blob: 8923ca7b3cbfb6190ef89021935b887979a71ecf [file] [log] [blame]
/* BFD semi-generic back-end for a.out binaries.
Copyright (C) 1990-2019 Free Software Foundation, Inc.
Written by Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
/*
SECTION
a.out backends
DESCRIPTION
BFD supports a number of different flavours of a.out format,
though the major differences are only the sizes of the
structures on disk, and the shape of the relocation
information.
The support is split into a basic support file @file{aoutx.h}
and other files which derive functions from the base. One
derivation file is @file{aoutf1.h} (for a.out flavour 1), and
adds to the basic a.out functions support for sun3, sun4, and
386 a.out files, to create a target jump vector for a specific
target.
This information is further split out into more specific files
for each machine, including @file{sunos.c} for sun3 and sun4,
and @file{demo64.c} for a demonstration of a 64 bit a.out format.
The base file @file{aoutx.h} defines general mechanisms for
reading and writing records to and from disk and various
other methods which BFD requires. It is included by
@file{aout32.c} and @file{aout64.c} to form the names
<<aout_32_swap_exec_header_in>>, <<aout_64_swap_exec_header_in>>, etc.
As an example, this is what goes on to make the back end for a
sun4, from @file{aout32.c}:
| #define ARCH_SIZE 32
| #include "aoutx.h"
Which exports names:
| ...
| aout_32_canonicalize_reloc
| aout_32_find_nearest_line
| aout_32_get_lineno
| aout_32_get_reloc_upper_bound
| ...
from @file{sunos.c}:
| #define TARGET_NAME "a.out-sunos-big"
| #define VECNAME sparc_aout_sunos_be_vec
| #include "aoutf1.h"
requires all the names from @file{aout32.c}, and produces the jump vector
| sparc_aout_sunos_be_vec
The file @file{host-aout.c} is a special case. It is for a large set
of hosts that use ``more or less standard'' a.out files, and
for which cross-debugging is not interesting. It uses the
standard 32-bit a.out support routines, but determines the
file offsets and addresses of the text, data, and BSS
sections, the machine architecture and machine type, and the
entry point address, in a host-dependent manner. Once these
values have been determined, generic code is used to handle
the object file.
When porting it to run on a new system, you must supply:
| HOST_PAGE_SIZE
| HOST_SEGMENT_SIZE
| HOST_MACHINE_ARCH (optional)
| HOST_MACHINE_MACHINE (optional)
| HOST_TEXT_START_ADDR
| HOST_STACK_END_ADDR
in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These
values, plus the structures and macros defined in @file{a.out.h} on
your host system, will produce a BFD target that will access
ordinary a.out files on your host. To configure a new machine
to use @file{host-aout.c}, specify:
| TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
| TDEPFILES= host-aout.o trad-core.o
in the @file{config/@var{XXX}.mt} file, and modify @file{configure.ac}
to use the
@file{@var{XXX}.mt} file (by setting "<<bfd_target=XXX>>") when your
configuration is selected. */
/* Some assumptions:
* Any BFD with D_PAGED set is ZMAGIC, and vice versa.
Doesn't matter what the setting of WP_TEXT is on output, but it'll
get set on input.
* Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC.
* Any BFD with both flags clear is OMAGIC.
(Just want to make these explicit, so the conditions tested in this
file make sense if you're more familiar with a.out than with BFD.) */
#define KEEPIT udata.i
#include "sysdep.h"
#include <limits.h>
#include "bfd.h"
#include "safe-ctype.h"
#include "bfdlink.h"
#include "libaout.h"
#include "libbfd.h"
#include "aout/aout64.h"
#include "aout/stab_gnu.h"
#include "aout/ar.h"
/*
SUBSECTION
Relocations
DESCRIPTION
The file @file{aoutx.h} provides for both the @emph{standard}
and @emph{extended} forms of a.out relocation records.
The standard records contain only an address, a symbol index,
and a type field. The extended records also have a full
integer for an addend. */
#ifndef CTOR_TABLE_RELOC_HOWTO
#define CTOR_TABLE_RELOC_IDX 2
#define CTOR_TABLE_RELOC_HOWTO(BFD) \
((obj_reloc_entry_size (BFD) == RELOC_EXT_SIZE \
? howto_table_ext : howto_table_std) \
+ CTOR_TABLE_RELOC_IDX)
#endif
#ifndef MY_swap_std_reloc_in
#define MY_swap_std_reloc_in NAME (aout, swap_std_reloc_in)
#endif
#ifndef MY_swap_ext_reloc_in
#define MY_swap_ext_reloc_in NAME (aout, swap_ext_reloc_in)
#endif
#ifndef MY_swap_std_reloc_out
#define MY_swap_std_reloc_out NAME (aout, swap_std_reloc_out)
#endif
#ifndef MY_swap_ext_reloc_out
#define MY_swap_ext_reloc_out NAME (aout, swap_ext_reloc_out)
#endif
#ifndef MY_final_link_relocate
#define MY_final_link_relocate _bfd_final_link_relocate
#endif
#ifndef MY_relocate_contents
#define MY_relocate_contents _bfd_relocate_contents
#endif
#define howto_table_ext NAME (aout, ext_howto_table)
#define howto_table_std NAME (aout, std_howto_table)
reloc_howto_type howto_table_ext[] =
{
/* Type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone. */
HOWTO (RELOC_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, 0, "8", FALSE, 0, 0x000000ff, FALSE),
HOWTO (RELOC_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, 0, "16", FALSE, 0, 0x0000ffff, FALSE),
HOWTO (RELOC_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "32", FALSE, 0, 0xffffffff, FALSE),
HOWTO (RELOC_DISP8, 0, 0, 8, TRUE, 0, complain_overflow_signed, 0, "DISP8", FALSE, 0, 0x000000ff, FALSE),
HOWTO (RELOC_DISP16, 0, 1, 16, TRUE, 0, complain_overflow_signed, 0, "DISP16", FALSE, 0, 0x0000ffff, FALSE),
HOWTO (RELOC_DISP32, 0, 2, 32, TRUE, 0, complain_overflow_signed, 0, "DISP32", FALSE, 0, 0xffffffff, FALSE),
HOWTO (RELOC_WDISP30, 2, 2, 30, TRUE, 0, complain_overflow_signed, 0, "WDISP30", FALSE, 0, 0x3fffffff, FALSE),
HOWTO (RELOC_WDISP22, 2, 2, 22, TRUE, 0, complain_overflow_signed, 0, "WDISP22", FALSE, 0, 0x003fffff, FALSE),
HOWTO (RELOC_HI22, 10, 2, 22, FALSE, 0, complain_overflow_bitfield, 0, "HI22", FALSE, 0, 0x003fffff, FALSE),
HOWTO (RELOC_22, 0, 2, 22, FALSE, 0, complain_overflow_bitfield, 0, "22", FALSE, 0, 0x003fffff, FALSE),
HOWTO (RELOC_13, 0, 2, 13, FALSE, 0, complain_overflow_bitfield, 0, "13", FALSE, 0, 0x00001fff, FALSE),
HOWTO (RELOC_LO10, 0, 2, 10, FALSE, 0, complain_overflow_dont, 0, "LO10", FALSE, 0, 0x000003ff, FALSE),
HOWTO (RELOC_SFA_BASE,0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "SFA_BASE", FALSE, 0, 0xffffffff, FALSE),
HOWTO (RELOC_SFA_OFF13,0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "SFA_OFF13", FALSE, 0, 0xffffffff, FALSE),
HOWTO (RELOC_BASE10, 0, 2, 10, FALSE, 0, complain_overflow_dont, 0, "BASE10", FALSE, 0, 0x000003ff, FALSE),
HOWTO (RELOC_BASE13, 0, 2, 13, FALSE, 0, complain_overflow_signed, 0, "BASE13", FALSE, 0, 0x00001fff, FALSE),
HOWTO (RELOC_BASE22, 10, 2, 22, FALSE, 0, complain_overflow_bitfield, 0, "BASE22", FALSE, 0, 0x003fffff, FALSE),
HOWTO (RELOC_PC10, 0, 2, 10, TRUE, 0, complain_overflow_dont, 0, "PC10", FALSE, 0, 0x000003ff, TRUE),
HOWTO (RELOC_PC22, 10, 2, 22, TRUE, 0, complain_overflow_signed, 0, "PC22", FALSE, 0, 0x003fffff, TRUE),
HOWTO (RELOC_JMP_TBL, 2, 2, 30, TRUE, 0, complain_overflow_signed, 0, "JMP_TBL", FALSE, 0, 0x3fffffff, FALSE),
HOWTO (RELOC_SEGOFF16,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "SEGOFF16", FALSE, 0, 0x00000000, FALSE),
HOWTO (RELOC_GLOB_DAT,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "GLOB_DAT", FALSE, 0, 0x00000000, FALSE),
HOWTO (RELOC_JMP_SLOT,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "JMP_SLOT", FALSE, 0, 0x00000000, FALSE),
HOWTO (RELOC_RELATIVE,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "RELATIVE", FALSE, 0, 0x00000000, FALSE),
HOWTO (0, 0, 3, 0, FALSE, 0, complain_overflow_dont, 0, "R_SPARC_NONE",FALSE, 0, 0x00000000, TRUE),
HOWTO (0, 0, 3, 0, FALSE, 0, complain_overflow_dont, 0, "R_SPARC_NONE",FALSE, 0, 0x00000000, TRUE),
#define RELOC_SPARC_REV32 RELOC_WDISP19
HOWTO (RELOC_SPARC_REV32, 0, 2, 32, FALSE, 0, complain_overflow_dont, 0,"R_SPARC_REV32",FALSE, 0, 0xffffffff, FALSE),
};
/* Convert standard reloc records to "arelent" format (incl byte swap). */
reloc_howto_type howto_table_std[] =
{
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone. */
HOWTO ( 0, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,0,"8", TRUE, 0x000000ff,0x000000ff, FALSE),
HOWTO ( 1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,0,"16", TRUE, 0x0000ffff,0x0000ffff, FALSE),
HOWTO ( 2, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,0,"32", TRUE, 0xffffffff,0xffffffff, FALSE),
HOWTO ( 3, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,0,"64", TRUE, 0xdeaddead,0xdeaddead, FALSE),
HOWTO ( 4, 0, 0, 8, TRUE, 0, complain_overflow_signed, 0,"DISP8", TRUE, 0x000000ff,0x000000ff, FALSE),
HOWTO ( 5, 0, 1, 16, TRUE, 0, complain_overflow_signed, 0,"DISP16", TRUE, 0x0000ffff,0x0000ffff, FALSE),
HOWTO ( 6, 0, 2, 32, TRUE, 0, complain_overflow_signed, 0,"DISP32", TRUE, 0xffffffff,0xffffffff, FALSE),
HOWTO ( 7, 0, 4, 64, TRUE, 0, complain_overflow_signed, 0,"DISP64", TRUE, 0xfeedface,0xfeedface, FALSE),
HOWTO ( 8, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"GOT_REL", FALSE, 0,0x00000000, FALSE),
HOWTO ( 9, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,0,"BASE16", FALSE,0xffffffff,0xffffffff, FALSE),
HOWTO (10, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,0,"BASE32", FALSE,0xffffffff,0xffffffff, FALSE),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
HOWTO (16, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"JMP_TABLE", FALSE, 0,0x00000000, FALSE),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
HOWTO (32, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"RELATIVE", FALSE, 0,0x00000000, FALSE),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
HOWTO (40, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"BASEREL", FALSE, 0,0x00000000, FALSE),
};
#define TABLE_SIZE(TABLE) (sizeof (TABLE) / sizeof (TABLE[0]))
reloc_howto_type *
NAME (aout, reloc_type_lookup) (bfd *abfd, bfd_reloc_code_real_type code)
{
#define EXT(i, j) case i: return & howto_table_ext [j]
#define STD(i, j) case i: return & howto_table_std [j]
int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE;
if (code == BFD_RELOC_CTOR)
switch (bfd_arch_bits_per_address (abfd))
{
case 32:
code = BFD_RELOC_32;
break;
case 64:
code = BFD_RELOC_64;
break;
}
if (ext)
switch (code)
{
EXT (BFD_RELOC_8, 0);
EXT (BFD_RELOC_16, 1);
EXT (BFD_RELOC_32, 2);
EXT (BFD_RELOC_HI22, 8);
EXT (BFD_RELOC_LO10, 11);
EXT (BFD_RELOC_32_PCREL_S2, 6);
EXT (BFD_RELOC_SPARC_WDISP22, 7);
EXT (BFD_RELOC_SPARC13, 10);
EXT (BFD_RELOC_SPARC_GOT10, 14);
EXT (BFD_RELOC_SPARC_BASE13, 15);
EXT (BFD_RELOC_SPARC_GOT13, 15);
EXT (BFD_RELOC_SPARC_GOT22, 16);
EXT (BFD_RELOC_SPARC_PC10, 17);
EXT (BFD_RELOC_SPARC_PC22, 18);
EXT (BFD_RELOC_SPARC_WPLT30, 19);
EXT (BFD_RELOC_SPARC_REV32, 26);
default:
return NULL;
}
else
/* std relocs. */
switch (code)
{
STD (BFD_RELOC_8, 0);
STD (BFD_RELOC_16, 1);
STD (BFD_RELOC_32, 2);
STD (BFD_RELOC_8_PCREL, 4);
STD (BFD_RELOC_16_PCREL, 5);
STD (BFD_RELOC_32_PCREL, 6);
STD (BFD_RELOC_16_BASEREL, 9);
STD (BFD_RELOC_32_BASEREL, 10);
default:
return NULL;
}
}
reloc_howto_type *
NAME (aout, reloc_name_lookup) (bfd *abfd, const char *r_name)
{
unsigned int i, size;
reloc_howto_type *howto_table;
if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
{
howto_table = howto_table_ext;
size = sizeof (howto_table_ext) / sizeof (howto_table_ext[0]);
}
else
{
howto_table = howto_table_std;
size = sizeof (howto_table_std) / sizeof (howto_table_std[0]);
}
for (i = 0; i < size; i++)
if (howto_table[i].name != NULL
&& strcasecmp (howto_table[i].name, r_name) == 0)
return &howto_table[i];
return NULL;
}
/*
SUBSECTION
Internal entry points
DESCRIPTION
@file{aoutx.h} exports several routines for accessing the
contents of an a.out file, which are gathered and exported in
turn by various format specific files (eg sunos.c).
