blob: 35564dd2b0b59fd2855cd4987a7990a61f413cbe [file] [log] [blame]
/* BFD back-end for HP PA-RISC ELF files.
Copyright (C) 1990-2019 Free Software Foundation, Inc.
Original code by
Center for Software Science
Department of Computer Science
University of Utah
Largely rewritten by Alan Modra <alan@linuxcare.com.au>
Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
TLS support written by Randolph Chung <tausq@debian.org>
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/hppa.h"
#include "libhppa.h"
#include "elf32-hppa.h"
#define ARCH_SIZE 32
#include "elf32-hppa.h"
#include "elf-hppa.h"
/* In order to gain some understanding of code in this file without
knowing all the intricate details of the linker, note the
following:
Functions named elf32_hppa_* are called by external routines, other
functions are only called locally. elf32_hppa_* functions appear
in this file more or less in the order in which they are called
from external routines. eg. elf32_hppa_check_relocs is called
early in the link process, elf32_hppa_finish_dynamic_sections is
one of the last functions. */
/* We use two hash tables to hold information for linking PA ELF objects.
The first is the elf32_hppa_link_hash_table which is derived
from the standard ELF linker hash table. We use this as a place to
attach other hash tables and static information.
The second is the stub hash table which is derived from the
base BFD hash table. The stub hash table holds the information
necessary to build the linker stubs during a link.
There are a number of different stubs generated by the linker.
Long branch stub:
: ldil LR'X,%r1
: be,n RR'X(%sr4,%r1)
PIC long branch stub:
: b,l .+8,%r1
: addil LR'X - ($PIC_pcrel$0 - 4),%r1
: be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
Import stub to call shared library routine from normal object file
(single sub-space version)
: addil LR'lt_ptr+ltoff,%dp ; get PLT address
: ldo RR'lt_ptr+ltoff(%r1),%r22 ;
: ldw 0(%r22),%r21 ; get procedure entry point
: bv %r0(%r21)
: ldw 4(%r22),%r19 ; get new dlt value.
Import stub to call shared library routine from shared library
(single sub-space version)
: addil LR'ltoff,%r19 ; get PLT address
: ldo RR'ltoff(%r1),%r22
: ldw 0(%r22),%r21 ; get procedure entry point
: bv %r0(%r21)
: ldw 4(%r22),%r19 ; get new dlt value.
Import stub to call shared library routine from normal object file
(multiple sub-space support)
: addil LR'lt_ptr+ltoff,%dp ; get PLT address
: ldo RR'lt_ptr+ltoff(%r1),%r22 ;
: ldw 0(%r22),%r21 ; get procedure entry point
: ldsid (%r21),%r1 ; get target sid
: ldw 4(%r22),%r19 ; get new dlt value.
: mtsp %r1,%sr0
: be 0(%sr0,%r21) ; branch to target
: stw %rp,-24(%sp) ; save rp
Import stub to call shared library routine from shared library
(multiple sub-space support)
: addil LR'ltoff,%r19 ; get PLT address
: ldo RR'ltoff(%r1),%r22
: ldw 0(%r22),%r21 ; get procedure entry point
: ldsid (%r21),%r1 ; get target sid
: ldw 4(%r22),%r19 ; get new dlt value.
: mtsp %r1,%sr0
: be 0(%sr0,%r21) ; branch to target
: stw %rp,-24(%sp) ; save rp
Export stub to return from shared lib routine (multiple sub-space support)
One of these is created for each exported procedure in a shared
library (and stored in the shared lib). Shared lib routines are
called via the first instruction in the export stub so that we can
do an inter-space return. Not required for single sub-space.
: bl,n X,%rp ; trap the return
: nop
: ldw -24(%sp),%rp ; restore the original rp
: ldsid (%rp),%r1
: mtsp %r1,%sr0
: be,n 0(%sr0,%rp) ; inter-space return. */
/* Variable names follow a coding style.
Please follow this (Apps Hungarian) style:
Structure/Variable Prefix
elf_link_hash_table "etab"
elf_link_hash_entry "eh"
elf32_hppa_link_hash_table "htab"
elf32_hppa_link_hash_entry "hh"
bfd_hash_table "btab"
bfd_hash_entry "bh"
bfd_hash_table containing stubs "bstab"
elf32_hppa_stub_hash_entry "hsh"
Always remember to use GNU Coding Style. */
#define PLT_ENTRY_SIZE 8
#define GOT_ENTRY_SIZE 4
#define LONG_BRANCH_STUB_SIZE 8
#define LONG_BRANCH_SHARED_STUB_SIZE 12
#define IMPORT_STUB_SIZE 20
#define IMPORT_SHARED_STUB_SIZE 32
#define EXPORT_STUB_SIZE 24
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
static const bfd_byte plt_stub[] =
{
0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */
0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */
0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
#define PLT_STUB_ENTRY (3*4)
0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
};
/* Section name for stubs is the associated section name plus this
string. */
#define STUB_SUFFIX ".stub"
/* We don't need to copy certain PC- or GP-relative dynamic relocs
into a shared object's dynamic section. All the relocs of the
limited class we are interested in, are absolute. */
#ifndef RELATIVE_DYNRELOCS
#define RELATIVE_DYNRELOCS 0
#define IS_ABSOLUTE_RELOC(r_type) 1
#define pc_dynrelocs(hh) 0
#endif
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
copying dynamic variables from a shared lib into an app's dynbss
section, and instead use a dynamic relocation to point into the
shared lib. */
#define ELIMINATE_COPY_RELOCS 1
enum elf32_hppa_stub_type
{
hppa_stub_long_branch,
hppa_stub_long_branch_shared,
hppa_stub_import,
hppa_stub_import_shared,
hppa_stub_export,
hppa_stub_none
};
struct elf32_hppa_stub_hash_entry
{
/* Base hash table entry structure. */
struct bfd_hash_entry bh_root;
/* The stub section. */
asection *stub_sec;
/* Offset within stub_sec of the beginning of this stub. */
bfd_vma stub_offset;
/* Given the symbol's value and its section we can determine its final
value when building the stubs (so the stub knows where to jump. */
bfd_vma target_value;
asection *target_section;
enum elf32_hppa_stub_type stub_type;
/* The symbol table entry, if any, that this was derived from. */
struct elf32_hppa_link_hash_entry *hh;
/* Where this stub is being called from, or, in the case of combined
stub sections, the first input section in the group. */
asection *id_sec;
};
enum _tls_type
{
GOT_UNKNOWN = 0,
GOT_NORMAL = 1,
GOT_TLS_GD = 2,
GOT_TLS_LDM = 4,
GOT_TLS_IE = 8
};
struct elf32_hppa_link_hash_entry
{
struct elf_link_hash_entry eh;
/* A pointer to the most recently used stub hash entry against this
symbol. */
struct elf32_hppa_stub_hash_entry *hsh_cache;
/* Used to count relocations for delayed sizing of relocation
sections. */
struct elf_dyn_relocs *dyn_relocs;
ENUM_BITFIELD (_tls_type) tls_type : 8;
/* Set if this symbol is used by a plabel reloc. */
unsigned int plabel:1;
};
struct elf32_hppa_link_hash_table
{
/* The main hash table. */
struct elf_link_hash_table etab;
/* The stub hash table. */
struct bfd_hash_table bstab;
/* Linker stub bfd. */
bfd *stub_bfd;
/* Linker call-backs. */
asection * (*add_stub_section) (const char *, asection *);
void (*layout_sections_again) (void);
/* Array to keep track of which stub sections have been created, and
information on stub grouping. */
struct map_stub
{
/* This is the section to which stubs in the group will be
attached. */
asection *link_sec;
/* The stub section. */
asection *stub_sec;
} *stub_group;
/* Assorted information used by elf32_hppa_size_stubs. */
unsigned int bfd_count;
unsigned int top_index;
asection **input_list;
Elf_Internal_Sym **all_local_syms;
/* Used during a final link to store the base of the text and data
segments so that we can perform SEGREL relocations. */
bfd_vma text_segment_base;
bfd_vma data_segment_base;
/* Whether we support multiple sub-spaces for shared libs. */
unsigned int multi_subspace:1;
/* Flags set when various size branches are detected. Used to
select suitable defaults for the stub group size. */
unsigned int has_12bit_branch:1;
unsigned int has_17bit_branch:1;
unsigned int has_22bit_branch:1;
/* Set if we need a .plt stub to support lazy dynamic linking. */
unsigned int need_plt_stub:1;
/* Small local sym cache. */
struct sym_cache sym_cache;
/* Data for LDM relocations. */
union
{
bfd_signed_vma refcount;
bfd_vma offset;
} tls_ldm_got;
};
/* Various hash macros and functions. */
#define hppa_link_hash_table(p) \
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
== HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
#define hppa_elf_hash_entry(ent) \
((struct elf32_hppa_link_hash_entry *)(ent))
#define hppa_stub_hash_entry(ent) \
((struct elf32_hppa_stub_hash_entry *)(ent))
#define hppa_stub_hash_lookup(table, string, create, copy) \
((struct elf32_hppa_stub_hash_entry *) \
bfd_hash_lookup ((table), (string), (create), (copy)))
#define hppa_elf_local_got_tls_type(abfd) \
((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
#define hh_name(hh) \
(hh ? hh->eh.root.root.string : "<undef>")
#define eh_name(eh) \
(eh ? eh->root.root.string : "<undef>")
/* Assorted hash table functions. */
/* Initialize an entry in the stub hash table. */
static struct bfd_hash_entry *
