| /* Matsushita 10300 specific support for 32-bit ELF |
| Copyright (C) 1996-2019 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf/mn10300.h" |
| #include "libiberty.h" |
| |
| /* The mn10300 linker needs to keep track of the number of relocs that |
| it decides to copy in check_relocs for each symbol. This is so |
| that it can discard PC relative relocs if it doesn't need them when |
| linking with -Bsymbolic. We store the information in a field |
| extending the regular ELF linker hash table. */ |
| |
| struct elf32_mn10300_link_hash_entry |
| { |
| /* The basic elf link hash table entry. */ |
| struct elf_link_hash_entry root; |
| |
| /* For function symbols, the number of times this function is |
| called directly (ie by name). */ |
| unsigned int direct_calls; |
| |
| /* For function symbols, the size of this function's stack |
| (if <= 255 bytes). We stuff this into "call" instructions |
| to this target when it's valid and profitable to do so. |
| |
| This does not include stack allocated by movm! */ |
| unsigned char stack_size; |
| |
| /* For function symbols, arguments (if any) for movm instruction |
| in the prologue. We stuff this value into "call" instructions |
| to the target when it's valid and profitable to do so. */ |
| unsigned char movm_args; |
| |
| /* For function symbols, the amount of stack space that would be allocated |
| by the movm instruction. This is redundant with movm_args, but we |
| add it to the hash table to avoid computing it over and over. */ |
| unsigned char movm_stack_size; |
| |
| /* When set, convert all "call" instructions to this target into "calls" |
| instructions. */ |
| #define MN10300_CONVERT_CALL_TO_CALLS 0x1 |
| |
| /* Used to mark functions which have had redundant parts of their |
| prologue deleted. */ |
| #define MN10300_DELETED_PROLOGUE_BYTES 0x2 |
| unsigned char flags; |
| |
| /* Calculated value. */ |
| bfd_vma value; |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_LD 3 |
| #define GOT_TLS_IE 4 |
| /* Used to distinguish GOT entries for TLS types from normal GOT entries. */ |
| unsigned char tls_type; |
| }; |
| |
| /* We derive a hash table from the main elf linker hash table so |
| we can store state variables and a secondary hash table without |
| resorting to global variables. */ |
| struct elf32_mn10300_link_hash_table |
| { |
| /* The main hash table. */ |
| struct elf_link_hash_table root; |
| |
| /* A hash table for static functions. We could derive a new hash table |
| instead of using the full elf32_mn10300_link_hash_table if we wanted |
| to save some memory. */ |
| struct elf32_mn10300_link_hash_table *static_hash_table; |
| |
| /* Random linker state flags. */ |
| #define MN10300_HASH_ENTRIES_INITIALIZED 0x1 |
| char flags; |
| struct |
| { |
| bfd_signed_vma refcount; |
| bfd_vma offset; |
| char got_allocated; |
| char rel_emitted; |
| } tls_ldm_got; |
| }; |
| |
| #define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent)) |
| |
| struct elf_mn10300_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* tls_type for each local got entry. */ |
| char * local_got_tls_type; |
| }; |
| |
| #define elf_mn10300_tdata(abfd) \ |
| ((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any) |
| |
| #define elf_mn10300_local_got_tls_type(abfd) \ |
| (elf_mn10300_tdata (abfd)->local_got_tls_type) |
| |
| #ifndef streq |
| #define streq(a, b) (strcmp ((a),(b)) == 0) |
| #endif |
| |
| /* For MN10300 linker hash table. */ |
| |
| /* Get the MN10300 ELF linker hash table from a link_info structure. */ |
| |
| #define elf32_mn10300_hash_table(p) \ |
| (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| == MN10300_ELF_DATA ? ((struct elf32_mn10300_link_hash_table *) ((p)->hash)) : NULL) |
| |
| #define elf32_mn10300_link_hash_traverse(table, func, info) \ |
| (elf_link_hash_traverse \ |
| (&(table)->root, \ |
| (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
| (info))) |
| |
| static reloc_howto_type elf_mn10300_howto_table[] = |
| { |
| /* Dummy relocation. Does nothing. */ |
| HOWTO (R_MN10300_NONE, |
| 0, |
| 3, |
| 0, |
| FALSE, |
| 0, |
| complain_overflow_dont, |
| bfd_elf_generic_reloc, |
| "R_MN10300_NONE", |
| FALSE, |
| 0, |
| 0, |
| FALSE), |
| /* Standard 32 bit reloc. */ |
| HOWTO (R_MN10300_32, |
| 0, |
| 2, |
| 32, |
| FALSE, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_32", |
| FALSE, |
| 0xffffffff, |
| 0xffffffff, |
| FALSE), |
| /* Standard 16 bit reloc. */ |
| HOWTO (R_MN10300_16, |
| 0, |
| 1, |
| 16, |
| FALSE, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_16", |
| FALSE, |
| 0xffff, |
| 0xffff, |
| FALSE), |
| /* Standard 8 bit reloc. */ |
| HOWTO (R_MN10300_8, |
| 0, |
| 0, |
| 8, |
| FALSE, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_8", |
| FALSE, |
| 0xff, |
| 0xff, |
| FALSE), |
| /* Standard 32bit pc-relative reloc. */ |
| HOWTO (R_MN10300_PCREL32, |
| 0, |
| 2, |
| 32, |
| TRUE, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_PCREL32", |
| FALSE, |
| 0xffffffff, |
| 0xffffffff, |
| TRUE), |
| /* Standard 16bit pc-relative reloc. */ |
| HOWTO (R_MN10300_PCREL16, |
| 0, |
| 1, |
| 16, |
| TRUE, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_PCREL16", |
| FALSE, |
| 0xffff, |
| 0xffff, |
| TRUE), |
| /* Standard 8 pc-relative reloc. */ |
| HOWTO (R_MN10300_PCREL8, |
| 0, |
| 0, |
| 8, |
| TRUE, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_PCREL8", |
| FALSE, |
| 0xff, |
| 0xff, |
| TRUE), |
| |
| /* GNU extension to record C++ vtable hierarchy. */ |
| HOWTO (R_MN10300_GNU_VTINHERIT, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_MN10300_GNU_VTINHERIT", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| /* GNU extension to record C++ vtable member usage */ |
| HOWTO (R_MN10300_GNU_VTENTRY, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_MN10300_GNU_VTENTRY", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| /* Standard 24 bit reloc. */ |
| HOWTO (R_MN10300_24, |
| 0, |
| 2, |
| 24, |
| FALSE, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_24", |
| FALSE, |
| 0xffffff, |
| 0xffffff, |
| FALSE), |
| HOWTO (R_MN10300_GOTPC32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| TRUE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTPC32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| TRUE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOTPC16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| TRUE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTPC16", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffff, /* src_mask */ |
| 0xffff, /* dst_mask */ |
| TRUE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOTOFF32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTOFF32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOTOFF24, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 24, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTOFF24", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffff, /* src_mask */ |
| 0xffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOTOFF16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTOFF16", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffff, /* src_mask */ |
| 0xffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_PLT32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| TRUE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_PLT32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| TRUE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_PLT16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| TRUE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_PLT16", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffff, /* src_mask */ |
| 0xffff, /* dst_mask */ |
| TRUE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOT32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOT32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOT24, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 24, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOT24", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOT16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOT16", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_COPY, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_COPY", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GLOB_DAT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GLOB_DAT", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_JMP_SLOT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_JMP_SLOT", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_RELATIVE, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_RELATIVE", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_GD, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_GD", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_LD, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_LD", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_LDO, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_LDO", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_GOTIE, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_GOTIE", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_IE, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_IE", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_LE, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_LE", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_DTPMOD, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_DTPMOD", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_DTPOFF, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_DTPOFF", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_TPOFF, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_TPOFF", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_SYM_DIFF, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont,/* complain_on_overflow */ |