*/
/*
FUNCTION
aout_@var{size}_swap_exec_header_in
SYNOPSIS
void aout_@var{size}_swap_exec_header_in,
(bfd *abfd,
struct external_exec *bytes,
struct internal_exec *execp);
DESCRIPTION
Swap the information in an executable header @var{raw_bytes} taken
from a raw byte stream memory image into the internal exec header
structure @var{execp}.
*/
#ifndef NAME_swap_exec_header_in
void
NAME (aout, swap_exec_header_in) (bfd *abfd,
struct external_exec *bytes,
struct internal_exec *execp)
{
/* The internal_exec structure has some fields that are unused in this
configuration (IE for i960), so ensure that all such uninitialized
fields are zero'd out. There are places where two of these structs
are memcmp'd, and thus the contents do matter. */
memset ((void *) execp, 0, sizeof (struct internal_exec));
/* Now fill in fields in the execp, from the bytes in the raw data. */
execp->a_info = H_GET_32 (abfd, bytes->e_info);
execp->a_text = GET_WORD (abfd, bytes->e_text);
execp->a_data = GET_WORD (abfd, bytes->e_data);
execp->a_bss = GET_WORD (abfd, bytes->e_bss);
execp->a_syms = GET_WORD (abfd, bytes->e_syms);
execp->a_entry = GET_WORD (abfd, bytes->e_entry);
execp->a_trsize = GET_WORD (abfd, bytes->e_trsize);
execp->a_drsize = GET_WORD (abfd, bytes->e_drsize);
}
#define NAME_swap_exec_header_in NAME (aout, swap_exec_header_in)
#endif
/*
FUNCTION
aout_@var{size}_swap_exec_header_out
SYNOPSIS
void aout_@var{size}_swap_exec_header_out
(bfd *abfd,
struct internal_exec *execp,
struct external_exec *raw_bytes);
DESCRIPTION
Swap the information in an internal exec header structure
@var{execp} into the buffer @var{raw_bytes} ready for writing to disk.
*/
void
NAME (aout, swap_exec_header_out) (bfd *abfd,
struct internal_exec *execp,
struct external_exec *bytes)
{
/* Now fill in fields in the raw data, from the fields in the exec struct. */
H_PUT_32 (abfd, execp->a_info , bytes->e_info);
PUT_WORD (abfd, execp->a_text , bytes->e_text);
PUT_WORD (abfd, execp->a_data , bytes->e_data);
PUT_WORD (abfd, execp->a_bss , bytes->e_bss);
PUT_WORD (abfd, execp->a_syms , bytes->e_syms);
PUT_WORD (abfd, execp->a_entry , bytes->e_entry);
PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize);
PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize);
}
/* Make all the section for an a.out file. */
bfd_boolean
NAME (aout, make_sections) (bfd *abfd)
{
if (obj_textsec (abfd) == NULL && bfd_make_section (abfd, ".text") == NULL)
return FALSE;
if (obj_datasec (abfd) == NULL && bfd_make_section (abfd, ".data") == NULL)
return FALSE;
if (obj_bsssec (abfd) == NULL && bfd_make_section (abfd, ".bss") == NULL)
return FALSE;
return TRUE;
}
/*
FUNCTION
aout_@var{size}_some_aout_object_p
SYNOPSIS
const bfd_target *aout_@var{size}_some_aout_object_p
(bfd *abfd,
struct internal_exec *execp,
const bfd_target *(*callback_to_real_object_p) (bfd *));
DESCRIPTION
Some a.out variant thinks that the file open in @var{abfd}
checking is an a.out file. Do some more checking, and set up
for access if it really is. Call back to the calling
environment's "finish up" function just before returning, to
handle any last-minute setup.
*/
const bfd_target *
NAME (aout, some_aout_object_p) (bfd *abfd,
struct internal_exec *execp,
const bfd_target *(*callback_to_real_object_p) (bfd *))
{
struct aout_data_struct *rawptr, *oldrawptr;
const bfd_target *result;
bfd_size_type amt = sizeof (* rawptr);
rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, amt);
if (rawptr == NULL)
return NULL;
oldrawptr = abfd->tdata.aout_data;
abfd->tdata.aout_data = rawptr;
/* Copy the contents of the old tdata struct. */
if (oldrawptr != NULL)
*abfd->tdata.aout_data = *oldrawptr;
abfd->tdata.aout_data->a.hdr = &rawptr->e;
/* Copy in the internal_exec struct. */
*(abfd->tdata.aout_data->a.hdr) = *execp;
execp = abfd->tdata.aout_data->a.hdr;
/* Set the file flags. */
abfd->flags = BFD_NO_FLAGS;
if (execp->a_drsize || execp->a_trsize)
abfd->flags |= HAS_RELOC;
/* Setting of EXEC_P has been deferred to the bottom of this function. */
if (execp->a_syms)
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
if (N_DYNAMIC (execp))
abfd->flags |= DYNAMIC;
if (N_MAGIC (execp) == ZMAGIC)
{
abfd->flags |= D_PAGED | WP_TEXT;
adata (abfd).magic = z_magic;
}
else if (N_MAGIC (execp) == QMAGIC)
{
abfd->flags |= D_PAGED | WP_TEXT;
adata (abfd).magic = z_magic;
adata (abfd).subformat = q_magic_format;
}
else if (N_MAGIC (execp) == NMAGIC)
{
abfd->flags |= WP_TEXT;
adata (abfd).magic = n_magic;
}
else if (N_MAGIC (execp) == OMAGIC
|| N_MAGIC (execp) == BMAGIC)
adata (abfd).magic = o_magic;
else
/* Should have been checked with N_BADMAG before this routine
was called. */
abort ();
abfd->start_address = execp->a_entry;
obj_aout_symbols (abfd) = NULL;
abfd->symcount = execp->a_syms / sizeof (struct external_nlist);
/* The default relocation entry size is that of traditional V7 Unix. */
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
/* The default symbol entry size is that of traditional Unix. */
obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE;
#ifdef USE_MMAP
bfd_init_window (&obj_aout_sym_window (abfd));
bfd_init_window (&obj_aout_string_window (abfd));
#endif
obj_aout_external_syms (abfd) = NULL;
obj_aout_external_strings (abfd) = NULL;
obj_aout_sym_hashes (abfd) = NULL;
if (! NAME (aout, make_sections) (abfd))
goto error_ret;
obj_datasec (abfd)->size = execp->a_data;
obj_bsssec (abfd)->size = execp->a_bss;
obj_textsec (abfd)->flags =
(execp->a_trsize != 0
? (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC)
: (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS));
obj_datasec (abfd)->flags =
(execp->a_drsize != 0
? (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC)
: (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS));
obj_bsssec (abfd)->flags = SEC_ALLOC;
#ifdef THIS_IS_ONLY_DOCUMENTATION
/* The common code can't fill in these things because they depend
on either the start address of the text segment, the rounding
up of virtual addresses between segments, or the starting file
position of the text segment -- all of which varies among different
versions of a.out. */
/* Call back to the format-dependent code to fill in the rest of the
fields and do any further cleanup. Things that should be filled
in by the callback: */
struct exec *execp = exec_hdr (abfd);
obj_textsec (abfd)->size = N_TXTSIZE (execp);
/* Data and bss are already filled in since they're so standard. */
/* The virtual memory addresses of the sections. */
obj_textsec (abfd)->vma = N_TXTADDR (execp);
obj_datasec (abfd)->vma = N_DATADDR (execp);
obj_bsssec (abfd)->vma = N_BSSADDR (execp);
/* The file offsets of the sections. */
obj_textsec (abfd)->filepos = N_TXTOFF (execp);
obj_datasec (abfd)->filepos = N_DATOFF (execp);
/* The file offsets of the relocation info. */
obj_textsec (abfd)->rel_filepos = N_TRELOFF (execp);
obj_datasec (abfd)->rel_filepos = N_DRELOFF (execp);
/* The file offsets of the string table and symbol table. */
obj_str_filepos (abfd) = N_STROFF (execp);
obj_sym_filepos (abfd) = N_SYMOFF (execp);
/* Determine the architecture and machine type of the object file. */
switch (N_MACHTYPE (exec_hdr (abfd)))
{
default:
abfd->obj_arch = bfd_arch_obscure;
break;
}
adata (abfd)->page_size = TARGET_PAGE_SIZE;
adata (abfd)->segment_size = SEGMENT_SIZE;
adata (abfd)->exec_bytes_size = EXEC_BYTES_SIZE;
return abfd->xvec;
/* The architecture is encoded in various ways in various a.out variants,
or is not encoded at all in some of them. The relocation size depends
on the architecture and the a.out variant. Finally, the return value
is the bfd_target vector in use. If an error occurs, return zero and
set bfd_error to the appropriate error code.
