. */
func *shift_insns[] = {
insn (rshl32), insn (rshl64),
insn (sh32), insn (sh64),
0
};
/* Define all comparison insns. */
MCRC3 (cmps, 4, 0, 1, 4, armreg (12), mvreg ("f", 16), mvreg ("f", 0));
MCRC3 (cmpd, 4, 0, 1, 5, armreg (12), mvreg ("d", 16), mvreg ("d", 0));
MCRC3 (cmp32, 5, 0, 1, 4, armreg (12), mvreg ("fx", 16), mvreg ("fx", 0));
MCRC3 (cmp64, 5, 0, 1, 5, armreg (12), mvreg ("dx", 16), mvreg ("dx", 0));
/* Create the comp insns group. */
func *comp_insns[] = {
insn (cmps), insn (cmpd),
insn (cmp32), insn (cmp64),
0
};
/* Define all floating-point arithmetic insns. */
CDP2f (abs, 3, 0);
CDP2d (abs, 3, 1);
CDP2f (neg, 3, 2);
CDP2d (neg, 3, 3);
CDP3f (add, 3, 4);
CDP3d (add, 3, 5);
CDP3f (sub, 3, 6);
CDP3d (sub, 3, 7);
CDP3f (mul, 1, 0);
CDP3d (mul, 1, 1);
/* Create the fp-arith insns group. */
func *fp_arith_insns[] = {
CDPfp_insns (abs), CDPfp_insns (neg),
CDPfp_insns (add), CDPfp_insns (sub), CDPfp_insns (mul),
0
};
/* Define all integer arithmetic insns. */
CDP2fx (abs, 3, 0);
CDP2dx (abs, 3, 1);
CDP2fx (neg, 3, 2);
CDP2dx (neg, 3, 3);
CDP3fx (add, 3, 4);
CDP3dx (add, 3, 5);
CDP3fx (sub, 3, 6);
CDP3dx (sub, 3, 7);
CDP3fx (mul, 1, 0);
CDP3dx (mul, 1, 1);
CDP3fx (mac, 1, 2);
CDP3fx (msc, 1, 3);
/* Create the int-arith insns group. */
func *int_arith_insns[] = {
CDPx_insns (abs), CDPx_insns (neg),
CDPx_insns (add), CDPx_insns (sub), CDPx_insns (mul),
insn (mac32), insn (msc32),
0
};
/* Define all accumulator arithmetic insns. */
CDP41A (madd32, 0);
CDP41A (msub32, 1);
CDP42A (madda32, 2);
CDP42A (msuba32, 3);
/* Create the acc-arith insns group. */
func *acc_arith_insns[] = {
insn (madd32), insn (msub32),
insn (madda32), insn (msuba32),
0
};
/* Create the set of all groups. */
group_t
groups[] = {
{ "load_store", load_store_insns },
{ "move", move_insns },
{ "conv", conv_insns },
{ "shift", shift_insns },
{ "comp", comp_insns },
{ "fp_arith", fp_arith_insns },
{ "int_arith", int_arith_insns },
{ "acc_arith", acc_arith_insns },
{ 0 }
};
int
main(int argc, char *argv[])
{
FILE *as_in = stdout, *dis_out = stderr;
/* Check whether we're filtering insns. */
if (argc > 1)
skip_list = argv + 1;
/* Output assembler header. */
fputs ("\t.text\n"
"\t.align\n",
as_in);
/* Output comments for the testsuite-driver and the initial
* disassembler output. */
fputs ("#objdump: -dr --prefix-address --show-raw-insn\n"
"#name: Maverick\n"
"#as: -marm9e\n"
"\n"
"# Test the instructions of Maverick\n"
"\n"
".*: +file format.*arm.*\n"
"\n"
"Disassembly of section .text:\n",
dis_out);
/* Now emit all (selected) insns. */
output_groups (groups, as_in, dis_out);
exit (0);
}