| NULL, /* special handler. */ |
| "R_MN10300_SYM_DIFF", /* name */ |
| FALSE, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_ALIGN, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont,/* complain_on_overflow */ |
| NULL, /* special handler. */ |
| "R_MN10300_ALIGN", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| FALSE) /* pcrel_offset */ |
| }; |
| |
| struct mn10300_reloc_map |
| { |
| bfd_reloc_code_real_type bfd_reloc_val; |
| unsigned char elf_reloc_val; |
| }; |
| |
| static const struct mn10300_reloc_map mn10300_reloc_map[] = |
| { |
| { BFD_RELOC_NONE, R_MN10300_NONE, }, |
| { BFD_RELOC_32, R_MN10300_32, }, |
| { BFD_RELOC_16, R_MN10300_16, }, |
| { BFD_RELOC_8, R_MN10300_8, }, |
| { BFD_RELOC_32_PCREL, R_MN10300_PCREL32, }, |
| { BFD_RELOC_16_PCREL, R_MN10300_PCREL16, }, |
| { BFD_RELOC_8_PCREL, R_MN10300_PCREL8, }, |
| { BFD_RELOC_24, R_MN10300_24, }, |
| { BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT }, |
| { BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY }, |
| { BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 }, |
| { BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 }, |
| { BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 }, |
| { BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 }, |
| { BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 }, |
| { BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 }, |
| { BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 }, |
| { BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 }, |
| { BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 }, |
| { BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 }, |
| { BFD_RELOC_MN10300_COPY, R_MN10300_COPY }, |
| { BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT }, |
| { BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT }, |
| { BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE }, |
| { BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD }, |
| { BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD }, |
| { BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO }, |
| { BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE }, |
| { BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE }, |
| { BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE }, |
| { BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD }, |
| { BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF }, |
| { BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF }, |
| { BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF }, |
| { BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN } |
| }; |
| |
| /* Create the GOT section. */ |
| |
| static bfd_boolean |
| _bfd_mn10300_elf_create_got_section (bfd * abfd, |
| struct bfd_link_info * info) |
| { |
| flagword flags; |
| flagword pltflags; |
| asection * s; |
| struct elf_link_hash_entry * h; |
| const struct elf_backend_data * bed = get_elf_backend_data (abfd); |
| struct elf_link_hash_table *htab; |
| int ptralign; |
| |
| /* This function may be called more than once. */ |
| htab = elf_hash_table (info); |
| if (htab->sgot != NULL) |
| return TRUE; |
| |
| switch (bed->s->arch_size) |
| { |
| case 32: |
| ptralign = 2; |
| break; |
| |
| case 64: |
| ptralign = 3; |
| break; |
| |
| default: |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| |
| pltflags = flags; |
| pltflags |= SEC_CODE; |
| if (bed->plt_not_loaded) |
| pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS); |
| if (bed->plt_readonly) |
| pltflags |= SEC_READONLY; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); |
| htab->splt = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->plt_alignment)) |
| return FALSE; |
| |
| /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the |
| .plt section. */ |
| if (bed->want_plt_sym) |
| { |
| h = _bfd_elf_define_linkage_sym (abfd, info, s, |
| "_PROCEDURE_LINKAGE_TABLE_"); |
| htab->hplt = h; |
| if (h == NULL) |
| return FALSE; |
| } |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
| htab->sgot = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, ptralign)) |
| return FALSE; |
| |
| if (bed->want_got_plt) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
| htab->sgotplt = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, ptralign)) |
| return FALSE; |
| } |
| |
| /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got |
| (or .got.plt) section. We don't do this in the linker script |
| because we don't want to define the symbol if we are not creating |
| a global offset table. */ |
| h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_"); |
| htab->hgot = h; |
| if (h == NULL) |
| return FALSE; |
| |
| /* The first bit of the global offset table is the header. */ |
| s->size += bed->got_header_size; |
| |
| return TRUE; |
| } |
| |
| static reloc_howto_type * |
| bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| unsigned int i; |
| |
| for (i = ARRAY_SIZE (mn10300_reloc_map); i--;) |
| if (mn10300_reloc_map[i].bfd_reloc_val == code) |
| return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val]; |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;) |
| if (elf_mn10300_howto_table[i].name != NULL |
| && strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0) |
| return elf_mn10300_howto_table + i; |
| |
| return NULL; |
| } |
| |
| /* Set the howto pointer for an MN10300 ELF reloc. */ |
| |
| static bfd_boolean |
| mn10300_info_to_howto (bfd *abfd, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| unsigned int r_type; |
| |
| r_type = ELF32_R_TYPE (dst->r_info); |
| if (r_type >= R_MN10300_MAX) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| abfd, r_type); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| cache_ptr->howto = elf_mn10300_howto_table + r_type; |
| return TRUE; |
| } |
| |
| static int |
| elf_mn10300_tls_transition (struct bfd_link_info * info, |
| int r_type, |
| struct elf_link_hash_entry * h, |
| asection * sec, |
| bfd_boolean counting) |
| { |
| bfd_boolean is_local; |
| |
| if (r_type == R_MN10300_TLS_GD |
| && h != NULL |
| && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) |
| return R_MN10300_TLS_GOTIE; |
| |
| if (bfd_link_pic (info)) |
| return r_type; |
| |
| if (! (sec->flags & SEC_CODE)) |
| return r_type; |
| |
| if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created) |
| is_local = TRUE; |
| else |
| is_local = SYMBOL_CALLS_LOCAL (info, h); |
| |
| /* For the main program, these are the transitions we do. */ |
| switch (r_type) |
| { |
| case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE; |
| case R_MN10300_TLS_LD: return R_MN10300_NONE; |
| case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE; |
| case R_MN10300_TLS_IE: |
| case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type; |
| } |
| |
| return r_type; |
| } |
| |
| /* Return the relocation value for @tpoff relocation |
| if STT_TLS virtual address is ADDRESS. */ |
| |
| static bfd_vma |
| dtpoff (struct bfd_link_info * info, bfd_vma address) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (htab->tls_sec == NULL) |
| return 0; |
| return address - htab->tls_sec->vma; |
| } |
| |
| /* Return the relocation value for @tpoff relocation |
| if STT_TLS virtual address is ADDRESS. */ |
| |
| static bfd_vma |
| tpoff (struct bfd_link_info * info, bfd_vma address) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (htab->tls_sec == NULL) |
| return 0; |
| return address - (htab->tls_size + htab->tls_sec->vma); |
| } |
| |
| /* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need |
| to skip, after this one. The actual value is the offset between |
| this reloc and the PLT reloc. */ |
| |
| static int |
| mn10300_do_tls_transition (bfd * input_bfd, |
| unsigned int r_type, |
| unsigned int tls_r_type, |
| bfd_byte * contents, |
| bfd_vma offset) |
| { |
| bfd_byte *op = contents + offset; |
| int gotreg = 0; |
| |
| #define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2)) |
| |
| /* This is common to all GD/LD transitions, so break it out. */ |
| if (r_type == R_MN10300_TLS_GD |
| || r_type == R_MN10300_TLS_LD) |
| { |
| op -= 2; |
| /* mov imm,d0. */ |
| BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC); |
| BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC); |
| /* add aN,d0. */ |
| BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1); |
| gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2; |
| /* Call. */ |
| BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD); |
| } |
| |
| switch (TLS_PAIR (r_type, tls_r_type)) |
| { |
| case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE): |
| { |
| /* Keep track of which register we put GOTptr in. */ |
| /* mov (_x@indntpoff,a2),a0. */ |
| memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6); |
| op[1] |= gotreg; |
| /* add e2,a0. */ |
| memcpy (op+6, "\xF9\x78\x28", 3); |
| /* or 0x00000000, d0 - six byte nop. */ |
| memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); |
| } |
| return 7; |
| |
| case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE): |
| { |
| /* Register is *always* a0. */ |
| /* mov _x@tpoff,a0. */ |
| memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6); |
| /* add e2,a0. */ |
| memcpy (op+6, "\xF9\x78\x28", 3); |
| /* or 0x00000000, d0 - six byte nop. */ |
| memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); |
| } |
| return 7; |
| case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE): |
| { |
| /* Register is *always* a0. */ |
| /* mov e2,a0. */ |