Formats such as b.out, which have additional fields in the a.out
header, should cope with them in this callback as well. */
#endif /* DOCUMENTATION */
result = (*callback_to_real_object_p) (abfd);
/* Now that the segment addresses have been worked out, take a better
guess at whether the file is executable. If the entry point
is within the text segment, assume it is. (This makes files
executable even if their entry point address is 0, as long as
their text starts at zero.).
This test had to be changed to deal with systems where the text segment
runs at a different location than the default. The problem is that the
entry address can appear to be outside the text segment, thus causing an
erroneous conclusion that the file isn't executable.
To fix this, we now accept any non-zero entry point as an indication of
executability. This will work most of the time, since only the linker
sets the entry point, and that is likely to be non-zero for most systems. */
if (execp->a_entry != 0
|| (execp->a_entry >= obj_textsec (abfd)->vma
&& execp->a_entry < (obj_textsec (abfd)->vma
+ obj_textsec (abfd)->size)
&& execp->a_trsize == 0
&& execp->a_drsize == 0))
abfd->flags |= EXEC_P;
#ifdef STAT_FOR_EXEC
else
{
struct stat stat_buf;
/* The original heuristic doesn't work in some important cases.
The a.out file has no information about the text start
address. For files (like kernels) linked to non-standard
addresses (ld -Ttext nnn) the entry point may not be between
the default text start (obj_textsec(abfd)->vma) and
(obj_textsec(abfd)->vma) + text size. This is not just a mach
issue. Many kernels are loaded at non standard addresses. */
if (abfd->iostream != NULL
&& (abfd->flags & BFD_IN_MEMORY) == 0
&& (fstat (fileno ((FILE *) (abfd->iostream)), &stat_buf) == 0)
&& ((stat_buf.st_mode & 0111) != 0))
abfd->flags |= EXEC_P;
}
#endif /* STAT_FOR_EXEC */
if (result)
return result;
error_ret:
bfd_release (abfd, rawptr);
abfd->tdata.aout_data = oldrawptr;
return NULL;
}
/*
FUNCTION
aout_@var{size}_mkobject
SYNOPSIS
bfd_boolean aout_@var{size}_mkobject, (bfd *abfd);
DESCRIPTION
Initialize BFD @var{abfd} for use with a.out files.
*/
bfd_boolean
NAME (aout, mkobject) (bfd *abfd)
{
struct aout_data_struct *rawptr;
bfd_size_type amt = sizeof (* rawptr);
bfd_set_error (bfd_error_system_call);
rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, amt);
if (rawptr == NULL)
return FALSE;
abfd->tdata.aout_data = rawptr;
exec_hdr (abfd) = &(rawptr->e);
obj_textsec (abfd) = NULL;
obj_datasec (abfd) = NULL;
obj_bsssec (abfd) = NULL;
return TRUE;
}
/*
FUNCTION
aout_@var{size}_machine_type
SYNOPSIS
enum machine_type aout_@var{size}_machine_type
(enum bfd_architecture arch,
unsigned long machine,
bfd_boolean *unknown);
DESCRIPTION
Keep track of machine architecture and machine type for
a.out's. Return the <<machine_type>> for a particular
architecture and machine, or <<M_UNKNOWN>> if that exact architecture
and machine can't be represented in a.out format.
If the architecture is understood, machine type 0 (default)
is always understood.
*/
enum machine_type
NAME (aout, machine_type) (enum bfd_architecture arch,
unsigned long machine,
bfd_boolean *unknown)
{
enum machine_type arch_flags;
arch_flags = M_UNKNOWN;
*unknown = TRUE;
switch (arch)
{
case bfd_arch_sparc:
if (machine == 0
|| machine == bfd_mach_sparc
|| machine == bfd_mach_sparc_sparclite
|| machine == bfd_mach_sparc_sparclite_le
|| machine == bfd_mach_sparc_v8plus
|| machine == bfd_mach_sparc_v8plusa
|| machine == bfd_mach_sparc_v8plusb
|| machine == bfd_mach_sparc_v8plusc
|| machine == bfd_mach_sparc_v8plusd
|| machine == bfd_mach_sparc_v8pluse
|| machine == bfd_mach_sparc_v8plusv
|| machine == bfd_mach_sparc_v8plusm
|| machine == bfd_mach_sparc_v8plusm8
|| machine == bfd_mach_sparc_v9
|| machine == bfd_mach_sparc_v9a
|| machine == bfd_mach_sparc_v9b
|| machine == bfd_mach_sparc_v9c
|| machine == bfd_mach_sparc_v9d
|| machine == bfd_mach_sparc_v9e
|| machine == bfd_mach_sparc_v9v
|| machine == bfd_mach_sparc_v9m
|| machine == bfd_mach_sparc_v9m8)
arch_flags = M_SPARC;
else if (machine == bfd_mach_sparc_sparclet)
arch_flags = M_SPARCLET;
break;
case bfd_arch_i386:
if (machine == 0
|| machine == bfd_mach_i386_i386
|| machine == bfd_mach_i386_i386_intel_syntax)
arch_flags = M_386;
break;
case bfd_arch_arm:
if (machine == 0)
arch_flags = M_ARM;
break;
case bfd_arch_mips:
switch (machine)
{
case 0:
case bfd_mach_mips3000:
case bfd_mach_mips3900:
arch_flags = M_MIPS1;
break;
case bfd_mach_mips6000:
arch_flags = M_MIPS2;
break;
case bfd_mach_mips4000:
case bfd_mach_mips4010:
case bfd_mach_mips4100:
case bfd_mach_mips4300:
case bfd_mach_mips4400:
case bfd_mach_mips4600:
case bfd_mach_mips4650:
case bfd_mach_mips8000:
case bfd_mach_mips9000:
case bfd_mach_mips10000:
case bfd_mach_mips12000:
case bfd_mach_mips14000:
case bfd_mach_mips16000:
case bfd_mach_mips16:
case bfd_mach_mipsisa32:
case bfd_mach_mipsisa32r2:
case bfd_mach_mipsisa32r3:
case bfd_mach_mipsisa32r5:
case bfd_mach_mipsisa32r6:
case bfd_mach_mips5:
case bfd_mach_mipsisa64:
case bfd_mach_mipsisa64r2:
case bfd_mach_mipsisa64r3:
case bfd_mach_mipsisa64r5:
case bfd_mach_mipsisa64r6:
case bfd_mach_mips_sb1:
case bfd_mach_mips_xlr:
/* FIXME: These should be MIPS3, MIPS4, MIPS16, MIPS32, etc. */
arch_flags = M_MIPS2;
break;
default:
arch_flags = M_UNKNOWN;
break;
}
break;
case bfd_arch_ns32k:
switch (machine)
{
case 0: arch_flags = M_NS32532; break;
case 32032: arch_flags = M_NS32032; break;
case 32532: arch_flags = M_NS32532; break;
default: arch_flags = M_UNKNOWN; break;
}
break;
case bfd_arch_vax:
*unknown = FALSE;
break;
case bfd_arch_cris:
if (machine == 0 || machine == 255)
arch_flags = M_CRIS;
break;
default:
arch_flags = M_UNKNOWN;
}
if (arch_flags != M_UNKNOWN)
*unknown = FALSE;
return arch_flags;
}
/*
FUNCTION
aout_@var{size}_set_arch_mach
SYNOPSIS
bfd_boolean aout_@var{size}_set_arch_mach,
(bfd *,
enum bfd_architecture arch,
unsigned long machine);
DESCRIPTION
Set the architecture and the machine of the BFD @var{abfd} to the
values @var{arch} and @var{machine}. Verify that @var{abfd}'s format
can support the architecture required.
*/
bfd_boolean
NAME (aout, set_arch_mach) (bfd *abfd,
enum bfd_architecture arch,
unsigned long machine)
{
if (! bfd_default_set_arch_mach (abfd, arch, machine))
return FALSE;
if (arch != bfd_arch_unknown)
{
bfd_boolean unknown;
NAME (aout, machine_type) (arch, machine, &unknown);
if (unknown)
return FALSE;
}
/* Determine the size of a relocation entry. */
switch (arch)
{
case bfd_arch_sparc:
case bfd_arch_mips:
obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE;
break;
default:
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
break;
}
return (*aout_backend_info (abfd)->set_sizes) (abfd);
}
static void
adjust_o_magic (bfd *abfd, struct internal_exec *execp)
{
file_ptr pos = adata (abfd).exec_bytes_size;
bfd_vma vma = 0;
int pad = 0;
/* Text. */
obj_textsec (abfd)->filepos = pos;
if (!obj_textsec (abfd)->user_set_vma)
obj_textsec (abfd)->vma = vma;
else
vma = obj_textsec (abfd)->vma;
pos += obj_textsec (abfd)->size;
vma += obj_textsec (abfd)->size;
/* Data. */
if (!obj_datasec (abfd)->user_set_vma)
{
obj_textsec (abfd)->size += pad;
pos += pad;
vma += pad;
obj_datasec (abfd)->vma = vma;
}
else
vma = obj_datasec (abfd)->vma;
obj_datasec (abfd)->filepos = pos;
pos += obj_datasec (abfd)->size;
vma += obj_datasec (abfd)->size;
/* BSS. */
if (!obj_bsssec (abfd)->user_set_vma)
{
obj_datasec (abfd)->size += pad;
pos += pad;
vma += pad;
obj_bsssec (abfd)->vma = vma;
}
else
{
/* The VMA of the .bss section is set by the VMA of the
.data section plus the size of the .data section. We may
need to add padding bytes to make this true. */
pad = obj_bsssec (abfd)->vma - vma;
if (pad > 0)
{
obj_datasec (abfd)->size += pad;
pos += pad;
}
}
obj_bsssec (abfd)->filepos = pos;
/* Fix up the exec header. */
execp->a_text = obj_textsec (abfd)->size;
execp->a_data = obj_datasec (abfd)->size;
execp->a_bss = obj_bsssec (abfd)->size;
N_SET_MAGIC (execp, OMAGIC);
}
static void
adjust_z_magic (bfd *abfd, struct internal_exec *execp)
{
bfd_size_type data_pad, text_pad;
file_ptr text_end;
const struct aout_backend_data *abdp;
/* TRUE if text includes exec header. */
bfd_boolean ztih;
abdp = aout_backend_info (abfd);
/* Text. */
ztih = (abdp != NULL
&& (abdp->text_includes_header
|| obj_aout_subformat (abfd) == q_magic_format));
obj_textsec (abfd)->filepos = (ztih
? adata (abfd).exec_bytes_size
: adata (abfd).zmagic_disk_block_size);
if (! obj_textsec (abfd)->user_set_vma)
{
/* ?? Do we really need to check for relocs here? */
obj_textsec (abfd)->vma = ((abfd->flags & HAS_RELOC)
? 0
: (ztih
? (abdp->default_text_vma
+ adata (abfd).exec_bytes_size)
: abdp->default_text_vma));
text_pad = 0;
}
else
{
/* The .text section is being loaded at an unusual address. We
may need to pad it such that the .data section starts at a page
boundary. */
if (ztih)
text_pad = ((obj_textsec (abfd)->filepos - obj_textsec (abfd)->vma)
& (adata (abfd).page_size - 1));
else
text_pad = ((- obj_textsec (abfd)->vma)
& (adata (abfd).page_size - 1));
}
/* Find start of data. */
if (ztih)
{
text_end = obj_textsec (abfd)->filepos + obj_textsec (abfd)->size;
text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
}
else
{
/* Note that if page_size == zmagic_disk_block_size, then
filepos == page_size, and this case is the same as the ztih
case. */
text_end = obj_textsec (abfd)->size;
text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
text_end += obj_textsec (abfd)->filepos;
}
obj_textsec (abfd)->size += text_pad;
text_end += text_pad;
/* Data. */
if (!obj_datasec (abfd)->user_set_vma)
{
bfd_vma vma;
vma = obj_textsec (abfd)->vma + obj_textsec (abfd)->size;
obj_datasec (abfd)->vma = BFD_ALIGN (vma, adata (abfd).segment_size);
}
if (abdp && abdp->zmagic_mapped_contiguous)
{
asection * text = obj_textsec (abfd);
asection * data = obj_datasec (abfd);
text_pad = data->vma - (text->vma + text->size);
/* Only pad the text section if the data
section is going to be placed after it. */
if (text_pad > 0)
text->size += text_pad;
}
obj_datasec (abfd)->filepos = (obj_textsec (abfd)->filepos
+ obj_textsec (abfd)->size);
/* Fix up exec header while we're at it. */
execp->a_text = obj_textsec (abfd)->size;
if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted)))
execp->a_text += adata (abfd).exec_bytes_size;
if (obj_aout_subformat (abfd) == q_magic_format)
N_SET_MAGIC (execp, QMAGIC);
else
N_SET_MAGIC (execp, ZMAGIC);
/* Spec says data section should be rounded up to page boundary. */
obj_datasec (abfd)->size
= align_power (obj_datasec (abfd)->size,
obj_bsssec (abfd)->alignment_power);
execp->a_data = BFD_ALIGN (obj_datasec (abfd)->size,
adata (abfd).page_size);
data_pad = execp->a_data - obj_datasec (abfd)->size;
/* BSS. */
if (!obj_bsssec (abfd)->user_set_vma)
obj_bsssec (abfd)->vma = (obj_datasec (abfd)->vma
+ obj_datasec (abfd)->size);
/* If the BSS immediately follows the data section and extra space
in the page is left after the data section, fudge data
in the header so that the bss section looks smaller by that
amount. We'll start the bss section there, and lie to the OS.