stub_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct elf32_hppa_stub_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = bfd_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct elf32_hppa_stub_hash_entry *hsh;
/* Initialize the local fields. */
hsh = hppa_stub_hash_entry (entry);
hsh->stub_sec = NULL;
hsh->stub_offset = 0;
hsh->target_value = 0;
hsh->target_section = NULL;
hsh->stub_type = hppa_stub_long_branch;
hsh->hh = NULL;
hsh->id_sec = NULL;
}
return entry;
}
/* Initialize an entry in the link hash table. */
static struct bfd_hash_entry *
hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct elf32_hppa_link_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct elf32_hppa_link_hash_entry *hh;
/* Initialize the local fields. */
hh = hppa_elf_hash_entry (entry);
hh->hsh_cache = NULL;
hh->dyn_relocs = NULL;
hh->plabel = 0;
hh->tls_type = GOT_UNKNOWN;
}
return entry;
}
/* Free the derived linker hash table. */
static void
elf32_hppa_link_hash_table_free (bfd *obfd)
{
struct elf32_hppa_link_hash_table *htab
= (struct elf32_hppa_link_hash_table *) obfd->link.hash;
bfd_hash_table_free (&htab->bstab);
_bfd_elf_link_hash_table_free (obfd);
}
/* Create the derived linker hash table. The PA ELF port uses the derived
hash table to keep information specific to the PA ELF linker (without
using static variables). */
static struct bfd_link_hash_table *
elf32_hppa_link_hash_table_create (bfd *abfd)
{
struct elf32_hppa_link_hash_table *htab;
bfd_size_type amt = sizeof (*htab);
htab = bfd_zmalloc (amt);
if (htab == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
sizeof (struct elf32_hppa_link_hash_entry),
HPPA32_ELF_DATA))
{
free (htab);
return NULL;
}
/* Init the stub hash table too. */
if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
sizeof (struct elf32_hppa_stub_hash_entry)))
{
_bfd_elf_link_hash_table_free (abfd);
return NULL;
}
htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
htab->text_segment_base = (bfd_vma) -1;
htab->data_segment_base = (bfd_vma) -1;
return &htab->etab.root;
}
/* Initialize the linker stubs BFD so that we can use it for linker
created dynamic sections. */
void
elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
{
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
htab->etab.dynobj = abfd;
}
/* Build a name for an entry in the stub hash table. */
static char *
hppa_stub_name (const asection *input_section,
const asection *sym_sec,
const struct elf32_hppa_link_hash_entry *hh,
const Elf_Internal_Rela *rela)
{
char *stub_name;
bfd_size_type len;
if (hh)
{
len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
stub_name = bfd_malloc (len);
if (stub_name != NULL)
sprintf (stub_name, "%08x_%s+%x",
input_section->id & 0xffffffff,
hh_name (hh),
(int) rela->r_addend & 0xffffffff);
}
else
{
len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
stub_name = bfd_malloc (len);
if (stub_name != NULL)
sprintf (stub_name, "%08x_%x:%x+%x",
input_section->id & 0xffffffff,
sym_sec->id & 0xffffffff,
(int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
(int) rela->r_addend & 0xffffffff);
}
return stub_name;
}
/* Look up an entry in the stub hash. Stub entries are cached because
creating the stub name takes a bit of time. */
static struct elf32_hppa_stub_hash_entry *
hppa_get_stub_entry (const asection *input_section,
const asection *sym_sec,
struct elf32_hppa_link_hash_entry *hh,
const Elf_Internal_Rela *rela,
struct elf32_hppa_link_hash_table *htab)
{
struct elf32_hppa_stub_hash_entry *hsh_entry;
const asection *id_sec;
/* If this input section is part of a group of sections sharing one
stub section, then use the id of the first section in the group.
Stub names need to include a section id, as there may well be
more than one stub used to reach say, printf, and we need to
distinguish between them. */
id_sec = htab->stub_group[input_section->id].link_sec;
if (id_sec == NULL)
return NULL;
if (hh != NULL && hh->hsh_cache != NULL
&& hh->hsh_cache->hh == hh
&& hh->hsh_cache->id_sec == id_sec)
{
hsh_entry = hh->hsh_cache;
}
else
{
char *stub_name;
stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
if (stub_name == NULL)
return NULL;
hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
stub_name, FALSE, FALSE);
if (hh != NULL)
hh->hsh_cache = hsh_entry;
free (stub_name);
}
return hsh_entry;
}
/* Add a new stub entry to the stub hash. Not all fields of the new
stub entry are initialised. */
static struct elf32_hppa_stub_hash_entry *
hppa_add_stub (const char *stub_name,
asection *section,
struct elf32_hppa_link_hash_table *htab)
{
asection *link_sec;
asection *stub_sec;
struct elf32_hppa_stub_hash_entry *hsh;
link_sec = htab->stub_group[section->id].link_sec;
stub_sec = htab->stub_group[section->id].stub_sec;
if (stub_sec == NULL)
{
stub_sec = htab->stub_group[link_sec->id].stub_sec;
if (stub_sec == NULL)
{
size_t namelen;
bfd_size_type len;
char *s_name;
namelen = strlen (link_sec->name);
len = namelen + sizeof (STUB_SUFFIX);
s_name = bfd_alloc (htab->stub_bfd, len);
if (s_name == NULL)
return NULL;
memcpy (s_name, link_sec->name, namelen);
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
stub_sec = (*htab->add_stub_section) (s_name, link_sec);
if (stub_sec == NULL)
return NULL;
htab->stub_group[link_sec->id].stub_sec = stub_sec;
}
htab->stub_group[section->id].stub_sec = stub_sec;
}
/* Enter this entry into the linker stub hash table. */
hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
TRUE, FALSE);
if (hsh == NULL)
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: cannot create stub entry %s"),
section->owner, stub_name);
return NULL;
}
hsh->stub_sec = stub_sec;
hsh->stub_offset = 0;
hsh->id_sec = link_sec;
return hsh;
}
/* Determine the type of stub needed, if any, for a call. */
static enum elf32_hppa_stub_type
hppa_type_of_stub (asection *input_sec,
const Elf_Internal_Rela *rela,
struct elf32_hppa_link_hash_entry *hh,
bfd_vma destination,
struct bfd_link_info *info)
{
bfd_vma location;
bfd_vma branch_offset;
bfd_vma max_branch_offset;
unsigned int r_type;
if (hh != NULL
&& hh->eh.plt.offset != (bfd_vma) -1
&& hh->eh.dynindx != -1
&& !hh->plabel
&& (bfd_link_pic (info)
|| !hh->eh.def_regular
|| hh->eh.root.type == bfd_link_hash_defweak))
{
/* We need an import stub. Decide between hppa_stub_import
and hppa_stub_import_shared later. */
return hppa_stub_import;
}
if (destination == (bfd_vma) -1)
return hppa_stub_none;
/* Determine where the call point is. */
location = (input_sec->output_offset
+ input_sec->output_section->vma
+ rela->r_offset);
branch_offset = destination - location - 8;
r_type = ELF32_R_TYPE (rela->r_info);
/* Determine if a long branch stub is needed. parisc branch offsets
are relative to the second instruction past the branch, ie. +8
bytes on from the branch instruction location. The offset is
signed and counts in units of 4 bytes. */
if (r_type == (unsigned int) R_PARISC_PCREL17F)
max_branch_offset = (1 << (17 - 1)) << 2;
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
max_branch_offset = (1 << (12 - 1)) << 2;
else /* R_PARISC_PCREL22F. */
max_branch_offset = (1 << (22 - 1)) << 2;
if (branch_offset + max_branch_offset >= 2*max_branch_offset)
return hppa_stub_long_branch;
return hppa_stub_none;
}
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
IN_ARG contains the link info pointer. */
#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
#define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */
#define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */
#define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */
#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
#define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
#define NOP 0x08000240 /* nop */
#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
#ifndef R19_STUBS
#define R19_STUBS 1
#endif
#if R19_STUBS
#define LDW_R1_DLT LDW_R1_R19
#else
#define LDW_R1_DLT LDW_R1_DP
#endif
static bfd_boolean
hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
{
struct elf32_hppa_stub_hash_entry *hsh;
struct bfd_link_info *info;
struct elf32_hppa_link_hash_table *htab;
asection *stub_sec;
bfd *stub_bfd;
bfd_byte *loc;
bfd_vma sym_value;
bfd_vma insn;
bfd_vma off;
int val;
int size;
/* Massage our args to the form they really have. */
hsh = hppa_stub_hash_entry (bh);
info = (struct bfd_link_info *)in_arg;
htab = hppa_link_hash_table (info);
if (htab == NULL)
return FALSE;
stub_sec = hsh->stub_sec;
/* Make a note of the offset within the stubs for this entry. */
hsh->stub_offset = stub_sec->size;
loc = stub_sec->contents + hsh->stub_offset;
stub_bfd = stub_sec->owner;
switch (hsh->stub_type)
{
case hppa_stub_long_branch:
/* Create the long branch. A long branch is formed with "ldil"
loading the upper bits of the target address into a register,
then branching with "be" which adds in the lower bits.