| memcpy (op, "\xF5\x88", 2); |
| /* or 0x00000000, d0 - six byte nop. */ |
| memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6); |
| /* or 0x00000000, e2 - seven byte nop. */ |
| memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7); |
| } |
| return 7; |
| |
| case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE): |
| /* No changes needed, just the reloc change. */ |
| return 0; |
| |
| /* These are a little tricky, because we have to detect which |
| opcode is being used (they're different sizes, with the reloc |
| at different offsets within the opcode) and convert each |
| accordingly, copying the operands as needed. The conversions |
| we do are as follows (IE,GOTIE,LE): |
| |
| 1111 1100 1010 01Dn [-- abs32 --] MOV (x@indntpoff),Dn |
| 1111 1100 0000 DnAm [-- abs32 --] MOV (x@gotntpoff,Am),Dn |
| 1111 1100 1100 11Dn [-- abs32 --] MOV x@tpoff,Dn |
| |
| 1111 1100 1010 00An [-- abs32 --] MOV (x@indntpoff),An |
| 1111 1100 0010 AnAm [-- abs32 --] MOV (x@gotntpoff,Am),An |
| 1111 1100 1101 11An [-- abs32 --] MOV x@tpoff,An |
| |
| 1111 1110 0000 1110 Rnnn Xxxx [-- abs32 --] MOV (x@indntpoff),Rn |
| 1111 1110 0000 1010 Rnnn Rmmm [-- abs32 --] MOV (x@indntpoff,Rm),Rn |
| 1111 1110 0000 1000 Rnnn Xxxx [-- abs32 --] MOV x@tpoff,Rn |
| |
| Since the GOT pointer is always $a2, we assume the last |
| normally won't happen, but let's be paranoid and plan for the |
| day that GCC optimizes it somewhow. */ |
| |
| case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE): |
| if (op[-2] == 0xFC) |
| { |
| op -= 2; |
| if ((op[1] & 0xFC) == 0xA4) /* Dn */ |
| { |
| op[1] &= 0x03; /* Leaves Dn. */ |
| op[1] |= 0xCC; |
| } |
| else /* An */ |
| { |
| op[1] &= 0x03; /* Leaves An. */ |
| op[1] |= 0xDC; |
| } |
| } |
| else if (op[-3] == 0xFE) |
| op[-2] = 0x08; |
| else |
| abort (); |
| break; |
| |
| case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE): |
| if (op[-2] == 0xFC) |
| { |
| op -= 2; |
| if ((op[1] & 0xF0) == 0x00) /* Dn */ |
| { |
| op[1] &= 0x0C; /* Leaves Dn. */ |
| op[1] >>= 2; |
| op[1] |= 0xCC; |
| } |
| else /* An */ |
| { |
| op[1] &= 0x0C; /* Leaves An. */ |
| op[1] >>= 2; |
| op[1] |= 0xDC; |
| } |
| } |
| else if (op[-3] == 0xFE) |
| op[-2] = 0x08; |
| else |
| abort (); |
| break; |
| |
| default: |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unsupported transition from %s to %s"), |
| input_bfd, |
| elf_mn10300_howto_table[r_type].name, |
| elf_mn10300_howto_table[tls_r_type].name); |
| break; |
| } |
| #undef TLS_PAIR |
| return 0; |
| } |
| |
| /* Look through the relocs for a section during the first phase. |
| Since we don't do .gots or .plts, we just need to consider the |
| virtual table relocs for gc. */ |
| |
| static bfd_boolean |
| mn10300_elf_check_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); |
| bfd_boolean sym_diff_reloc_seen; |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Sym * isymbuf = NULL; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| bfd * dynobj; |
| bfd_vma * local_got_offsets; |
| asection * sgot; |
| asection * srelgot; |
| asection * sreloc; |
| bfd_boolean result = FALSE; |
| |
| sgot = NULL; |
| srelgot = NULL; |
| sreloc = NULL; |
| |
| if (bfd_link_relocatable (info)) |
| return TRUE; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| local_got_offsets = elf_local_got_offsets (abfd); |
| rel_end = relocs + sec->reloc_count; |
| sym_diff_reloc_seen = FALSE; |
| |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| struct elf_link_hash_entry *h; |
| unsigned long r_symndx; |
| unsigned int r_type; |
| int tls_type = GOT_NORMAL; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| if (r_symndx < symtab_hdr->sh_info) |
| h = NULL; |
| else |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| r_type = elf_mn10300_tls_transition (info, r_type, h, sec, TRUE); |
| |
| /* Some relocs require a global offset table. */ |
| if (dynobj == NULL) |
| { |
| switch (r_type) |
| { |
| case R_MN10300_GOT32: |
| case R_MN10300_GOT24: |
| case R_MN10300_GOT16: |
| case R_MN10300_GOTOFF32: |
| case R_MN10300_GOTOFF24: |
| case R_MN10300_GOTOFF16: |
| case R_MN10300_GOTPC32: |
| case R_MN10300_GOTPC16: |
| case R_MN10300_TLS_GD: |
| case R_MN10300_TLS_LD: |
| case R_MN10300_TLS_GOTIE: |
| case R_MN10300_TLS_IE: |
| elf_hash_table (info)->dynobj = dynobj = abfd; |
| if (! _bfd_mn10300_elf_create_got_section (dynobj, info)) |
| goto fail; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| switch (r_type) |
| { |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_MN10300_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| goto fail; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_MN10300_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| goto fail; |
| break; |
| |
| case R_MN10300_TLS_LD: |
| htab->tls_ldm_got.refcount ++; |
| tls_type = GOT_TLS_LD; |
| |
| if (htab->tls_ldm_got.got_allocated) |
| break; |
| goto create_got; |
| |
| case R_MN10300_TLS_IE: |
| case R_MN10300_TLS_GOTIE: |
| if (bfd_link_pic (info)) |
| info->flags |= DF_STATIC_TLS; |
| /* Fall through */ |
| |
| case R_MN10300_TLS_GD: |
| case R_MN10300_GOT32: |
| case R_MN10300_GOT24: |
| case R_MN10300_GOT16: |
| create_got: |
| /* This symbol requires a global offset table entry. */ |
| |
| switch (r_type) |
| { |
| case R_MN10300_TLS_IE: |
| case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break; |
| case R_MN10300_TLS_GD: tls_type = GOT_TLS_GD; break; |
| default: tls_type = GOT_NORMAL; break; |
| } |
| |
| sgot = htab->root.sgot; |
| srelgot = htab->root.srelgot; |
| BFD_ASSERT (sgot != NULL && srelgot != NULL); |
| |
| if (r_type == R_MN10300_TLS_LD) |
| { |
| htab->tls_ldm_got.offset = sgot->size; |
| htab->tls_ldm_got.got_allocated ++; |
| } |
| else if (h != NULL) |
| { |
| if (elf_mn10300_hash_entry (h)->tls_type != tls_type |
| && elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN) |
| { |
| if (tls_type == GOT_TLS_IE |
| && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD) |
| /* No change - this is ok. */; |
| else if (tls_type == GOT_TLS_GD |
| && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) |
| /* Transition GD->IE. */ |
| tls_type = GOT_TLS_IE; |
| else |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %s' accessed both as normal and thread local symbol"), |
| abfd, h ? h->root.root.string : "<local>"); |
| } |
| |
| elf_mn10300_hash_entry (h)->tls_type = tls_type; |
| |
| if (h->got.offset != (bfd_vma) -1) |
| /* We have already allocated space in the .got. */ |
| break; |
| |
| h->got.offset = sgot->size; |
| |
| if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| /* Make sure this symbol is output as a dynamic symbol. */ |
| && h->dynindx == -1) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| goto fail; |
| } |
| |
| srelgot->size += sizeof (Elf32_External_Rela); |
| if (r_type == R_MN10300_TLS_GD) |
| srelgot->size += sizeof (Elf32_External_Rela); |
| } |
| else |
| { |
| /* This is a global offset table entry for a local |
| symbol. */ |
| if (local_got_offsets == NULL) |
| { |
| size_t size; |
| unsigned int i; |
| |
| size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char)); |
| local_got_offsets = bfd_alloc (abfd, size); |
| |
| if (local_got_offsets == NULL) |
| goto fail; |
| |
| elf_local_got_offsets (abfd) = local_got_offsets; |
| elf_mn10300_local_got_tls_type (abfd) |
| = (char *) (local_got_offsets + symtab_hdr->sh_info); |
| |
| for (i = 0; i < symtab_hdr->sh_info; i++) |
| local_got_offsets[i] = (bfd_vma) -1; |
| } |
| |
| if (local_got_offsets[r_symndx] != (bfd_vma) -1) |
| /* We have already allocated space in the .got. */ |
| break; |
| |
| local_got_offsets[r_symndx] = sgot->size; |
| |
| if (bfd_link_pic (info)) |
| { |
| /* If we are generating a shared object, we need to |
| output a R_MN10300_RELATIVE reloc so that the dynamic |
| linker can adjust this GOT entry. */ |
| srelgot->size += sizeof (Elf32_External_Rela); |
| |
| if (r_type == R_MN10300_TLS_GD) |
| /* And a R_MN10300_TLS_DTPOFF reloc as well. */ |
| srelgot->size += sizeof (Elf32_External_Rela); |
| } |
| |
| elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type; |
| } |
| |
| sgot->size += 4; |
| if (r_type == R_MN10300_TLS_GD |
| || r_type == R_MN10300_TLS_LD) |
| sgot->size += 4; |
| |
| goto need_shared_relocs; |
| |
| case R_MN10300_PLT32: |
| case R_MN10300_PLT16: |
| /* This symbol requires a procedure linkage table entry. We |
| actually build the entry in adjust_dynamic_symbol, |
| because this might be a case of linking PIC code which is |
| never referenced by a dynamic object, in which case we |
| don't need to generate a procedure linkage table entry |
| after all. */ |
| |
| /* If this is a local symbol, we resolve it directly without |
| creating a procedure linkage table entry. */ |
| if (h == NULL) |
| continue; |
| |
| if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
| || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) |
| break; |
| |
| h->needs_plt = 1; |
| break; |
| |
| case R_MN10300_24: |
| case R_MN10300_16: |
| case R_MN10300_8: |
| case R_MN10300_PCREL32: |
| case R_MN10300_PCREL16: |
| case R_MN10300_PCREL8: |
| if (h != NULL) |
| h->non_got_ref = 1; |
| break; |
| |
| case R_MN10300_SYM_DIFF: |
| sym_diff_reloc_seen = TRUE; |
| break; |
| |
| case R_MN10300_32: |
| if (h != NULL) |
| h->non_got_ref = 1; |
| |
| need_shared_relocs: |
| /* If we are creating a shared library, then we |
| need to copy the reloc into the shared library. */ |
| if (bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| /* Do not generate a dynamic reloc for a |
| reloc associated with a SYM_DIFF operation. */ |
| && ! sym_diff_reloc_seen) |