(Note that a linker script, as well as the above assignment,
could have explicitly set the BSS vma to immediately follow
the data section.) */
if (align_power (obj_bsssec (abfd)->vma, obj_bsssec (abfd)->alignment_power)
== obj_datasec (abfd)->vma + obj_datasec (abfd)->size)
execp->a_bss = (data_pad > obj_bsssec (abfd)->size
? 0 : obj_bsssec (abfd)->size - data_pad);
else
execp->a_bss = obj_bsssec (abfd)->size;
}
static void
adjust_n_magic (bfd *abfd, struct internal_exec *execp)
{
file_ptr pos = adata (abfd).exec_bytes_size;
bfd_vma vma = 0;
int pad;
/* Text. */
obj_textsec (abfd)->filepos = pos;
if (!obj_textsec (abfd)->user_set_vma)
obj_textsec (abfd)->vma = vma;
else
vma = obj_textsec (abfd)->vma;
pos += obj_textsec (abfd)->size;
vma += obj_textsec (abfd)->size;
/* Data. */
obj_datasec (abfd)->filepos = pos;
if (!obj_datasec (abfd)->user_set_vma)
obj_datasec (abfd)->vma = BFD_ALIGN (vma, adata (abfd).segment_size);
vma = obj_datasec (abfd)->vma;
/* Since BSS follows data immediately, see if it needs alignment. */
vma += obj_datasec (abfd)->size;
pad = align_power (vma, obj_bsssec (abfd)->alignment_power) - vma;
obj_datasec (abfd)->size += pad;
pos += obj_datasec (abfd)->size;
/* BSS. */
if (!obj_bsssec (abfd)->user_set_vma)
obj_bsssec (abfd)->vma = vma;
else
vma = obj_bsssec (abfd)->vma;
/* Fix up exec header. */
execp->a_text = obj_textsec (abfd)->size;
execp->a_data = obj_datasec (abfd)->size;
execp->a_bss = obj_bsssec (abfd)->size;
N_SET_MAGIC (execp, NMAGIC);
}
bfd_boolean
NAME (aout, adjust_sizes_and_vmas) (bfd *abfd)
{
struct internal_exec *execp = exec_hdr (abfd);
if (! NAME (aout, make_sections) (abfd))
return FALSE;
if (adata (abfd).magic != undecided_magic)
return TRUE;
obj_textsec (abfd)->size =
align_power (obj_textsec (abfd)->size,
obj_textsec (abfd)->alignment_power);
/* Rule (heuristic) for when to pad to a new page. Note that there
are (at least) two ways demand-paged (ZMAGIC) files have been
handled. Most Berkeley-based systems start the text segment at
(TARGET_PAGE_SIZE). However, newer versions of SUNOS start the text
segment right after the exec header; the latter is counted in the
text segment size, and is paged in by the kernel with the rest of
the text. */
/* This perhaps isn't the right way to do this, but made it simpler for me
to understand enough to implement it. Better would probably be to go
right from BFD flags to alignment/positioning characteristics. But the
old code was sloppy enough about handling the flags, and had enough
other magic, that it was a little hard for me to understand. I think
I understand it better now, but I haven't time to do the cleanup this
minute. */
if (abfd->flags & D_PAGED)
/* Whether or not WP_TEXT is set -- let D_PAGED override. */
adata (abfd).magic = z_magic;
else if (abfd->flags & WP_TEXT)
adata (abfd).magic = n_magic;
else
adata (abfd).magic = o_magic;
#ifdef BFD_AOUT_DEBUG /* requires gcc2 */
#if __GNUC__ >= 2
fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n",
({ char *str;
switch (adata (abfd).magic)
{
case n_magic: str = "NMAGIC"; break;
case o_magic: str = "OMAGIC"; break;
case z_magic: str = "ZMAGIC"; break;
default: abort ();
}
str;
}),
obj_textsec (abfd)->vma, obj_textsec (abfd)->size,
obj_textsec (abfd)->alignment_power,
obj_datasec (abfd)->vma, obj_datasec (abfd)->size,
obj_datasec (abfd)->alignment_power,
obj_bsssec (abfd)->vma, obj_bsssec (abfd)->size,
obj_bsssec (abfd)->alignment_power);
#endif
#endif
switch (adata (abfd).magic)
{
case o_magic:
adjust_o_magic (abfd, execp);
break;
case z_magic:
adjust_z_magic (abfd, execp);
break;
case n_magic:
adjust_n_magic (abfd, execp);
break;
default:
abort ();
}
#ifdef BFD_AOUT_DEBUG
fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n",
obj_textsec (abfd)->vma, obj_textsec (abfd)->size,
obj_textsec (abfd)->filepos,
obj_datasec (abfd)->vma, obj_datasec (abfd)->size,
obj_datasec (abfd)->filepos,
obj_bsssec (abfd)->vma, obj_bsssec (abfd)->size);
#endif
return TRUE;
}
/*
FUNCTION
aout_@var{size}_new_section_hook
SYNOPSIS
bfd_boolean aout_@var{size}_new_section_hook,
(bfd *abfd,
asection *newsect);
DESCRIPTION
Called by the BFD in response to a @code{bfd_make_section}
request.
*/
bfd_boolean
NAME (aout, new_section_hook) (bfd *abfd, asection *newsect)
{
/* Align to double at least. */
newsect->alignment_power = bfd_get_arch_info (abfd)->section_align_power;
if (bfd_get_format (abfd) == bfd_object)
{
if (obj_textsec (abfd) == NULL && !strcmp (newsect->name, ".text"))
{
obj_textsec (abfd)= newsect;
newsect->target_index = N_TEXT;
}
else if (obj_datasec (abfd) == NULL && !strcmp (newsect->name, ".data"))
{
obj_datasec (abfd) = newsect;
newsect->target_index = N_DATA;
}
else if (obj_bsssec (abfd) == NULL && !strcmp (newsect->name, ".bss"))
{
obj_bsssec (abfd) = newsect;
newsect->target_index = N_BSS;
}
}
/* We allow more than three sections internally. */
return _bfd_generic_new_section_hook (abfd, newsect);
}
bfd_boolean
NAME (aout, set_section_contents) (bfd *abfd,
sec_ptr section,
const void * location,
file_ptr offset,
bfd_size_type count)
{
if (! abfd->output_has_begun)
{
if (! NAME (aout, adjust_sizes_and_vmas) (abfd))
return FALSE;
}
if (section == obj_bsssec (abfd))
{
bfd_set_error (bfd_error_no_contents);
return FALSE;
}
if (section != obj_textsec (abfd)
&& section != obj_datasec (abfd))
{
if (aout_section_merge_with_text_p (abfd, section))
section->filepos = obj_textsec (abfd)->filepos +
(section->vma - obj_textsec (abfd)->vma);
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: can not represent section `%pA' in a.out object file format"),
abfd, section);
bfd_set_error (bfd_error_nonrepresentable_section);
return FALSE;
}
}
if (count != 0)
{
if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0
|| bfd_bwrite (location, count, abfd) != count)
return FALSE;
}
return TRUE;
}
/* Read the external symbols from an a.out file. */
static bfd_boolean
aout_get_external_symbols (bfd *abfd)
{
if (obj_aout_external_syms (abfd) == NULL)
{
bfd_size_type count;
struct external_nlist *syms;
bfd_size_type amt = exec_hdr (abfd)->a_syms;
count = amt / EXTERNAL_NLIST_SIZE;
if (count == 0)
return TRUE; /* Nothing to do. */
#ifdef USE_MMAP
if (! bfd_get_file_window (abfd, obj_sym_filepos (abfd), amt,
&obj_aout_sym_window (abfd), TRUE))
return FALSE;
syms = (struct external_nlist *) obj_aout_sym_window (abfd).data;
#else
/* We allocate using malloc to make the values easy to free
later on. If we put them on the objalloc it might not be
possible to free them. */
syms = (struct external_nlist *) bfd_malloc (amt);
if (syms == NULL)
return FALSE;
if (bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET) != 0
|| bfd_bread (syms, amt, abfd) != amt)
{
free (syms);
return FALSE;
}
#endif
obj_aout_external_syms (abfd) = syms;
obj_aout_external_sym_count (abfd) = count;
}
if (obj_aout_external_strings (abfd) == NULL
&& exec_hdr (abfd)->a_syms != 0)
{
unsigned char string_chars[BYTES_IN_WORD];
bfd_size_type stringsize;
char *strings;
bfd_size_type amt = BYTES_IN_WORD;
/* Get the size of the strings. */
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0
|| bfd_bread ((void *) string_chars, amt, abfd) != amt)
return FALSE;
stringsize = GET_WORD (abfd, string_chars);
if (stringsize == 0)
stringsize = 1;
else if (stringsize < BYTES_IN_WORD
|| (size_t) stringsize != stringsize)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
#ifdef USE_MMAP
if (stringsize >= BYTES_IN_WORD)
{
if (! bfd_get_file_window (abfd, obj_str_filepos (abfd), stringsize + 1,
&obj_aout_string_window (abfd), TRUE))
return FALSE;
strings = (char *) obj_aout_string_window (abfd).data;
}
else
#endif
{
strings = (char *) bfd_malloc (stringsize + 1);
if (strings == NULL)
return FALSE;
if (stringsize >= BYTES_IN_WORD)
{
/* Keep the string count in the buffer for convenience
when indexing with e_strx. */
amt = stringsize - BYTES_IN_WORD;
if (bfd_bread (strings + BYTES_IN_WORD, amt, abfd) != amt)
{
free (strings);
return FALSE;
}
}
}
/* Ensure that a zero index yields an empty string. */
strings[0] = '\0';
/* Ensure that the string buffer is NUL terminated. */
strings[stringsize] = 0;
obj_aout_external_strings (abfd) = strings;
obj_aout_external_string_size (abfd) = stringsize;
}
return TRUE;
}
/* Translate an a.out symbol into a BFD symbol. The desc, other, type
and symbol->value fields of CACHE_PTR will be set from the a.out
nlist structure. This function is responsible for setting
symbol->flags and symbol->section, and adjusting symbol->value. */
static bfd_boolean
translate_from_native_sym_flags (bfd *abfd, aout_symbol_type *cache_ptr)
{
flagword visible;
if ((cache_ptr->type & N_STAB) != 0
|| cache_ptr->type == N_FN)
{
asection *sec;
/* This is a debugging symbol. */
cache_ptr->symbol.flags = BSF_DEBUGGING;
/* Work out the symbol section. */
switch (cache_ptr->type & N_TYPE)
{
case N_TEXT:
case N_FN:
sec = obj_textsec (abfd);
break;
case N_DATA:
sec = obj_datasec (abfd);
break;
case N_BSS:
sec = obj_bsssec (abfd);
break;
default:
case N_ABS:
sec = bfd_abs_section_ptr;
break;
}
cache_ptr->symbol.section = sec;
cache_ptr->symbol.value -= sec->vma;
return TRUE;
}
/* Get the default visibility. This does not apply to all types, so
we just hold it in a local variable to use if wanted. */
if ((cache_ptr->type & N_EXT) == 0)
visible = BSF_LOCAL;
else
visible = BSF_GLOBAL;
switch (cache_ptr->type)