The "be" has its delay slot nullified. */
sym_value = (hsh->target_value
+ hsh->target_section->output_offset
+ hsh->target_section->output_section->vma);
val = hppa_field_adjust (sym_value, 0, e_lrsel);
insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
bfd_put_32 (stub_bfd, insn, loc);
val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
bfd_put_32 (stub_bfd, insn, loc + 4);
size = LONG_BRANCH_STUB_SIZE;
break;
case hppa_stub_long_branch_shared:
/* Branches are relative. This is where we are going to. */
sym_value = (hsh->target_value
+ hsh->target_section->output_offset
+ hsh->target_section->output_section->vma);
/* And this is where we are coming from, more or less. */
sym_value -= (hsh->stub_offset
+ stub_sec->output_offset
+ stub_sec->output_section->vma);
bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
bfd_put_32 (stub_bfd, insn, loc + 4);
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
bfd_put_32 (stub_bfd, insn, loc + 8);
size = LONG_BRANCH_SHARED_STUB_SIZE;
break;
case hppa_stub_import:
case hppa_stub_import_shared:
off = hsh->hh->eh.plt.offset;
if (off >= (bfd_vma) -2)
abort ();
off &= ~ (bfd_vma) 1;
sym_value = (off
+ htab->etab.splt->output_offset
+ htab->etab.splt->output_section->vma
- elf_gp (htab->etab.splt->output_section->owner));
insn = ADDIL_DP;
#if R19_STUBS
if (hsh->stub_type == hppa_stub_import_shared)
insn = ADDIL_R19;
#endif
/* Load function descriptor address into register %r22. It is
sometimes needed for lazy binding. */
val = hppa_field_adjust (sym_value, 0, e_lrsel),
insn = hppa_rebuild_insn ((int) insn, val, 21);
bfd_put_32 (stub_bfd, insn, loc);
val = hppa_field_adjust (sym_value, 0, e_rrsel);
insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14);
bfd_put_32 (stub_bfd, insn, loc + 4);
bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8);
if (htab->multi_subspace)
{
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20);
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24);
bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28);
size = IMPORT_SHARED_STUB_SIZE;
}
else
{
bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12);
bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
size = IMPORT_STUB_SIZE;
}
break;
case hppa_stub_export:
/* Branches are relative. This is where we are going to. */
sym_value = (hsh->target_value
+ hsh->target_section->output_offset
+ hsh->target_section->output_section->vma);
/* And this is where we are coming from. */
sym_value -= (hsh->stub_offset
+ stub_sec->output_offset
+ stub_sec->output_section->vma);
if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
&& (!htab->has_22bit_branch
|| sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): "
"cannot reach %s, recompile with -ffunction-sections"),
hsh->target_section->owner,
stub_sec,
(uint64_t) hsh->stub_offset,
hsh->bh_root.string);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
if (!htab->has_22bit_branch)
insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
else
insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
bfd_put_32 (stub_bfd, insn, loc);
bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
/* Point the function symbol at the stub. */
hsh->hh->eh.root.u.def.section = stub_sec;
hsh->hh->eh.root.u.def.value = stub_sec->size;
size = EXPORT_STUB_SIZE;
break;
default:
BFD_FAIL ();
return FALSE;
}
stub_sec->size += size;
return TRUE;
}
#undef LDIL_R1
#undef BE_SR4_R1
#undef BL_R1
#undef ADDIL_R1
#undef DEPI_R1
#undef LDW_R1_R21
#undef LDW_R1_DLT
#undef LDW_R1_R19
#undef ADDIL_R19
#undef LDW_R1_DP
#undef LDSID_R21_R1
#undef MTSP_R1
#undef BE_SR0_R21
#undef STW_RP
#undef BV_R0_R21
#undef BL_RP
#undef NOP
#undef LDW_RP
#undef LDSID_RP_R1
#undef BE_SR0_RP
/* As above, but don't actually build the stub. Just bump offset so
we know stub section sizes. */
static bfd_boolean
hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
{
struct elf32_hppa_stub_hash_entry *hsh;
struct elf32_hppa_link_hash_table *htab;
int size;
/* Massage our args to the form they really have. */
hsh = hppa_stub_hash_entry (bh);
htab = in_arg;
if (hsh->stub_type == hppa_stub_long_branch)
size = LONG_BRANCH_STUB_SIZE;
else if (hsh->stub_type == hppa_stub_long_branch_shared)
size = LONG_BRANCH_SHARED_STUB_SIZE;
else if (hsh->stub_type == hppa_stub_export)
size = EXPORT_STUB_SIZE;
else /* hppa_stub_import or hppa_stub_import_shared. */
{
if (htab->multi_subspace)
size = IMPORT_SHARED_STUB_SIZE;
else
size = IMPORT_STUB_SIZE;
}
hsh->stub_sec->size += size;
return TRUE;
}
/* Return nonzero if ABFD represents an HPPA ELF32 file.
Additionally we set the default architecture and machine. */
static bfd_boolean
elf32_hppa_object_p (bfd *abfd)
{
Elf_Internal_Ehdr * i_ehdrp;
unsigned int flags;
i_ehdrp = elf_elfheader (abfd);
if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
{
/* GCC on hppa-linux produces binaries with OSABI=GNU,
but the kernel produces corefiles with OSABI=SysV. */
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
return FALSE;
}
else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
{
/* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
but the kernel produces corefiles with OSABI=SysV. */
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
return FALSE;
}
else
{
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
return FALSE;
}
flags = i_ehdrp->e_flags;
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
{
case EFA_PARISC_1_0:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
case EFA_PARISC_1_1:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
case EFA_PARISC_2_0:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
}
return TRUE;
}
/* Create the .plt and .got sections, and set up our hash table
short-cuts to various dynamic sections. */
static bfd_boolean
elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
struct elf32_hppa_link_hash_table *htab;
struct elf_link_hash_entry *eh;
/* Don't try to create the .plt and .got twice. */
htab = hppa_link_hash_table (info);
if (htab == NULL)
return FALSE;
if (htab->etab.splt != NULL)
return TRUE;
/* Call the generic code to do most of the work. */
if (! _bfd_elf_create_dynamic_sections (abfd, info))
return FALSE;
/* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
application, because __canonicalize_funcptr_for_compare needs it. */
eh = elf_hash_table (info)->hgot;
eh->forced_local = 0;
eh->other = STV_DEFAULT;
return bfd_elf_link_record_dynamic_symbol (info, eh);
}
/* Copy the extra info we tack onto an elf_link_hash_entry. */
static void
elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *eh_dir,
struct elf_link_hash_entry *eh_ind)
{
struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
hh_dir = hppa_elf_hash_entry (eh_dir);
hh_ind = hppa_elf_hash_entry (eh_ind);
if (hh_ind->dyn_relocs != NULL
&& eh_ind->root.type == bfd_link_hash_indirect)
{
if (hh_dir->dyn_relocs != NULL)
{
struct elf_dyn_relocs **hdh_pp;
struct elf_dyn_relocs *hdh_p;
/* Add reloc counts against the indirect sym to the direct sym
list. Merge any entries against the same section. */
for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
{
struct elf_dyn_relocs *hdh_q;
for (hdh_q = hh_dir->dyn_relocs;
hdh_q != NULL;
hdh_q = hdh_q->next)
if (hdh_q->sec == hdh_p->sec)
{
#if RELATIVE_DYNRELOCS
hdh_q->pc_count += hdh_p->pc_count;
#endif
hdh_q->count += hdh_p->count;
*hdh_pp = hdh_p->next;
break;
}
if (hdh_q == NULL)
hdh_pp = &hdh_p->next;
}
*hdh_pp = hh_dir->dyn_relocs;
}
hh_dir->dyn_relocs = hh_ind->dyn_relocs;
hh_ind->dyn_relocs = NULL;
}
if (eh_ind->root.type == bfd_link_hash_indirect)
{
hh_dir->plabel |= hh_ind->plabel;
hh_dir->tls_type |= hh_ind->tls_type;
hh_ind->tls_type = GOT_UNKNOWN;
}
_bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
}
static int
elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
int r_type, int is_local ATTRIBUTE_UNUSED)
{
/* For now we don't support linker optimizations. */
return r_type;
}
/* Return a pointer to the local GOT, PLT and TLS reference counts
for ABFD. Returns NULL if the storage allocation fails. */
static bfd_signed_vma *
hppa32_elf_local_refcounts (bfd *abfd)
{
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
bfd_signed_vma *local_refcounts;
local_refcounts = elf_local_got_refcounts (abfd);
if (local_refcounts == NULL)
{
bfd_size_type size;
/* Allocate space for local GOT and PLT reference
counts. Done this way to save polluting elf_obj_tdata
with another target specific pointer. */
size = symtab_hdr->sh_info;
size *= 2 * sizeof (bfd_signed_vma);
/* Add in space to store the local GOT TLS types. */
size += symtab_hdr->sh_info;
local_refcounts = bfd_zalloc (abfd, size);
if (local_refcounts == NULL)
return NULL;
elf_local_got_refcounts (abfd) = local_refcounts;
memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
symtab_hdr->sh_info);
}
return local_refcounts;
}
/* Look through the relocs for a section during the first phase, and
calculate needed space in the global offset table, procedure linkage
table, and dynamic reloc sections. At this point we haven't
necessarily read all the input files. */
static bfd_boolean
elf32_hppa_check_relocs (bfd *abfd,
struct bfd_link_info *info,
asection *sec,
const Elf_Internal_Rela *relocs)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **eh_syms;
const Elf_Internal_Rela *rela;
const Elf_Internal_Rela *rela_end;
struct elf32_hppa_link_hash_table *htab;
asection *sreloc;
if (bfd_link_relocatable (info))
return TRUE;
htab = hppa_link_hash_table (info);
if (htab == NULL)
return FALSE;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
eh_syms = elf_sym_hashes (abfd);
sreloc = NULL;
rela_end = relocs + sec->reloc_count;
for (rela = relocs; rela < rela_end; rela++)
{
enum {
NEED_GOT = 1,
NEED_PLT = 2,
NEED_DYNREL = 4,
PLT_PLABEL = 8
};
unsigned int r_symndx, r_type;
struct elf32_hppa_link_hash_entry *hh;
int need_entry = 0;
r_symndx = ELF32_R_SYM (rela->r_info);
if (r_symndx < symtab_hdr->sh_info)
hh = NULL;
else
{
hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
while (hh->eh.root.type == bfd_link_hash_indirect
|| hh->eh.root.type == bfd_link_hash_warning)
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
}
r_type = ELF32_R_TYPE (rela->r_info);
r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
switch (r_type)
{
case R_PARISC_DLTIND14F:
case R_PARISC_DLTIND14R:
case R_PARISC_DLTIND21L:
/* This symbol requires a global offset table entry. */
need_entry = NEED_GOT;
break;
case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
case R_PARISC_PLABEL21L:
case R_PARISC_PLABEL32:
/* If the addend is non-zero, we break badly. */
if (rela->r_addend != 0)
abort ();
/* If we are creating a shared library, then we need to
create a PLT entry for all PLABELs, because PLABELs with
local symbols may be passed via a pointer to another
object. Additionally, output a dynamic relocation
pointing to the PLT entry.