| { |
| asection * sym_section = NULL; |
| |
| /* Find the section containing the |
| symbol involved in the relocation. */ |
| if (h == NULL) |
| { |
| Elf_Internal_Sym * isym; |
| |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf) |
| { |
| isym = isymbuf + r_symndx; |
| /* All we care about is whether this local symbol is absolute. */ |
| if (isym->st_shndx == SHN_ABS) |
| sym_section = bfd_abs_section_ptr; |
| } |
| } |
| else |
| { |
| if (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| sym_section = h->root.u.def.section; |
| } |
| |
| /* If the symbol is absolute then the relocation can |
| be resolved during linking and there is no need for |
| a dynamic reloc. */ |
| if (sym_section != bfd_abs_section_ptr) |
| { |
| /* When creating a shared object, we must copy these |
| reloc types into the output file. We create a reloc |
| section in dynobj and make room for this reloc. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, dynobj, 2, abfd, /*rela?*/ TRUE); |
| if (sreloc == NULL) |
| goto fail; |
| } |
| |
| sreloc->size += sizeof (Elf32_External_Rela); |
| } |
| } |
| |
| break; |
| } |
| |
| if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF) |
| sym_diff_reloc_seen = FALSE; |
| } |
| |
| result = TRUE; |
| fail: |
| if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) |
| free (isymbuf); |
| |
| return result; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| static asection * |
| mn10300_elf_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_MN10300_GNU_VTINHERIT: |
| case R_MN10300_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Perform a relocation as part of a final link. */ |
| |
| static bfd_reloc_status_type |
| mn10300_elf_final_link_relocate (reloc_howto_type *howto, |
| bfd *input_bfd, |
| bfd *output_bfd ATTRIBUTE_UNUSED, |
| asection *input_section, |
| bfd_byte *contents, |
| bfd_vma offset, |
| bfd_vma value, |
| bfd_vma addend, |
| struct elf_link_hash_entry * h, |
| unsigned long symndx, |
| struct bfd_link_info *info, |
| asection *sym_sec ATTRIBUTE_UNUSED, |
| int is_local ATTRIBUTE_UNUSED) |
| { |
| struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); |
| static asection * sym_diff_section; |
| static bfd_vma sym_diff_value; |
| bfd_boolean is_sym_diff_reloc; |
| unsigned long r_type = howto->type; |
| bfd_byte * hit_data = contents + offset; |
| bfd * dynobj; |
| asection * sgot; |
| asection * splt; |
| asection * sreloc; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| sgot = NULL; |
| splt = NULL; |
| sreloc = NULL; |
| |
| switch (r_type) |
| { |
| case R_MN10300_24: |
| case R_MN10300_16: |
| case R_MN10300_8: |
| case R_MN10300_PCREL8: |
| case R_MN10300_PCREL16: |
| case R_MN10300_PCREL32: |
| case R_MN10300_GOTOFF32: |
| case R_MN10300_GOTOFF24: |
| case R_MN10300_GOTOFF16: |
| if (bfd_link_pic (info) |
| && (input_section->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && ! SYMBOL_REFERENCES_LOCAL (info, h)) |
| return bfd_reloc_dangerous; |
| /* Fall through. */ |
| case R_MN10300_GOT32: |
| /* Issue 2052223: |
| Taking the address of a protected function in a shared library |
| is illegal. Issue an error message here. */ |
| if (bfd_link_pic (info) |
| && (input_section->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED |
| && (h->type == STT_FUNC || h->type == STT_GNU_IFUNC) |
| && ! SYMBOL_REFERENCES_LOCAL (info, h)) |
| return bfd_reloc_dangerous; |
| } |
| |
| is_sym_diff_reloc = FALSE; |
| if (sym_diff_section != NULL) |
| { |
| BFD_ASSERT (sym_diff_section == input_section); |
| |
| switch (r_type) |
| { |
| case R_MN10300_32: |
| case R_MN10300_24: |
| case R_MN10300_16: |
| case R_MN10300_8: |
| value -= sym_diff_value; |
| /* If we are computing a 32-bit value for the location lists |
| and the result is 0 then we add one to the value. A zero |
| value can result because of linker relaxation deleteing |
| prologue instructions and using a value of 1 (for the begin |
| and end offsets in the location list entry) results in a |
| nul entry which does not prevent the following entries from |
| being parsed. */ |
| if (r_type == R_MN10300_32 |
| && value == 0 |
| && strcmp (input_section->name, ".debug_loc") == 0) |
| value = 1; |
| sym_diff_section = NULL; |
| is_sym_diff_reloc = TRUE; |
| break; |
| |
| default: |
| sym_diff_section = NULL; |
| break; |
| } |
| } |
| |
| switch (r_type) |
| { |
| case R_MN10300_SYM_DIFF: |
| BFD_ASSERT (addend == 0); |
| /* Cache the input section and value. |
| The offset is unreliable, since relaxation may |
| have reduced the following reloc's offset. */ |
| sym_diff_section = input_section; |
| sym_diff_value = value; |
| return bfd_reloc_ok; |
| |
| case R_MN10300_ALIGN: |
| case R_MN10300_NONE: |
| return bfd_reloc_ok; |
| |
| case R_MN10300_32: |
| if (bfd_link_pic (info) |
| /* Do not generate relocs when an R_MN10300_32 has been used |
| with an R_MN10300_SYM_DIFF to compute a difference of two |
| symbols. */ |
| && !is_sym_diff_reloc |
| /* Also, do not generate a reloc when the symbol associated |
| with the R_MN10300_32 reloc is absolute - there is no |
| need for a run time computation in this case. */ |
| && sym_sec != bfd_abs_section_ptr |
| /* If the section is not going to be allocated at load time |
| then there is no need to generate relocs for it. */ |
| && (input_section->flags & SEC_ALLOC) != 0) |
| { |
| Elf_Internal_Rela outrel; |
| bfd_boolean skip, relocate; |
| |
| /* When generating a shared object, these relocations are |
| copied into the output file to be resolved at run |
| time. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_get_dynamic_reloc_section |
| (input_bfd, input_section, /*rela?*/ TRUE); |
| if (sreloc == NULL) |
| return FALSE; |
| } |
| |
| skip = FALSE; |
| |
| outrel.r_offset = _bfd_elf_section_offset (input_bfd, info, |
| input_section, offset); |
| if (outrel.r_offset == (bfd_vma) -1) |
| skip = TRUE; |
| |
| outrel.r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| |
| if (skip) |
| { |
| memset (&outrel, 0, sizeof outrel); |
| relocate = FALSE; |
| } |
| else |
| { |
| /* h->dynindx may be -1 if this symbol was marked to |
| become local. */ |
| if (h == NULL |
| || SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| relocate = TRUE; |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); |
| outrel.r_addend = value + addend; |
| } |
| else |
| { |
| BFD_ASSERT (h->dynindx != -1); |
| relocate = FALSE; |
| outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32); |
| outrel.r_addend = value + addend; |
| } |
| } |
| |
| bfd_elf32_swap_reloca_out (output_bfd, &outrel, |
| (bfd_byte *) (((Elf32_External_Rela *) sreloc->contents) |
| + sreloc->reloc_count)); |
| ++sreloc->reloc_count; |
| |
| /* If this reloc is against an external symbol, we do |
| not want to fiddle with the addend. Otherwise, we |
| need to include the symbol value so that it becomes |
| an addend for the dynamic reloc. */ |
| if (! relocate) |
| return bfd_reloc_ok; |
| } |
| value += addend; |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_24: |
| value += addend; |
| |
| if ((long) value > 0x7fffff || (long) value < -0x800000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value & 0xff, hit_data); |
| bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); |
| bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_16: |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_8: |
| value += addend; |
| |
| if ((long) value > 0x7f || (long) value < -0x80) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PCREL8: |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| if ((long) value > 0x7f || (long) value < -0x80) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PCREL16: |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PCREL32: |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GNU_VTINHERIT: |
| case R_MN10300_GNU_VTENTRY: |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTPC32: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| /* Use global offset table as symbol value. */ |
| value = htab->root.sgot->output_section->vma; |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTPC16: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| /* Use global offset table as symbol value. */ |
| value = htab->root.sgot->output_section->vma; |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTOFF32: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| value -= htab->root.sgot->output_section->vma; |
| value += addend; |
| |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTOFF24: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| value -= htab->root.sgot->output_section->vma; |
| value += addend; |
| |
| if ((long) value > 0x7fffff || (long) value < -0x800000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value, hit_data); |
| bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); |
| bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTOFF16: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| value -= htab->root.sgot->output_section->vma; |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PLT32: |
| if (h != NULL |
| && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN |
| && h->plt.offset != (bfd_vma) -1) |
| { |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| splt = htab->root.splt; |
| value = (splt->output_section->vma |
| + splt->output_offset |
| + h->plt.offset) - value; |
| } |
| |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PLT16: |
| if (h != NULL |
| && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN |
| && h->plt.offset != (bfd_vma) -1) |
| { |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| splt = htab->root.splt; |