{
default:
case N_ABS: case N_ABS | N_EXT:
cache_ptr->symbol.section = bfd_abs_section_ptr;
cache_ptr->symbol.flags = visible;
break;
case N_UNDF | N_EXT:
if (cache_ptr->symbol.value != 0)
{
/* This is a common symbol. */
cache_ptr->symbol.flags = BSF_GLOBAL;
cache_ptr->symbol.section = bfd_com_section_ptr;
}
else
{
cache_ptr->symbol.flags = 0;
cache_ptr->symbol.section = bfd_und_section_ptr;
}
break;
case N_TEXT: case N_TEXT | N_EXT:
cache_ptr->symbol.section = obj_textsec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = visible;
break;
/* N_SETV symbols used to represent set vectors placed in the
data section. They are no longer generated. Theoretically,
it was possible to extract the entries and combine them with
new ones, although I don't know if that was ever actually
done. Unless that feature is restored, treat them as data
symbols. */
case N_SETV: case N_SETV | N_EXT:
case N_DATA: case N_DATA | N_EXT:
cache_ptr->symbol.section = obj_datasec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = visible;
break;
case N_BSS: case N_BSS | N_EXT:
cache_ptr->symbol.section = obj_bsssec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = visible;
break;
case N_SETA: case N_SETA | N_EXT:
case N_SETT: case N_SETT | N_EXT:
case N_SETD: case N_SETD | N_EXT:
case N_SETB: case N_SETB | N_EXT:
{
/* This code is no longer needed. It used to be used to make
the linker handle set symbols, but they are now handled in
the add_symbols routine instead. */
switch (cache_ptr->type & N_TYPE)
{
case N_SETA:
cache_ptr->symbol.section = bfd_abs_section_ptr;
break;
case N_SETT:
cache_ptr->symbol.section = obj_textsec (abfd);
break;
case N_SETD:
cache_ptr->symbol.section = obj_datasec (abfd);
break;
case N_SETB:
cache_ptr->symbol.section = obj_bsssec (abfd);
break;
}
cache_ptr->symbol.flags |= BSF_CONSTRUCTOR;
}
break;
case N_WARNING:
/* This symbol is the text of a warning message. The next
symbol is the symbol to associate the warning with. If a
reference is made to that symbol, a warning is issued. */
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING;
cache_ptr->symbol.section = bfd_abs_section_ptr;
break;
case N_INDR: case N_INDR | N_EXT:
/* An indirect symbol. This consists of two symbols in a row.
The first symbol is the name of the indirection. The second
symbol is the name of the target. A reference to the first
symbol becomes a reference to the second. */
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT | visible;
cache_ptr->symbol.section = bfd_ind_section_ptr;
break;
case N_WEAKU:
cache_ptr->symbol.section = bfd_und_section_ptr;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKA:
cache_ptr->symbol.section = bfd_abs_section_ptr;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKT:
cache_ptr->symbol.section = obj_textsec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKD:
cache_ptr->symbol.section = obj_datasec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKB:
cache_ptr->symbol.section = obj_bsssec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = BSF_WEAK;
break;
}
return TRUE;
}
/* Set the fields of SYM_POINTER according to CACHE_PTR. */
static bfd_boolean
translate_to_native_sym_flags (bfd *abfd,
asymbol *cache_ptr,
struct external_nlist *sym_pointer)
{
bfd_vma value = cache_ptr->value;
asection *sec;
bfd_vma off;
/* Mask out any existing type bits in case copying from one section
to another. */
sym_pointer->e_type[0] &= ~N_TYPE;
sec = bfd_asymbol_section (cache_ptr);
off = 0;
if (sec == NULL)
{
/* This case occurs, e.g., for the *DEBUG* section of a COFF
file. */
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: can not represent section for symbol `%s' in a.out "
"object file format"),
abfd,
cache_ptr->name != NULL ? cache_ptr->name : _("*unknown*"));
bfd_set_error (bfd_error_nonrepresentable_section);
return FALSE;
}
if (sec->output_section != NULL)
{
off = sec->output_offset;
sec = sec->output_section;
}
if (bfd_is_abs_section (sec))
sym_pointer->e_type[0] |= N_ABS;
else if (sec == obj_textsec (abfd))
sym_pointer->e_type[0] |= N_TEXT;
else if (sec == obj_datasec (abfd))
sym_pointer->e_type[0] |= N_DATA;
else if (sec == obj_bsssec (abfd))
sym_pointer->e_type[0] |= N_BSS;
else if (bfd_is_und_section (sec))
sym_pointer->e_type[0] = N_UNDF | N_EXT;
else if (bfd_is_ind_section (sec))
sym_pointer->e_type[0] = N_INDR;
else if (bfd_is_com_section (sec))
sym_pointer->e_type[0] = N_UNDF | N_EXT;
else
{
if (aout_section_merge_with_text_p (abfd, sec))
sym_pointer->e_type[0] |= N_TEXT;
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: can not represent section `%pA' in a.out object file format"),
abfd, sec);
bfd_set_error (bfd_error_nonrepresentable_section);
return FALSE;
}
}
/* Turn the symbol from section relative to absolute again. */
value += sec->vma + off;
if ((cache_ptr->flags & BSF_WARNING) != 0)
sym_pointer->e_type[0] = N_WARNING;
if ((cache_ptr->flags & BSF_DEBUGGING) != 0)
sym_pointer->e_type[0] = ((aout_symbol_type *) cache_ptr)->type;
else if ((cache_ptr->flags & BSF_GLOBAL) != 0)
sym_pointer->e_type[0] |= N_EXT;
else if ((cache_ptr->flags & BSF_LOCAL) != 0)
sym_pointer->e_type[0] &= ~N_EXT;
if ((cache_ptr->flags & BSF_CONSTRUCTOR) != 0)
{
int type = ((aout_symbol_type *) cache_ptr)->type;
switch (type)
{
case N_ABS: type = N_SETA; break;
case N_TEXT: type = N_SETT; break;
case N_DATA: type = N_SETD; break;
case N_BSS: type = N_SETB; break;
}
sym_pointer->e_type[0] = type;
}
if ((cache_ptr->flags & BSF_WEAK) != 0)
{
int type;
switch (sym_pointer->e_type[0] & N_TYPE)
{
default:
case N_ABS: type = N_WEAKA; break;
case N_TEXT: type = N_WEAKT; break;
case N_DATA: type = N_WEAKD; break;
case N_BSS: type = N_WEAKB; break;
case N_UNDF: type = N_WEAKU; break;
}
sym_pointer->e_type[0] = type;
}
PUT_WORD (abfd, value, sym_pointer->e_value);
return TRUE;
}
/* Native-level interface to symbols. */
asymbol *
NAME (aout, make_empty_symbol) (bfd *abfd)
{
bfd_size_type amt = sizeof (aout_symbol_type);
aout_symbol_type *new_symbol = (aout_symbol_type *) bfd_zalloc (abfd, amt);
if (!new_symbol)
return NULL;
new_symbol->symbol.the_bfd = abfd;
return &new_symbol->symbol;
}
/* Translate a set of internal symbols into external symbols. */
bfd_boolean
NAME (aout, translate_symbol_table) (bfd *abfd,
aout_symbol_type *in,
struct external_nlist *ext,
bfd_size_type count,
char *str,
bfd_size_type strsize,
bfd_boolean dynamic)
{
struct external_nlist *ext_end;
ext_end = ext + count;
for (; ext < ext_end; ext++, in++)
{
bfd_vma x;
x = GET_WORD (abfd, ext->e_strx);
in->symbol.the_bfd = abfd;
/* For the normal symbols, the zero index points at the number
of bytes in the string table but is to be interpreted as the
null string. For the dynamic symbols, the number of bytes in
the string table is stored in the __DYNAMIC structure and the
zero index points at an actual string. */
if (x == 0 && ! dynamic)
in->symbol.name = "";
else if (x < strsize)
in->symbol.name = str + x;
else
{
_bfd_error_handler
(_("%pB: invalid string offset %" PRIu64 " >= %" PRIu64),
abfd, (uint64_t) x, (uint64_t) strsize);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
in->symbol.value = GET_SWORD (abfd, ext->e_value);
in->desc = H_GET_16 (abfd, ext->e_desc);
in->other = H_GET_8 (abfd, ext->e_other);
in->type = H_GET_8 (abfd, ext->e_type);
in->symbol.udata.p = NULL;
if (! translate_from_native_sym_flags (abfd, in))
return FALSE;
if (dynamic)
in->symbol.flags |= BSF_DYNAMIC;
}
return TRUE;
}
/* We read the symbols into a buffer, which is discarded when this
function exits. We read the strings into a buffer large enough to
hold them all plus all the cached symbol entries. */
bfd_boolean
NAME (aout, slurp_symbol_table) (bfd *abfd)
{
struct external_nlist *old_external_syms;
aout_symbol_type *cached;
bfd_size_type cached_size;
/* If there's no work to be done, don't do any. */
if (obj_aout_symbols (abfd) != NULL)
return TRUE;
old_external_syms = obj_aout_external_syms (abfd);
if (! aout_get_external_symbols (abfd))
return FALSE;
cached_size = obj_aout_external_sym_count (abfd);
if (cached_size == 0)
return TRUE; /* Nothing to do. */
cached_size *= sizeof (aout_symbol_type);
cached = (aout_symbol_type *) bfd_zmalloc (cached_size);
if (cached == NULL)
return FALSE;
/* Convert from external symbol information to internal. */
if (! (NAME (aout, translate_symbol_table)
(abfd, cached,
obj_aout_external_syms (abfd),
obj_aout_external_sym_count (abfd),
obj_aout_external_strings (abfd),
obj_aout_external_string_size (abfd),
FALSE)))
{
free (cached);
return FALSE;
}
abfd->symcount = obj_aout_external_sym_count (abfd);
obj_aout_symbols (abfd) = cached;
/* It is very likely that anybody who calls this function will not
want the external symbol information, so if it was allocated
because of our call to aout_get_external_symbols, we free it up
right away to save space. */
if (old_external_syms == NULL
&& obj_aout_external_syms (abfd) != NULL)
{
#ifdef USE_MMAP
bfd_free_window (&obj_aout_sym_window (abfd));
#else
free (obj_aout_external_syms (abfd));
#endif
obj_aout_external_syms (abfd) = NULL;
}
return TRUE;
}
/* We use a hash table when writing out symbols so that we only write
out a particular string once. This helps particularly when the
linker writes out stabs debugging entries, because each different
contributing object file tends to have many duplicate stabs
strings.
