| /* RISC-V-specific support for NN-bit ELF. |
| Copyright (C) 2011-2019 Free Software Foundation, Inc. |
| |
| Contributed by Andrew Waterman (andrew@sifive.com). |
| Based on TILE-Gx and MIPS targets. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; see the file COPYING3. If not, |
| see <http://www.gnu.org/licenses/>. */ |
| |
| /* This file handles RISC-V ELF targets. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libbfd.h" |
| #include "bfdlink.h" |
| #include "genlink.h" |
| #include "elf-bfd.h" |
| #include "elfxx-riscv.h" |
| #include "elf/riscv.h" |
| #include "opcode/riscv.h" |
| |
| /* Internal relocations used exclusively by the relaxation pass. */ |
| #define R_RISCV_DELETE (R_RISCV_max + 1) |
| |
| #define ARCH_SIZE NN |
| |
| #define MINUS_ONE ((bfd_vma)0 - 1) |
| |
| #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3) |
| |
| #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES) |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1" |
| #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1" |
| |
| #define ELF_ARCH bfd_arch_riscv |
| #define ELF_TARGET_ID RISCV_ELF_DATA |
| #define ELF_MACHINE_CODE EM_RISCV |
| #define ELF_MAXPAGESIZE 0x1000 |
| #define ELF_COMMONPAGESIZE 0x1000 |
| |
| /* RISC-V ELF linker hash entry. */ |
| |
| struct riscv_elf_link_hash_entry |
| { |
| struct elf_link_hash_entry elf; |
| |
| /* Track dynamic relocs copied for this symbol. */ |
| struct elf_dyn_relocs *dyn_relocs; |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_IE 4 |
| #define GOT_TLS_LE 8 |
| char tls_type; |
| }; |
| |
| #define riscv_elf_hash_entry(ent) \ |
| ((struct riscv_elf_link_hash_entry *)(ent)) |
| |
| struct _bfd_riscv_elf_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* tls_type for each local got entry. */ |
| char *local_got_tls_type; |
| }; |
| |
| #define _bfd_riscv_elf_tdata(abfd) \ |
| ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any) |
| |
| #define _bfd_riscv_elf_local_got_tls_type(abfd) \ |
| (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type) |
| |
| #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \ |
| (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \ |
| : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx])) |
| |
| #define is_riscv_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == RISCV_ELF_DATA) |
| |
| #include "elf/common.h" |
| #include "elf/internal.h" |
| |
| struct riscv_elf_link_hash_table |
| { |
| struct elf_link_hash_table elf; |
| |
| /* Short-cuts to get to dynamic linker sections. */ |
| asection *sdyntdata; |
| |
| /* Small local sym to section mapping cache. */ |
| struct sym_cache sym_cache; |
| |
| /* The max alignment of output sections. */ |
| bfd_vma max_alignment; |
| }; |
| |
| |
| /* Get the RISC-V ELF linker hash table from a link_info structure. */ |
| #define riscv_elf_hash_table(p) \ |
| (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL) |
| |
| static bfd_boolean |
| riscv_info_to_howto_rela (bfd *abfd, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info)); |
| return cache_ptr->howto != NULL; |
| } |
| |
| static void |
| riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) |
| { |
| const struct elf_backend_data *bed; |
| bfd_byte *loc; |
| |
| bed = get_elf_backend_data (abfd); |
| loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); |
| bed->s->swap_reloca_out (abfd, rel, loc); |
| } |
| |
| /* PLT/GOT stuff. */ |
| |
| #define PLT_HEADER_INSNS 8 |
| #define PLT_ENTRY_INSNS 4 |
| #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4) |
| #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4) |
| |
| #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES |
| |
| #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE) |
| |
| #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset) |
| |
| static bfd_vma |
| riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info) |
| { |
| return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt) |
| + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE); |
| } |
| |
| #if ARCH_SIZE == 32 |
| # define MATCH_LREG MATCH_LW |
| #else |
| # define MATCH_LREG MATCH_LD |
| #endif |
| |
| /* Generate a PLT header. */ |
| |
| static bfd_boolean |
| riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr, |
| uint32_t *entry) |
| { |
| bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr); |
| bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr); |
| |
| /* RVE has no t3 register, so this won't work, and is not supported. */ |
| if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) |
| { |
| _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), |
| output_bfd); |
| return FALSE; |
| } |
| |
| /* auipc t2, %hi(.got.plt) |
| sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12 |
| l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve |
| addi t1, t1, -(hdr size + 12) # shifted .got.plt offset |
| addi t0, t2, %lo(.got.plt) # &.got.plt |
| srli t1, t1, log2(16/PTRSIZE) # .got.plt offset |
| l[w|d] t0, PTRSIZE(t0) # link map |
| jr t3 */ |
| |
| entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high); |
| entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3); |
| entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low); |
| entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12)); |
| entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low); |
| entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES); |
| entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES); |
| entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0); |
| |
| return TRUE; |
| } |
| |
| /* Generate a PLT entry. */ |
| |
| static bfd_boolean |
| riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr, |
| uint32_t *entry) |
| { |
| /* RVE has no t3 register, so this won't work, and is not supported. */ |
| if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) |
| { |
| _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), |
| output_bfd); |
| return FALSE; |
| } |
| |
| /* auipc t3, %hi(.got.plt entry) |
| l[w|d] t3, %lo(.got.plt entry)(t3) |
| jalr t1, t3 |
| nop */ |
| |
| entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr)); |
| entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr)); |
| entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0); |
| entry[3] = RISCV_NOP; |
| |
| return TRUE; |
| } |
| |
| /* Create an entry in an RISC-V ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = |
| bfd_hash_allocate (table, |
| sizeof (struct riscv_elf_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct riscv_elf_link_hash_entry *eh; |
| |
| eh = (struct riscv_elf_link_hash_entry *) entry; |
| eh->dyn_relocs = NULL; |
| eh->tls_type = GOT_UNKNOWN; |
| } |
| |
| return entry; |
| } |
| |
| /* Create a RISC-V ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| riscv_elf_link_hash_table_create (bfd *abfd) |
| { |
| struct riscv_elf_link_hash_table *ret; |
| bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table); |
| |
| ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, |
| sizeof (struct riscv_elf_link_hash_entry), |
| RISCV_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| ret->max_alignment = (bfd_vma) -1; |
| return &ret->elf.root; |
| } |
| |
| /* Create the .got section. */ |
| |
| static bfd_boolean |
| riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
| { |
| flagword flags; |
| asection *s, *s_got; |
| struct elf_link_hash_entry *h; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* This function may be called more than once. */ |
| if (htab->sgot != NULL) |
| return TRUE; |
| |
| flags = bed->dynamic_sec_flags; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->rela_plts_and_copies_p |
| ? ".rela.got" : ".rel.got"), |
| (bed->dynamic_sec_flags |
| | SEC_READONLY)); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| htab->srelgot = s; |
| |
| s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| htab->sgot = s; |
| |
| /* The first bit of the global offset table is the header. */ |
| s->size += bed->got_header_size; |
| |
| if (bed->want_got_plt) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| htab->sgotplt = s; |
| |
| /* Reserve room for the header. */ |
| s->size += GOTPLT_HEADER_SIZE; |
| } |
| |
| if (bed->want_got_sym) |
| { |
| /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got |
| section. We don't do this in the linker script because we don't want |
| to define the symbol if we are not creating a global offset |
| table. */ |
| h = _bfd_elf_define_linkage_sym (abfd, info, s_got, |
| "_GLOBAL_OFFSET_TABLE_"); |
| elf_hash_table (info)->hgot = h; |
| if (h == NULL) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and |
| .rela.bss sections in DYNOBJ, and set up shortcuts to them in our |
| hash table. */ |
| |
| static bfd_boolean |
| riscv_elf_create_dynamic_sections (bfd *dynobj, |
| struct bfd_link_info *info) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (!riscv_elf_create_got_section (dynobj, info)) |
| return FALSE; |
| |
| if (!_bfd_elf_create_dynamic_sections (dynobj, info)) |
| return FALSE; |
| |
| if (!bfd_link_pic (info)) |
| { |
| /* Technically, this section doesn't have contents. It is used as the |
| target of TLS copy relocs, to copy TLS data from shared libraries into |
| the executable. However, if we don't mark it as loadable, then it |
| matches the IS_TBSS test in ldlang.c, and there is no run-time address |
| space allocated for it even though it has SEC_ALLOC. That test is |
| correct for .tbss, but not correct for this section. There is also |
| a second problem that having a section with no contents can only work |
| if it comes after all sections with contents in the same segment, |
| but the linker script does not guarantee that. This is just mixed in |
| with other .tdata.* sections. We can fix both problems by lying and |