For executables, the original 32-bit ABI allowed two
different styles of PLABELs (function pointers): For
global functions, the PLABEL word points into the .plt
two bytes past a (function address, gp) pair, and for
local functions the PLABEL points directly at the
function. The magic +2 for the first type allows us to
differentiate between the two. As you can imagine, this
is a real pain when it comes to generating code to call
functions indirectly or to compare function pointers.
We avoid the mess by always pointing a PLABEL into the
.plt, even for local functions. */
need_entry = PLT_PLABEL | NEED_PLT;
if (bfd_link_pic (info))
need_entry |= NEED_DYNREL;
break;
case R_PARISC_PCREL12F:
htab->has_12bit_branch = 1;
goto branch_common;
case R_PARISC_PCREL17C:
case R_PARISC_PCREL17F:
htab->has_17bit_branch = 1;
goto branch_common;
case R_PARISC_PCREL22F:
htab->has_22bit_branch = 1;
branch_common:
/* Function calls might need to go through the .plt, and
might require long branch stubs. */
if (hh == NULL)
{
/* We know local syms won't need a .plt entry, and if
they need a long branch stub we can't guarantee that
we can reach the stub. So just flag an error later
if we're doing a shared link and find we need a long
branch stub. */
continue;
}
else
{
/* Global symbols will need a .plt entry if they remain
global, and in most cases won't need a long branch
stub. Unfortunately, we have to cater for the case
where a symbol is forced local by versioning, or due
to symbolic linking, and we lose the .plt entry. */
need_entry = NEED_PLT;
if (hh->eh.type == STT_PARISC_MILLI)
need_entry = 0;
}
break;
case R_PARISC_SEGBASE: /* Used to set segment base. */
case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
case R_PARISC_PCREL14F: /* PC relative load/store. */
case R_PARISC_PCREL14R:
case R_PARISC_PCREL17R: /* External branches. */
case R_PARISC_PCREL21L: /* As above, and for load/store too. */
case R_PARISC_PCREL32:
/* We don't need to propagate the relocation if linking a
shared object since these are section relative. */
continue;
case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
case R_PARISC_DPREL14R:
case R_PARISC_DPREL21L:
if (bfd_link_pic (info))
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
abfd,
elf_hppa_howto_table[r_type].name);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
/* Fall through. */
case R_PARISC_DIR17F: /* Used for external branches. */
case R_PARISC_DIR17R:
case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
case R_PARISC_DIR14R:
case R_PARISC_DIR21L: /* As above, and for ext branches too. */
case R_PARISC_DIR32: /* .word relocs. */
/* We may want to output a dynamic relocation later. */
need_entry = NEED_DYNREL;
break;
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_PARISC_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
return FALSE;
continue;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_PARISC_GNU_VTENTRY:
if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
return FALSE;
continue;
case R_PARISC_TLS_GD21L:
case R_PARISC_TLS_GD14R:
case R_PARISC_TLS_LDM21L:
case R_PARISC_TLS_LDM14R:
need_entry = NEED_GOT;
break;
case R_PARISC_TLS_IE21L:
case R_PARISC_TLS_IE14R:
if (bfd_link_dll (info))
info->flags |= DF_STATIC_TLS;
need_entry = NEED_GOT;
break;
default:
continue;
}
/* Now carry out our orders. */
if (need_entry & NEED_GOT)
{
int tls_type = GOT_NORMAL;
switch (r_type)
{
default:
break;
case R_PARISC_TLS_GD21L:
case R_PARISC_TLS_GD14R:
tls_type = GOT_TLS_GD;
break;
case R_PARISC_TLS_LDM21L:
case R_PARISC_TLS_LDM14R:
tls_type = GOT_TLS_LDM;
break;
case R_PARISC_TLS_IE21L:
case R_PARISC_TLS_IE14R:
tls_type = GOT_TLS_IE;
break;
}
/* Allocate space for a GOT entry, as well as a dynamic
relocation for this entry. */
if (htab->etab.sgot == NULL)
{
if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
return FALSE;
}
if (hh != NULL)
{
if (tls_type == GOT_TLS_LDM)
htab->tls_ldm_got.refcount += 1;
else
hh->eh.got.refcount += 1;
hh->tls_type |= tls_type;
}
else
{
bfd_signed_vma *local_got_refcounts;
/* This is a global offset table entry for a local symbol. */
local_got_refcounts = hppa32_elf_local_refcounts (abfd);
if (local_got_refcounts == NULL)
return FALSE;
if (tls_type == GOT_TLS_LDM)
htab->tls_ldm_got.refcount += 1;
else
local_got_refcounts[r_symndx] += 1;
hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
}
}
if (need_entry & NEED_PLT)
{
/* If we are creating a shared library, and this is a reloc
against a weak symbol or a global symbol in a dynamic
object, then we will be creating an import stub and a
.plt entry for the symbol. Similarly, on a normal link
to symbols defined in a dynamic object we'll need the
import stub and a .plt entry. We don't know yet whether
the symbol is defined or not, so make an entry anyway and
clean up later in adjust_dynamic_symbol. */
if ((sec->flags & SEC_ALLOC) != 0)
{
if (hh != NULL)
{
hh->eh.needs_plt = 1;
hh->eh.plt.refcount += 1;
/* If this .plt entry is for a plabel, mark it so
that adjust_dynamic_symbol will keep the entry
even if it appears to be local. */
if (need_entry & PLT_PLABEL)
hh->plabel = 1;
}
else if (need_entry & PLT_PLABEL)
{
bfd_signed_vma *local_got_refcounts;
bfd_signed_vma *local_plt_refcounts;
local_got_refcounts = hppa32_elf_local_refcounts (abfd);
if (local_got_refcounts == NULL)
return FALSE;
local_plt_refcounts = (local_got_refcounts
+ symtab_hdr->sh_info);
local_plt_refcounts[r_symndx] += 1;
}
}
}
if ((need_entry & NEED_DYNREL) != 0
&& (sec->flags & SEC_ALLOC) != 0)
{
/* Flag this symbol as having a non-got, non-plt reference
so that we generate copy relocs if it turns out to be
dynamic. */
if (hh != NULL)
hh->eh.non_got_ref = 1;
/* If we are creating a shared library then we need to copy
the reloc into the shared library. However, if we are
linking with -Bsymbolic, we need only copy absolute
relocs or relocs against symbols that are not defined in
an object we are including in the link. PC- or DP- or
DLT-relative relocs against any local sym or global sym
with DEF_REGULAR set, can be discarded. At this point we
have not seen all the input files, so it is possible that
DEF_REGULAR is not set now but will be set later (it is
never cleared). We account for that possibility below by
storing information in the dyn_relocs field of the
hash table entry.
A similar situation to the -Bsymbolic case occurs when
creating shared libraries and symbol visibility changes
render the symbol local.
As it turns out, all the relocs we will be creating here
are absolute, so we cannot remove them on -Bsymbolic
links or visibility changes anyway. A STUB_REL reloc
is absolute too, as in that case it is the reloc in the
stub we will be creating, rather than copying the PCREL
reloc in the branch.
If on the other hand, we are creating an executable, we
may need to keep relocations for symbols satisfied by a
dynamic library if we manage to avoid copy relocs for the
symbol. */
if ((bfd_link_pic (info)
&& (IS_ABSOLUTE_RELOC (r_type)
|| (hh != NULL
&& (!SYMBOLIC_BIND (info, &hh->eh)
|| hh->eh.root.type == bfd_link_hash_defweak
|| !hh->eh.def_regular))))
|| (ELIMINATE_COPY_RELOCS
&& !bfd_link_pic (info)
&& hh != NULL
&& (hh->eh.root.type == bfd_link_hash_defweak
|| !hh->eh.def_regular)))
{
struct elf_dyn_relocs *hdh_p;
struct elf_dyn_relocs **hdh_head;
/* Create a reloc section in dynobj and make room for
this reloc. */
if (sreloc == NULL)
{
sreloc = _bfd_elf_make_dynamic_reloc_section
(sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
if (sreloc == NULL)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
}
/* If this is a global symbol, we count the number of
relocations we need for this symbol. */
if (hh != NULL)
{
hdh_head = &hh->dyn_relocs;
}
else
{
/* Track dynamic relocs needed for local syms too.