This hash table code breaks dbx on SunOS 4.1.3, so we don't do it
if BFD_TRADITIONAL_FORMAT is set. */
/* Get the index of a string in a strtab, adding it if it is not
already present. */
static inline bfd_size_type
add_to_stringtab (bfd *abfd,
struct bfd_strtab_hash *tab,
const char *str,
bfd_boolean copy)
{
bfd_boolean hash;
bfd_size_type str_index;
/* An index of 0 always means the empty string. */
if (str == 0 || *str == '\0')
return 0;
/* Don't hash if BFD_TRADITIONAL_FORMAT is set, because SunOS dbx
doesn't understand a hashed string table. */
hash = TRUE;
if ((abfd->flags & BFD_TRADITIONAL_FORMAT) != 0)
hash = FALSE;
str_index = _bfd_stringtab_add (tab, str, hash, copy);
if (str_index != (bfd_size_type) -1)
/* Add BYTES_IN_WORD to the return value to account for the
space taken up by the string table size. */
str_index += BYTES_IN_WORD;
return str_index;
}
/* Write out a strtab. ABFD is already at the right location in the
file. */
static bfd_boolean
emit_stringtab (bfd *abfd, struct bfd_strtab_hash *tab)
{
bfd_byte buffer[BYTES_IN_WORD];
bfd_size_type amt = BYTES_IN_WORD;
/* The string table starts with the size. */
PUT_WORD (abfd, _bfd_stringtab_size (tab) + BYTES_IN_WORD, buffer);
if (bfd_bwrite ((void *) buffer, amt, abfd) != amt)
return FALSE;
return _bfd_stringtab_emit (abfd, tab);
}
bfd_boolean
NAME (aout, write_syms) (bfd *abfd)
{
unsigned int count ;
asymbol **generic = bfd_get_outsymbols (abfd);
struct bfd_strtab_hash *strtab;
strtab = _bfd_stringtab_init ();
if (strtab == NULL)
return FALSE;
for (count = 0; count < bfd_get_symcount (abfd); count++)
{
asymbol *g = generic[count];
bfd_size_type indx;
struct external_nlist nsp;
bfd_size_type amt;
indx = add_to_stringtab (abfd, strtab, g->name, FALSE);
if (indx == (bfd_size_type) -1)
goto error_return;
PUT_WORD (abfd, indx, (bfd_byte *) nsp.e_strx);
if (bfd_asymbol_flavour (g) == abfd->xvec->flavour)
{
H_PUT_16 (abfd, aout_symbol (g)->desc, nsp.e_desc);
H_PUT_8 (abfd, aout_symbol (g)->other, nsp.e_other);
H_PUT_8 (abfd, aout_symbol (g)->type, nsp.e_type);
}
else
{
H_PUT_16 (abfd, 0, nsp.e_desc);
H_PUT_8 (abfd, 0, nsp.e_other);
H_PUT_8 (abfd, 0, nsp.e_type);
}
if (! translate_to_native_sym_flags (abfd, g, &nsp))
goto error_return;
amt = EXTERNAL_NLIST_SIZE;
if (bfd_bwrite ((void *) &nsp, amt, abfd) != amt)
goto error_return;
/* NB: `KEEPIT' currently overlays `udata.p', so set this only
here, at the end. */
g->KEEPIT = count;
}
if (! emit_stringtab (abfd, strtab))
goto error_return;
_bfd_stringtab_free (strtab);
return TRUE;
error_return:
_bfd_stringtab_free (strtab);
return FALSE;
}
long
NAME (aout, canonicalize_symtab) (bfd *abfd, asymbol **location)
{
unsigned int counter = 0;
aout_symbol_type *symbase;
if (!NAME (aout, slurp_symbol_table) (abfd))
return -1;
for (symbase = obj_aout_symbols (abfd);
counter++ < bfd_get_symcount (abfd);
)
*(location++) = (asymbol *) (symbase++);
*location++ =0;
return bfd_get_symcount (abfd);
}
/* Standard reloc stuff. */
/* Output standard relocation information to a file in target byte order. */
extern void NAME (aout, swap_std_reloc_out)
(bfd *, arelent *, struct reloc_std_external *);
void
NAME (aout, swap_std_reloc_out) (bfd *abfd,
arelent *g,
struct reloc_std_external *natptr)
{
int r_index;
asymbol *sym = *(g->sym_ptr_ptr);
int r_extern;
unsigned int r_length;
int r_pcrel;
int r_baserel, r_jmptable, r_relative;
asection *output_section = sym->section->output_section;
PUT_WORD (abfd, g->address, natptr->r_address);
BFD_ASSERT (g->howto != NULL);
r_length = g->howto->size ; /* Size as a power of two. */
r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */
/* XXX This relies on relocs coming from a.out files. */
r_baserel = (g->howto->type & 8) != 0;
r_jmptable = (g->howto->type & 16) != 0;
r_relative = (g->howto->type & 32) != 0;
/* Name was clobbered by aout_write_syms to be symbol index. */
/* If this relocation is relative to a symbol then set the
r_index to the symbols index, and the r_extern bit.
Absolute symbols can come in in two ways, either as an offset
from the abs section, or as a symbol which has an abs value.
check for that here. */
if (bfd_is_com_section (output_section)
|| bfd_is_abs_section (output_section)
|| bfd_is_und_section (output_section)
/* PR gas/3041 a.out relocs against weak symbols
must be treated as if they were against externs. */
|| (sym->flags & BSF_WEAK))
{
if (bfd_abs_section_ptr->symbol == sym)
{
/* Whoops, looked like an abs symbol, but is
really an offset from the abs section. */
r_index = N_ABS;
r_extern = 0;
}
else
{
/* Fill in symbol. */
r_extern = 1;
r_index = (*(g->sym_ptr_ptr))->KEEPIT;
}
}
else
{
/* Just an ordinary section. */
r_extern = 0;
r_index = output_section->target_index;
}
/* Now the fun stuff. */
if (bfd_header_big_endian (abfd))
{
natptr->r_index[0] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[2] = r_index;
natptr->r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0)
| (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0)
| (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0)
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0)
| (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG));
}
else
{
natptr->r_index[2] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[0] = r_index;
natptr->r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0)
| (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0)
| (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0)
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0)
| (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE));
}
}
/* Extended stuff. */
/* Output extended relocation information to a file in target byte order. */
extern void NAME (aout, swap_ext_reloc_out)
(bfd *, arelent *, struct reloc_ext_external *);
void
NAME (aout, swap_ext_reloc_out) (bfd *abfd,
arelent *g,
struct reloc_ext_external *natptr)
{
int r_index;
int r_extern;
unsigned int r_type;
bfd_vma r_addend;
asymbol *sym = *(g->sym_ptr_ptr);
asection *output_section = sym->section->output_section;
PUT_WORD (abfd, g->address, natptr->r_address);
r_type = (unsigned int) g->howto->type;
r_addend = g->addend;
if ((sym->flags & BSF_SECTION_SYM) != 0)
r_addend += (*(g->sym_ptr_ptr))->section->output_section->vma;
/* If this relocation is relative to a symbol then set the
r_index to the symbols index, and the r_extern bit.
Absolute symbols can come in in two ways, either as an offset
from the abs section, or as a symbol which has an abs value.
check for that here. */
if (bfd_is_abs_section (bfd_asymbol_section (sym)))
{
r_extern = 0;
r_index = N_ABS;
}
else if ((sym->flags & BSF_SECTION_SYM) == 0)
{
if (bfd_is_und_section (bfd_asymbol_section (sym))
|| (sym->flags & BSF_GLOBAL) != 0)
r_extern = 1;
else
r_extern = 0;
r_index = (*(g->sym_ptr_ptr))->KEEPIT;
}
else
{
/* Just an ordinary section. */
r_extern = 0;
r_index = output_section->target_index;
}
/* Now the fun stuff. */
if (bfd_header_big_endian (abfd))
{
natptr->r_index[0] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[2] = r_index;
natptr->r_type[0] = ((r_extern ? RELOC_EXT_BITS_EXTERN_BIG : 0)
| (r_type << RELOC_EXT_BITS_TYPE_SH_BIG));
}
else
{
natptr->r_index[2] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[0] = r_index;
natptr->r_type[0] = ((r_extern ? RELOC_EXT_BITS_EXTERN_LITTLE : 0)
| (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE));
}
PUT_WORD (abfd, r_addend, natptr->r_addend);
}
/* BFD deals internally with all things based from the section they're
in. so, something in 10 bytes into a text section with a base of
50 would have a symbol (.text+10) and know .text vma was 50.