| saying that there are contents. This section is expected to be small |
| so this should not cause a significant extra program startup cost. */ |
| htab->sdyntdata = |
| bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn", |
| (SEC_ALLOC | SEC_THREAD_LOCAL |
| | SEC_LOAD | SEC_DATA |
| | SEC_HAS_CONTENTS |
| | SEC_LINKER_CREATED)); |
| } |
| |
| if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss |
| || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata))) |
| abort (); |
| |
| return TRUE; |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| static void |
| riscv_elf_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct riscv_elf_link_hash_entry *edir, *eind; |
| |
| edir = (struct riscv_elf_link_hash_entry *) dir; |
| eind = (struct riscv_elf_link_hash_entry *) ind; |
| |
| if (eind->dyn_relocs != NULL) |
| { |
| if (edir->dyn_relocs != NULL) |
| { |
| struct elf_dyn_relocs **pp; |
| struct elf_dyn_relocs *p; |
| |
| /* Add reloc counts against the indirect sym to the direct sym |
| list. Merge any entries against the same section. */ |
| for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| struct elf_dyn_relocs *q; |
| |
| for (q = edir->dyn_relocs; q != NULL; q = q->next) |
| if (q->sec == p->sec) |
| { |
| q->pc_count += p->pc_count; |
| q->count += p->count; |
| *pp = p->next; |
| break; |
| } |
| if (q == NULL) |
| pp = &p->next; |
| } |
| *pp = edir->dyn_relocs; |
| } |
| |
| edir->dyn_relocs = eind->dyn_relocs; |
| eind->dyn_relocs = NULL; |
| } |
| |
| if (ind->root.type == bfd_link_hash_indirect |
| && dir->got.refcount <= 0) |
| { |
| edir->tls_type = eind->tls_type; |
| eind->tls_type = GOT_UNKNOWN; |
| } |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| |
| static bfd_boolean |
| riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h, |
| unsigned long symndx, char tls_type) |
| { |
| char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx); |
| |
| *new_tls_type |= tls_type; |
| if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL)) |
| { |
| (*_bfd_error_handler) |
| (_("%pB: `%s' accessed both as normal and thread local symbol"), |
| abfd, h ? h->root.root.string : "<local>"); |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, long symndx) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| if (htab->elf.sgot == NULL) |
| { |
| if (!riscv_elf_create_got_section (htab->elf.dynobj, info)) |
| return FALSE; |
| } |
| |
| if (h != NULL) |
| { |
| h->got.refcount += 1; |
| return TRUE; |
| } |
| |
| /* This is a global offset table entry for a local symbol. */ |
| if (elf_local_got_refcounts (abfd) == NULL) |
| { |
| bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1); |
| if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size))) |
| return FALSE; |
| _bfd_riscv_elf_local_got_tls_type (abfd) |
| = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info); |
| } |
| elf_local_got_refcounts (abfd) [symndx] += 1; |
| |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h) |
| { |
| reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); |
| |
| (*_bfd_error_handler) |
| (_("%pB: relocation %s against `%s' can not be used when making a shared " |
| "object; recompile with -fPIC"), |
| abfd, r ? r->name : _("<unknown>"), |
| h != NULL ? h->root.root.string : "a local symbol"); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| /* Look through the relocs for a section during the first phase, and |
| allocate space in the global offset table or procedure linkage |
| table. */ |
| |
| static bfd_boolean |
| riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, const Elf_Internal_Rela *relocs) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| asection *sreloc = NULL; |
| |
| if (bfd_link_relocatable (info)) |
| return TRUE; |
| |
| htab = riscv_elf_hash_table (info); |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| |
| for (rel = relocs; rel < relocs + sec->reloc_count; rel++) |
| { |
| unsigned int r_type; |
| unsigned int r_symndx; |
| struct elf_link_hash_entry *h; |
| |
| r_symndx = ELFNN_R_SYM (rel->r_info); |
| r_type = ELFNN_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| (*_bfd_error_handler) (_("%pB: bad symbol index: %d"), |
| abfd, r_symndx); |
| return FALSE; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| h = NULL; |
| else |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| switch (r_type) |
| { |
| case R_RISCV_TLS_GD_HI20: |
| if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) |
| || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD)) |
| return FALSE; |
| break; |
| |
| case R_RISCV_TLS_GOT_HI20: |
| if (bfd_link_pic (info)) |
| info->flags |= DF_STATIC_TLS; |
| if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) |
| || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE)) |
| return FALSE; |
| break; |
| |
| case R_RISCV_GOT_HI20: |
| if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) |
| || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL)) |
| return FALSE; |
| break; |
| |
| case R_RISCV_CALL_PLT: |
| /* This symbol requires a procedure linkage table entry. We |
| actually build the entry in adjust_dynamic_symbol, |
| because this might be a case of linking PIC code without |
| linking in any dynamic objects, in which case we don't |
| need to generate a procedure linkage table after all. */ |
| |
| if (h != NULL) |
| { |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| } |
| break; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_JAL: |
| case R_RISCV_BRANCH: |
| case R_RISCV_RVC_BRANCH: |
| case R_RISCV_RVC_JUMP: |
| case R_RISCV_PCREL_HI20: |
| /* In shared libraries, these relocs are known to bind locally. */ |
| if (bfd_link_pic (info)) |
| break; |
| goto static_reloc; |
| |
| case R_RISCV_TPREL_HI20: |
| if (!bfd_link_executable (info)) |
| return bad_static_reloc (abfd, r_type, h); |
| if (h != NULL) |
| riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE); |
| goto static_reloc; |
| |
| case R_RISCV_HI20: |
| if (bfd_link_pic (info)) |
| return bad_static_reloc (abfd, r_type, h); |
| /* Fall through. */ |
| |
| case R_RISCV_COPY: |
| case R_RISCV_JUMP_SLOT: |
| case R_RISCV_RELATIVE: |
| case R_RISCV_64: |
| case R_RISCV_32: |
| /* Fall through. */ |
| |
| static_reloc: |
| /* This reloc might not bind locally. */ |
| if (h != NULL) |
| h->non_got_ref = 1; |
| |
| if (h != NULL && !bfd_link_pic (info)) |
| { |
| /* We may need a .plt entry if the function this reloc |
| refers to is in a shared lib. */ |
| h->plt.refcount += 1; |
| } |
| |
| /* If we are creating a shared library, and this is a reloc |
| against a global symbol, or a non PC relative reloc |
| against a local symbol, then we need to copy the reloc |
| into the shared library. However, if we are linking with |
| -Bsymbolic, we do not need to copy a reloc against a |
| global symbol which is defined in an object we are |
| including in the link (i.e., DEF_REGULAR is set). At |
| this point we have not seen all the input files, so it is |
| possible that DEF_REGULAR is not set now but will be set |
| later (it is never cleared). In case of a weak definition, |
| DEF_REGULAR may be cleared later by a strong definition in |
| a shared library. We account for that possibility below by |
| storing information in the relocs_copied field of the hash |
| table entry. A similar situation occurs when creating |
| shared libraries and symbol visibility changes render the |
| symbol local. |
| |
| If on the other hand, we are creating an executable, we |
| may need to keep relocations for symbols satisfied by a |
| dynamic library if we manage to avoid copy relocs for the |
| symbol. */ |
| reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); |
| |
| if ((bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| && ((r != NULL && ! r->pc_relative) |
| || (h != NULL |
| && (! info->symbolic |
| || h->root.type == bfd_link_hash_defweak |
| || !h->def_regular)))) |
| || (!bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && (h->root.type == bfd_link_hash_defweak |
| || !h->def_regular))) |
| { |
| struct elf_dyn_relocs *p; |
| struct elf_dyn_relocs **head; |
| |
| /* When creating a shared object, we must copy these |
| relocs into the output file. We create a reloc |
| section in dynobj and make room for the reloc. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES, |
| abfd, /*rela?*/ TRUE); |
| |
| if (sreloc == NULL) |
| return FALSE; |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (h != NULL) |
| head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs; |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| |
| asection *s; |
| void *vpp; |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return FALSE; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| vpp = &elf_section_data (s)->local_dynrel; |
| head = (struct elf_dyn_relocs **) vpp; |
| } |
| |
| p = *head; |
| if (p == NULL || p->sec != sec) |
| { |
| bfd_size_type amt = sizeof *p; |
| p = ((struct elf_dyn_relocs *) |
| bfd_alloc (htab->elf.dynobj, amt)); |
| if (p == NULL) |
| return FALSE; |
| p->next = *head; |
| *head = p; |
| p->sec = sec; |
| p->count = 0; |
| p->pc_count = 0; |
| } |
| |
| p->count += 1; |
| p->pc_count += r == NULL ? 0 : r->pc_relative; |
| } |
| |
| break; |
| |
| case R_RISCV_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return FALSE; |
| break; |
| |
| case R_RISCV_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| return FALSE; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| static asection * |
| riscv_elf_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_GNU_VTINHERIT: |
| case R_RISCV_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Find dynamic relocs for H that apply to read-only sections. */ |
| |
| static asection * |
| readonly_dynrelocs (struct elf_link_hash_entry *h) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *s = p->sec->output_section; |