| value = (splt->output_section->vma |
| + splt->output_offset |
| + h->plt.offset) - value; |
| } |
| |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_TLS_LDO: |
| value = dtpoff (info, value); |
| bfd_put_32 (input_bfd, value + addend, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_TLS_LE: |
| value = tpoff (info, value); |
| bfd_put_32 (input_bfd, value + addend, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_TLS_LD: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| sgot = htab->root.sgot; |
| BFD_ASSERT (sgot != NULL); |
| value = htab->tls_ldm_got.offset + sgot->output_offset; |
| bfd_put_32 (input_bfd, value, hit_data); |
| |
| if (!htab->tls_ldm_got.rel_emitted) |
| { |
| asection *srelgot = htab->root.srelgot; |
| Elf_Internal_Rela rel; |
| |
| BFD_ASSERT (srelgot != NULL); |
| htab->tls_ldm_got.rel_emitted ++; |
| rel.r_offset = (sgot->output_section->vma |
| + sgot->output_offset |
| + htab->tls_ldm_got.offset); |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset); |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4); |
| rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); |
| rel.r_addend = 0; |
| bfd_elf32_swap_reloca_out (output_bfd, & rel, |
| (bfd_byte *) ((Elf32_External_Rela *) srelgot->contents |
| + srelgot->reloc_count)); |
| ++ srelgot->reloc_count; |
| } |
| |
| return bfd_reloc_ok; |
| |
| case R_MN10300_TLS_GOTIE: |
| value = tpoff (info, value); |
| /* Fall Through. */ |
| |
| case R_MN10300_TLS_GD: |
| case R_MN10300_TLS_IE: |
| case R_MN10300_GOT32: |
| case R_MN10300_GOT24: |
| case R_MN10300_GOT16: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| sgot = htab->root.sgot; |
| if (r_type == R_MN10300_TLS_GD) |
| value = dtpoff (info, value); |
| |
| if (h != NULL) |
| { |
| bfd_vma off; |
| |
| off = h->got.offset; |
| /* Offsets in the GOT are allocated in check_relocs |
| which is not called for shared libraries... */ |
| if (off == (bfd_vma) -1) |
| off = 0; |
| |
| if (sgot->contents != NULL |
| && (! elf_hash_table (info)->dynamic_sections_created |
| || SYMBOL_REFERENCES_LOCAL (info, h))) |
| /* This is actually a static link, or it is a |
| -Bsymbolic link and the symbol is defined |
| locally, or the symbol was forced to be local |
| because of a version file. We must initialize |
| this entry in the global offset table. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| bfd_put_32 (output_bfd, value, |
| sgot->contents + off); |
| |
| value = sgot->output_offset + off; |
| } |
| else |
| { |
| bfd_vma off; |
| |
| off = elf_local_got_offsets (input_bfd)[symndx]; |
| |
| if (off & 1) |
| bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1)); |
| else |
| { |
| bfd_put_32 (output_bfd, value, sgot->contents + off); |
| |
| if (bfd_link_pic (info)) |
| { |
| asection *srelgot = htab->root.srelgot;; |
| Elf_Internal_Rela outrel; |
| |
| BFD_ASSERT (srelgot != NULL); |
| |
| outrel.r_offset = (sgot->output_section->vma |
| + sgot->output_offset |
| + off); |
| switch (r_type) |
| { |
| case R_MN10300_TLS_GD: |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF); |
| outrel.r_offset = (sgot->output_section->vma |
| + sgot->output_offset |
| + off + 4); |
| bfd_elf32_swap_reloca_out (output_bfd, & outrel, |
| (bfd_byte *) (((Elf32_External_Rela *) |
| srelgot->contents) |
| + srelgot->reloc_count)); |
| ++ srelgot->reloc_count; |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); |
| break; |
| case R_MN10300_TLS_GOTIE: |
| case R_MN10300_TLS_IE: |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF); |
| break; |
| default: |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); |
| break; |
| } |
| |
| outrel.r_addend = value; |
| bfd_elf32_swap_reloca_out (output_bfd, &outrel, |
| (bfd_byte *) (((Elf32_External_Rela *) |
| srelgot->contents) |
| + srelgot->reloc_count)); |
| ++ srelgot->reloc_count; |
| elf_local_got_offsets (input_bfd)[symndx] |= 1; |
| } |
| |
| value = sgot->output_offset + (off & ~(bfd_vma) 1); |
| } |
| } |
| |
| value += addend; |
| |
| if (r_type == R_MN10300_TLS_IE) |
| { |
| value += sgot->output_section->vma; |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| } |
| else if (r_type == R_MN10300_TLS_GOTIE |
| || r_type == R_MN10300_TLS_GD |
| || r_type == R_MN10300_TLS_LD) |
| { |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| } |
| else if (r_type == R_MN10300_GOT32) |
| { |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| } |
| else if (r_type == R_MN10300_GOT24) |
| { |
| if ((long) value > 0x7fffff || (long) value < -0x800000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value & 0xff, hit_data); |
| bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); |
| bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); |
| return bfd_reloc_ok; |
| } |
| else if (r_type == R_MN10300_GOT16) |
| { |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| } |
| /* Fall through. */ |
| |
| default: |
| return bfd_reloc_notsupported; |
| } |
| } |
| |
| /* Relocate an MN10300 ELF section. */ |
| |
| static bfd_boolean |
| mn10300_elf_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| Elf_Internal_Rela *rel, *relend; |
| Elf_Internal_Rela * trel; |
| |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (input_bfd); |
| |
| rel = relocs; |
| relend = relocs + input_section->reloc_count; |
| for (; rel < relend; rel++) |
| { |
| int r_type; |
| reloc_howto_type *howto; |
| unsigned long r_symndx; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| struct elf32_mn10300_link_hash_entry *h; |
| bfd_vma relocation; |
| bfd_reloc_status_type r; |
| int tls_r_type; |
| bfd_boolean unresolved_reloc = FALSE; |
| bfd_boolean warned, ignored; |
| struct elf_link_hash_entry * hh; |
| |
| relocation = 0; |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| howto = elf_mn10300_howto_table + r_type; |
| |
| /* Just skip the vtable gc relocs. */ |
| if (r_type == R_MN10300_GNU_VTINHERIT |
| || r_type == R_MN10300_GNU_VTENTRY) |
| continue; |
| |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| if (r_symndx < symtab_hdr->sh_info) |
| hh = NULL; |
| else |
| { |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| hh, sec, relocation, |
| unresolved_reloc, warned, ignored); |
| } |
| h = elf_mn10300_hash_entry (hh); |
| |
| tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0); |
| if (tls_r_type != r_type) |
| { |
| bfd_boolean had_plt; |
| |
| had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type, |
| contents, rel->r_offset); |
| r_type = tls_r_type; |
| howto = elf_mn10300_howto_table + r_type; |
| |
| if (had_plt) |
| for (trel = rel+1; trel < relend; trel++) |
| if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32 |
| || ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32) |
| && rel->r_offset + had_plt == trel->r_offset) |
| trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE); |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| } |
| else |
| { |
| if ((h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| && ( r_type == R_MN10300_GOTPC32 |
| || r_type == R_MN10300_GOTPC16 |
| || (( r_type == R_MN10300_PLT32 |
| || r_type == R_MN10300_PLT16) |
| && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN |
| && h->root.plt.offset != (bfd_vma) -1) |
| || (( r_type == R_MN10300_GOT32 |
| || r_type == R_MN10300_GOT24 |
| || r_type == R_MN10300_TLS_GD |
| || r_type == R_MN10300_TLS_LD |
| || r_type == R_MN10300_TLS_GOTIE |
| || r_type == R_MN10300_TLS_IE |
| || r_type == R_MN10300_GOT16) |
| && elf_hash_table (info)->dynamic_sections_created |
| && !SYMBOL_REFERENCES_LOCAL (info, hh)) |
| || (r_type == R_MN10300_32 |
| /* _32 relocs in executables force _COPY relocs, |
| such that the address of the symbol ends up |
| being local. */ |
| && !bfd_link_executable (info) |
| && !SYMBOL_REFERENCES_LOCAL (info, hh) |
| && ((input_section->flags & SEC_ALLOC) != 0 |
| /* DWARF will emit R_MN10300_32 relocations |
| in its sections against symbols defined |
| externally in shared libraries. We can't |
| do anything with them here. */ |
| || ((input_section->flags & SEC_DEBUGGING) != 0 |
| && h->root.def_dynamic))))) |
| /* In these cases, we don't need the relocation |
| value. We check specially because in some |
| obscure cases sec->output_section will be NULL. */ |
| relocation = 0; |
| |
| else if (!bfd_link_relocatable (info) && unresolved_reloc |
| && _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset) != (bfd_vma) -1) |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA+%#" PRIx64 "): " |
| "unresolvable %s relocation against symbol `%s'"), |
| input_bfd, |
| input_section, |
| (uint64_t) rel->r_offset, |
| howto->name, |
| h->root.root.root.string); |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| continue; |
| |
| r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd, |
| input_section, |
| contents, rel->r_offset, |
| relocation, rel->r_addend, |
| (struct elf_link_hash_entry *) h, |
| r_symndx, |
| info, sec, h == NULL); |
| |
| if (r != bfd_reloc_ok) |
| { |
| const char *name; |
| const char *msg = NULL; |
| |
| if (h != NULL) |
| name = h->root.root.root.string; |
| else |
| { |
| name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
| if (name == NULL || *name == '\0') |
| name = bfd_section_name (sec); |
| } |
| |
| switch (r) |
| { |
| case bfd_reloc_overflow: |
| (*info->callbacks->reloc_overflow) |
| (info, (h ? &h->root.root : NULL), name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| case bfd_reloc_undefined: |
| (*info->callbacks->undefined_symbol) |
| (info, name, input_bfd, input_section, rel->r_offset, TRUE); |
| break; |
| |
| case bfd_reloc_outofrange: |