Aout keeps all it's symbols based from zero, so the symbol would
contain 60. This macro subs the base of each section from the value
to give the true offset from the section. */
#define MOVE_ADDRESS(ad) \
if (r_extern) \
{ \
/* Undefined symbol. */ \
cache_ptr->sym_ptr_ptr = symbols + r_index; \
cache_ptr->addend = ad; \
} \
else \
{ \
/* Defined, section relative. Replace symbol with pointer to \
symbol which points to section. */ \
switch (r_index) \
{ \
case N_TEXT: \
case N_TEXT | N_EXT: \
cache_ptr->sym_ptr_ptr = obj_textsec (abfd)->symbol_ptr_ptr; \
cache_ptr->addend = ad - su->textsec->vma; \
break; \
case N_DATA: \
case N_DATA | N_EXT: \
cache_ptr->sym_ptr_ptr = obj_datasec (abfd)->symbol_ptr_ptr; \
cache_ptr->addend = ad - su->datasec->vma; \
break; \
case N_BSS: \
case N_BSS | N_EXT: \
cache_ptr->sym_ptr_ptr = obj_bsssec (abfd)->symbol_ptr_ptr; \
cache_ptr->addend = ad - su->bsssec->vma; \
break; \
default: \
case N_ABS: \
case N_ABS | N_EXT: \
cache_ptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; \
cache_ptr->addend = ad; \
break; \
} \
}
void
NAME (aout, swap_ext_reloc_in) (bfd *abfd,
struct reloc_ext_external *bytes,
arelent *cache_ptr,
asymbol **symbols,
bfd_size_type symcount)
{
unsigned int r_index;
int r_extern;
unsigned int r_type;
struct aoutdata *su = &(abfd->tdata.aout_data->a);
cache_ptr->address = (GET_SWORD (abfd, bytes->r_address));
/* Now the fun stuff. */
if (bfd_header_big_endian (abfd))
{
r_index = (((unsigned int) bytes->r_index[0] << 16)
| ((unsigned int) bytes->r_index[1] << 8)
| bytes->r_index[2]);
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
r_type = ((bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
>> RELOC_EXT_BITS_TYPE_SH_BIG);
}
else
{
r_index = (((unsigned int) bytes->r_index[2] << 16)
| ((unsigned int) bytes->r_index[1] << 8)
| bytes->r_index[0]);
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
r_type = ((bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
>> RELOC_EXT_BITS_TYPE_SH_LITTLE);
}
if (r_type < TABLE_SIZE (howto_table_ext))
cache_ptr->howto = howto_table_ext + r_type;
else
cache_ptr->howto = NULL;
/* Base relative relocs are always against the symbol table,
regardless of the setting of r_extern. r_extern just reflects
whether the symbol the reloc is against is local or global. */
if (r_type == (unsigned int) RELOC_BASE10
|| r_type == (unsigned int) RELOC_BASE13
|| r_type == (unsigned int) RELOC_BASE22)
r_extern = 1;
if (r_extern && r_index > symcount)
{
/* We could arrange to return an error, but it might be useful
to see the file even if it is bad. */
r_extern = 0;
r_index = N_ABS;
}
MOVE_ADDRESS (GET_SWORD (abfd, bytes->r_addend));
}
void
NAME (aout, swap_std_reloc_in) (bfd *abfd,
struct reloc_std_external *bytes,
arelent *cache_ptr,
asymbol **symbols,
bfd_size_type symcount)
{
unsigned int r_index;
int r_extern;
unsigned int r_length;
int r_pcrel;
int r_baserel, r_jmptable, r_relative;
struct aoutdata *su = &(abfd->tdata.aout_data->a);
unsigned int howto_idx;
cache_ptr->address = H_GET_32 (abfd, bytes->r_address);
/* Now the fun stuff. */
if (bfd_header_big_endian (abfd))
{
r_index = (((unsigned int) bytes->r_index[0] << 16)
| ((unsigned int) bytes->r_index[1] << 8)
| bytes->r_index[2]);
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
r_length = ((bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
>> RELOC_STD_BITS_LENGTH_SH_BIG);
}
else
{
r_index = (((unsigned int) bytes->r_index[2] << 16)
| ((unsigned int) bytes->r_index[1] << 8)
| bytes->r_index[0]);
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE));
r_length = ((bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
>> RELOC_STD_BITS_LENGTH_SH_LITTLE);
}
howto_idx = (r_length + 4 * r_pcrel + 8 * r_baserel
+ 16 * r_jmptable + 32 * r_relative);
if (howto_idx < TABLE_SIZE (howto_table_std))
{
cache_ptr->howto = howto_table_std + howto_idx;
if (cache_ptr->howto->type == (unsigned int) -1)
cache_ptr->howto = NULL;
}
else
cache_ptr->howto = NULL;
/* Base relative relocs are always against the symbol table,
regardless of the setting of r_extern. r_extern just reflects
whether the symbol the reloc is against is local or global. */
if (r_baserel)
r_extern = 1;
if (r_extern && r_index >= symcount)
{
/* We could arrange to return an error, but it might be useful
to see the file even if it is bad. FIXME: Of course this
means that objdump -r *doesn't* see the actual reloc, and
objcopy silently writes a different reloc. */
r_extern = 0;
r_index = N_ABS;
}
MOVE_ADDRESS (0);
}
/* Read and swap the relocs for a section. */
bfd_boolean
NAME (aout, slurp_reloc_table) (bfd *abfd, sec_ptr asect, asymbol **symbols)
{
bfd_size_type count;
bfd_size_type reloc_size;
void * relocs;
arelent *reloc_cache;
size_t each_size;
unsigned int counter = 0;
arelent *cache_ptr;
bfd_size_type amt;
if (asect->relocation)
return TRUE;
if (asect->flags & SEC_CONSTRUCTOR)
return TRUE;
if (asect == obj_datasec (abfd))
reloc_size = exec_hdr (abfd)->a_drsize;
else if (asect == obj_textsec (abfd))
reloc_size = exec_hdr (abfd)->a_trsize;
else if (asect == obj_bsssec (abfd))
reloc_size = 0;
else
{
bfd_set_error (bfd_error_invalid_operation);
return FALSE;
}
if (reloc_size == 0)
return TRUE; /* Nothing to be done. */
if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0)
return FALSE;
each_size = obj_reloc_entry_size (abfd);
count = reloc_size / each_size;
if (count == 0)
return TRUE; /* Nothing to be done. */
amt = count * sizeof (arelent);
reloc_cache = (arelent *) bfd_zmalloc (amt);
if (reloc_cache == NULL)
return FALSE;
relocs = bfd_malloc (reloc_size);
if (relocs == NULL)
{
free (reloc_cache);
return FALSE;
}
if (bfd_bread (relocs, reloc_size, abfd) != reloc_size)
{
free (relocs);
free (reloc_cache);
return FALSE;
}
cache_ptr = reloc_cache;
if (each_size == RELOC_EXT_SIZE)
{
struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs;
for (; counter < count; counter++, rptr++, cache_ptr++)
MY_swap_ext_reloc_in (abfd, rptr, cache_ptr, symbols,
(bfd_size_type) bfd_get_symcount (abfd));
}
else
{
struct reloc_std_external *rptr = (struct reloc_std_external *) relocs;
for (; counter < count; counter++, rptr++, cache_ptr++)
MY_swap_std_reloc_in (abfd, rptr, cache_ptr, symbols,
(bfd_size_type) bfd_get_symcount (abfd));
}
free (relocs);
asect->relocation = reloc_cache;
asect->reloc_count = cache_ptr - reloc_cache;
return TRUE;
}
/* Write out a relocation section into an object file. */
bfd_boolean
NAME (aout, squirt_out_relocs) (bfd *abfd, asection *section)
{
arelent **generic;
unsigned char *native, *natptr;
size_t each_size;
unsigned int count = section->reloc_count;
bfd_size_type natsize;
if (count == 0 || section->orelocation == NULL)
return TRUE;
each_size = obj_reloc_entry_size (abfd);
natsize = (bfd_size_type) each_size * count;
native = (unsigned char *) bfd_zalloc (abfd, natsize);
if (!native)
return FALSE;
generic = section->orelocation;
if (each_size == RELOC_EXT_SIZE)
{
for (natptr = native;
count != 0;
--count, natptr += each_size, ++generic)
{
/* PR 20921: If the howto field has not been initialised then skip
this reloc.
PR 20929: Similarly for the symbol field. */
if ((*generic)->howto == NULL
|| (*generic)->sym_ptr_ptr == NULL)
{
bfd_set_error (bfd_error_invalid_operation);
_bfd_error_handler (_("\
%pB: attempt to write out unknown reloc type"), abfd);
return FALSE;
}
MY_swap_ext_reloc_out (abfd, *generic,
(struct reloc_ext_external *) natptr);
}
}
else
{
for (natptr = native;
count != 0;
--count, natptr += each_size, ++generic)
{
if ((*generic)->howto == NULL
|| (*generic)->sym_ptr_ptr == NULL)
{
bfd_set_error (bfd_error_invalid_operation);
_bfd_error_handler (_("\
%pB: attempt to write out unknown reloc type"), abfd);
return FALSE;
}
MY_swap_std_reloc_out (abfd, *generic,
(struct reloc_std_external *) natptr);
}
}
if (bfd_bwrite ((void *) native, natsize, abfd) != natsize)
{
bfd_release (abfd, native);
return FALSE;
}
bfd_release (abfd, native);
return TRUE;
}
/* This is stupid. This function should be a boolean predicate. */
long
NAME (aout, canonicalize_reloc) (bfd *abfd,
sec_ptr section,
arelent **relptr,
asymbol **symbols)
{
arelent *tblptr = section->relocation;
unsigned int count;
if (section == obj_bsssec (abfd))
{
*relptr = NULL;
return 0;
}
if (!(tblptr || NAME (aout, slurp_reloc_table) (abfd, section, symbols)))
return -1;
if (section->flags & SEC_CONSTRUCTOR)
{
arelent_chain *chain = section->constructor_chain;
for (count = 0; count < section->reloc_count; count ++)
{
*relptr ++ = &chain->relent;
chain = chain->next;
}
}
else
{
tblptr = section->relocation;
for (count = 0; count++ < section->reloc_count; )
{
*relptr++ = tblptr++;
}
}
*relptr = 0;
return section->reloc_count;
}
long
NAME (aout, get_reloc_upper_bound) (bfd *abfd, sec_ptr asect)
{
bfd_size_type count;
if (bfd_get_format (abfd) != bfd_object)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
if (asect->flags & SEC_CONSTRUCTOR)
count = asect->reloc_count;
else if (asect == obj_datasec (abfd))
count = exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd);
else if (asect == obj_textsec (abfd))
count = exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd);
else if (asect == obj_bsssec (abfd))
count = 0;
else
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
if (count >= LONG_MAX / sizeof (arelent *))
{
bfd_set_error (bfd_error_file_too_big);
return -1;
}
return (count + 1) * sizeof (arelent *);
}
long
NAME (aout, get_symtab_upper_bound) (bfd *abfd)
{
if (!NAME (aout, slurp_symbol_table) (abfd))
return -1;
return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *));
}
alent *
NAME (aout, get_lineno) (bfd *ignore_abfd ATTRIBUTE_UNUSED,
asymbol *ignore_symbol ATTRIBUTE_UNUSED)
{
return NULL;
}
void
NAME (aout, get_symbol_info) (bfd *ignore_abfd ATTRIBUTE_UNUSED,
asymbol *symbol,
symbol_info *ret)
{
bfd_symbol_info (symbol, ret);
if (ret->type == '?')