| |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| return p->sec; |
| } |
| return NULL; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bfd_boolean |
| riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| struct riscv_elf_link_hash_entry * eh; |
| bfd *dynobj; |
| asection *s, *srel; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| dynobj = htab->elf.dynobj; |
| |
| /* Make sure we know what is going on here. */ |
| BFD_ASSERT (dynobj != NULL |
| && (h->needs_plt |
| || h->type == STT_GNU_IFUNC |
| || h->is_weakalias |
| || (h->def_dynamic |
| && h->ref_regular |
| && !h->def_regular))); |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later |
| (although we could actually do it here). */ |
| if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an |
| input file, but the symbol was never referred to by a dynamic |
| object, or if all references were garbage collected. In such |
| a case, we don't actually need to build a PLT entry. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| return TRUE; |
| } |
| else |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| h->root.u.def.section = def->root.u.def.section; |
| h->root.u.def.value = def->root.u.def.value; |
| return TRUE; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (bfd_link_pic (info)) |
| return TRUE; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return TRUE; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| |
| /* If we don't find any dynamic relocs in read-only sections, then |
| we'll be keeping the dynamic relocs and avoiding the copy reloc. */ |
| if (!readonly_dynrelocs (h)) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker |
| to copy the initial value out of the dynamic object and into the |
| runtime process image. We need to remember the offset into the |
| .rel.bss section we are going to use. */ |
| eh = (struct riscv_elf_link_hash_entry *) h; |
| if (eh->tls_type & ~GOT_NORMAL) |
| { |
| s = htab->sdyntdata; |
| srel = htab->elf.srelbss; |
| } |
| else if ((h->root.u.def.section->flags & SEC_READONLY) != 0) |
| { |
| s = htab->elf.sdynrelro; |
| srel = htab->elf.sreldynrelro; |
| } |
| else |
| { |
| s = htab->elf.sdynbss; |
| srel = htab->elf.srelbss; |
| } |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| srel->size += sizeof (ElfNN_External_Rela); |
| h->needs_copy = 1; |
| } |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bfd_boolean |
| allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct riscv_elf_link_hash_table *htab; |
| struct riscv_elf_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| info = (struct bfd_link_info *) inf; |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (htab->elf.dynamic_sections_created |
| && h->plt.refcount > 0) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h)) |
| { |
| asection *s = htab->elf.splt; |
| |
| if (s->size == 0) |
| s->size = PLT_HEADER_SIZE; |
| |
| h->plt.offset = s->size; |
| |
| /* Make room for this entry. */ |
| s->size += PLT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .got.plt section. */ |
| htab->elf.sgotplt->size += GOT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .rela.plt section. */ |
| htab->elf.srelplt->size += sizeof (ElfNN_External_Rela); |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (! bfd_link_pic (info) |
| && !h->def_regular) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| if (h->got.refcount > 0) |
| { |
| asection *s; |
| bfd_boolean dyn; |
| int tls_type = riscv_elf_hash_entry (h)->tls_type; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| s = htab->elf.sgot; |
| h->got.offset = s->size; |
| dyn = htab->elf.dynamic_sections_created; |
| if (tls_type & (GOT_TLS_GD | GOT_TLS_IE)) |
| { |
| /* TLS_GD needs two dynamic relocs and two GOT slots. */ |
| if (tls_type & GOT_TLS_GD) |
| { |
| s->size += 2 * RISCV_ELF_WORD_BYTES; |
| htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela); |
| } |
| |
| /* TLS_IE needs one dynamic reloc and one GOT slot. */ |
| if (tls_type & GOT_TLS_IE) |
| { |
| s->size += RISCV_ELF_WORD_BYTES; |
| htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); |
| } |
| } |
| else |
| { |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) |
| && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); |
| } |
| } |
| else |
| h->got.offset = (bfd_vma) -1; |
| |
| eh = (struct riscv_elf_link_hash_entry *) h; |
| if (eh->dyn_relocs == NULL) |
| return TRUE; |
| |
| /* In the shared -Bsymbolic case, discard space allocated for |
| dynamic pc-relative relocs against symbols which turn out to be |
| defined in regular objects. For the normal shared case, discard |
| space for pc-relative relocs that have become local due to symbol |
| visibility changes. */ |
| |
| if (bfd_link_pic (info)) |
| { |
| if (SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| /* Also discard relocs on undefined weak syms with non-default |
| visibility. */ |
| if (eh->dyn_relocs != NULL |
| && h->root.type == bfd_link_hash_undefweak) |
| { |
| if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| eh->dyn_relocs = NULL; |
| |
| /* Make sure undefined weak symbols are output as a dynamic |
| symbol in PIEs. */ |
| else if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| } |
| } |
| else |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. */ |
| |
| if (!h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || (htab->elf.dynamic_sections_created |
| && (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined)))) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| /* If that succeeded, we know we'll be keeping all the |
| relocs. */ |
| if (h->dynindx != -1) |
| goto keep; |
| } |
| |
| eh->dyn_relocs = NULL; |
| |
| keep: ; |
| } |
| |
| /* Finally, allocate space. */ |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *sreloc = elf_section_data (p->sec)->sreloc; |
| sreloc->size += p->count * sizeof (ElfNN_External_Rela); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Set DF_TEXTREL if we find any dynamic relocs that apply to |
| read-only sections. */ |
| |
| static bfd_boolean |
| maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p) |
| { |
| asection *sec; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| sec = readonly_dynrelocs (h); |
| if (sec != NULL) |
| { |
| struct bfd_link_info *info = (struct bfd_link_info *) info_p; |
| |
| info->flags |= DF_TEXTREL; |
| info->callbacks->minfo |
| (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"), |
| sec->owner, h->root.root.string, sec); |
| |
| /* Not an error, just cut short the traversal. */ |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| bfd *ibfd; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| dynobj = htab->elf.dynobj; |
| BFD_ASSERT (dynobj != NULL); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| BFD_ASSERT (s != NULL); |
| s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1; |
| s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER; |
| } |
| } |
| |
| /* Set up .got offsets for local syms, and space for local dynamic |
| relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| bfd_signed_vma *local_got; |
| bfd_signed_vma *end_local_got; |
| char *local_tls_type; |
| bfd_size_type locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| |
| if (! is_riscv_elf (ibfd)) |
| continue; |
| |
| for (s = ibfd->sections; s != NULL; s = s->next) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) |
| { |
| if (!bfd_is_abs_section (p->sec) |
| && bfd_is_abs_section (p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (p->count != 0) |
| { |
| srel = elf_section_data (p->sec)->sreloc; |
| srel->size += p->count * sizeof (ElfNN_External_Rela); |
| if ((p->sec->output_section->flags & SEC_READONLY) != 0) |
| info->flags |= DF_TEXTREL; |
| } |
| } |
| } |
| |
| local_got = elf_local_got_refcounts (ibfd); |
| if (!local_got) |
| continue; |
| |
| symtab_hdr = &elf_symtab_hdr (ibfd); |
| locsymcount = symtab_hdr->sh_info; |
| end_local_got = local_got + locsymcount; |
| local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd); |
| s = htab->elf.sgot; |
| srel = htab->elf.srelgot; |
| for (; local_got < end_local_got; ++local_got, ++local_tls_type) |
| { |
| if (*local_got > 0) |
| { |
| *local_got = s->size; |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (*local_tls_type & GOT_TLS_GD) |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (bfd_link_pic (info) |
| || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE))) |
| srel->size += sizeof (ElfNN_External_Rela); |
| } |
| else |
| *local_got = (bfd_vma) -1; |
| } |
| } |
| |
| /* Allocate global sym .plt and .got entries, and space for global |
| sym dynamic relocs. */ |
| elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info); |
| |
| if (htab->elf.sgotplt) |
| { |
| struct elf_link_hash_entry *got; |
| got = elf_link_hash_lookup (elf_hash_table (info), |
| "_GLOBAL_OFFSET_TABLE_", |
| FALSE, FALSE, FALSE); |
| |
| /* Don't allocate .got.plt section if there are no GOT nor PLT |
| entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */ |
| if ((got == NULL |
| || !got->ref_regular_nonweak) |
| && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE) |
| && (htab->elf.splt == NULL |
| || htab->elf.splt->size == 0) |
| && (htab->elf.sgot == NULL |
| || (htab->elf.sgot->size |
| == get_elf_backend_data (output_bfd)->got_header_size))) |
| htab->elf.sgotplt->size = 0; |
| } |
| |
| /* The check_relocs and adjust_dynamic_symbol entry points have |
| determined the sizes of the various dynamic sections. Allocate |
| memory for them. */ |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| if (s == htab->elf.splt |
| || s == htab->elf.sgot |
| || s == htab->elf.sgotplt |
| || s == htab->elf.sdynbss |
| || s == htab->elf.sdynrelro |