| msg = _("internal error: out of range error"); |
| goto common_error; |
| |
| case bfd_reloc_notsupported: |
| msg = _("internal error: unsupported relocation error"); |
| goto common_error; |
| |
| case bfd_reloc_dangerous: |
| if (r_type == R_MN10300_PCREL32) |
| msg = _("error: inappropriate relocation type for shared" |
| " library (did you forget -fpic?)"); |
| else if (r_type == R_MN10300_GOT32) |
| /* xgettext:c-format */ |
| msg = _("%pB: taking the address of protected function" |
| " '%s' cannot be done when making a shared library"); |
| else |
| msg = _("internal error: suspicious relocation type used" |
| " in shared library"); |
| goto common_error; |
| |
| default: |
| msg = _("internal error: unknown error"); |
| /* Fall through. */ |
| |
| common_error: |
| _bfd_error_handler (msg, input_bfd, name); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Finish initializing one hash table entry. */ |
| |
| static bfd_boolean |
| elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry, |
| void * in_args) |
| { |
| struct elf32_mn10300_link_hash_entry *entry; |
| struct bfd_link_info *link_info = (struct bfd_link_info *) in_args; |
| unsigned int byte_count = 0; |
| |
| entry = (struct elf32_mn10300_link_hash_entry *) gen_entry; |
| |
| /* If we already know we want to convert "call" to "calls" for calls |
| to this symbol, then return now. */ |
| if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS) |
| return TRUE; |
| |
| /* If there are no named calls to this symbol, or there's nothing we |
| can move from the function itself into the "call" instruction, |
| then note that all "call" instructions should be converted into |
| "calls" instructions and return. If a symbol is available for |
| dynamic symbol resolution (overridable or overriding), avoid |
| custom calling conventions. */ |
| if (entry->direct_calls == 0 |
| || (entry->stack_size == 0 && entry->movm_args == 0) |
| || (elf_hash_table (link_info)->dynamic_sections_created |
| && ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN)) |
| { |
| /* Make a note that we should convert "call" instructions to "calls" |
| instructions for calls to this symbol. */ |
| entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| return TRUE; |
| } |
| |
| /* We may be able to move some instructions from the function itself into |
| the "call" instruction. Count how many bytes we might be able to |
| eliminate in the function itself. */ |
| |
| /* A movm instruction is two bytes. */ |
| if (entry->movm_args) |
| byte_count += 2; |
| |
| /* Count the insn to allocate stack space too. */ |
| if (entry->stack_size > 0) |
| { |
| if (entry->stack_size <= 128) |
| byte_count += 3; |
| else |
| byte_count += 4; |
| } |
| |
| /* If using "call" will result in larger code, then turn all |
| the associated "call" instructions into "calls" instructions. */ |
| if (byte_count < entry->direct_calls) |
| entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| |
| /* This routine never fails. */ |
| return TRUE; |
| } |
| |
| /* Used to count hash table entries. */ |
| |
| static bfd_boolean |
| elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED, |
| void * in_args) |
| { |
| int *count = (int *) in_args; |
| |
| (*count) ++; |
| return TRUE; |
| } |
| |
| /* Used to enumerate hash table entries into a linear array. */ |
| |
| static bfd_boolean |
| elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry, |
| void * in_args) |
| { |
| struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args; |
| |
| **ptr = gen_entry; |
| (*ptr) ++; |
| return TRUE; |
| } |
| |
| /* Used to sort the array created by the above. */ |
| |
| static int |
| sort_by_value (const void *va, const void *vb) |
| { |
| struct elf32_mn10300_link_hash_entry *a |
| = *(struct elf32_mn10300_link_hash_entry **) va; |
| struct elf32_mn10300_link_hash_entry *b |
| = *(struct elf32_mn10300_link_hash_entry **) vb; |
| |
| return a->value - b->value; |
| } |
| |
| /* Compute the stack size and movm arguments for the function |
| referred to by HASH at address ADDR in section with |
| contents CONTENTS, store the information in the hash table. */ |
| |
| static void |
| compute_function_info (bfd *abfd, |
| struct elf32_mn10300_link_hash_entry *hash, |
| bfd_vma addr, |
| unsigned char *contents) |
| { |
| unsigned char byte1, byte2; |
| /* We only care about a very small subset of the possible prologue |
| sequences here. Basically we look for: |
| |
| movm [d2,d3,a2,a3],sp (optional) |
| add <size>,sp (optional, and only for sizes which fit in an unsigned |
| 8 bit number) |
| |
| If we find anything else, we quit. */ |
| |
| /* Look for movm [regs],sp. */ |
| byte1 = bfd_get_8 (abfd, contents + addr); |
| byte2 = bfd_get_8 (abfd, contents + addr + 1); |
| |
| if (byte1 == 0xcf) |
| { |
| hash->movm_args = byte2; |
| addr += 2; |
| byte1 = bfd_get_8 (abfd, contents + addr); |
| byte2 = bfd_get_8 (abfd, contents + addr + 1); |
| } |
| |
| /* Now figure out how much stack space will be allocated by the movm |
| instruction. We need this kept separate from the function's normal |
| stack space. */ |
| if (hash->movm_args) |
| { |
| /* Space for d2. */ |
| if (hash->movm_args & 0x80) |
| hash->movm_stack_size += 4; |
| |
| /* Space for d3. */ |
| if (hash->movm_args & 0x40) |
| hash->movm_stack_size += 4; |
| |
| /* Space for a2. */ |
| if (hash->movm_args & 0x20) |
| hash->movm_stack_size += 4; |
| |
| /* Space for a3. */ |
| if (hash->movm_args & 0x10) |
| hash->movm_stack_size += 4; |
| |
| /* "other" space. d0, d1, a0, a1, mdr, lir, lar, 4 byte pad. */ |
| if (hash->movm_args & 0x08) |
| hash->movm_stack_size += 8 * 4; |
| |
| if (bfd_get_mach (abfd) == bfd_mach_am33 |
| || bfd_get_mach (abfd) == bfd_mach_am33_2) |
| { |
| /* "exother" space. e0, e1, mdrq, mcrh, mcrl, mcvf */ |
| if (hash->movm_args & 0x1) |
| hash->movm_stack_size += 6 * 4; |
| |
| /* exreg1 space. e4, e5, e6, e7 */ |
| if (hash->movm_args & 0x2) |
| hash->movm_stack_size += 4 * 4; |
| |
| /* exreg0 space. e2, e3 */ |
| if (hash->movm_args & 0x4) |
| hash->movm_stack_size += 2 * 4; |
| } |
| } |
| |
| /* Now look for the two stack adjustment variants. */ |
| if (byte1 == 0xf8 && byte2 == 0xfe) |
| { |
| int temp = bfd_get_8 (abfd, contents + addr + 2); |
| temp = ((temp & 0xff) ^ (~0x7f)) + 0x80; |
| |
| hash->stack_size = -temp; |
| } |
| else if (byte1 == 0xfa && byte2 == 0xfe) |
| { |
| int temp = bfd_get_16 (abfd, contents + addr + 2); |
| temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000; |
| temp = -temp; |
| |
| if (temp < 255) |
| hash->stack_size = temp; |
| } |
| |
| /* If the total stack to be allocated by the call instruction is more |
| than 255 bytes, then we can't remove the stack adjustment by using |
| "call" (we might still be able to remove the "movm" instruction. */ |
| if (hash->stack_size + hash->movm_stack_size > 255) |
| hash->stack_size = 0; |
| } |
| |
| /* Delete some bytes from a section while relaxing. */ |
| |
| static bfd_boolean |
| mn10300_elf_relax_delete_bytes (bfd *abfd, |
| asection *sec, |
| bfd_vma addr, |
| int count) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| unsigned int sec_shndx; |
| bfd_byte *contents; |
| Elf_Internal_Rela *irel, *irelend; |
| Elf_Internal_Rela *irelalign; |
| bfd_vma toaddr; |
| Elf_Internal_Sym *isym, *isymend; |
| struct elf_link_hash_entry **sym_hashes; |
| struct elf_link_hash_entry **end_hashes; |
| unsigned int symcount; |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| |
| contents = elf_section_data (sec)->this_hdr.contents; |
| |
| irelalign = NULL; |
| toaddr = sec->size; |
| |
| irel = elf_section_data (sec)->relocs; |
| irelend = irel + sec->reloc_count; |
| |
| if (sec->reloc_count > 0) |
| { |
| /* If there is an align reloc at the end of the section ignore it. |
| GAS creates these relocs for reasons of its own, and they just |
| serve to keep the section artifically inflated. */ |
| if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN) |
| --irelend; |
| |
| /* The deletion must stop at the next ALIGN reloc for an alignment |
| power larger than, or not a multiple of, the number of bytes we |
| are deleting. */ |
| for (; irel < irelend; irel++) |
| { |
| int alignment = 1 << irel->r_addend; |
| |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN |
| && irel->r_offset > addr |
| && irel->r_offset < toaddr |
| && (count < alignment |
| || alignment % count != 0)) |
| { |
| irelalign = irel; |
| toaddr = irel->r_offset; |
| break; |
| } |
| } |
| } |
| |
| /* Actually delete the bytes. */ |
| memmove (contents + addr, contents + addr + count, |
| (size_t) (toaddr - addr - count)); |
| |
| /* Adjust the section's size if we are shrinking it, or else |
| pad the bytes between the end of the shrunken region and |
| the start of the next region with NOP codes. */ |
| if (irelalign == NULL) |
| { |
| sec->size -= count; |
| /* Include symbols at the end of the section, but |
| not at the end of a sub-region of the section. */ |
| toaddr ++; |
| } |
| else |
| { |
| int i; |
| |
| #define NOP_OPCODE 0xcb |
| |
| for (i = 0; i < count; i ++) |
| bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); |
| } |
| |
| /* Adjust all the relocs. */ |
| for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) |
| { |
| /* Get the new reloc address. */ |
| if ((irel->r_offset > addr |
| && irel->r_offset < toaddr) |
| || (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN |
| && irel->r_offset == toaddr)) |
| irel->r_offset -= count; |
| } |
| |
| /* Adjust the local symbols in the section, reducing their value |
| by the number of bytes deleted. Note - symbols within the deleted |