We really need local syms available to do this
easily. Oh well. */
asection *sr;
void *vpp;
Elf_Internal_Sym *isym;
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
abfd, r_symndx);
if (isym == NULL)
return FALSE;
sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
if (sr == NULL)
sr = sec;
vpp = &elf_section_data (sr)->local_dynrel;
hdh_head = (struct elf_dyn_relocs **) vpp;
}
hdh_p = *hdh_head;
if (hdh_p == NULL || hdh_p->sec != sec)
{
hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
if (hdh_p == NULL)
return FALSE;
hdh_p->next = *hdh_head;
*hdh_head = hdh_p;
hdh_p->sec = sec;
hdh_p->count = 0;
#if RELATIVE_DYNRELOCS
hdh_p->pc_count = 0;
#endif
}
hdh_p->count += 1;
#if RELATIVE_DYNRELOCS
if (!IS_ABSOLUTE_RELOC (rtype))
hdh_p->pc_count += 1;
#endif
}
}
}
return TRUE;
}
/* Return the section that should be marked against garbage collection
for a given relocation. */
static asection *
elf32_hppa_gc_mark_hook (asection *sec,
struct bfd_link_info *info,
Elf_Internal_Rela *rela,
struct elf_link_hash_entry *hh,
Elf_Internal_Sym *sym)
{
if (hh != NULL)
switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
{
case R_PARISC_GNU_VTINHERIT:
case R_PARISC_GNU_VTENTRY:
return NULL;
}
return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
}
/* Support for core dump NOTE sections. */
static bfd_boolean
elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
int offset;
size_t size;
switch (note->descsz)
{
default:
return FALSE;
case 396: /* Linux/hppa */
/* pr_cursig */
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
/* pr_pid */
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
/* pr_reg */
offset = 72;
size = 320;
break;
}
/* Make a ".reg/999" section. */
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
size, note->descpos + offset);
}
static bfd_boolean
elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
switch (note->descsz)
{
default:
return FALSE;
case 124: /* Linux/hppa elf_prpsinfo. */
elf_tdata (abfd)->core->program
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
elf_tdata (abfd)->core->command
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
}
/* Note that for some reason, a spurious space is tacked
onto the end of the args in some (at least one anyway)
implementations, so strip it off if it exists. */
{
char *command = elf_tdata (abfd)->core->command;
int n = strlen (command);
if (0 < n && command[n - 1] == ' ')
command[n - 1] = '\0';
}
return TRUE;
}
/* Our own version of hide_symbol, so that we can keep plt entries for
plabels. */
static void
elf32_hppa_hide_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *eh,
bfd_boolean force_local)
{
if (force_local)
{
eh->forced_local = 1;
if (eh->dynindx != -1)
{
eh->dynindx = -1;
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
eh->dynstr_index);
}
/* PR 16082: Remove version information from hidden symbol. */
eh->verinfo.verdef = NULL;
eh->verinfo.vertree = NULL;
}
/* STT_GNU_IFUNC symbol must go through PLT. */
if (! hppa_elf_hash_entry (eh)->plabel
&& eh->type != STT_GNU_IFUNC)
{
eh->needs_plt = 0;
eh->plt = elf_hash_table (info)->init_plt_offset;
}
}
/* Find any dynamic relocs that apply to read-only sections. */
static asection *
readonly_dynrelocs (struct elf_link_hash_entry *eh)
{
struct elf32_hppa_link_hash_entry *hh;
struct elf_dyn_relocs *hdh_p;
hh = hppa_elf_hash_entry (eh);
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
{
asection *sec = hdh_p->sec->output_section;
if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
return hdh_p->sec;
}
return NULL;
}
/* Return true if we have dynamic relocs against H or any of its weak
aliases, that apply to read-only sections. Cannot be used after
size_dynamic_sections. */
static bfd_boolean
alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
{
struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
do
{
if (readonly_dynrelocs (&hh->eh))
return TRUE;
hh = hppa_elf_hash_entry (hh->eh.u.alias);
} while (hh != NULL && &hh->eh != eh);
return FALSE;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static bfd_boolean
elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *eh)
{
struct elf32_hppa_link_hash_table *htab;
asection *sec, *srel;
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later. */
if (eh->type == STT_FUNC
|| eh->needs_plt)
{
bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
/* Discard dyn_relocs when non-pic if we've decided that a
function symbol is local. */
if (!bfd_link_pic (info) && local)
hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
/* If the symbol is used by a plabel, we must allocate a PLT slot.
The refcounts are not reliable when it has been hidden since
hide_symbol can be called before the plabel flag is set. */
if (hppa_elf_hash_entry (eh)->plabel)
eh->plt.refcount = 1;
/* Note that unlike some other backends, the refcount is not
incremented for a non-call (and non-plabel) function reference. */
else if (eh->plt.refcount <= 0
|| local)
{
/* The .plt entry is not needed when:
a) Garbage collection has removed all references to the
symbol, or
b) We know for certain the symbol is defined in this
object, and it's not a weak definition, nor is the symbol
used by a plabel relocation. Either this object is the
application or we are doing a shared symbolic link. */
eh->plt.offset = (bfd_vma) -1;
eh->needs_plt = 0;
}
/* Unlike other targets, elf32-hppa.c does not define a function
symbol in a non-pic executable on PLT stub code, so we don't
have a local definition in that case. ie. dyn_relocs can't
be discarded. */
/* Function symbols can't have copy relocs. */
return TRUE;
}
else
eh->plt.offset = (bfd_vma) -1;
htab = hppa_link_hash_table (info);
if (htab == NULL)
return FALSE;
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (eh->is_weakalias)
{
struct elf_link_hash_entry *def = weakdef (eh);
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
eh->root.u.def.section = def->root.u.def.section;
eh->root.u.def.value = def->root.u.def.value;
if (def->root.u.def.section == htab->etab.sdynbss
|| def->root.u.def.section == htab->etab.sdynrelro)
hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
return TRUE;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (bfd_link_pic (info))
return TRUE;
/* If there are no references to this symbol that do not use the
GOT, we don't need to generate a copy reloc. */
if (!eh->non_got_ref)
return TRUE;
/* If -z nocopyreloc was given, we won't generate them either. */
if (info->nocopyreloc)
return TRUE;
/* If we don't find any dynamic relocs in read-only sections, then
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
if (ELIMINATE_COPY_RELOCS
&& !alias_readonly_dynrelocs (eh))
return TRUE;
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
{
sec = htab->etab.sdynrelro;
srel = htab->etab.sreldynrelro;
}
else
{
sec = htab->etab.sdynbss;
srel = htab->etab.srelbss;
}
if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
{
/* We must generate a COPY reloc to tell the dynamic linker to
copy the initial value out of the dynamic object and into the
runtime process image. */
srel->size += sizeof (Elf32_External_Rela);
eh->needs_copy = 1;
}
/* We no longer want dyn_relocs. */
hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
}
/* If EH is undefined, make it dynamic if that makes sense. */
static bfd_boolean
ensure_undef_dynamic (struct bfd_link_info *info,
struct elf_link_hash_entry *eh)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
if (htab->dynamic_sections_created
&& (eh->root.type == bfd_link_hash_undefweak
|| eh->root.type == bfd_link_hash_undefined)
&& eh->dynindx == -1
&& !eh->forced_local
&& eh->type != STT_PARISC_MILLI
&& !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
&& ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
return bfd_elf_link_record_dynamic_symbol (info, eh);
return TRUE;
}
/* Allocate space in the .plt for entries that won't have relocations.
ie. plabel entries. */
static bfd_boolean
allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
{
struct bfd_link_info *info;
struct elf32_hppa_link_hash_table *htab;
struct elf32_hppa_link_hash_entry *hh;
asection *sec;
if (eh->root.type == bfd_link_hash_indirect)
return TRUE;
info = (struct bfd_link_info *) inf;
hh = hppa_elf_hash_entry (eh);
htab = hppa_link_hash_table (info);
if (htab == NULL)
return FALSE;
if (htab->etab.dynamic_sections_created
&& eh->plt.refcount > 0)
{
if (!ensure_undef_dynamic (info, eh))
return FALSE;
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
{
/* Allocate these later. From this point on, h->plabel
means that the plt entry is only used by a plabel.
We'll be using a normal plt entry for this symbol, so
clear the plabel indicator. */
hh->plabel = 0;
}
else if (hh->plabel)
{
/* Make an entry in the .plt section for plabel references
that won't have a .plt entry for other reasons. */
sec = htab->etab.splt;
eh->plt.offset = sec->size;
sec->size += PLT_ENTRY_SIZE;
if (bfd_link_pic (info))
htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
}
else
{
/* No .plt entry needed. */
eh->plt.offset = (bfd_vma) -1;
eh->needs_plt = 0;
}
}
else
{
eh->plt.offset = (bfd_vma) -1;
eh->needs_plt = 0;
}
return TRUE;
}
/* Calculate size of GOT entries for symbol given its TLS_TYPE. */
static inline unsigned int
got_entries_needed (int tls_type)
{
unsigned int need = 0;
if ((tls_type & GOT_NORMAL) != 0)
need += GOT_ENTRY_SIZE;
if ((tls_type & GOT_TLS_GD) != 0)
need += GOT_ENTRY_SIZE * 2;
if ((tls_type & GOT_TLS_IE) != 0)
need += GOT_ENTRY_SIZE;
return need;
}
/* Calculate size of relocs needed for symbol given its TLS_TYPE and
NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
calculated at link time. DTPREL_KNOWN says the same for a DTPREL
offset. */
static inline unsigned int
got_relocs_needed (int tls_type, unsigned int need,
bfd_boolean dtprel_known, bfd_boolean tprel_known)
{
/* All the entries we allocated need relocs.