| || s == htab->sdyntdata) |
| { |
| /* Strip this section if we don't need it; see the |
| comment below. */ |
| } |
| else if (strncmp (s->name, ".rela", 5) == 0) |
| { |
| if (s->size != 0) |
| { |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| s->reloc_count = 0; |
| } |
| } |
| else |
| { |
| /* It's not one of our sections. */ |
| continue; |
| } |
| |
| if (s->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rela.bss and |
| .rela.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. Zero the memory |
| for the benefit of .rela.plt, which has 4 unused entries |
| at the beginning, and we don't want garbage. */ |
| s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| return FALSE; |
| } |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Add some entries to the .dynamic section. We fill in the |
| values later, in riscv_elf_finish_dynamic_sections, but we |
| must add the entries now so that we get the correct size for |
| the .dynamic section. The DT_DEBUG entry is filled in by the |
| dynamic linker and used by the debugger. */ |
| #define add_dynamic_entry(TAG, VAL) \ |
| _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
| |
| if (bfd_link_executable (info)) |
| { |
| if (!add_dynamic_entry (DT_DEBUG, 0)) |
| return FALSE; |
| } |
| |
| if (htab->elf.srelplt->size != 0) |
| { |
| if (!add_dynamic_entry (DT_PLTGOT, 0) |
| || !add_dynamic_entry (DT_PLTRELSZ, 0) |
| || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
| || !add_dynamic_entry (DT_JMPREL, 0)) |
| return FALSE; |
| } |
| |
| if (!add_dynamic_entry (DT_RELA, 0) |
| || !add_dynamic_entry (DT_RELASZ, 0) |
| || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela))) |
| return FALSE; |
| |
| /* If any dynamic relocs apply to a read-only section, |
| then we need a DT_TEXTREL entry. */ |
| if ((info->flags & DF_TEXTREL) == 0) |
| elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info); |
| |
| if (info->flags & DF_TEXTREL) |
| { |
| if (!add_dynamic_entry (DT_TEXTREL, 0)) |
| return FALSE; |
| } |
| } |
| #undef add_dynamic_entry |
| |
| return TRUE; |
| } |
| |
| #define TP_OFFSET 0 |
| #define DTP_OFFSET 0x800 |
| |
| /* Return the relocation value for a TLS dtp-relative reloc. */ |
| |
| static bfd_vma |
| dtpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET; |
| } |
| |
| /* Return the relocation value for a static TLS tp-relative relocation. */ |
| |
| static bfd_vma |
| tpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET; |
| } |
| |
| /* Return the global pointer's value, or 0 if it is not in use. */ |
| |
| static bfd_vma |
| riscv_global_pointer_value (struct bfd_link_info *info) |
| { |
| struct bfd_link_hash_entry *h; |
| |
| h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE); |
| if (h == NULL || h->type != bfd_link_hash_defined) |
| return 0; |
| |
| return h->u.def.value + sec_addr (h->u.def.section); |
| } |
| |
| /* Emplace a static relocation. */ |
| |
| static bfd_reloc_status_type |
| perform_relocation (const reloc_howto_type *howto, |
| const Elf_Internal_Rela *rel, |
| bfd_vma value, |
| asection *input_section, |
| bfd *input_bfd, |
| bfd_byte *contents) |
| { |
| if (howto->pc_relative) |
| value -= sec_addr (input_section) + rel->r_offset; |
| value += rel->r_addend; |
| |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_HI20: |
| case R_RISCV_TPREL_HI20: |
| case R_RISCV_PCREL_HI20: |
| case R_RISCV_GOT_HI20: |
| case R_RISCV_TLS_GOT_HI20: |
| case R_RISCV_TLS_GD_HI20: |
| if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) |
| return bfd_reloc_overflow; |
| value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)); |
| break; |
| |
| case R_RISCV_LO12_I: |
| case R_RISCV_GPREL_I: |
| case R_RISCV_TPREL_LO12_I: |
| case R_RISCV_TPREL_I: |
| case R_RISCV_PCREL_LO12_I: |
| value = ENCODE_ITYPE_IMM (value); |
| break; |
| |
| case R_RISCV_LO12_S: |
| case R_RISCV_GPREL_S: |
| case R_RISCV_TPREL_LO12_S: |
| case R_RISCV_TPREL_S: |
| case R_RISCV_PCREL_LO12_S: |
| value = ENCODE_STYPE_IMM (value); |
| break; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) |
| return bfd_reloc_overflow; |
| value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)) |
| | (ENCODE_ITYPE_IMM (value) << 32); |
| break; |
| |
| case R_RISCV_JAL: |
| if (!VALID_UJTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_UJTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_BRANCH: |
| if (!VALID_SBTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_SBTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_RVC_BRANCH: |
| if (!VALID_RVC_B_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_RVC_B_IMM (value); |
| break; |
| |
| case R_RISCV_RVC_JUMP: |
| if (!VALID_RVC_J_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_RVC_J_IMM (value); |
| break; |
| |
| case R_RISCV_RVC_LUI: |
| if (RISCV_CONST_HIGH_PART (value) == 0) |
| { |
| /* Linker relaxation can convert an address equal to or greater than |
| 0x800 to slightly below 0x800. C.LUI does not accept zero as a |
| valid immediate. We can fix this by converting it to a C.LI. */ |
| bfd_vma insn = bfd_get (howto->bitsize, input_bfd, |
| contents + rel->r_offset); |
| insn = (insn & ~MATCH_C_LUI) | MATCH_C_LI; |
| bfd_put (howto->bitsize, input_bfd, insn, contents + rel->r_offset); |
| value = ENCODE_RVC_IMM (0); |
| } |
| else if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value))) |
| return bfd_reloc_overflow; |
| else |
| value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)); |
| break; |
| |
| case R_RISCV_32: |
| case R_RISCV_64: |
| case R_RISCV_ADD8: |
| case R_RISCV_ADD16: |
| case R_RISCV_ADD32: |
| case R_RISCV_ADD64: |
| case R_RISCV_SUB6: |
| case R_RISCV_SUB8: |
| case R_RISCV_SUB16: |
| case R_RISCV_SUB32: |
| case R_RISCV_SUB64: |
| case R_RISCV_SET6: |
| case R_RISCV_SET8: |
| case R_RISCV_SET16: |
| case R_RISCV_SET32: |
| case R_RISCV_32_PCREL: |
| case R_RISCV_TLS_DTPREL32: |
| case R_RISCV_TLS_DTPREL64: |
| break; |
| |
| case R_RISCV_DELETE: |
| return bfd_reloc_ok; |
| |
| default: |
| return bfd_reloc_notsupported; |
| } |
| |
| bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); |
| word = (word & ~howto->dst_mask) | (value & howto->dst_mask); |
| bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* Remember all PC-relative high-part relocs we've encountered to help us |
| later resolve the corresponding low-part relocs. */ |
| |
| typedef struct |
| { |
| bfd_vma address; |
| bfd_vma value; |
| } riscv_pcrel_hi_reloc; |
| |
| typedef struct riscv_pcrel_lo_reloc |
| { |
| asection * input_section; |
| struct bfd_link_info * info; |
| reloc_howto_type * howto; |
| const Elf_Internal_Rela * reloc; |
| bfd_vma addr; |
| const char * name; |
| bfd_byte * contents; |
| struct riscv_pcrel_lo_reloc * next; |
| } riscv_pcrel_lo_reloc; |
| |
| typedef struct |
| { |
| htab_t hi_relocs; |
| riscv_pcrel_lo_reloc *lo_relocs; |
| } riscv_pcrel_relocs; |
| |
| static hashval_t |
| riscv_pcrel_reloc_hash (const void *entry) |
| { |
| const riscv_pcrel_hi_reloc *e = entry; |
| return (hashval_t)(e->address >> 2); |
| } |
| |
| static bfd_boolean |
| riscv_pcrel_reloc_eq (const void *entry1, const void *entry2) |
| { |
| const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2; |
| return e1->address == e2->address; |
| } |
| |
| static bfd_boolean |
| riscv_init_pcrel_relocs (riscv_pcrel_relocs *p) |
| { |
| |
| p->lo_relocs = NULL; |
| p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash, |
| riscv_pcrel_reloc_eq, free); |
| return p->hi_relocs != NULL; |
| } |
| |
| static void |
| riscv_free_pcrel_relocs (riscv_pcrel_relocs *p) |
| { |
| riscv_pcrel_lo_reloc *cur = p->lo_relocs; |
| |
| while (cur != NULL) |
| { |
| riscv_pcrel_lo_reloc *next = cur->next; |
| free (cur); |
| cur = next; |
| } |
| |
| htab_delete (p->hi_relocs); |
| } |
| |
| static bfd_boolean |
| riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel, |
| struct bfd_link_info *info, |
| bfd_vma pc, |
| bfd_vma addr, |
| bfd_byte *contents, |
| const reloc_howto_type *howto, |
| bfd *input_bfd) |
| { |
| /* We may need to reference low addreses in PC-relative modes even when the |
| * PC is far away from these addresses. For example, undefweak references |
| * need to produce the address 0 when linked. As 0 is far from the arbitrary |
| * addresses that we can link PC-relative programs at, the linker can't |
| * actually relocate references to those symbols. In order to allow these |
| * programs to work we simply convert the PC-relative auipc sequences to |
| * 0-relative lui sequences. */ |
| if (bfd_link_pic (info)) |
| return FALSE; |
| |
| /* If it's possible to reference the symbol using auipc we do so, as that's |
| * more in the spirit of the PC-relative relocations we're processing. */ |
| bfd_vma offset = addr - pc; |
| if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset))) |
| return FALSE; |
| |
| /* If it's impossible to reference this with a LUI-based offset then don't |
| * bother to convert it at all so users still see the PC-relative relocation |
| * in the truncation message. */ |
| if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr))) |
| return FALSE; |
| |
| rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20); |
| |
| bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset); |
| insn = (insn & ~MASK_AUIPC) | MATCH_LUI; |
| bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset); |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr, |
| bfd_vma value, bfd_boolean absolute) |
| { |
| bfd_vma offset = absolute ? value : value - addr; |
| riscv_pcrel_hi_reloc entry = {addr, offset}; |
| riscv_pcrel_hi_reloc **slot = |
| (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT); |
| |
| BFD_ASSERT (*slot == NULL); |
| *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc)); |
| if (*slot == NULL) |
| return FALSE; |
