blob: 4c33e6da588fc9412457194544ca45007f563781 [file] [log] [blame]
/* Target-dependent code for GNU/Linux SPARC.
Copyright 2003, 2004 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "floatformat.h"
#include "frame.h"
#include "frame-unwind.h"
#include "gdbarch.h"
#include "gdbcore.h"
#include "osabi.h"
#include "regcache.h"
#include "solib-svr4.h"
#include "symtab.h"
#include "trad-frame.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "sparc-tdep.h"
/* Recognizing signal handler frames. */
/* GNU/Linux has two flavors of signals. Normal signal handlers, and
"realtime" (RT) signals. The RT signals can provide additional
information to the signal handler if the SA_SIGINFO flag is set
when establishing a signal handler using `sigaction'. It is not
unlikely that future versions of GNU/Linux will support SA_SIGINFO
for normal signals too. */
/* When the sparc Linux kernel calls a signal handler and the
SA_RESTORER flag isn't set, the return address points to a bit of
code on the stack. This function returns whether the PC appears to
be within this bit of code.
The instruction sequence for normal signals is
mov __NR_sigreturn, %g1 ! hex: 0x821020d8
ta 0x10 ! hex: 0x91d02010
Checking for the code sequence should be somewhat reliable, because
the effect is to call the system call sigreturn. This is unlikely
to occur anywhere other than a signal trampoline.
It kind of sucks that we have to read memory from the process in
order to identify a signal trampoline, but there doesn't seem to be
any other way. However, sparc32_linux_pc_in_sigtramp arranges to
only call us if no function name could be identified, which should
be the case since the code is on the stack. */
#define LINUX32_SIGTRAMP_INSN0 0x821020d8 /* mov __NR_sigreturn, %g1 */
#define LINUX32_SIGTRAMP_INSN1 0x91d02010 /* ta 0x10 */
/* The instruction sequence for RT signals is
mov __NR_rt_sigreturn, %g1 ! hex: 0x82102065
ta {0x10,0x6d} ! hex: 0x91d02010 or 0x91d0206d
The effect is to call the system call rt_sigreturn. The trap number
is variable based upon whether this is a 32-bit or 64-bit sparc binary.
Note that 64-bit binaries only use this RT signal return method. */
#define LINUX32_RT_SIGTRAMP_INSN0 0x82102065
#define LINUX32_RT_SIGTRAMP_INSN1 0x91d02010
/* If PC is in a sigtramp routine consisting of the instructions INSN0
and INSN1, return the address of the start of the routine.
Otherwise, return 0. */
CORE_ADDR
sparc_linux_sigtramp_start (struct frame_info *next_frame,
ULONGEST insn0, ULONGEST insn1)
{
CORE_ADDR pc = frame_pc_unwind (next_frame);
ULONGEST word0, word1;
unsigned char buf[8]; /* Two instructions. */
/* We only recognize a signal trampoline if PC is at the start of
one of the instructions. We optimize for finding the PC at the
start of the instruction sequence, as will be the case when the
trampoline is not the first frame on the stack. We assume that
in the case where the PC is not at the start of the instruction
sequence, there will be a few trailing readable bytes on the
stack. */
if (!safe_frame_unwind_memory (next_frame, pc, buf, sizeof buf))
return 0;
word0 = extract_unsigned_integer (buf, 4);
if (word0 != insn0)
{
if (word0 != insn1)
return 0;
pc -= 4;
if (!safe_frame_unwind_memory (next_frame, pc, buf, sizeof buf))
return 0;
word0 = extract_unsigned_integer (buf, 4);
}
word1 = extract_unsigned_integer (buf + 4, 4);
if (word0 != insn0 || word1 != insn1)
return 0;
return pc;
}
static CORE_ADDR
sparc32_linux_sigtramp_start (struct frame_info *next_frame)
{
return sparc_linux_sigtramp_start (next_frame, LINUX32_SIGTRAMP_INSN0,
LINUX32_SIGTRAMP_INSN1);
}
static CORE_ADDR
sparc32_linux_rt_sigtramp_start (struct frame_info *next_frame)
{
return sparc_linux_sigtramp_start (next_frame, LINUX32_RT_SIGTRAMP_INSN0,
LINUX32_RT_SIGTRAMP_INSN1);
}
static int
sparc32_linux_sigtramp_p (struct frame_info *next_frame)
{