Except for GD and IE with local symbols. */
if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
need -= GOT_ENTRY_SIZE;
if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
need -= GOT_ENTRY_SIZE;
return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
}
/* Allocate space in .plt, .got and associated reloc sections for
global syms. */
static bfd_boolean
allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
{
struct bfd_link_info *info;
struct elf32_hppa_link_hash_table *htab;
asection *sec;
struct elf32_hppa_link_hash_entry *hh;
struct elf_dyn_relocs *hdh_p;
if (eh->root.type == bfd_link_hash_indirect)
return TRUE;
info = inf;
htab = hppa_link_hash_table (info);
if (htab == NULL)
return FALSE;
hh = hppa_elf_hash_entry (eh);
if (htab->etab.dynamic_sections_created
&& eh->plt.offset != (bfd_vma) -1
&& !hh->plabel
&& eh->plt.refcount > 0)
{
/* Make an entry in the .plt section. */
sec = htab->etab.splt;
eh->plt.offset = sec->size;
sec->size += PLT_ENTRY_SIZE;
/* We also need to make an entry in the .rela.plt section. */
htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
htab->need_plt_stub = 1;
}
if (eh->got.refcount > 0)
{
unsigned int need;
if (!ensure_undef_dynamic (info, eh))
return FALSE;
sec = htab->etab.sgot;
eh->got.offset = sec->size;
need = got_entries_needed (hh->tls_type);
sec->size += need;
if (htab->etab.dynamic_sections_created
&& (bfd_link_dll (info)
|| (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
|| (eh->dynindx != -1
&& !SYMBOL_REFERENCES_LOCAL (info, eh)))
&& !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
{
bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
htab->etab.srelgot->size
+= got_relocs_needed (hh->tls_type, need, local,
local && bfd_link_executable (info));
}
}
else
eh->got.offset = (bfd_vma) -1;
/* If no dynamic sections we can't have dynamic relocs. */
if (!htab->etab.dynamic_sections_created)
hh->dyn_relocs = NULL;
/* Discard relocs on undefined syms with non-default visibility. */
else if ((eh->root.type == bfd_link_hash_undefined
&& ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
hh->dyn_relocs = NULL;
if (hh->dyn_relocs == NULL)
return TRUE;
/* If this is a -Bsymbolic shared link, then we need to discard all
space allocated for dynamic pc-relative relocs against symbols
defined in a regular object. For the normal shared case, discard
space for relocs that have become local due to symbol visibility
changes. */
if (bfd_link_pic (info))
{
#if RELATIVE_DYNRELOCS
if (SYMBOL_CALLS_LOCAL (info, eh))
{
struct elf_dyn_relocs **hdh_pp;
for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
{
hdh_p->count -= hdh_p->pc_count;
hdh_p->pc_count = 0;
if (hdh_p->count == 0)
*hdh_pp = hdh_p->next;
else
hdh_pp = &hdh_p->next;
}
}
#endif
if (hh->dyn_relocs != NULL)
{
if (!ensure_undef_dynamic (info, eh))
return FALSE;
}
}
else if (ELIMINATE_COPY_RELOCS)
{
/* For the non-shared case, discard space for relocs against
symbols which turn out to need copy relocs or are not
dynamic. */
if (eh->dynamic_adjusted
&& !eh->def_regular
&& !ELF_COMMON_DEF_P (eh))
{
if (!ensure_undef_dynamic (info, eh))
return FALSE;
if (eh->dynindx == -1)
hh->dyn_relocs = NULL;
}
else
hh->dyn_relocs = NULL;
}
/* Finally, allocate space. */
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
{
asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
}
return TRUE;
}
/* This function is called via elf_link_hash_traverse to force
millicode symbols local so they do not end up as globals in the
dynamic symbol table. We ought to be able to do this in
adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
for all dynamic symbols. Arguably, this is a bug in
elf_adjust_dynamic_symbol. */
static bfd_boolean
clobber_millicode_symbols (struct elf_link_hash_entry *eh,
struct bfd_link_info *info)
{
if (eh->type == STT_PARISC_MILLI
&& !eh->forced_local)
{
elf32_hppa_hide_symbol (info, eh, TRUE);
}
return TRUE;
}
/* Set DF_TEXTREL if we find any dynamic relocs that apply to
read-only sections. */
static bfd_boolean
maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
{
asection *sec;
if (eh->root.type == bfd_link_hash_indirect)
return TRUE;
sec = readonly_dynrelocs (eh);
if (sec != NULL)
{
struct bfd_link_info *info = (struct bfd_link_info *) inf;
info->flags |= DF_TEXTREL;
info->callbacks->minfo
(_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
sec->owner, eh->root.root.string, sec);
/* Not an error, just cut short the traversal. */
return FALSE;
}
return TRUE;
}
/* Set the sizes of the dynamic sections. */
static bfd_boolean
elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
struct elf32_hppa_link_hash_table *htab;
bfd *dynobj;
bfd *ibfd;
asection *sec;
bfd_boolean relocs;
htab = hppa_link_hash_table (info);
if (htab == NULL)
return FALSE;
dynobj = htab->etab.dynobj;
if (dynobj == NULL)
abort ();
if (htab->etab.dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (bfd_link_executable (info) && !info->nointerp)
{
sec = bfd_get_linker_section (dynobj, ".interp");
if (sec == NULL)
abort ();
sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
/* Force millicode symbols local. */
elf_link_hash_traverse (&htab->etab,
clobber_millicode_symbols,
info);
}
/* Set up .got and .plt offsets for local syms, and space for local
dynamic relocs. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
bfd_signed_vma *local_got;
bfd_signed_vma *end_local_got;
bfd_signed_vma *local_plt;
bfd_signed_vma *end_local_plt;
bfd_size_type locsymcount;
Elf_Internal_Shdr *symtab_hdr;
asection *srel;
char *local_tls_type;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct elf_dyn_relocs *hdh_p;
for (hdh_p = ((struct elf_dyn_relocs *)
elf_section_data (sec)->local_dynrel);
hdh_p != NULL;
hdh_p = hdh_p->next)
{
if (!bfd_is_abs_section (hdh_p->sec)
&& bfd_is_abs_section (hdh_p->sec->output_section))
{
/* Input section has been discarded, either because
it is a copy of a linkonce section or due to
linker script /DISCARD/, so we'll be discarding
the relocs too. */
}
else if (hdh_p->count != 0)
{
srel = elf_section_data (hdh_p->sec)->sreloc;
srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
info->flags |= DF_TEXTREL;
}
}
}
local_got = elf_local_got_refcounts (ibfd);
if (!local_got)
continue;
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
locsymcount = symtab_hdr->sh_info;
end_local_got = local_got + locsymcount;
local_tls_type = hppa_elf_local_got_tls_type (ibfd);
sec = htab->etab.sgot;
srel = htab->etab.srelgot;
for (; local_got < end_local_got; ++local_got)
{
if (*local_got > 0)
{
unsigned int need;
*local_got = sec->size;
need = got_entries_needed (*local_tls_type);
sec->size += need;
if (bfd_link_dll (info)
|| (bfd_link_pic (info)
&& (*local_tls_type & GOT_NORMAL) != 0))
htab->etab.srelgot->size
+= got_relocs_needed (*local_tls_type, need, TRUE,
bfd_link_executable (info));
}
else
*local_got = (bfd_vma) -1;
++local_tls_type;
}
local_plt = end_local_got;
end_local_plt = local_plt + locsymcount;
if (! htab->etab.dynamic_sections_created)
{
/* Won't be used, but be safe. */
for (; local_plt < end_local_plt; ++local_plt)
*local_plt = (bfd_vma) -1;
}
else
{
sec = htab->etab.splt;
srel = htab->etab.srelplt;
for (; local_plt < end_local_plt; ++local_plt)
{
if (*local_plt > 0)
{
*local_plt = sec->size;
sec->size += PLT_ENTRY_SIZE;
if (bfd_link_pic (info))
srel->size += sizeof (Elf32_External_Rela);
}
else
*local_plt = (bfd_vma) -1;
}
}
}
if (htab->tls_ldm_got.refcount > 0)
{
/* Allocate 2 got entries and 1 dynamic reloc for
R_PARISC_TLS_DTPMOD32 relocs. */
htab->tls_ldm_got.offset = htab->etab.sgot->size;
htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
}
else
htab->tls_ldm_got.offset = -1;
/* Do all the .plt entries without relocs first. The dynamic linker
uses the last .plt reloc to find the end of the .plt (and hence
the start of the .got) for lazy linking. */
elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
/* Allocate global sym .plt and .got entries, and space for global
sym dynamic relocs. */
elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
/* The check_relocs and adjust_dynamic_symbol entry points have
determined the sizes of the various dynamic sections. Allocate
memory for them. */
relocs = FALSE;
for (sec = dynobj->sections; sec != NULL; sec = sec->next)
{
if ((sec->flags & SEC_LINKER_CREATED) == 0)
continue;
if (sec == htab->etab.splt)
{
if (htab->need_plt_stub)
{
/* Make space for the plt stub at the end of the .plt
section. We want this stub right at the end, up
against the .got section. */
int gotalign = bfd_section_alignment (htab->etab.sgot);
int pltalign = bfd_section_alignment (sec);
int align = gotalign > 3 ? gotalign : 3;
bfd_size_type mask;
if (align > pltalign)
bfd_set_section_alignment (sec, align);
mask = ((bfd_size_type) 1 << gotalign) - 1;
sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
}
}
else if (sec == htab->etab.sgot
|| sec == htab->etab.sdynbss
|| sec == htab->etab.sdynrelro)
;
else if (CONST_STRNEQ (bfd_section_name (sec), ".rela"))
{
if (sec->size != 0)
{
/* Remember whether there are any reloc sections other
than .rela.plt. */
if (sec != htab->etab.srelplt)
relocs = TRUE;
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
sec->reloc_count = 0;
}
}
else
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (sec->size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
sec->flags |= SEC_EXCLUDE;
continue;
}
if ((sec->flags & SEC_HAS_CONTENTS) == 0)
continue;
/* Allocate memory for the section contents. Zero it, because
we may not fill in all the reloc sections. */
sec->contents = bfd_zalloc (dynobj, sec->size);
if (sec->contents == NULL)
return FALSE;
}
if (htab->etab.dynamic_sections_created)
{
/* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
actually has nothing to do with the PLT, it is how we
communicate the LTP value of a load module to the dynamic
linker. */
#define add_dynamic_entry(TAG, VAL) \
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
if (!add_dynamic_entry (DT_PLTGOT, 0))
return FALSE;
/* Add some entries to the .dynamic section. We fill in the
values later, in elf32_hppa_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
if (bfd_link_executable (info))
{
if (!add_dynamic_entry (DT_DEBUG, 0))
return FALSE;
}
if (htab->etab.srelplt->size != 0)
{
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|| !add_dynamic_entry (DT_JMPREL, 0))
return FALSE;
}
if (relocs)
{
if (!add_dynamic_entry (DT_RELA, 0)
|| !add_dynamic_entry (DT_RELASZ, 0)
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
return FALSE;
/* If any dynamic relocs apply to a read-only section,
then we need a DT_TEXTREL entry. */
if ((info->flags & DF_TEXTREL) == 0)
elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
if ((info->flags & DF_TEXTREL) != 0)
{
if (!add_dynamic_entry (DT_TEXTREL, 0))
return FALSE;
}
}
}
#undef add_dynamic_entry
return TRUE;
}
/* External entry points for sizing and building linker stubs. */
/* Set up various things so that we can make a list of input sections
for each output section included in the link. Returns -1 on error,
0 when no stubs will be needed, and 1 on success. */
int
elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
{
bfd *input_bfd;
unsigned int bfd_count;
unsigned int top_id, top_index;
asection *section;
asection **input_list, **list;
bfd_size_type amt;
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
if (htab == NULL)
return -1;
/* Count the number of input BFDs and find the top input section id. */
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
input_bfd != NULL;
input_bfd = input_bfd->link.next)
{
bfd_count += 1;
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
if (top_id < section->id)
top_id = section->id;
}
}
htab->bfd_count = bfd_count;
amt = sizeof (struct map_stub) * (top_id + 1);
htab->stub_group = bfd_zmalloc (amt);
if (htab->stub_group == NULL)
return -1;
/* We can't use output_bfd->section_count here to find the top output
section index as some sections may have been removed, and
strip_excluded_output_sections doesn't renumber the indices. */
for (section = output_bfd->sections, top_index = 0;
section != NULL;
section = section->next)
{
if (top_index < section->index)
top_index = section->index;
}
htab->top_index = top_index;
amt = sizeof (asection *) * (top_index + 1);
input_list = bfd_malloc (amt);
htab->input_list = input_list;
if (input_list == NULL)
return -1;
/* For sections we aren't interested in, mark their entries with a
value we can check later. */
list = input_list + top_index;
do
*list = bfd_abs_section_ptr;
while (list-- != input_list);
for (section = output_bfd->sections;
section != NULL;
section = section->next)
{
if ((section->flags & SEC_CODE) != 0)
input_list[section->index] = NULL;
}
return 1;
}
/* The linker repeatedly calls this function for each input section,
in the order that input sections are linked into output sections.