| **slot = entry; |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p, |
| asection *input_section, |
| struct bfd_link_info *info, |
| reloc_howto_type *howto, |
| const Elf_Internal_Rela *reloc, |
| bfd_vma addr, |
| const char *name, |
| bfd_byte *contents) |
| { |
| riscv_pcrel_lo_reloc *entry; |
| entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc)); |
| if (entry == NULL) |
| return FALSE; |
| *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr, |
| name, contents, p->lo_relocs}; |
| p->lo_relocs = entry; |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p) |
| { |
| riscv_pcrel_lo_reloc *r; |
| |
| for (r = p->lo_relocs; r != NULL; r = r->next) |
| { |
| bfd *input_bfd = r->input_section->owner; |
| |
| riscv_pcrel_hi_reloc search = {r->addr, 0}; |
| riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search); |
| if (entry == NULL |
| /* Check for overflow into bit 11 when adding reloc addend. */ |
| || (! (entry->value & 0x800) |
| && ((entry->value + r->reloc->r_addend) & 0x800))) |
| { |
| char *string = (entry == NULL |
| ? "%pcrel_lo missing matching %pcrel_hi" |
| : "%pcrel_lo overflow with an addend"); |
| (*r->info->callbacks->reloc_dangerous) |
| (r->info, string, input_bfd, r->input_section, r->reloc->r_offset); |
| return TRUE; |
| } |
| |
| perform_relocation (r->howto, r->reloc, entry->value, r->input_section, |
| input_bfd, r->contents); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Relocate a RISC-V ELF section. |
| |
| The RELOCATE_SECTION function is called by the new ELF backend linker |
| to handle the relocations for a section. |
| |
| The relocs are always passed as Rela structures. |
| |
| This function is responsible for adjusting the section contents as |
| necessary, and (if generating a relocatable output file) adjusting |
| the reloc addend as necessary. |
| |
| This function does not have to worry about setting the reloc |
| address or the reloc symbol index. |
| |
| LOCAL_SYMS is a pointer to the swapped in local symbols. |
| |
| LOCAL_SECTIONS is an array giving the section in the input file |
| corresponding to the st_shndx field of each local symbol. |
| |
| The global hash table entry for the global symbols can be found |
| via elf_sym_hashes (input_bfd). |
| |
| When generating relocatable output, this function must handle |
| STB_LOCAL/STT_SECTION symbols specially. The output symbol is |
| going to be the section symbol corresponding to the output |
| section, which means that the addend must be adjusted |
| accordingly. */ |
| |
| static bfd_boolean |
| riscv_elf_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *relend; |
| riscv_pcrel_relocs pcrel_relocs; |
| bfd_boolean ret = FALSE; |
| asection *sreloc = elf_section_data (input_section)->sreloc; |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd); |
| struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); |
| bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd); |
| bfd_boolean absolute; |
| |
| if (!riscv_init_pcrel_relocs (&pcrel_relocs)) |
| return FALSE; |
| |
| relend = relocs + input_section->reloc_count; |
| for (rel = relocs; rel < relend; rel++) |
| { |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| bfd_vma relocation; |
| bfd_reloc_status_type r = bfd_reloc_ok; |
| const char *name; |
| bfd_vma off, ie_off; |
| bfd_boolean unresolved_reloc, is_ie = FALSE; |
| bfd_vma pc = sec_addr (input_section) + rel->r_offset; |
| int r_type = ELFNN_R_TYPE (rel->r_info), tls_type; |
| reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type); |
| const char *msg = NULL; |
| char *msg_buf = NULL; |
| bfd_boolean resolved_to_zero; |
| |
| if (howto == NULL |
| || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY) |
| continue; |
| |
| /* This is a final link. */ |
| r_symndx = ELFNN_R_SYM (rel->r_info); |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| unresolved_reloc = FALSE; |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| } |
| else |
| { |
| bfd_boolean warned, ignored; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| h, sec, relocation, |
| unresolved_reloc, warned, ignored); |
| if (warned) |
| { |
| /* To avoid generating warning messages about truncated |
| relocations, set the relocation's address to be the same as |
| the start of this section. */ |
| if (input_section->output_section != NULL) |
| relocation = input_section->output_section->vma; |
| else |
| relocation = 0; |
| } |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| continue; |
| |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| { |
| name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
| if (name == NULL || *name == '\0') |
| name = bfd_section_name (sec); |
| } |
| |
| resolved_to_zero = (h != NULL |
| && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); |
| |
| switch (r_type) |
| { |
| case R_RISCV_NONE: |
| case R_RISCV_RELAX: |
| case R_RISCV_TPREL_ADD: |
| case R_RISCV_COPY: |
| case R_RISCV_JUMP_SLOT: |
| case R_RISCV_RELATIVE: |
| /* These require nothing of us at all. */ |
| continue; |
| |
| case R_RISCV_HI20: |
| case R_RISCV_BRANCH: |
| case R_RISCV_RVC_BRANCH: |
| case R_RISCV_RVC_LUI: |
| case R_RISCV_LO12_I: |
| case R_RISCV_LO12_S: |
| case R_RISCV_SET6: |
| case R_RISCV_SET8: |
| case R_RISCV_SET16: |
| case R_RISCV_SET32: |
| case R_RISCV_32_PCREL: |
| case R_RISCV_DELETE: |
| /* These require no special handling beyond perform_relocation. */ |
| break; |
| |
| case R_RISCV_GOT_HI20: |
| if (h != NULL) |
| { |
| bfd_boolean dyn, pic; |
| |
| off = h->got.offset; |
| BFD_ASSERT (off != (bfd_vma) -1); |
| dyn = elf_hash_table (info)->dynamic_sections_created; |
| pic = bfd_link_pic (info); |
| |
| if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) |
| || (pic && SYMBOL_REFERENCES_LOCAL (info, h))) |
| { |
| /* This is actually a static link, or it is a |
| -Bsymbolic link and the symbol is defined |
| locally, or the symbol was forced to be local |
| because of a version file. We must initialize |
| this entry in the global offset table. Since the |
| offset must always be a multiple of the word size, |
| we use the least significant bit to record whether |
| we have initialized it already. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_NN (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| h->got.offset |= 1; |
| } |
| } |
| else |
| unresolved_reloc = FALSE; |
| } |
| else |
| { |
| BFD_ASSERT (local_got_offsets != NULL |
| && local_got_offsets[r_symndx] != (bfd_vma) -1); |
| |
| off = local_got_offsets[r_symndx]; |
| |
| /* The offset must always be a multiple of the word size. |
| So, we can use the least significant bit to record |
| whether we have already processed this entry. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| if (bfd_link_pic (info)) |
| { |
| asection *s; |
| Elf_Internal_Rela outrel; |
| |
| /* We need to generate a R_RISCV_RELATIVE reloc |
| for the dynamic linker. */ |
| s = htab->elf.srelgot; |
| BFD_ASSERT (s != NULL); |
| |
| outrel.r_offset = sec_addr (htab->elf.sgot) + off; |
| outrel.r_info = |
| ELFNN_R_INFO (0, R_RISCV_RELATIVE); |
| outrel.r_addend = relocation; |
| relocation = 0; |
| riscv_elf_append_rela (output_bfd, s, &outrel); |
| } |
| |
| bfd_put_NN (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| local_got_offsets[r_symndx] |= 1; |
| } |
| } |
| relocation = sec_addr (htab->elf.sgot) + off; |
| absolute = riscv_zero_pcrel_hi_reloc (rel, |
| info, |
| pc, |
| relocation, |
| contents, |
| howto, |
| input_bfd); |
| r_type = ELFNN_R_TYPE (rel->r_info); |
| howto = riscv_elf_rtype_to_howto (input_bfd, r_type); |
| if (howto == NULL) |
| r = bfd_reloc_notsupported; |
| else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, absolute)) |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_ADD8: |
| case R_RISCV_ADD16: |
| case R_RISCV_ADD32: |
| case R_RISCV_ADD64: |
| { |
| bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, |
| contents + rel->r_offset); |
| relocation = old_value + relocation; |
| } |
| break; |
| |
| case R_RISCV_SUB6: |
| case R_RISCV_SUB8: |
| case R_RISCV_SUB16: |
| case R_RISCV_SUB32: |
| case R_RISCV_SUB64: |
| { |
| bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, |
| contents + rel->r_offset); |
| relocation = old_value - relocation; |
| } |
| break; |
| |
| case R_RISCV_CALL: |
| /* Handle a call to an undefined weak function. This won't be |
| relaxed, so we have to handle it here. */ |
| if (h != NULL && h->root.type == bfd_link_hash_undefweak |
| && h->plt.offset == MINUS_ONE) |
| { |
| /* We can use x0 as the base register. */ |
| bfd_vma insn = bfd_get_32 (input_bfd, |
| contents + rel->r_offset + 4); |
| insn &= ~(OP_MASK_RS1 << OP_SH_RS1); |
| bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4); |
| /* Set the relocation value so that we get 0 after the pc |
| relative adjustment. */ |
| relocation = sec_addr (input_section) + rel->r_offset; |
| } |
| /* Fall through. */ |
| |
| case R_RISCV_CALL_PLT: |
| case R_RISCV_JAL: |
| case R_RISCV_RVC_JUMP: |
| if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE) |
| { |
| /* Refer to the PLT entry. */ |
| relocation = sec_addr (htab->elf.splt) + h->plt.offset; |
| unresolved_reloc = FALSE; |
| } |
| break; |
| |
| case R_RISCV_TPREL_HI20: |
| relocation = tpoff (info, relocation); |
| break; |
| |
| case R_RISCV_TPREL_LO12_I: |
| case R_RISCV_TPREL_LO12_S: |
| relocation = tpoff (info, relocation); |
| break; |
| |
| case R_RISCV_TPREL_I: |
| case R_RISCV_TPREL_S: |
| relocation = tpoff (info, relocation); |
| if (VALID_ITYPE_IMM (relocation + rel->r_addend)) |
| { |
| /* We can use tp as the base register. */ |
| bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); |
| insn &= ~(OP_MASK_RS1 << OP_SH_RS1); |
| insn |= X_TP << OP_SH_RS1; |
| bfd_put_32 (input_bfd, insn, contents + rel->r_offset); |