{
int type_code = aout_symbol (symbol)->type & 0xff;
const char *stab_name = bfd_get_stab_name (type_code);
static char buf[10];
if (stab_name == NULL)
{
sprintf (buf, "(%d)", type_code);
stab_name = buf;
}
ret->type = '-';
ret->stab_type = type_code;
ret->stab_other = (unsigned) (aout_symbol (symbol)->other & 0xff);
ret->stab_desc = (unsigned) (aout_symbol (symbol)->desc & 0xffff);
ret->stab_name = stab_name;
}
}
void
NAME (aout, print_symbol) (bfd *abfd,
void * afile,
asymbol *symbol,
bfd_print_symbol_type how)
{
FILE *file = (FILE *)afile;
switch (how)
{
case bfd_print_symbol_name:
if (symbol->name)
fprintf (file,"%s", symbol->name);
break;
case bfd_print_symbol_more:
fprintf (file,"%4x %2x %2x",
(unsigned) (aout_symbol (symbol)->desc & 0xffff),
(unsigned) (aout_symbol (symbol)->other & 0xff),
(unsigned) (aout_symbol (symbol)->type));
break;
case bfd_print_symbol_all:
{
const char *section_name = symbol->section->name;
bfd_print_symbol_vandf (abfd, (void *)file, symbol);
fprintf (file," %-5s %04x %02x %02x",
section_name,
(unsigned) (aout_symbol (symbol)->desc & 0xffff),
(unsigned) (aout_symbol (symbol)->other & 0xff),
(unsigned) (aout_symbol (symbol)->type & 0xff));
if (symbol->name)
fprintf (file," %s", symbol->name);
}
break;
}
}
/* If we don't have to allocate more than 1MB to hold the generic
symbols, we use the generic minisymbol methord: it's faster, since
it only translates the symbols once, not multiple times. */
#define MINISYM_THRESHOLD (1000000 / sizeof (asymbol))
/* Read minisymbols. For minisymbols, we use the unmodified a.out
symbols. The minisymbol_to_symbol function translates these into
BFD asymbol structures. */
long
NAME (aout, read_minisymbols) (bfd *abfd,
bfd_boolean dynamic,
void * *minisymsp,
unsigned int *sizep)
{
if (dynamic)
/* We could handle the dynamic symbols here as well, but it's
easier to hand them off. */
return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep);
if (! aout_get_external_symbols (abfd))
return -1;
if (obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD)
return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep);
*minisymsp = (void *) obj_aout_external_syms (abfd);
/* By passing the external symbols back from this routine, we are
giving up control over the memory block. Clear
obj_aout_external_syms, so that we do not try to free it
ourselves. */
obj_aout_external_syms (abfd) = NULL;
*sizep = EXTERNAL_NLIST_SIZE;
return obj_aout_external_sym_count (abfd);
}
/* Convert a minisymbol to a BFD asymbol. A minisymbol is just an
unmodified a.out symbol. The SYM argument is a structure returned
by bfd_make_empty_symbol, which we fill in here. */
asymbol *
NAME (aout, minisymbol_to_symbol) (bfd *abfd,
bfd_boolean dynamic,
const void * minisym,
asymbol *sym)
{
if (dynamic
|| obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD)
return _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym);
memset (sym, 0, sizeof (aout_symbol_type));
/* We call translate_symbol_table to translate a single symbol. */
if (! (NAME (aout, translate_symbol_table)
(abfd,
(aout_symbol_type *) sym,
(struct external_nlist *) minisym,
(bfd_size_type) 1,
obj_aout_external_strings (abfd),
obj_aout_external_string_size (abfd),
FALSE)))
return NULL;
return sym;
}
/* Provided a BFD, a section and an offset into the section, calculate
and return the name of the source file and the line nearest to the
wanted location. */
bfd_boolean
NAME (aout, find_nearest_line) (bfd *abfd,
asymbol **symbols,
asection *section,
bfd_vma offset,
const char **filename_ptr,
const char **functionname_ptr,
unsigned int *line_ptr,
unsigned int *disriminator_ptr)
{
/* Run down the file looking for the filename, function and linenumber. */
asymbol **p;
const char *directory_name = NULL;
const char *main_file_name = NULL;
const char *current_file_name = NULL;
const char *line_file_name = NULL; /* Value of current_file_name at line number. */
const char *line_directory_name = NULL; /* Value of directory_name at line number. */
bfd_vma low_line_vma = 0;
bfd_vma low_func_vma = 0;
asymbol *func = 0;
bfd_size_type filelen, funclen;
char *buf;
*filename_ptr = abfd->filename;
*functionname_ptr = NULL;
*line_ptr = 0;
if (disriminator_ptr)
*disriminator_ptr = 0;
if (symbols != NULL)
{
for (p = symbols; *p; p++)
{
aout_symbol_type *q = (aout_symbol_type *) (*p);
next:
switch (q->type)
{
case N_TEXT:
/* If this looks like a file name symbol, and it comes after
the line number we have found so far, but before the
offset, then we have probably not found the right line
number. */
if (q->symbol.value <= offset
&& ((q->symbol.value > low_line_vma
&& (line_file_name != NULL
|| *line_ptr != 0))
|| (q->symbol.value > low_func_vma
&& func != NULL)))
{
const char *symname;
symname = q->symbol.name;
if (symname != NULL
&& strlen (symname) > 2
&& strcmp (symname + strlen (symname) - 2, ".o") == 0)
{
if (q->symbol.value > low_line_vma)
{
*line_ptr = 0;
line_file_name = NULL;
}
if (q->symbol.value > low_func_vma)
func = NULL;
}
}
break;
case N_SO:
/* If this symbol is less than the offset, but greater than
the line number we have found so far, then we have not
found the right line number. */
if (q->symbol.value <= offset)
{
if (q->symbol.value > low_line_vma)
{
*line_ptr = 0;
line_file_name = NULL;
}
if (q->symbol.value > low_func_vma)
func = NULL;
}
main_file_name = current_file_name = q->symbol.name;
/* Look ahead to next symbol to check if that too is an N_SO. */
p++;
if (*p == NULL)
goto done;
q = (aout_symbol_type *) (*p);
if (q->type != (int)N_SO)
goto next;
/* Found a second N_SO First is directory; second is filename. */
directory_name = current_file_name;
main_file_name = current_file_name = q->symbol.name;
if (obj_textsec (abfd) != section)
goto done;
break;
case N_SOL:
current_file_name = q->symbol.name;
break;
case N_SLINE:
case N_DSLINE:
case N_BSLINE:
/* We'll keep this if it resolves nearer than the one we have
already. */
if (q->symbol.value >= low_line_vma
&& q->symbol.value <= offset)
{
*line_ptr = q->desc;
low_line_vma = q->symbol.value;
line_file_name = current_file_name;
line_directory_name = directory_name;
}
break;
case N_FUN:
{
/* We'll keep this if it is nearer than the one we have already. */
if (q->symbol.value >= low_func_vma
&& q->symbol.value <= offset)
{
low_func_vma = q->symbol.value;
func = (asymbol *)q;
}
else if (q->symbol.value > offset)
goto done;
}
break;
}
}
}
done:
if (*line_ptr != 0)
{
main_file_name = line_file_name;
directory_name = line_directory_name;
}
if (main_file_name == NULL
|| IS_ABSOLUTE_PATH (main_file_name)
|| directory_name == NULL)
filelen = 0;
else
filelen = strlen (directory_name) + strlen (main_file_name);
if (func == NULL)
funclen = 0;
else
funclen = strlen (bfd_asymbol_name (func));
if (adata (abfd).line_buf != NULL)
free (adata (abfd).line_buf);
if (filelen + funclen == 0)
adata (abfd).line_buf = buf = NULL;
else
{
buf = (char *) bfd_malloc (filelen + funclen + 3);
adata (abfd).line_buf = buf;
if (buf == NULL)
return FALSE;
}
if (main_file_name != NULL)
{
if (IS_ABSOLUTE_PATH (main_file_name) || directory_name == NULL)
*filename_ptr = main_file_name;
else
{
if (buf == NULL)
/* PR binutils/20891: In a corrupt input file both
main_file_name and directory_name can be empty... */
* filename_ptr = NULL;
else
{
snprintf (buf, filelen + 1, "%s%s", directory_name,
main_file_name);
*filename_ptr = buf;
buf += filelen + 1;
}
}
}
if (func)
{
const char *function = func->name;
char *colon;
if (buf == NULL)
{
/* PR binutils/20892: In a corrupt input file func can be empty. */
* functionname_ptr = NULL;
return TRUE;
}
/* The caller expects a symbol name. We actually have a
function name, without the leading underscore. Put the
underscore back in, so that the caller gets a symbol name. */
if (bfd_get_symbol_leading_char (abfd) == '\0')
strcpy (buf, function);
else
{
buf[0] = bfd_get_symbol_leading_char (abfd);
strcpy (buf + 1, function);
}
/* Have to remove : stuff. */
colon = strchr (buf, ':');
if (colon != NULL)
*colon = '\0';
*functionname_ptr = buf;
}
return TRUE;
}
int
NAME (aout, sizeof_headers) (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
return adata (abfd).exec_bytes_size;
}
/* Free all information we have cached for this BFD. We can always
read it again later if we need it. */
bfd_boolean
NAME (aout, bfd_free_cached_info) (bfd *abfd)
{
asection *o;
if (bfd_get_format (abfd) != bfd_object
|| abfd->tdata.aout_data == NULL)
return TRUE;
#define BFCI_FREE(x) if (x != NULL) { free (x); x = NULL; }
BFCI_FREE (obj_aout_symbols (abfd));
#ifdef USE_MMAP
obj_aout_external_syms (abfd) = 0;
bfd_free_window (&obj_aout_sym_window (abfd));
bfd_free_window (&obj_aout_string_window (abfd));
obj_aout_external_strings (abfd) = 0;
#else
BFCI_FREE (obj_aout_external_syms (abfd));
BFCI_FREE (obj_aout_external_strings (abfd));
#endif
for (o = abfd->sections; o != NULL; o = o->next)
BFCI_FREE (o->relocation);
#undef BFCI_FREE
return TRUE;
}
/* a.out link code. */
/* Routine to create an entry in an a.out link hash table. */
struct bfd_hash_entry *
NAME (aout, link_hash_newfunc) (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
struct aout_link_hash_entry *ret = (struct aout_link_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == NULL)
ret = (struct aout_link_hash_entry *) bfd_hash_allocate (table,
sizeof (* ret));
if (ret == NULL)
return NULL;
/* Call the allocation method of the superclass. */
ret = ((struct aout_link_hash_entry *)
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
table, string));
if (ret)
{
/* Set local fields. */
ret->written = FALSE;
ret->indx = -1;
}
return (struct bfd_hash_entry *) ret;
}
/* Initialize an a.out link hash table. */
bfd_boolean
NAME (aout, link_hash_table_init) (struct aout_link_hash_table *table,
bfd *abfd,
struct bfd_hash_entry *(*newfunc)
(struct bfd_hash_entry *, struct bfd_hash_table *,
const char *),
unsigned int entsize)
{
return _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
}
/* Create an a.out link hash table. */
struct bfd_link_hash_table *
NAME (aout, link_hash_table_create) (bfd *abfd)
{
struct aout_link_hash_table *ret;
bfd_size_type amt = sizeof (* ret);
ret = (struct aout_link_hash_table *) bfd_malloc (amt);
if (ret == NULL)
return NULL;
if (!NAME (aout, link_hash_table_init) (ret, abfd,
NAME (aout, link_hash_newfunc),
sizeof (struct aout_link_hash_entry)))
{
free (ret);
return NULL;
}
return &ret->root;
}
/* Add all symbols from an object file to the hash table. */
static bfd_boolean
aout_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
{
bfd_boolean (*add_one_symbol)
(struct bfd_link_info *, bfd *, const char *, flagword, asection *,
bfd_vma, const char *, bfd_boolean, bfd_boolean,
struct bfd_link_hash_entry **);
struct external_nlist *syms;
bfd_size_type sym_count;
char *strings;
bfd_boolean copy;
struct aout_link_hash_entry **sym_hash;
struct external_nlist *p;
struct external_nlist *pend;
bfd_size_type amt;