Build lists of input sections to determine groupings between which
we may insert linker stubs. */
void
elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
{
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
if (htab == NULL)
return;
if (isec->output_section->index <= htab->top_index)
{
asection **list = htab->input_list + isec->output_section->index;
if (*list != bfd_abs_section_ptr)
{
/* Steal the link_sec pointer for our list. */
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
/* This happens to make the list in reverse order,
which is what we want. */
PREV_SEC (isec) = *list;
*list = isec;
}
}
}
/* See whether we can group stub sections together. Grouping stub
sections may result in fewer stubs. More importantly, we need to
put all .init* and .fini* stubs at the beginning of the .init or
.fini output sections respectively, because glibc splits the
_init and _fini functions into multiple parts. Putting a stub in
the middle of a function is not a good idea. */
static void
group_sections (struct elf32_hppa_link_hash_table *htab,
bfd_size_type stub_group_size,
bfd_boolean stubs_always_before_branch)
{
asection **list = htab->input_list + htab->top_index;
do
{
asection *tail = *list;
if (tail == bfd_abs_section_ptr)
continue;
while (tail != NULL)
{
asection *curr;
asection *prev;
bfd_size_type total;
bfd_boolean big_sec;
curr = tail;
total = tail->size;
big_sec = total >= stub_group_size;
while ((prev = PREV_SEC (curr)) != NULL
&& ((total += curr->output_offset - prev->output_offset)
< stub_group_size))
curr = prev;
/* OK, the size from the start of CURR to the end is less
than 240000 bytes and thus can be handled by one stub
section. (or the tail section is itself larger than
240000 bytes, in which case we may be toast.)
We should really be keeping track of the total size of
stubs added here, as stubs contribute to the final output
section size. That's a little tricky, and this way will
only break if stubs added total more than 22144 bytes, or
2768 long branch stubs. It seems unlikely for more than
2768 different functions to be called, especially from
code only 240000 bytes long. This limit used to be
250000, but c++ code tends to generate lots of little
functions, and sometimes violated the assumption. */
do
{
prev = PREV_SEC (tail);
/* Set up this stub group. */
htab->stub_group[tail->id].link_sec = curr;
}
while (tail != curr && (tail = prev) != NULL);
/* But wait, there's more! Input sections up to 240000
bytes before the stub section can be handled by it too.
Don't do this if we have a really large section after the
stubs, as adding more stubs increases the chance that
branches may not reach into the stub section. */
if (!stubs_always_before_branch && !big_sec)
{
total = 0;
while (prev != NULL
&& ((total += tail->output_offset - prev->output_offset)
< stub_group_size))
{
tail = prev;
prev = PREV_SEC (tail);
htab->stub_group[tail->id].link_sec = curr;
}
}
tail = prev;
}
}
while (list-- != htab->input_list);
free (htab->input_list);
#undef PREV_SEC
}
/* Read in all local syms for all input bfds, and create hash entries
for export stubs if we are building a multi-subspace shared lib.
Returns -1 on error, 1 if export stubs created, 0 otherwise. */
static int
get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
{
unsigned int bfd_indx;
Elf_Internal_Sym *local_syms, **all_local_syms;
int stub_changed = 0;
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
if (htab == NULL)
return -1;
/* We want to read in symbol extension records only once. To do this
we need to read in the local symbols in parallel and save them for
later use; so hold pointers to the local symbols in an array. */
bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
all_local_syms = bfd_zmalloc (amt);
htab->all_local_syms = all_local_syms;
if (all_local_syms == NULL)
return -1;
/* Walk over all the input BFDs, swapping in local symbols.
If we are creating a shared library, create hash entries for the
export stubs. */
for (bfd_indx = 0;
input_bfd != NULL;
input_bfd = input_bfd->link.next, bfd_indx++)
{
Elf_Internal_Shdr *symtab_hdr;
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
/* We need an array of the local symbols attached to the input bfd. */
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
if (local_syms == NULL)
{
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
/* Cache them for elf_link_input_bfd. */
symtab_hdr->contents = (unsigned char *) local_syms;
}
if (local_syms == NULL)
return -1;
all_local_syms[bfd_indx] = local_syms;
if (bfd_link_pic (info) && htab->multi_subspace)
{
struct elf_link_hash_entry **eh_syms;
struct elf_link_hash_entry **eh_symend;
unsigned int symcount;
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
- symtab_hdr->sh_info);
eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
/* Look through the global syms for functions; We need to
build export stubs for all globally visible functions. */
for (; eh_syms < eh_symend; eh_syms++)
{
struct elf32_hppa_link_hash_entry *hh;
hh = hppa_elf_hash_entry (*eh_syms);
while (hh->eh.root.type == bfd_link_hash_indirect
|| hh->eh.root.type == bfd_link_hash_warning)
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
/* At this point in the link, undefined syms have been
resolved, so we need to check that the symbol was
defined in this BFD. */
if ((hh->eh.root.type == bfd_link_hash_defined
|| hh->eh.root.type == bfd_link_hash_defweak)
&& hh->eh.type == STT_FUNC
&& hh->eh.root.u.def.section->output_section != NULL
&& (hh->eh.root.u.def.section->output_section->owner
== output_bfd)
&& hh->eh.root.u.def.section->owner == input_bfd
&& hh->eh.def_regular
&& !hh->eh.forced_local
&& ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
{
asection *sec;
const char *stub_name;
struct elf32_hppa_stub_hash_entry *hsh;
sec = hh->eh.root.u.def.section;
stub_name = hh_name (hh);
hsh = hppa_stub_hash_lookup (&htab->bstab,
stub_name,
FALSE, FALSE);
if (hsh == NULL)
{
hsh = hppa_add_stub (stub_name, sec, htab);
if (!hsh)
return -1;
hsh->target_value = hh->eh.root.u.def.value;
hsh->target_section = hh->eh.root.u.def.section;
hsh->stub_type = hppa_stub_export;
hsh->hh = hh;
stub_changed = 1;
}
else
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: duplicate export stub %s"),
input_bfd, stub_name);
}
}
}
}
}
return stub_changed;
}
/* Determine and set the size of the stub section for a final link.