| } |
| else |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_GPREL_I: |
| case R_RISCV_GPREL_S: |
| { |
| bfd_vma gp = riscv_global_pointer_value (info); |
| bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend); |
| if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp)) |
| { |
| /* We can use x0 or gp as the base register. */ |
| bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); |
| insn &= ~(OP_MASK_RS1 << OP_SH_RS1); |
| if (!x0_base) |
| { |
| rel->r_addend -= gp; |
| insn |= X_GP << OP_SH_RS1; |
| } |
| bfd_put_32 (input_bfd, insn, contents + rel->r_offset); |
| } |
| else |
| r = bfd_reloc_overflow; |
| break; |
| } |
| |
| case R_RISCV_PCREL_HI20: |
| absolute = riscv_zero_pcrel_hi_reloc (rel, |
| info, |
| pc, |
| relocation, |
| contents, |
| howto, |
| input_bfd); |
| r_type = ELFNN_R_TYPE (rel->r_info); |
| howto = riscv_elf_rtype_to_howto (input_bfd, r_type); |
| if (howto == NULL) |
| r = bfd_reloc_notsupported; |
| else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation + rel->r_addend, |
| absolute)) |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_PCREL_LO12_I: |
| case R_RISCV_PCREL_LO12_S: |
| /* We don't allow section symbols plus addends as the auipc address, |
| because then riscv_relax_delete_bytes would have to search through |
| all relocs to update these addends. This is also ambiguous, as |
| we do allow offsets to be added to the target address, which are |
| not to be used to find the auipc address. */ |
| if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION)) |
| || (h != NULL && h->type == STT_SECTION)) |
| && rel->r_addend) |
| { |
| msg = _("%pcrel_lo section symbol with an addend"); |
| r = bfd_reloc_dangerous; |
| break; |
| } |
| |
| if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info, |
| howto, rel, relocation, name, |
| contents)) |
| continue; |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_TLS_DTPREL32: |
| case R_RISCV_TLS_DTPREL64: |
| relocation = dtpoff (info, relocation); |
| break; |
| |
| case R_RISCV_32: |
| case R_RISCV_64: |
| if ((input_section->flags & SEC_ALLOC) == 0) |
| break; |
| |
| if ((bfd_link_pic (info) |
| && (h == NULL |
| || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| && !resolved_to_zero) |
| || h->root.type != bfd_link_hash_undefweak) |
| && (! howto->pc_relative |
| || !SYMBOL_CALLS_LOCAL (info, h))) |
| || (!bfd_link_pic (info) |
| && h != NULL |
| && h->dynindx != -1 |
| && !h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined))) |
| { |
| Elf_Internal_Rela outrel; |
| bfd_boolean skip_static_relocation, skip_dynamic_relocation; |
| |
| /* When generating a shared object, these relocations |
| are copied into the output file to be resolved at run |
| time. */ |
| |
| outrel.r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset); |
| skip_static_relocation = outrel.r_offset != (bfd_vma) -2; |
| skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2; |
| outrel.r_offset += sec_addr (input_section); |
| |
| if (skip_dynamic_relocation) |
| memset (&outrel, 0, sizeof outrel); |
| else if (h != NULL && h->dynindx != -1 |
| && !(bfd_link_pic (info) |
| && SYMBOLIC_BIND (info, h) |
| && h->def_regular)) |
| { |
| outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); |
| outrel.r_addend = rel->r_addend; |
| } |
| else |
| { |
| outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); |
| outrel.r_addend = relocation + rel->r_addend; |
| } |
| |
| riscv_elf_append_rela (output_bfd, sreloc, &outrel); |
| if (skip_static_relocation) |
| continue; |
| } |
| break; |
| |
| case R_RISCV_TLS_GOT_HI20: |
| is_ie = TRUE; |
| /* Fall through. */ |
| |
| case R_RISCV_TLS_GD_HI20: |
| if (h != NULL) |
| { |
| off = h->got.offset; |
| h->got.offset |= 1; |
| } |
| else |
| { |
| off = local_got_offsets[r_symndx]; |
| local_got_offsets[r_symndx] |= 1; |
| } |
| |
| tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx); |
| BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD)); |
| /* If this symbol is referenced by both GD and IE TLS, the IE |
| reference's GOT slot follows the GD reference's slots. */ |
| ie_off = 0; |
| if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE)) |
| ie_off = 2 * GOT_ENTRY_SIZE; |
| |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| Elf_Internal_Rela outrel; |
| int indx = 0; |
| bfd_boolean need_relocs = FALSE; |
| |
| if (htab->elf.srelgot == NULL) |
| abort (); |
| |
| if (h != NULL) |
| { |
| bfd_boolean dyn, pic; |
| dyn = htab->elf.dynamic_sections_created; |
| pic = bfd_link_pic (info); |
| |
| if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) |
| && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h))) |
| indx = h->dynindx; |
| } |
| |
| /* The GOT entries have not been initialized yet. Do it |
| now, and emit any relocations. */ |
| if ((bfd_link_pic (info) || indx != 0) |
| && (h == NULL |
| || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak)) |
| need_relocs = TRUE; |
| |
| if (tls_type & GOT_TLS_GD) |
| { |
| if (need_relocs) |
| { |
| outrel.r_offset = sec_addr (htab->elf.sgot) + off; |
| outrel.r_addend = 0; |
| outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN); |
| bfd_put_NN (output_bfd, 0, |
| htab->elf.sgot->contents + off); |
| riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); |
| if (indx == 0) |
| { |
| BFD_ASSERT (! unresolved_reloc); |
| bfd_put_NN (output_bfd, |
| dtpoff (info, relocation), |
| (htab->elf.sgot->contents + off + |
| RISCV_ELF_WORD_BYTES)); |
| } |
| else |
| { |
| bfd_put_NN (output_bfd, 0, |
| (htab->elf.sgot->contents + off + |
| RISCV_ELF_WORD_BYTES)); |
| outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN); |
| outrel.r_offset += RISCV_ELF_WORD_BYTES; |
| riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); |
| } |
| } |
| else |
| { |
| /* If we are not emitting relocations for a |
| general dynamic reference, then we must be in a |
| static link or an executable link with the |
| symbol binding locally. Mark it as belonging |
| to module 1, the executable. */ |
| bfd_put_NN (output_bfd, 1, |
| htab->elf.sgot->contents + off); |
| bfd_put_NN (output_bfd, |
| dtpoff (info, relocation), |
| (htab->elf.sgot->contents + off + |
| RISCV_ELF_WORD_BYTES)); |
| } |
| } |
| |
| if (tls_type & GOT_TLS_IE) |
| { |
| if (need_relocs) |
| { |
| bfd_put_NN (output_bfd, 0, |
| htab->elf.sgot->contents + off + ie_off); |
| outrel.r_offset = sec_addr (htab->elf.sgot) |
| + off + ie_off; |
| outrel.r_addend = 0; |
| if (indx == 0) |
| outrel.r_addend = tpoff (info, relocation); |
| outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN); |
| riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); |
| } |
| else |
| { |
| bfd_put_NN (output_bfd, tpoff (info, relocation), |
| htab->elf.sgot->contents + off + ie_off); |
| } |
| } |
| } |
| |
| BFD_ASSERT (off < (bfd_vma) -2); |
| relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0); |
| if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, FALSE)) |
| r = bfd_reloc_overflow; |
| unresolved_reloc = FALSE; |
| break; |
| |
| default: |
| r = bfd_reloc_notsupported; |
| } |
| |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING sections |
| because such sections are not SEC_ALLOC and thus ld.so will |
| not process them. */ |
| if (unresolved_reloc |
| && !((input_section->flags & SEC_DEBUGGING) != 0 |
| && h->def_dynamic) |
| && _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset) != (bfd_vma) -1) |
| { |
| switch (r_type) |
| { |
| case R_RISCV_CALL: |
| case R_RISCV_JAL: |
| case R_RISCV_RVC_JUMP: |
| if (asprintf (&msg_buf, |
| _("%%X%%P: relocation %s against `%s' can " |
| "not be used when making a shared object; " |
| "recompile with -fPIC\n"), |
| howto->name, |
| h->root.root.string) == -1) |
| msg_buf = NULL; |
| break; |
| |
| default: |
| if (asprintf (&msg_buf, |
| _("%%X%%P: unresolvable %s relocation against " |
| "symbol `%s'\n"), |
| howto->name, |
| h->root.root.string) == -1) |
| msg_buf = NULL; |
| break; |
| } |
| |
| msg = msg_buf; |
| r = bfd_reloc_notsupported; |
| } |
| |
| if (r == bfd_reloc_ok) |
| r = perform_relocation (howto, rel, relocation, input_section, |
| input_bfd, contents); |
| |
| /* We should have already detected the error and set message before. |
| If the error message isn't set since the linker runs out of memory |
| or we don't set it before, then we should set the default message |
| with the "internal error" string here. */ |
| switch (r) |
| { |
| case bfd_reloc_ok: |
| continue; |
| |
| case bfd_reloc_overflow: |
| info->callbacks->reloc_overflow |
| (info, (h ? &h->root : NULL), name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| case bfd_reloc_undefined: |
| info->callbacks->undefined_symbol |
| (info, name, input_bfd, input_section, rel->r_offset, |
| TRUE); |
| break; |
| |
| case bfd_reloc_outofrange: |
| if (msg == NULL) |
| msg = _("%X%P: internal error: out of range error\n"); |
| break; |
| |
| case bfd_reloc_notsupported: |
| if (msg == NULL) |
| msg = _("%X%P: internal error: unsupported relocation error\n"); |
| break; |
| |
| case bfd_reloc_dangerous: |
| /* The error message should already be set. */ |
| if (msg == NULL) |
| msg = _("dangerous relocation error"); |
| info->callbacks->reloc_dangerous |
| (info, msg, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| default: |
| msg = _("%X%P: internal error: unknown error\n"); |
| break; |
| } |
| |
| /* Do not report error message for the dangerous relocation again. */ |
| if (msg && r != bfd_reloc_dangerous) |
| info->callbacks->einfo (msg); |
| |
| /* Free the unused `msg_buf` if needed. */ |
| if (msg_buf) |
| free (msg_buf); |
| |
| /* We already reported the error via a callback, so don't try to report |
| it again by returning false. That leads to spurious errors. */ |
| ret = TRUE; |
| goto out; |