| region are moved to the address of the start of the region, which |
| actually means that they will address the byte beyond the end of |
| the region once the deletion has been completed. */ |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| isym = (Elf_Internal_Sym *) symtab_hdr->contents; |
| for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) |
| { |
| if (isym->st_shndx == sec_shndx |
| && isym->st_value > addr |
| && isym->st_value < toaddr) |
| { |
| if (isym->st_value < addr + count) |
| isym->st_value = addr; |
| else |
| isym->st_value -= count; |
| } |
| /* Adjust the function symbol's size as well. */ |
| else if (isym->st_shndx == sec_shndx |
| && ELF_ST_TYPE (isym->st_info) == STT_FUNC |
| && isym->st_value + isym->st_size > addr |
| && isym->st_value + isym->st_size < toaddr) |
| isym->st_size -= count; |
| } |
| |
| /* Now adjust the global symbols defined in this section. */ |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| sym_hashes = elf_sym_hashes (abfd); |
| end_hashes = sym_hashes + symcount; |
| for (; sym_hashes < end_hashes; sym_hashes++) |
| { |
| struct elf_link_hash_entry *sym_hash = *sym_hashes; |
| |
| if ((sym_hash->root.type == bfd_link_hash_defined |
| || sym_hash->root.type == bfd_link_hash_defweak) |
| && sym_hash->root.u.def.section == sec |
| && sym_hash->root.u.def.value > addr |
| && sym_hash->root.u.def.value < toaddr) |
| { |
| if (sym_hash->root.u.def.value < addr + count) |
| sym_hash->root.u.def.value = addr; |
| else |
| sym_hash->root.u.def.value -= count; |
| } |
| /* Adjust the function symbol's size as well. */ |
| else if (sym_hash->root.type == bfd_link_hash_defined |
| && sym_hash->root.u.def.section == sec |
| && sym_hash->type == STT_FUNC |
| && sym_hash->root.u.def.value + sym_hash->size > addr |
| && sym_hash->root.u.def.value + sym_hash->size < toaddr) |
| sym_hash->size -= count; |
| } |
| |
| /* See if we can move the ALIGN reloc forward. |
| We have adjusted r_offset for it already. */ |
| if (irelalign != NULL) |
| { |
| bfd_vma alignto, alignaddr; |
| |
| if ((int) irelalign->r_addend > 0) |
| { |
| /* This is the old address. */ |
| alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend); |
| /* This is where the align points to now. */ |
| alignaddr = BFD_ALIGN (irelalign->r_offset, |
| 1 << irelalign->r_addend); |
| if (alignaddr < alignto) |
| /* Tail recursion. */ |
| return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr, |
| (int) (alignto - alignaddr)); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return TRUE if a symbol exists at the given address, else return |
| FALSE. */ |
| |
| static bfd_boolean |
| mn10300_elf_symbol_address_p (bfd *abfd, |
| asection *sec, |
| Elf_Internal_Sym *isym, |
| bfd_vma addr) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| unsigned int sec_shndx; |
| Elf_Internal_Sym *isymend; |
| struct elf_link_hash_entry **sym_hashes; |
| struct elf_link_hash_entry **end_hashes; |
| unsigned int symcount; |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| |
| /* Examine all the symbols. */ |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) |
| if (isym->st_shndx == sec_shndx |
| && isym->st_value == addr) |
| return TRUE; |
| |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| sym_hashes = elf_sym_hashes (abfd); |
| end_hashes = sym_hashes + symcount; |
| for (; sym_hashes < end_hashes; sym_hashes++) |
| { |
| struct elf_link_hash_entry *sym_hash = *sym_hashes; |
| |
| if ((sym_hash->root.type == bfd_link_hash_defined |
| || sym_hash->root.type == bfd_link_hash_defweak) |
| && sym_hash->root.u.def.section == sec |
| && sym_hash->root.u.def.value == addr) |
| return TRUE; |
| } |
| |
| return FALSE; |
| } |
| |
| /* This function handles relaxing for the mn10300. |
| |
| There are quite a few relaxing opportunities available on the mn10300: |
| |
| * calls:32 -> calls:16 2 bytes |
| * call:32 -> call:16 2 bytes |
| |
| * call:32 -> calls:32 1 byte |
| * call:16 -> calls:16 1 byte |
| * These are done anytime using "calls" would result |
| in smaller code, or when necessary to preserve the |
| meaning of the program. |
| |
| * call:32 varies |
| * call:16 |
| * In some circumstances we can move instructions |
| from a function prologue into a "call" instruction. |
| This is only done if the resulting code is no larger |
| than the original code. |
| |
| * jmp:32 -> jmp:16 2 bytes |
| * jmp:16 -> bra:8 1 byte |
| |
| * If the previous instruction is a conditional branch |
| around the jump/bra, we may be able to reverse its condition |
| and change its target to the jump's target. The jump/bra |
| can then be deleted. 2 bytes |
| |
| * mov abs32 -> mov abs16 1 or 2 bytes |
| |
| * Most instructions which accept imm32 can relax to imm16 1 or 2 bytes |
| - Most instructions which accept imm16 can relax to imm8 1 or 2 bytes |
| |
| * Most instructions which accept d32 can relax to d16 1 or 2 bytes |
| - Most instructions which accept d16 can relax to d8 1 or 2 bytes |
| |
| We don't handle imm16->imm8 or d16->d8 as they're very rare |
| and somewhat more difficult to support. */ |
| |
| static bfd_boolean |
| mn10300_elf_relax_section (bfd *abfd, |
| asection *sec, |
| struct bfd_link_info *link_info, |
| bfd_boolean *again) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Rela *internal_relocs = NULL; |
| Elf_Internal_Rela *irel, *irelend; |
| bfd_byte *contents = NULL; |
| Elf_Internal_Sym *isymbuf = NULL; |
| struct elf32_mn10300_link_hash_table *hash_table; |
| asection *section = sec; |
| bfd_vma align_gap_adjustment; |
| |
| if (bfd_link_relocatable (link_info)) |
| (*link_info->callbacks->einfo) |
| (_("%P%F: --relax and -r may not be used together\n")); |
| |
| /* Assume nothing changes. */ |
| *again = FALSE; |
| |
| /* We need a pointer to the mn10300 specific hash table. */ |
| hash_table = elf32_mn10300_hash_table (link_info); |
| if (hash_table == NULL) |
| return FALSE; |
| |
| /* Initialize fields in each hash table entry the first time through. */ |
| if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0) |
| { |
| bfd *input_bfd; |
| |
| /* Iterate over all the input bfds. */ |
| for (input_bfd = link_info->input_bfds; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next) |
| { |
| /* We're going to need all the symbols for each bfd. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (symtab_hdr->sh_info != 0) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| } |
| |
| /* Iterate over each section in this bfd. */ |
| for (section = input_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| struct elf32_mn10300_link_hash_entry *hash; |
| asection *sym_sec = NULL; |
| const char *sym_name; |
| char *new_name; |
| |
| /* If there's nothing to do in this section, skip it. */ |
| if (! ((section->flags & SEC_RELOC) != 0 |
| && section->reloc_count != 0)) |
| continue; |
| if ((section->flags & SEC_ALLOC) == 0) |
| continue; |
| |
| /* Get cached copy of section contents if it exists. */ |
| if (elf_section_data (section)->this_hdr.contents != NULL) |
| contents = elf_section_data (section)->this_hdr.contents; |
| else if (section->size != 0) |
| { |
| /* Go get them off disk. */ |
| if (!bfd_malloc_and_get_section (input_bfd, section, |
| &contents)) |
| goto error_return; |
| } |
| else |
| contents = NULL; |
| |
| /* If there aren't any relocs, then there's nothing to do. */ |
| if ((section->flags & SEC_RELOC) != 0 |
| && section->reloc_count != 0) |
| { |
| /* Get a copy of the native relocations. */ |
| internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, |
| NULL, NULL, |
| link_info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_return; |
| |
| /* Now examine each relocation. */ |
| irel = internal_relocs; |
| irelend = irel + section->reloc_count; |
| for (; irel < irelend; irel++) |
| { |
| long r_type; |
| unsigned long r_index; |
| unsigned char code; |
| |
| r_type = ELF32_R_TYPE (irel->r_info); |
| r_index = ELF32_R_SYM (irel->r_info); |
| |
| if (r_type < 0 || r_type >= (int) R_MN10300_MAX) |
| goto error_return; |
| |
| /* We need the name and hash table entry of the target |
| symbol! */ |
| hash = NULL; |
| sym_sec = NULL; |
| |
| if (r_index < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym; |
| struct elf_link_hash_table *elftab; |
| bfd_size_type amt; |
| |
| isym = isymbuf + r_index; |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec |
| = bfd_section_from_elf_index (input_bfd, |
| isym->st_shndx); |
| |
| sym_name |
| = bfd_elf_string_from_elf_section (input_bfd, |
| (symtab_hdr |
| ->sh_link), |
| isym->st_name); |
| |
| /* If it isn't a function, then we don't care |
| about it. */ |
| if (ELF_ST_TYPE (isym->st_info) != STT_FUNC) |
| continue; |
| |
| /* Tack on an ID so we can uniquely identify this |
| local symbol in the global hash table. */ |
| amt = strlen (sym_name) + 10; |
| new_name = bfd_malloc (amt); |
| if (new_name == NULL) |
| goto error_return; |
| |
| sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| sym_name = new_name; |
| |
| elftab = &hash_table->static_hash_table->root; |
| hash = ((struct elf32_mn10300_link_hash_entry *) |
| elf_link_hash_lookup (elftab, sym_name, |
| TRUE, TRUE, FALSE)); |
| free (new_name); |
| } |
| else |
| { |
| r_index -= symtab_hdr->sh_info; |
| hash = (struct elf32_mn10300_link_hash_entry *) |
| elf_sym_hashes (input_bfd)[r_index]; |
| } |
| |
| sym_name = hash->root.root.root.string; |
| if ((section->flags & SEC_CODE) != 0) |
| { |
| /* If this is not a "call" instruction, then we |
| should convert "call" instructions to "calls" |
| instructions. */ |
| code = bfd_get_8 (input_bfd, |