CORE_ADDR pc = frame_pc_unwind (next_frame);
char *name;
find_pc_partial_function (pc, &name, NULL, NULL);
/* If we have NAME, we can optimize the search. The trampolines are
named __restore and __restore_rt. However, they aren't dynamically
exported from the shared C library, so the trampoline may appear to
be part of the preceding function. This should always be sigaction,
__sigaction, or __libc_sigaction (all aliases to the same function). */
if (name == NULL || strstr (name, "sigaction") != NULL)
return (sparc32_linux_sigtramp_start (next_frame) != 0
|| sparc32_linux_rt_sigtramp_start (next_frame) != 0);
return (strcmp ("__restore", name) == 0
|| strcmp ("__restore_rt", name) == 0);
}
static struct sparc_frame_cache *
sparc32_linux_sigtramp_frame_cache (struct frame_info *next_frame,
void **this_cache)
{
struct sparc_frame_cache *cache;
CORE_ADDR sigcontext_addr, addr;
int regnum;
if (*this_cache)
return *this_cache;
cache = sparc32_frame_cache (next_frame, this_cache);
gdb_assert (cache == *this_cache);
/* ??? What about signal trampolines that aren't frameless? */
regnum = SPARC_SP_REGNUM;
cache->base = frame_unwind_register_unsigned (next_frame, regnum);
regnum = SPARC_O1_REGNUM;
sigcontext_addr = frame_unwind_register_unsigned (next_frame, regnum);
addr = sparc32_linux_sigtramp_start (next_frame);
if (addr == 0)
{
/* If this is a RT signal trampoline, adjust SIGCONTEXT_ADDR
accordingly. */
addr = sparc32_linux_rt_sigtramp_start (next_frame);
if (addr)
sigcontext_addr += 128;
else
addr = frame_func_unwind (next_frame);
}
cache->pc = addr;
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
cache->saved_regs[SPARC32_PSR_REGNUM].addr = sigcontext_addr + 0;
cache->saved_regs[SPARC32_PC_REGNUM].addr = sigcontext_addr + 4;
cache->saved_regs[SPARC32_NPC_REGNUM].addr = sigcontext_addr + 8;
cache->saved_regs[SPARC32_Y_REGNUM].addr = sigcontext_addr + 12;
/* Since %g0 is always zero, keep the identity encoding. */
for (regnum = SPARC_G1_REGNUM, addr = sigcontext_addr + 20;
regnum <= SPARC_O7_REGNUM; regnum++, addr += 4)
cache->saved_regs[regnum].addr = addr;
for (regnum = SPARC_L0_REGNUM, addr = cache->base;
regnum <= SPARC_I7_REGNUM; regnum++, addr += 4)
cache->saved_regs[regnum].addr = addr;
return cache;
}
static void
sparc32_linux_sigtramp_frame_this_id (struct frame_info *next_frame,
void **this_cache,
struct frame_id *this_id)
{
struct sparc_frame_cache *cache =
sparc32_linux_sigtramp_frame_cache (next_frame, this_cache);
(*this_id) = frame_id_build (cache->base, cache->pc);
}
static void
sparc32_linux_sigtramp_frame_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp,
CORE_ADDR *addrp,
int *realnump, void *valuep)
{
struct sparc_frame_cache *cache =
sparc32_linux_sigtramp_frame_cache (next_frame, this_cache);
trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind sparc32_linux_sigtramp_frame_unwind =
{
SIGTRAMP_FRAME,
sparc32_linux_sigtramp_frame_this_id,
sparc32_linux_sigtramp_frame_prev_register
};
static const struct frame_unwind *
sparc32_linux_sigtramp_frame_sniffer (struct frame_info *next_frame)
{
if (sparc32_linux_sigtramp_p (next_frame))
return &sparc32_linux_sigtramp_frame_unwind;
return NULL;
}
static void
sparc32_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
/* GNU/Linux is very similar to Solaris ... */
sparc32_sol2_init_abi (info, gdbarch);
/* ... but doesn't have kernel-assisted single-stepping support. */
set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
/* GNU/Linux doesn't support the 128-bit `long double' from the psABI. */
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
frame_unwind_append_sniffer (gdbarch, sparc32_linux_sigtramp_frame_sniffer);
}
/* Provide a prototype to silence -Wmissing-prototypes. */
extern void _initialize_sparc_linux_tdep (void);
void
_initialize_sparc_linux_tdep (void)
{
gdbarch_register_osabi (bfd_arch_sparc, 0, GDB_OSABI_LINUX,
sparc32_linux_init_abi);
}