| } |
| |
| ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs); |
| out: |
| riscv_free_pcrel_relocs (&pcrel_relocs); |
| return ret; |
| } |
| |
| /* Finish up dynamic symbol handling. We set the contents of various |
| dynamic sections here. */ |
| |
| static bfd_boolean |
| riscv_elf_finish_dynamic_symbol (bfd *output_bfd, |
| struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
| |
| if (h->plt.offset != (bfd_vma) -1) |
| { |
| /* We've decided to create a PLT entry for this symbol. */ |
| bfd_byte *loc; |
| bfd_vma i, header_address, plt_idx, got_address; |
| uint32_t plt_entry[PLT_ENTRY_INSNS]; |
| Elf_Internal_Rela rela; |
| |
| BFD_ASSERT (h->dynindx != -1); |
| |
| /* Calculate the address of the PLT header. */ |
| header_address = sec_addr (htab->elf.splt); |
| |
| /* Calculate the index of the entry. */ |
| plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; |
| |
| /* Calculate the address of the .got.plt entry. */ |
| got_address = riscv_elf_got_plt_val (plt_idx, info); |
| |
| /* Find out where the .plt entry should go. */ |
| loc = htab->elf.splt->contents + h->plt.offset; |
| |
| /* Fill in the PLT entry itself. */ |
| if (! riscv_make_plt_entry (output_bfd, got_address, |
| header_address + h->plt.offset, |
| plt_entry)) |
| return FALSE; |
| |
| for (i = 0; i < PLT_ENTRY_INSNS; i++) |
| bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i); |
| |
| /* Fill in the initial value of the .got.plt entry. */ |
| loc = htab->elf.sgotplt->contents |
| + (got_address - sec_addr (htab->elf.sgotplt)); |
| bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc); |
| |
| /* Fill in the entry in the .rela.plt section. */ |
| rela.r_offset = got_address; |
| rela.r_addend = 0; |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT); |
| |
| loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela); |
| bed->s->swap_reloca_out (output_bfd, &rela, loc); |
| |
| if (!h->def_regular) |
| { |
| /* Mark the symbol as undefined, rather than as defined in |
| the .plt section. Leave the value alone. */ |
| sym->st_shndx = SHN_UNDEF; |
| /* If the symbol is weak, we do need to clear the value. |
| Otherwise, the PLT entry would provide a definition for |
| the symbol even if the symbol wasn't defined anywhere, |
| and so the symbol would never be NULL. */ |
| if (!h->ref_regular_nonweak) |
| sym->st_value = 0; |
| } |
| } |
| |
| if (h->got.offset != (bfd_vma) -1 |
| && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) |
| && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| { |
| asection *sgot; |
| asection *srela; |
| Elf_Internal_Rela rela; |
| |
| /* This symbol has an entry in the GOT. Set it up. */ |
| |
| sgot = htab->elf.sgot; |
| srela = htab->elf.srelgot; |
| BFD_ASSERT (sgot != NULL && srela != NULL); |
| |
| rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1); |
| |
| /* If this is a local symbol reference, we just want to emit a RELATIVE |
| reloc. This can happen if it is a -Bsymbolic link, or a pie link, or |
| the symbol was forced to be local because of a version file. |
| The entry in the global offset table will already have been |
| initialized in the relocate_section function. */ |
| if (bfd_link_pic (info) |
| && SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| BFD_ASSERT((h->got.offset & 1) != 0); |
| asection *sec = h->root.u.def.section; |
| rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); |
| rela.r_addend = (h->root.u.def.value |
| + sec->output_section->vma |
| + sec->output_offset); |
| } |
| else |
| { |
| BFD_ASSERT((h->got.offset & 1) == 0); |
| BFD_ASSERT (h->dynindx != -1); |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); |
| rela.r_addend = 0; |
| } |
| |
| bfd_put_NN (output_bfd, 0, |
| sgot->contents + (h->got.offset & ~(bfd_vma) 1)); |
| riscv_elf_append_rela (output_bfd, srela, &rela); |
| } |
| |
| if (h->needs_copy) |
| { |
| Elf_Internal_Rela rela; |
| asection *s; |
| |
| /* This symbols needs a copy reloc. Set it up. */ |
| BFD_ASSERT (h->dynindx != -1); |
| |
| rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value; |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY); |
| rela.r_addend = 0; |
| if (h->root.u.def.section == htab->elf.sdynrelro) |
| s = htab->elf.sreldynrelro; |
| else |
| s = htab->elf.srelbss; |
| riscv_elf_append_rela (output_bfd, s, &rela); |
| } |
| |
| /* Mark some specially defined symbols as absolute. */ |
| if (h == htab->elf.hdynamic |
| || (h == htab->elf.hgot || h == htab->elf.hplt)) |
| sym->st_shndx = SHN_ABS; |
| |
| return TRUE; |
| } |
| |
| /* Finish up the dynamic sections. */ |
| |
| static bfd_boolean |
| riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info, |
| bfd *dynobj, asection *sdyn) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
| size_t dynsize = bed->s->sizeof_dyn; |
| bfd_byte *dyncon, *dynconend; |
| |
| dynconend = sdyn->contents + sdyn->size; |
| for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize) |
| { |
| Elf_Internal_Dyn dyn; |
| asection *s; |
| |
| bed->s->swap_dyn_in (dynobj, dyncon, &dyn); |
| |
| switch (dyn.d_tag) |
| { |
| case DT_PLTGOT: |
| s = htab->elf.sgotplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| case DT_JMPREL: |
| s = htab->elf.srelplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| case DT_PLTRELSZ: |
| s = htab->elf.srelplt; |
| dyn.d_un.d_val = s->size; |
| break; |
| default: |
| continue; |
| } |
| |
| bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); |
| } |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| riscv_elf_finish_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| bfd *dynobj; |
| asection *sdyn; |
| struct riscv_elf_link_hash_table *htab; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| dynobj = htab->elf.dynobj; |
| |
| sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| asection *splt; |
| bfd_boolean ret; |
| |
| splt = htab->elf.splt; |
| BFD_ASSERT (splt != NULL && sdyn != NULL); |
| |
| ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn); |
| |
| if (!ret) |
| return ret; |
| |
| /* Fill in the head and tail entries in the procedure linkage table. */ |
| if (splt->size > 0) |
| { |
| int i; |
| uint32_t plt_header[PLT_HEADER_INSNS]; |
| ret = riscv_make_plt_header (output_bfd, |
| sec_addr (htab->elf.sgotplt), |
| sec_addr (splt), plt_header); |
| if (!ret) |
| return ret; |
| |
| for (i = 0; i < PLT_HEADER_INSNS; i++) |
| bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i); |
| |
| elf_section_data (splt->output_section)->this_hdr.sh_entsize |
| = PLT_ENTRY_SIZE; |
| } |
| } |
| |
| if (htab->elf.sgotplt) |
| { |
| asection *output_section = htab->elf.sgotplt->output_section; |
| |
| if (bfd_is_abs_section (output_section)) |
| { |
| (*_bfd_error_handler) |
| (_("discarded output section: `%pA'"), htab->elf.sgotplt); |
| return FALSE; |
| } |
| |
| if (htab->elf.sgotplt->size > 0) |
| { |
| /* Write the first two entries in .got.plt, needed for the dynamic |
| linker. */ |
| bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents); |
| bfd_put_NN (output_bfd, (bfd_vma) 0, |
| htab->elf.sgotplt->contents + GOT_ENTRY_SIZE); |
| } |
| |
| elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; |
| } |
| |
| if (htab->elf.sgot) |
| { |
| asection *output_section = htab->elf.sgot->output_section; |
| |
| if (htab->elf.sgot->size > 0) |
| { |
| /* Set the first entry in the global offset table to the address of |
| the dynamic section. */ |
| bfd_vma val = sdyn ? sec_addr (sdyn) : 0; |
| bfd_put_NN (output_bfd, val, htab->elf.sgot->contents); |
| } |
| |
| elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return address for Ith PLT stub in section PLT, for relocation REL |
| or (bfd_vma) -1 if it should not be included. */ |
| |
| static bfd_vma |
| riscv_elf_plt_sym_val (bfd_vma i, const asection *plt, |
| const arelent *rel ATTRIBUTE_UNUSED) |
| { |
| return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE; |
| } |
| |
| static enum elf_reloc_type_class |
| riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| const asection *rel_sec ATTRIBUTE_UNUSED, |
| const Elf_Internal_Rela *rela) |
| { |
| switch (ELFNN_R_TYPE (rela->r_info)) |
| { |
| case R_RISCV_RELATIVE: |
| return reloc_class_relative; |
| case R_RISCV_JUMP_SLOT: |
| return reloc_class_plt; |
| case R_RISCV_COPY: |
| return reloc_class_copy; |
| default: |
| return reloc_class_normal; |
| } |
| } |
| |
| /* Given the ELF header flags in FLAGS, it returns a string that describes the |
| float ABI. */ |
| |
| static const char * |
| riscv_float_abi_string (flagword flags) |
| { |
| switch (flags & EF_RISCV_FLOAT_ABI) |
| { |
| case EF_RISCV_FLOAT_ABI_SOFT: |
| return "soft-float"; |
| break; |
| case EF_RISCV_FLOAT_ABI_SINGLE: |
| return "single-float"; |
| break; |
| case EF_RISCV_FLOAT_ABI_DOUBLE: |
| return "double-float"; |
| break; |
| case EF_RISCV_FLOAT_ABI_QUAD: |
| return "quad-float"; |
| break; |
| default: |
| abort (); |
| } |
| } |
| |
| /* The information of architecture attribute. */ |
| static riscv_subset_list_t in_subsets; |
| static riscv_subset_list_t out_subsets; |
| static riscv_subset_list_t merged_subsets; |
| |
| /* Predicator for standard extension. */ |
| |
| static bfd_boolean |
| riscv_std_ext_p (const char *name) |
| { |
| return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's'); |
| } |
| |
| /* Predicator for non-standard extension. */ |
| |
| static bfd_boolean |
| riscv_non_std_ext_p (const char *name) |
| { |
| return (strlen (name) >= 2) && (name[0] == 'x'); |
| } |
| |
| /* Predicator for standard supervisor extension. */ |
| |
| static bfd_boolean |
| riscv_std_sv_ext_p (const char *name) |
| { |
| return (strlen (name) >= 2) && (name[0] == 's') && (name[1] != 'x'); |
| } |
| |
| /* Predicator for non-standard supervisor extension. */ |
| |
| static bfd_boolean |