The basic idea here is to examine all the relocations looking for
PC-relative calls to a target that is unreachable with a "bl"
instruction. */
bfd_boolean
elf32_hppa_size_stubs
(bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
bfd_boolean multi_subspace, bfd_signed_vma group_size,
asection * (*add_stub_section) (const char *, asection *),
void (*layout_sections_again) (void))
{
bfd_size_type stub_group_size;
bfd_boolean stubs_always_before_branch;
bfd_boolean stub_changed;
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
if (htab == NULL)
return FALSE;
/* Stash our params away. */
htab->stub_bfd = stub_bfd;
htab->multi_subspace = multi_subspace;
htab->add_stub_section = add_stub_section;
htab->layout_sections_again = layout_sections_again;
stubs_always_before_branch = group_size < 0;
if (group_size < 0)
stub_group_size = -group_size;
else
stub_group_size = group_size;
if (stub_group_size == 1)
{
/* Default values. */
if (stubs_always_before_branch)
{
stub_group_size = 7680000;
if (htab->has_17bit_branch || htab->multi_subspace)
stub_group_size = 240000;
if (htab->has_12bit_branch)
stub_group_size = 7500;
}
else
{
stub_group_size = 6971392;
if (htab->has_17bit_branch || htab->multi_subspace)
stub_group_size = 217856;
if (htab->has_12bit_branch)
stub_group_size = 6808;
}
}
group_sections (htab, stub_group_size, stubs_always_before_branch);
switch (get_local_syms (output_bfd, info->input_bfds, info))
{
default:
if (htab->all_local_syms)
goto error_ret_free_local;
return FALSE;
case 0:
stub_changed = FALSE;
break;
case 1:
stub_changed = TRUE;
break;
}
while (1)
{
bfd *input_bfd;
unsigned int bfd_indx;
asection *stub_sec;
for (input_bfd = info->input_bfds, bfd_indx = 0;
input_bfd != NULL;
input_bfd = input_bfd->link.next, bfd_indx++)
{
Elf_Internal_Shdr *symtab_hdr;
asection *section;
Elf_Internal_Sym *local_syms;
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
local_syms = htab->all_local_syms[bfd_indx];
/* Walk over each section attached to the input bfd. */
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
/* If there aren't any relocs, then there's nothing more
to do. */
if ((section->flags & SEC_RELOC) == 0
|| (section->flags & SEC_ALLOC) == 0
|| (section->flags & SEC_LOAD) == 0
|| (section->flags & SEC_CODE) == 0
|| section->reloc_count == 0)
continue;
/* If this section is a link-once section that will be
discarded, then don't create any stubs. */
if (section->output_section == NULL
|| section->output_section->owner != output_bfd)
continue;
/* Get the relocs. */
internal_relocs
= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
info->keep_memory);
if (internal_relocs == NULL)
goto error_ret_free_local;
/* Now examine each relocation. */
irela = internal_relocs;
irelaend = irela + section->reloc_count;
for (; irela < irelaend; irela++)
{
unsigned int r_type, r_indx;
enum elf32_hppa_stub_type stub_type;
struct elf32_hppa_stub_hash_entry *hsh;
asection *sym_sec;
bfd_vma sym_value;
bfd_vma destination;
struct elf32_hppa_link_hash_entry *hh;
char *stub_name;
const asection *id_sec;
r_type = ELF32_R_TYPE (irela->r_info);
r_indx = ELF32_R_SYM (irela->r_info);
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
{
bfd_set_error (bfd_error_bad_value);
error_ret_free_internal:
if (elf_section_data (section)->relocs == NULL)
free (internal_relocs);
goto error_ret_free_local;
}
/* Only look for stubs on call instructions. */
if (r_type != (unsigned int) R_PARISC_PCREL12F
&& r_type != (unsigned int) R_PARISC_PCREL17F
&& r_type != (unsigned int) R_PARISC_PCREL22F)
continue;
/* Now determine the call target, its name, value,
section. */
sym_sec = NULL;
sym_value = 0;
destination = -1;
hh = NULL;
if (r_indx < symtab_hdr->sh_info)
{
/* It's a local symbol. */
Elf_Internal_Sym *sym;
Elf_Internal_Shdr *hdr;
unsigned int shndx;
sym = local_syms + r_indx;
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
sym_value = sym->st_value;
shndx = sym->st_shndx;
if (shndx < elf_numsections (input_bfd))
{
hdr = elf_elfsections (input_bfd)[shndx];
sym_sec = hdr->bfd_section;
destination = (sym_value + irela->r_addend
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
}
else
{
/* It's an external symbol. */
int e_indx;
e_indx = r_indx - symtab_hdr->sh_info;
hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
while (hh->eh.root.type == bfd_link_hash_indirect
|| hh->eh.root.type == bfd_link_hash_warning)
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
if (hh->eh.root.type == bfd_link_hash_defined
|| hh->eh.root.type == bfd_link_hash_defweak)
{
sym_sec = hh->eh.root.u.def.section;
sym_value = hh->eh.root.u.def.value;
if (sym_sec->output_section != NULL)
destination = (sym_value + irela->r_addend
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
else if (hh->eh.root.type == bfd_link_hash_undefweak)
{
if (! bfd_link_pic (info))
continue;
}
else if (hh->eh.root.type == bfd_link_hash_undefined)
{
if (! (info->unresolved_syms_in_objects == RM_IGNORE
&& (ELF_ST_VISIBILITY (hh->eh.other)
== STV_DEFAULT)
&& hh->eh.type != STT_PARISC_MILLI))
continue;
}
else
{
bfd_set_error (bfd_error_bad_value);
goto error_ret_free_internal;
}
}
/* Determine what (if any) linker stub is needed. */
stub_type = hppa_type_of_stub (section, irela, hh,
destination, info);
if (stub_type == hppa_stub_none)
continue;
/* Support for grouping stub sections. */
id_sec = htab->stub_group[section->id].link_sec;
/* Get the name of this stub. */
stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
if (!stub_name)
goto error_ret_free_internal;
hsh = hppa_stub_hash_lookup (&htab->bstab,
stub_name,
FALSE, FALSE);
if (hsh != NULL)
{
/* The proper stub has already been created. */
free (stub_name);
continue;
}
hsh = hppa_add_stub (stub_name, section, htab);
if (hsh == NULL)
{
free (stub_name);
goto error_ret_free_internal;
}
hsh->target_value = sym_value;
hsh->target_section = sym_sec;
hsh->stub_type = stub_type;
if (bfd_link_pic (info))
{
if (stub_type == hppa_stub_import)
hsh->stub_type = hppa_stub_import_shared;
else if (stub_type == hppa_stub_long_branch)
hsh->stub_type = hppa_stub_long_branch_shared;
}
hsh->hh = hh;
stub_changed = TRUE;
}
/* We're done with the internal relocs, free them. */
if (elf_section_data (section)->relocs == NULL)
free (internal_relocs);
}
}
if (!stub_changed)
break;
/* OK, we've added some stubs. Find out the new size of the
stub sections. */
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL;
stub_sec = stub_sec->next)
if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
stub_sec->size = 0;
bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
/* Ask the linker to do its stuff. */
(*htab->layout_sections_again) ();
stub_changed = FALSE;
}
free (htab->all_local_syms);
return TRUE;
error_ret_free_local:
free (htab->all_local_syms);
return FALSE;
}
/* For a final link, this function is called after we have sized the
stubs to provide a value for __gp. */
bfd_boolean
elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
{
struct bfd_link_hash_entry *h;
asection *sec = NULL;
bfd_vma gp_val = 0;
h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
if (h != NULL
&& (h->type == bfd_link_hash_defined
|| h->type == bfd_link_hash_defweak))
{
gp_val = h->u.def.value;
sec = h->u.def.section;
}
else
{
asection *splt = bfd_get_section_by_name (abfd, ".plt");
asection *sgot = bfd_get_section_by_name (abfd, ".got");
/* Choose to point our LTP at, in this order, one of .plt, .got,
or .data, if these sections exist. In the case of choosing
.plt try to make the LTP ideal for addressing anywhere in the
.plt or .got with a 14 bit signed offset. Typically, the end
of the .plt is the start of the .got, so choose .plt + 0x2000
if either the .plt or .got is larger than 0x2000. If both
the .plt and .got are smaller than 0x2000, choose the end of
the .plt section. */
sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
? NULL : splt;
if (sec != NULL)
{
gp_val = sec->size;
if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
{
gp_val = 0x2000;
}
}
else
{
sec = sgot;
if (sec != NULL)
{
if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
{
/* We know we don't have a .plt. If .got is large,
offset our LTP. */
if (sec->size > 0x2000)
gp_val = 0x2000;
}
}
else
{
/* No .plt or .got. Who cares what the LTP is? */
sec = bfd_get_section_by_name (abfd, ".data");
}
}
if (h != NULL)
{
h->type = bfd_link_hash_defined;
h->u.def.value = gp_val;
if (sec != NULL)
h->u.def.section = sec;
else
h->u.def.section = bfd_abs_section_ptr;
}
}
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
{
if (sec != NULL && sec->output_section != NULL)
gp_val += sec->output_section->vma + sec->output_offset;
elf_gp (abfd) = gp_val;
}
return TRUE;
}
/* Build all the stubs associated with the current output file. The
stubs are kept in a hash table attached to the main linker hash
table. We also set up the .plt entries for statically linked PIC
functions here. This function is called via hppaelf_finish in the
linker. */
bfd_boolean
elf32_hppa_build_stubs (struct bfd_link_info *info)
{
asection *stub_sec;
struct bfd_hash_table *table;
struct elf32_hppa_link_hash_table *htab;
htab = hppa_link_hash_table (info);
if (htab == NULL)
return FALSE;
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL;
stub_sec = stub_sec->next)
if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
&& stub_sec->size != 0)
{
/* Allocate memory to hold the linker stubs. */
stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
if (stub_sec->contents == NULL)
return FALSE;
stub_sec->size = 0;
}
/* Build the stubs as directed by the stub hash table. */
table = &htab->bstab;
bfd_hash_traverse (table, hppa_build_one_stub, info);
return TRUE;
}
/* Return the base vma address which should be subtracted from the real
address when resolving a dtpoff relocation.
This is PT_TLS segment p_vaddr. */
static bfd_vma
dtpoff_base (struct bfd_link_info *info)
{
/* If tls_sec is NULL, we should have signalled an error already. */
if (elf_hash_table (info)->tls_sec == NULL)
return 0;
return elf_hash_table (info)->tls_sec->vma;
}
/* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
static bfd_vma
tpoff (struct bfd_link_info *info, bfd_vma address)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
/* If tls_sec is NULL, we should have signalled an error already. */
if (htab->tls_sec == NULL)
return 0;
/* hppa TLS ABI is variant I and static TLS block start just after
tcbhead structure which has 2 pointer fields. */
return (address - htab->tls_sec->vma
+ align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
}
/* Perform a final link. */
static bfd_boolean
elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
{
struct stat buf;
/* Invoke the regular ELF linker to do all the work. */
if (!bfd_elf_final_link (abfd, info))
return FALSE;
/* If we're producing a final executable, sort the contents of the
unwind section. */
if (bfd_link_relocatable (info))
return TRUE;
/* Do not attempt to sort non-regular files. This is here
especially for configure scripts and kernel builds which run
tests with "ld [...] -o /dev/null". */
if (stat (abfd->filename, &buf) != 0
|| !S_ISREG(buf.st_mode))
return TRUE;
return elf_hppa_sort_unwind (abfd);
}
/* Record the lowest address for the data and text segments. */
static void
hppa_record_segment_addr (bfd *abfd, asection *section, void *data