| contents + irel->r_offset - 1); |
| if (code != 0xdd && code != 0xcd) |
| hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| } |
| |
| /* If this is a jump/call, then bump the |
| direct_calls counter. Else force "call" to |
| "calls" conversions. */ |
| if (r_type == R_MN10300_PCREL32 |
| || r_type == R_MN10300_PLT32 |
| || r_type == R_MN10300_PLT16 |
| || r_type == R_MN10300_PCREL16) |
| hash->direct_calls++; |
| else |
| hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| } |
| } |
| |
| /* Now look at the actual contents to get the stack size, |
| and a list of what registers were saved in the prologue |
| (ie movm_args). */ |
| if ((section->flags & SEC_CODE) != 0) |
| { |
| Elf_Internal_Sym *isym, *isymend; |
| unsigned int sec_shndx; |
| struct elf_link_hash_entry **hashes; |
| struct elf_link_hash_entry **end_hashes; |
| unsigned int symcount; |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, |
| section); |
| |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| hashes = elf_sym_hashes (input_bfd); |
| end_hashes = hashes + symcount; |
| |
| /* Look at each function defined in this section and |
| update info for that function. */ |
| isymend = isymbuf + symtab_hdr->sh_info; |
| for (isym = isymbuf; isym < isymend; isym++) |
| { |
| if (isym->st_shndx == sec_shndx |
| && ELF_ST_TYPE (isym->st_info) == STT_FUNC) |
| { |
| struct elf_link_hash_table *elftab; |
| bfd_size_type amt; |
| struct elf_link_hash_entry **lhashes = hashes; |
| |
| /* Skip a local symbol if it aliases a |
| global one. */ |
| for (; lhashes < end_hashes; lhashes++) |
| { |
| hash = (struct elf32_mn10300_link_hash_entry *) *lhashes; |
| if ((hash->root.root.type == bfd_link_hash_defined |
| || hash->root.root.type == bfd_link_hash_defweak) |
| && hash->root.root.u.def.section == section |
| && hash->root.type == STT_FUNC |
| && hash->root.root.u.def.value == isym->st_value) |
| break; |
| } |
| if (lhashes != end_hashes) |
| continue; |
| |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec |
| = bfd_section_from_elf_index (input_bfd, |
| isym->st_shndx); |
| |
| sym_name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, |
| isym->st_name)); |
| |
| /* Tack on an ID so we can uniquely identify this |
| local symbol in the global hash table. */ |
| amt = strlen (sym_name) + 10; |
| new_name = bfd_malloc (amt); |
| if (new_name == NULL) |
| goto error_return; |
| |
| sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| sym_name = new_name; |
| |
| elftab = &hash_table->static_hash_table->root; |
| hash = ((struct elf32_mn10300_link_hash_entry *) |
| elf_link_hash_lookup (elftab, sym_name, |
| TRUE, TRUE, FALSE)); |
| free (new_name); |
| compute_function_info (input_bfd, hash, |
| isym->st_value, contents); |
| hash->value = isym->st_value; |
| } |
| } |
| |
| for (; hashes < end_hashes; hashes++) |
| { |
| hash = (struct elf32_mn10300_link_hash_entry *) *hashes; |
| if ((hash->root.root.type == bfd_link_hash_defined |
| || hash->root.root.type == bfd_link_hash_defweak) |
| && hash->root.root.u.def.section == section |
| && hash->root.type == STT_FUNC) |
| compute_function_info (input_bfd, hash, |
| (hash)->root.root.u.def.value, |
| contents); |
| } |
| } |
| |
| /* Cache or free any memory we allocated for the relocs. */ |
| if (internal_relocs != NULL |
| && elf_section_data (section)->relocs != internal_relocs) |
| free (internal_relocs); |
| internal_relocs = NULL; |
| |
| /* Cache or free any memory we allocated for the contents. */ |
| if (contents != NULL |
| && elf_section_data (section)->this_hdr.contents != contents) |
| { |
| if (! link_info->keep_memory) |
| free (contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (section)->this_hdr.contents = contents; |
| } |
| } |
| contents = NULL; |
| } |
| |
| /* Cache or free any memory we allocated for the symbols. */ |
| if (isymbuf != NULL |
| && symtab_hdr->contents != (unsigned char *) isymbuf) |
| { |
| if (! link_info->keep_memory) |
| free (isymbuf); |
| else |
| { |
| /* Cache the symbols for elf_link_input_bfd. */ |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| } |
| } |
| isymbuf = NULL; |
| } |
| |
| /* Now iterate on each symbol in the hash table and perform |
| the final initialization steps on each. */ |
| elf32_mn10300_link_hash_traverse (hash_table, |
| elf32_mn10300_finish_hash_table_entry, |
| link_info); |
| elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, |
| elf32_mn10300_finish_hash_table_entry, |
| link_info); |
| |
| { |
| /* This section of code collects all our local symbols, sorts |
| them by value, and looks for multiple symbols referring to |
| the same address. For those symbols, the flags are merged. |
| At this point, the only flag that can be set is |
| MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags |
| together. */ |
| int static_count = 0, i; |
| struct elf32_mn10300_link_hash_entry **entries; |
| struct elf32_mn10300_link_hash_entry **ptr; |
| |
| elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, |
| elf32_mn10300_count_hash_table_entries, |
| &static_count); |
| |
| entries = bfd_malloc (static_count * sizeof (* ptr)); |
| |
| ptr = entries; |
| elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, |
| elf32_mn10300_list_hash_table_entries, |
| & ptr); |
| |
| qsort (entries, static_count, sizeof (entries[0]), sort_by_value); |
| |
| for (i = 0; i < static_count - 1; i++) |
| if (entries[i]->value && entries[i]->value == entries[i+1]->value) |
| { |
| int v = entries[i]->flags; |
| int j; |
| |
| for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++) |
| v |= entries[j]->flags; |
| |
| for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++) |
| entries[j]->flags = v; |
| |
| i = j - 1; |
| } |
| } |
| |
| /* All entries in the hash table are fully initialized. */ |
| hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED; |
| |
| /* Now that everything has been initialized, go through each |
| code section and delete any prologue insns which will be |
| redundant because their operations will be performed by |
| a "call" instruction. */ |
| for (input_bfd = link_info->input_bfds; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next) |
| { |
| /* We're going to need all the local symbols for each bfd. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (symtab_hdr->sh_info != 0) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| } |
| |
| /* Walk over each section in this bfd. */ |
| for (section = input_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| unsigned int sec_shndx; |
| Elf_Internal_Sym *isym, *isymend; |
| struct elf_link_hash_entry **hashes; |
| struct elf_link_hash_entry **end_hashes; |
| unsigned int symcount; |
| |
| /* Skip non-code sections and empty sections. */ |
| if ((section->flags & SEC_CODE) == 0 || section->size == 0) |
| continue; |
| |
| if (section->reloc_count != 0) |
| { |
| /* Get a copy of the native relocations. */ |
| internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, |
| NULL, NULL, |
| link_info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_return; |
| } |
| |
| /* Get cached copy of section contents if it exists. */ |
| if (elf_section_data (section)->this_hdr.contents != NULL) |
| contents = elf_section_data (section)->this_hdr.contents; |
| else |
| { |
| /* Go get them off disk. */ |
| if (!bfd_malloc_and_get_section (input_bfd, section, |
| &contents)) |
| goto error_return; |
| } |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, |
| section); |
| |
| /* Now look for any function in this section which needs |
| insns deleted from its prologue. */ |
| isymend = isymbuf + symtab_hdr->sh_info; |
| for (isym = isymbuf; isym < isymend; isym++) |
| { |
| struct elf32_mn10300_link_hash_entry *sym_hash; |
| asection *sym_sec = NULL; |
| const char *sym_name; |
| char *new_name; |
| struct elf_link_hash_table *elftab; |
| bfd_size_type amt; |
| |
| if (isym->st_shndx != sec_shndx) |
| continue; |
| |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec |
| = bfd_section_from_elf_index (input_bfd, isym->st_shndx); |
| |
| sym_name |
| = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| isym->st_name); |
| |
| /* Tack on an ID so we can uniquely identify this |
| local symbol in the global hash table. */ |
| amt = strlen (sym_name) + 10; |
| new_name = bfd_malloc (amt); |
| if (new_name == NULL) |
| goto error_return; |
| sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| sym_name = new_name; |
| |
| elftab = & hash_table->static_hash_table->root; |
| sym_hash = (struct elf32_mn10300_link_hash_entry *) |
| elf_link_hash_lookup (elftab, sym_name, |
| FALSE, FALSE, FALSE); |
| |
| free (new_name); |
| if (sym_hash == NULL) |
| continue; |
| |
| if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS) |
| && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES)) |
| { |
| int bytes = 0; |
| |
| /* Note that we've changed things. */ |
| elf_section_data (section)->relocs = internal_relocs; |
| elf_section_data (section)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Count how many bytes we're going to delete. */ |
| if (sym_hash->movm_args) |
| bytes += 2; |
| |
| if (sym_hash->stack_size > 0) |
| { |
| if (sym_hash->stack_size <= 128) |
| bytes += 3; |
| else |
| bytes += 4; |
| } |
| |
| /* Note that we've deleted prologue bytes for this |
| function. */ |
| sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES; |
| |
| /* Actually delete the bytes. */ |
| if (!mn10300_elf_relax_delete_bytes (input_bfd, |
| section, |
| isym->st_value, |
| bytes)) |
| goto error_return; |
| |
| /* Something changed. Not strictly necessary, but |
|