| riscv_non_std_sv_ext_p (const char *name) |
| { |
| return (strlen (name) >= 3) && (name[0] == 's') && (name[1] == 'x'); |
| } |
| |
| /* Error handler when version mis-match. */ |
| |
| static void |
| riscv_version_mismatch (bfd *ibfd, |
| struct riscv_subset_t *in, |
| struct riscv_subset_t *out) |
| { |
| _bfd_error_handler |
| (_("error: %pB: Mis-matched ISA version for '%s' extension. " |
| "%d.%d vs %d.%d"), |
| ibfd, in->name, |
| in->major_version, in->minor_version, |
| out->major_version, out->minor_version); |
| } |
| |
| /* Return true if subset is 'i' or 'e'. */ |
| |
| static bfd_boolean |
| riscv_i_or_e_p (bfd *ibfd, |
| const char *arch, |
| struct riscv_subset_t *subset) |
| { |
| if ((strcasecmp (subset->name, "e") != 0) |
| && (strcasecmp (subset->name, "i") != 0)) |
| { |
| _bfd_error_handler |
| (_("error: %pB: corrupted ISA string '%s'. " |
| "First letter should be 'i' or 'e' but got '%s'."), |
| ibfd, arch, subset->name); |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| /* Merge standard extensions. |
| |
| Return Value: |
| Return FALSE if failed to merge. |
| |
| Arguments: |
| `bfd`: bfd handler. |
| `in_arch`: Raw arch string for input object. |
| `out_arch`: Raw arch string for output object. |
| `pin`: subset list for input object, and it'll skip all merged subset after |
| merge. |
| `pout`: Like `pin`, but for output object. */ |
| |
| static bfd_boolean |
| riscv_merge_std_ext (bfd *ibfd, |
| const char *in_arch, |
| const char *out_arch, |
| struct riscv_subset_t **pin, |
| struct riscv_subset_t **pout) |
| { |
| const char *standard_exts = riscv_supported_std_ext (); |
| const char *p; |
| struct riscv_subset_t *in = *pin; |
| struct riscv_subset_t *out = *pout; |
| |
| /* First letter should be 'i' or 'e'. */ |
| if (!riscv_i_or_e_p (ibfd, in_arch, in)) |
| return FALSE; |
| |
| if (!riscv_i_or_e_p (ibfd, out_arch, out)) |
| return FALSE; |
| |
| if (in->name[0] != out->name[0]) |
| { |
| /* TODO: We might allow merge 'i' with 'e'. */ |
| _bfd_error_handler |
| (_("error: %pB: Mis-matched ISA string to merge '%s' and '%s'."), |
| ibfd, in->name, out->name); |
| return FALSE; |
| } |
| else if ((in->major_version != out->major_version) || |
| (in->minor_version != out->minor_version)) |
| { |
| /* TODO: Allow different merge policy. */ |
| riscv_version_mismatch (ibfd, in, out); |
| return FALSE; |
| } |
| else |
| riscv_add_subset (&merged_subsets, |
| in->name, in->major_version, in->minor_version); |
| |
| in = in->next; |
| out = out->next; |
| |
| /* Handle standard extension first. */ |
| for (p = standard_exts; *p; ++p) |
| { |
| char find_ext[2] = {*p, '\0'}; |
| struct riscv_subset_t *find_in = |
| riscv_lookup_subset (&in_subsets, find_ext); |
| struct riscv_subset_t *find_out = |
| riscv_lookup_subset (&out_subsets, find_ext); |
| |
| if (find_in == NULL && find_out == NULL) |
| continue; |
| |
| /* Check version is same or not. */ |
| /* TODO: Allow different merge policy. */ |
| if ((find_in != NULL && find_out != NULL) |
| && ((find_in->major_version != find_out->major_version) |
| || (find_in->minor_version != find_out->minor_version))) |
| { |
| riscv_version_mismatch (ibfd, in, out); |
| return FALSE; |
| } |
| |
| struct riscv_subset_t *merged = find_in ? find_in : find_out; |
| riscv_add_subset (&merged_subsets, merged->name, |
| merged->major_version, merged->minor_version); |
| } |
| |
| /* Skip all standard extensions. */ |
| while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next; |
| while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next; |
| |
| *pin = in; |
| *pout = out; |
| |
| return TRUE; |
| } |
| |
| /* Merge non-standard and supervisor extensions. |
| Return Value: |
| Return FALSE if failed to merge. |
| |
| Arguments: |
| `bfd`: bfd handler. |
| `in_arch`: Raw arch string for input object. |
| `out_arch`: Raw arch string for output object. |
| `pin`: subset list for input object, and it'll skip all merged subset after |
| merge. |
| `pout`: Like `pin`, but for output object. */ |
| |
| static bfd_boolean |
| riscv_merge_non_std_and_sv_ext (bfd *ibfd, |
| riscv_subset_t **pin, |
| riscv_subset_t **pout, |
| bfd_boolean (*predicate_func) (const char *)) |
| { |
| riscv_subset_t *in = *pin; |
| riscv_subset_t *out = *pout; |
| |
| for (in = *pin; in != NULL && predicate_func (in->name); in = in->next) |
| riscv_add_subset (&merged_subsets, in->name, in->major_version, |
| in->minor_version); |
| |
| for (out = *pout; out != NULL && predicate_func (out->name); out = out->next) |
| { |
| riscv_subset_t *find_ext = |
| riscv_lookup_subset (&merged_subsets, out->name); |
| if (find_ext != NULL) |
| { |
| /* Check version is same or not. */ |
| /* TODO: Allow different merge policy. */ |
| if ((find_ext->major_version != out->major_version) |
| || (find_ext->minor_version != out->minor_version)) |
| { |
| riscv_version_mismatch (ibfd, find_ext, out); |
| return FALSE; |
| } |
| } |
| else |
| riscv_add_subset (&merged_subsets, out->name, |
| out->major_version, out->minor_version); |
| } |
| |
| *pin = in; |
| *pout = out; |
| return TRUE; |
| } |
| |
| /* Merge Tag_RISCV_arch attribute. */ |
| |
| static char * |
| riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch) |
| { |
| riscv_subset_t *in, *out; |
| char *merged_arch_str; |
| |
| unsigned xlen_in, xlen_out; |
| merged_subsets.head = NULL; |
| merged_subsets.tail = NULL; |
| |
| riscv_parse_subset_t rpe_in; |
| riscv_parse_subset_t rpe_out; |
| |
| rpe_in.subset_list = &in_subsets; |
| rpe_in.error_handler = _bfd_error_handler; |
| rpe_in.xlen = &xlen_in; |
| |
| rpe_out.subset_list = &out_subsets; |
| rpe_out.error_handler = _bfd_error_handler; |
| rpe_out.xlen = &xlen_out; |
| |
| if (in_arch == NULL && out_arch == NULL) |
| return NULL; |
| |
| if (in_arch == NULL && out_arch != NULL) |
| return out_arch; |
| |
| if (in_arch != NULL && out_arch == NULL) |
| return in_arch; |
| |
| /* Parse subset from arch string. */ |
| if (!riscv_parse_subset (&rpe_in, in_arch)) |
| return NULL; |
| |
| if (!riscv_parse_subset (&rpe_out, out_arch)) |
| return NULL; |
| |
| /* Checking XLEN. */ |
| if (xlen_out != xlen_in) |
| { |
| _bfd_error_handler |
| (_("error: %pB: ISA string of input (%s) doesn't match " |
| "output (%s)."), ibfd, in_arch, out_arch); |
| return NULL; |
| } |
| |
| /* Merge subset list. */ |
| in = in_subsets.head; |
| out = out_subsets.head; |
| |
| /* Merge standard extension. */ |
| if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out)) |
| return NULL; |
| /* Merge non-standard extension. */ |
| if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_ext_p)) |
| return NULL; |
| /* Merge standard supervisor extension. */ |
| if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_std_sv_ext_p)) |
| return NULL; |
| /* Merge non-standard supervisor extension. */ |
| if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_sv_ext_p)) |
| return NULL; |
| |
| if (xlen_in != xlen_out) |
| { |
| _bfd_error_handler |
| (_("error: %pB: XLEN of input (%u) doesn't match " |
| "output (%u)."), ibfd, xlen_in, xlen_out); |
| return NULL; |
| } |
| |
| if (xlen_in != ARCH_SIZE) |
| { |
| _bfd_error_handler |
| (_("error: %pB: Unsupported XLEN (%u), you might be " |
| "using wrong emulation."), ibfd, xlen_in); |
| return NULL; |
| } |
| |
| merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets); |
| |
| /* Release the subset lists. */ |
| riscv_release_subset_list (&in_subsets); |
| riscv_release_subset_list (&out_subsets); |
| riscv_release_subset_list (&merged_subsets); |
| |
| return merged_arch_str; |
| } |
| |
| /* Merge object attributes from IBFD into output_bfd of INFO. |
| Raise an error if there are conflicting attributes. */ |
| |
| static bfd_boolean |
| riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| obj_attribute *in_attr; |
| obj_attribute *out_attr; |
| bfd_boolean result = TRUE; |
| const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; |
| unsigned int i; |
| |
| /* Skip linker created files. */ |
| if (ibfd->flags & BFD_LINKER_CREATED) |
| return TRUE; |
| |
| /* Skip any input that doesn't have an attribute section. |
| This enables to link object files without attribute section with |
| any others. */ |
| if (bfd_get_section_by_name (ibfd, sec_name) == NULL) |
| return TRUE; |
| |
| if (!elf_known_obj_attributes_proc (obfd)[0].i) |
| { |
| /* This is the first object. Copy the attributes. */ |
| _bfd_elf_copy_obj_attributes (ibfd, obfd); |
| |
| out_attr = elf_known_obj_attributes_proc (obfd); |
| |
| /* Use the Tag_null value to indicate the attributes have been |
| initialized. */ |
| out_attr[0].i = 1; |
| |
| return TRUE; |
| } |
| |
| in_attr = elf_known_obj_attributes_proc (ibfd); |
| out_attr = elf_known_obj_attributes_proc (obfd); |
| |
| for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) |
| { |
| switch (i) |
| { |
| case Tag_RISCV_arch: |
| if (!out_attr[Tag_RISCV_arch].s) |
| out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s; |
| else if (in_attr[Tag_RISCV_arch].s |
| && out_attr[Tag_RISCV_arch].s) |
| { |
| /* Check arch compatible. */ |
| char *merged_arch = |
| riscv_merge_arch_attr_info (ibfd, |
| in_attr[Tag_RISCV_arch].s, |
| out_attr[Tag_RISCV_arch].s); |
| if (merged_arch == NULL) |
| { |
| result = FALSE; |
| out_attr[Tag_RISCV_arch].s = ""; |
| } |
| else |
| out_attr[Tag_RISCV_arch].s = merged_arch; |
| } |
| break; |
| case Tag_RISCV_priv_spec: |
| case Tag_RISCV_priv_spec_minor: |
| case Tag_RISCV_priv_spec_revision: |
| if (out_attr[i].i != in_attr[i].i) |
| { |
| _bfd_error_handler |
| (_("error: %pB: conflicting priv spec version " |
| "(major/minor/revision)."), ibfd); |
| result = FALSE; |
| } |
| break; |
| case Tag_RISCV_unaligned_access: |
| out_attr[i].i |= in_attr[i].i; |
| break; |
| case Tag_RISCV_stack_align |